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Machine learning-based
diagnostic and prognostic
models for breast cancer:
a new frontier on the clinical
application of natural killer
cell-related gene signatures in
precision medicine
Yutong Fang1†, Rongji Zheng1†, Yefeng Xiao1†,
Qunchen Zhang2*, Junpeng Liu3* and Jundong Wu1*

1Department of Breast Surgery, Cancer Hospital of Shantou University Medical College, Shantou,
Guangdong, China, 2Department of Breast Surgery, Jiangmen Central Hospital, Jiangmen,
Guangdong, China, 3Department of Urology, The Second Affiliated Hospital of Shantou University,
Medical College, Shantou, Guangdong, China
Background: Breast cancer (BC) remains a leading cause of cancer-related

mortality among women worldwide. Natural killer (NK) cells play a crucial role

in the innate immune system and exhibit significant anti-tumor activity. However,

the role of NK cell-related genes (NRGs) in BC diagnosis and prognosis remains

underexplored. With the advent of machine learning (ML) techniques, predictive

modeling based on NRGs may offer a new avenue for precision oncology.

Methods: We collected transcriptomic and clinical data from The Cancer

Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases.

Differentially expressed genes (DEGs) were identified, and key prognostic NRGs

were selected using univariate and multivariate Cox regression analyses. We

constructed ML-based diagnostic models using 12 algorithms and evaluated

their performance for identifying the optimal ML diagnostic model. Additionally, a

prognostic risk model was developed using LASSO-Cox regression, and its

performance was validated in independent cohorts. To explore the potential

mechanisms underlying the prognostic differences between high-risk and low-

risk patient groups, as well as their drug treatment sensitivities, we conducted

functional enrichment analysis, tumor microenvironment analysis,

immunotherapy prediction, drug sensitivity analysis, and mutation analysis.

Results: ULBP2, CCL5, PRDX1, IL21, NFATC2, CD2, and VAV3 were identified as

key NRGs for the construction of ML models. Among the 12 ML diagnostic

models, the Random Forest (RF) model demonstrated the best performance,

which demonstrated robust performance in distinguishing BC from normal

tissues in both training (TCGA) and validation (GEO) cohorts. In terms of the

prognostic model, the risk score based on LASSO-Cox regression effectively

distinguished between high-risk and low-risk patients, with patients in the high-

risk group exhibiting significantly poorer overall survival (OS) compared to those

in the low-risk group, and was validated in the GEO cohorts. Patients in the high-
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risk group displayed increased tumor proliferation, immune evasion, and reduced

immune cell infiltration, correlating with poorer prognosis and lower response

rates to immunotherapy. Furthermore, drug sensitivity analysis indicated that

high-risk patients were more sensitive to Thapsigargin, Docetaxel, AKT inhibitor

VIII, Pyrimethamine, and Epothilone B, while showing higher resistance to drugs

such as I-BET-762, PHA-665752, and Belinostat.

Conclusion: This study provides a comprehensive analysis of NRGs in BC and

establishes reliable ML-based diagnostic and prognostic models. The findings

highlight the clinical relevance of NRGs in BC progression, immune regulation,

and therapy response, offering potential targets for personalized

treatment strategies.
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1 Introduction

Breast cancer (BC) is one of the leading types of cancer

impacting women worldwide and is the foremost cause of cancer-

related mortality among females. Recent statistics indicate that

around 2.3 million new instances of BC were identified worldwide

in 2022, resulting in approximately 660,000 fatalities (1). Although

there are marked regional disparities in both incidence and

mortality rates on a global scale, the general trend is escalating.

Historically, research on BC has primarily focused on clinical

manifestations and histopathological characteristics. Nevertheless,

the emergence of high-throughput sequencing technologies has

facilitated a paradigm shift, allowing for extensive examinations

across genomic, transcriptomic, and proteomic landscapes. This

advancement has unveiled intricate details concerning the

molecular attributes of BC and the elaborate interplay within its

tumor microenvironment (TME) (2, 3). The TME is composed of a

diverse array of constituents, including immune cells, tumor-

associated fibroblasts, the extracellular matrix, and the vascular

system (4). These elements intricately interact, forming a

sophisticated network that can either facilitate or restrain tumor

progression (5). A comprehensive understanding of these

components is indispensable for the development of precise and

effective cancer therapies.

Natural killer (NK) cells constitute a vital component of the

innate immune system and are instrumental in orchestrating anti-

tumor immune responses. These cells exhibit the distinctive

capability to directly eradicate tumor cells, independent of

antigen-specific recognition, thus acting as a crucial cornerstone

of immune surveillance (6). In addition to their direct cytotoxic

action against tumor cells, NK cells assume a pivotal coordinating

role within the innate immune system. By orchestrating synergistic

interactions with other immune cells, they indirectly modulate the

organism’s immune status and functionality (7). This coordination
02
is essential for bolstering immune defense mechanisms and

preserving immune equilibrium. Immunotherapy has achieved

remarkable advancements in clinical applications, and is now

extensively deployed in the treatment of various cancers. Recent

advancements have led to the introduction of several innovative

approaches focused on NK cells, including the development of

chimeric antigen receptor NK (CAR-NK) cell therapy. This novel

therapeutic modality entails the genetic modification of NK cells to

express specialized chimeric antigen receptors (CARs). These

receptors are tailored to detect and bind to tumor-specific

antigens, significantly bolstering the NK cells’ capacity to discern

and eliminate cancer cells (8). Therefore, NK cell immunotherapy

offers a promising direction for the precision treatment of BC.

However, the significance of NK cell-related genes (NRGs) in the

diagnosis and prognosis of BC patients remains unclear, meriting

further investigation.

The convergence of machine learning (ML) and medical science

is catalyzing a plethora of groundbreaking innovations and

transformative developments within the medical domain. ML is

pivotal in clinical oncology, especially for malignancies such as BC,

where it critically informs early diagnosis, strategic treatment

planning, and prognostic forecasting, thereby enhancing

outcomes and precision in patient tretment (9–11). Although

numerous studies have employed ML algorithms to develop

diagnostic or prognostic models for BC, most existing research

has primarily focused on clinicopathological features and tumor-

intrinsic factors, such as imaging characteristics, hormone receptor

status, proliferative markers, and oncogenic signaling pathways. In

contrast, relatively limited attention has been paid to the TME,

particularly the role of NK cells—key components of the innate

immune system. The incorporation of NRGs into ML-based models

remains underexplored, overlooking the critical role of the TME in

tumor progression and immune evasion. This study aims to address

this gap by constructing diagnostic and prognostic models for BC
frontiersin.org
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utilizing ML algorithms based on NRG signatures, providing new

insights into the immune landscape of BC. Our objective is to

furnish innovative perspectives and robust theoretical

underpinnings for the application of precision medicine in the

management of BC. The significance of these models lies in their

ability to elucidate the immunological underpinnings of BC while

also providing strategic direction for the formulation of novel

immunotherapeutic approaches. This integrative approach

highlights the potential of leveraging immune system genetics to

enhance the specificity and efficacy of cancer treatment modalities.
2 Methods

2.1 Data collection and candidate NRGs
screening for ML models construction

We collected transcriptional data in FPKM format for a total of

1,113 BC tissue samples and 113 normal tissue samples from The

Cancer Genome Atlas (TCGA) database (12), along with

corresponding clinical information such as patient age, tumor

stage, receptor status, and survival outcomes. After excluding

samples with unclear prognosis information, 1,055 BC tissue

samples were retained for further analysis. In addition, we

merged the Gene Expression Omnibus (GEO) (13) datasets

GSE42568 and GSE88770, both generated using Affymetrix

Human Genome U133 Plus 2.0 Arrays, to create a combined

external validation cohort for the ML-based diagnostic and

prognostic models. GSE42568 comprised 17 normal and 104 BC

tissues, while GSE88770 included 117 BC samples.Prior to analysis,
Frontiers in Immunology 03
batch normalization was applied using the “sva” R package to

eliminate platform-related variability. Probe-level data were

converted to gene-level expression using platform-specific

annotations. Only samples with complete survival information

were retained for prognostic analysis. A total of 244 NRGs

(Supplementary Table S1) were obtained from a previously

published study (14). The methods and workflow of the current

study are illustrated in Figure 1.

To identify differentially expressed genes (DEGs) between BC

and normal tissue samples, we utilized the ‘limma’ R package to

conduct differential expression analysis on data from the TCGA

training cohort. The criteria for DEG selection were set as |Log Fold

Change| > 1 and adjusted P-value < 0.05. Subsequently, the

intersections between NRGs and DEGs are identified and

incorporated into a univariate Cox regression analysis aimed at

selecting NRGs correlated with overall survival (OS). These

identified NRGs are then subjected to multivariate regression

analysis. Only those genes with a p-value less than 0.05 are

deemed statistically significant and selected as candidate NRGs.

These candidates will be utilized for the development of ML models

that are designed to further explore and predict clinical outcomes.
2.2 Construction and evaluation of ML
diagnostic models

After identifying the candidate NRGs, we applied the Boruta

algorithm for feature selection to comprehensively assess feature

importance and minimize the risk of overfitting. Following this, we

developed diagnostic models using 12 ML algorithms, including
FIGURE 1

The flowchart graph depicts the methods and results in the present study.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1581982
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fang et al. 10.3389/fimmu.2025.1581982
logistic regression (LR), extreme gradient boosting (XGBoost), light

gradient boosting machine (LightGBM), random forest (RF),

adaptive boosting (AdaBoost), decision tree (DT), gradient

boosting (GB), gaussian naive bayes (GNB), complement naive

Bayes (CNB), multi-layer perceptron neural networks (MLP),

support vector machine (SVM), and k-nearest neighbors (KNN).

To evaluate these models, we used data from the TCGA BC and

normal samples, where 30% of the samples were randomly

designated as the testing set, and the remaining samples served as

the training set. Model performance was validated using 10-fold

cross-validation with a fixed random seed of 42 to ensure

reproducibility. We employed 6 key metrics to assess the

diagnostic performance of the machine learning models: the area

under the curve (AUC), sensitivity, specificity, positive predictive

value (PPV), negative predictive value (NPV), and F1 score. These

metrics provided a comprehensive evaluation of the predictive

power and clinical relevance of the models.
2.3 Validation and clinical application of
the ML diagnostic model

After evaluating and identifying the optimal ML diagnostic

model using the TCGA dataset, we employed the GEO dataset as

an independent external validation cohort to assess model

generalizability. A similar evaluation strategy was used as in TCGA:

the GEO samples were randomly split into 70% training and 30%

testing subsets, and 10-fold cross-validation was performed within

the 70% training set. The model parameters from the TCGA training

cohort were directly applied without re-optimization, ensuring that

this evaluation reflected true external validation. The classification

performance of the ML model was further evaluated and visualized

using a confusion matrix. Calibration curves were employed to assess

the agreement between the model’s predicted probabilities and the

actual outcomes, ensuring the reliability of its predictions. Decision

Curve Analysis (DCA) was conducted to determine the clinical utility

and net benefit of the model in real-world settings. Furthermore, the

significance of individual features within the model was elucidated

using SHapley Additive exPlanations (SHAP) values, derived through

the “shap” software package. Force plots were generated to provide a

detailed explanation of two representative cases, illustrating the

contributions of different variables to the model’s predictions. The

clinical applicability of the diagnostic model was also explored by

evaluating its ability to diagnose BC across various clinical stages and

PAM50 molecular subtypes using the TCGA dataset. These analyses

highlight the model’s potential as a valuable tool for improving

diagnostic accuracy and informing clinical decision-making in

BC management.
2.4 Construction, evaluation, and validation
of the ML prognostic model

After identifying candidate NRGs through univariate and

multivariate Cox regression analyses, we employed the ‘glmnet’
Frontiers in Immunology 04
package to fit a Lasso-Cox regression model. Gene expression and

survival data were structured into a matrix format, and ten-fold

cross-validation was used to determine the optimal penalty

parameter (lambda). Features that were significantly associated

with survival time in the model corresponded to non-zero

regression coefficients. By extracting these non-zero coefficients,

we identified NRGs that were significantly linked to OS. The risk

score for each sample was calculated using the following formula:

Risk score = (Coef1 × mRNA1 expression) + (Coef2 × mRNA2

expression) +… + (Coefn × mRNAn expression). Here, “Coef”

represents the regression coefficient of each mRNA, derived

through LASSO regression analysis. We stratified BC patients into

high-risk and low-risk categories according to the median risk

score. To explore the principal component analysis (PCA)

features and t-distributed stochastic neighbor embedding (t-SNE)

characteristics, we utilized the R packages “Rtsne” and “ggplot2”.

The prognostic disparities between the two groups were

meticulously analyzed using Kaplan-Meier (KM) survival analysis

and the log-rank test. We utilized the “survival” and “timeROC”

packages to conduct time-related receiver operating characteristic

(ROC) analyses, evaluating the model’s predictive accuracy for 1-

year, 3-year, and 5-year OS rates. Validation of these analyses was

subsequently performed using the GEO external validation cohort.

Furthermore, we explored the differences in risk scores among

different clinical subgroups of BC, alongside examining the

prognostic disparities between high-risk and low-risk groups

within different clinical subgroups, to further evaluate the clinical

relevance and generalizability of the model.
2.5 Construction and validation of a
nomogram prognostic model based on risk
scores and clinical characteristics

To ascertain whether the risk scores could function as an

independent prognostic indicator for predicting patient OS, we

integrated the risk scores with patient clinical characteristics into

both univariate and multivariate regression analyses within the

TCGA training cohort and the GEO validation cohort.

Subsequently , leveraging the risk scores and cl inical

characteristics, we employed the “rms” package in R to develop

nomograms that predict 1-year, 3-year, and 5-year OS. We

evaluated the precision of these models through the generation of

calibration curves and the execution of time-related ROC analyses.

In the GEO validation cohort, we applied the same analytical

framework to construct and evaluate the nomogram models,

serving as a validation.
2.6 Functional enrichment analysis

In the TCGA cohort, we utilized the limma package to identify

DEGs between high-risk and low-risk groups. The selection criteria

for DEGs were defined as |Log Fold Change| > 1 and an adjusted P-

value < 0.05. Subsequently, functional enrichment analyses,
frontiersin.org
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including Gene Ontology (GO) and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway enrichment, were performed using

the “clusterProfiler” and “org.Hs.eg.db” R packages. Additionally,

we conducted GO and KEGG analysis on differentially expressed

NRGs between BC samples and normal samples. Furthermore, we

employed Gene Set Enrichment Analysis (GSEA) to investigate

pathway enrichment and biological differences between the two risk

groups. To complement these findings, we conducted Disease

Ontology (DO) analysis using the “DOSE” R package, identifying

disease-associated biological processes and pathways linked to the

identified DEGs.
2.7 TME analysis

To explore the differences in cancer hallmarks and their

relevance to cell death pathways between high-risk and low-risk

groups, we obtained relevant gene sets from previous studies (15,

16). Using the “GSVA” and “GSEABase” R packages, we performed

single-sample gene set enrichment analysis (ssGSEA) to calculate

enrichment scores for each gene set in each sample and analyzed

their correlation with the risk scores. To further investigate

differences in the immune microenvironment between the two

groups, we identified markers associated with 16 types of immune

cell infiltration and 13 immune functions (17). The ssGSEA

algorithm was used to quantify the sample scores for these

markers. Additionally, the immune, stromal, and ESTIMATE

scores were calculated for each sample using the “estimate” R

package. Xu et al. developed an online resource providing curated

gene sets related to cancer progression and immune responses (18)

(http://biocc.hrbmu.edu.cn/TIP/). Using gene sets obtained from

this platform, we performed ssGSEA to evaluate their enrichment

levels. Moreover, we retrieved expression data for major

histocompatibility complex (MHC) molecules, chemokines and

their receptors, and immune checkpoint genes (ICGs) from

TCGA. Based on these datasets, we compared enrichment scores

and gene expression levels between the two groups to assess

variations in the TME.
2.8 Immunotherapy response prediction
and drug sensitivity analysis

The Immunophenoscore (IPS) algorithm is a ML method used

to predict the likelihood of response to cancer immunotherapy,

specifically immune checkpoint inhibitors (19). We retrieved IIPS

for BC samples from TCGA via The Cancer Immunome Atlas

(TCIA) database. In addition, we employed the Tumor Immune

Dysfunction and Exclusion (TIDE) algorithm to predict responses

to immune therapy in these samples (20). To validate these immune

therapy responses, we utilized data from the IMvigor210 study,

which is based on a real-world patient cohort (21). Furthermore,

using the Drug Sensitivity in Cancer (GDSC) database (22), we

computed the 50% inhibitory concentration (IC50) values for 235

drugs against the BC samples, employing the “pRRophetic” R
Frontiers in Immunology 05
package. We conducted a correlation analysis between the IC50

values of each drug and the associated risk scores, identifying the

top five drugs with positive and negative correlations to the risk

scores. We then examined the differences in drug sensitivity

between two defined risk groups, categorizing the samples into

drug-sensitive and -insensitive groups based on the median IC50

values. The discriminative power of the risk scores to segregate

these groups was assessed using ROC analysis. Moreover, we

evaluated the efficacy of neoadjuvant chemotherapy across

different risk groups of BC with data from GEO datasets

GSE4779 and GSE25066.
2.9 Mutation analysis

We downloaded somatic mutation data for breast cancer

samples from TCGA and utilized the “maftools” R package to

create waterfall plots, which illustrated the mutational landscape in

groups with high and low risk. Additionally, we calculated the

tumor mutational burden (TMB) scores for these samples.

Microsatellite instability (MSI) scores for the BC samples were

acquired from a prior study (23). Furthermore, we computed

intratumor heterogeneity (ITH) scores for each sample using the

“DEPTH” package. We then analyzed the correlations between

TMB, MSI, and ITH scores with risk scores, and assessed the

differences in these metrics between the two risk groups.
2.10 Single cell, differential expression, and
prognosis analyses of the NRGs for ML
models construction

To delve deeper into the expression patterns of NRGs within the

TME, we leveraged the Tumor Immune Single-cell Hub (TISCH)

database (24) for a single-cell analysis, utilizing the GSE114727_10X

dataset. Furthermore, we conducted a comparative analysis of the

differential expression of NRGs between BC tissue and normal tissue

samples, employing ROC curve analysis to evaluate their potential

diagnostic utility. Additionally, we utilized KM survival analysis to

elucidate the association between the expression levels of these NRGs

and OS. This comprehensive approach not only augments our insight

into the cellular heterogeneity of the TME but also underscores the

pivotal role of NRGs as potential biomarkers in BC diagnostics

and prognostics.
2.11 Blood samples collection, cell lines
culture and quantitative real-time PCR

We obtained blood samples from 6 patients with breast

fibroadenoma and 9 patients with BC who were treated at the

Cancer Hospital of Shantou University Medical College. All patients

were newly diagnosed and had not received any prior treatment.

The final pathological diagnosis was confirmed through either core

needle biopsy or surgical excisional biopsy.
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The BC cell lines MCF-7 and MDA-MB-231, as well as the

breast epithelial cell line MCF-10A, were purchased from Procell

(Wuhan, China). They were cultured according to the

supplier’s instructions.

Total RNA was extracted from these cells and blood samples

using the RNAsimple Total RNA Kit (Tiangen, Beijing, China),

following the manufacturer’s guidelines. Subsequently, qRT-PCR

was performed using the PrimeScript™ RT Reagent Kit (Takara,

Japan) and SYBR Premix Ex Taq™ II (Takara, Japan), adhering

strictly to the manufacturer’s protocols. GAPDH was selected as the

internal reference gene, and relative expression levels were

calculated using the 2−DDCt method. Two siRNAs were designed

and selected based on the ULBP2 mRNA sequence for transfection

into MDA-MB-231 cells. The knockdown efficiency was assessed by

qRT-PCR after transfection. The specific primers used in this study

are listed in Supplementary Table S2.
2.12 Cell viability assay (CCK8)

Transfected MDA-MB-231 cells were seeded into a 96-well

plate at a density of 2,000 cells per well. Each group included three

replicate samples, and the experiment was conducted multiple

times. At 0, 24, 48, and 72 hours post-seeding, 10 μL of CCK-8

reagent was added to each well, followed by a 2-hour incubation.

Optical density (OD) at a wavelength of 450 nm was measured

using a spectrophotometer. Growth curves were generated and cell

viability for each group was calculated.
2.13 Clone formation assay

Transfected MDA-MB-231 cells were seeded at a density of

1,000 cells per well in a six-well plate and incubated in a CO2

incubator for 14 days. The medium was refreshed every 2–3 days,

and clone formation was monitored. Once clones formed, cells were

fixed with 4% paraformaldehyde for 30 minutes, stained with 0.1%

crystal violet for 20 minutes, air-dried, photographed, and images

were recorded.
2.14 Transwell invasion and migration
assay

After a 12-hour starvation period, transfected MDA-MB-231

cells were trypsinized and resuspended at a concentration of 4×10^4

cells per mL in serum-free medium. For the migration assay, 300 μL

of the cell suspension was placed in the upper chamber, and the

lower chamber was filled with 600 μL of medium containing 20%

fetal bovine serum. The invasion assay included an initial step of

coating the upper chamber with 100 μL of diluted Matrigel, which

was allowed to solidify at 37°C for 2 hours. Subsequently, the cell

suspension was added, and both assays were conducted for 24 to 48

hours. After the incubation period, the chambers were washed with

PBS at room temperature, fixed with 4% paraformaldehyde for 30
Frontiers in Immunology 06
minutes, and stained with 0.1% crystal violet for 20 minutes. After

drying, images were captured at room temperature using an

inverted microscope and saved for analysis.
2.15 Statistical analysis

Statistical analysis was conducted with R software (version

4.0.3) or Python (version 3.8). The Wilcoxon signed-rank test was

applied to evaluate differences in continuous variables between two

groups, while the Kruskal-Wallis test was used for comparisons

across more than two groups. For categorical variables, chi-square

tests were employed. Correlations were assessed using Spearman’s

rank correlation. A p-value below 0.05 was considered

statistically significant.
3 Result

3.1 Candidate NRGs screening for ML
models construction

As shown in Supplementary Table S3, we identified 101

differentially expressed NRGs, of which 33 were down-regulated

and 68 were up-regulated in BC. The expression profiles of these

NRGs between the BC and normal sample groups were visualized

using heatmaps (Figure 2A) and volcano plots (Figure 2B).

Subsequently, through univariate (Figure 2C) and multivariate Cox

regression analyses (Figure 2D), we identified seven NRGs most

strongly associated with OS (p<0.05), namely ULBP2, CCL5, PRDX1,

IL21, NFATC2, CD2, and VAV3. A correlation network diagram was

constructed to illustrate the Spearman correlations among these

seven NRGs (Figure 2E), with the strongest positive correlations

observed between CD2, CCL5, and IL21. Furthermore, based on

these 101 differentially expressed NRGs, we performed GO and

KEGG pathway enrichment analyses, with the results provided in

Supplementary Table S4. The key findings were visualized using a

bubble plot (Figure 2F), revealing that the enriched pathways

primarily involved immune responses, cytokine signaling, immune

evasion, cell membrane functions, and signal transduction, suggesting

a crucial role for NRGs in the TME.
3.2 Construction and evaluation of 12 ML
diagnostic models

After identifying the candidate NRGs and feature selection, all

seven NRGs were incorporated into the ML diagnostic models

construction (Supplementary Figure S1). We utilized 12 ML

algorithms to construct diagnostic models for BC, with the

performance of each model on both the training and testing sets

summarized in Table 1. These results indicate that, within the TCGA

training cohort, the RF model demonstrated exceptional accuracy

and reliability on the training set, whereas the AdaBoost model stood

out in several critical metrics, emerging as the optimal model for the
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testing set. In the TCGA training cohort, the RF model achieved an

AUC of 1.0 on the training set, and an AUC of 0.971 on the testing

set. The RF model exhibited smaller calibration errors compared to

the AdaBoost model and showed superior performance in the test

decision curve (Figures 3A, B). However, the AdaBoost model

exhibited higher AUC, sensitivity, specificity, and other metrics on

the testing set. To further validate these findings, we evaluated the

performance of both models in the GEO validation cohort. The

results showed that, regardless of whether in the training or testing

set, the RF model consistently yielded higher AUC (Figures 3C, D).

Although the AdaBoost model performed comparably well, the RF

model demonstrated more consistent predictive ability across cross-

validation folds, better external validation generalization, making it a

more suitable choice for our diagnostic application. Thus, we

ultimately selected the RF model as the most optimal diagnostic

model based on its superior performance.
3.3 Interpretability, validation and clinical
application of the RF diagnostic model

We visualized the detailed comparison between the actual and

predicted labels for both the training (Figure 3E) and testing sets
Frontiers in Immunology 07
(Figure 3F) in the TCGA cohort using confusion matrices, and

further validated the results in the GEO cohort (Figures 3K, L).

Figures 3G, M respectively show the SHAP values for each feature at

different levels in the TCGA training cohort and GEO validation

cohort. As the feature value increases, the color gradually shifts to

red, whereas lower values correspond to a blue color. Additionally,

we ranked the features based on their importance (Figures 3H, N).

A higher rank indicates greater importance, meaning the feature

contributes more to the model’s predictions. In the TCGA cohort,

the NRGs contributing most to the RF model were primarily

NFATC2, VAV3, and PRDX1, while in the GEO cohort, VAV3

was the most significant. We further illustrated the interpretability

of the RF model by showcasing representative samples. In the

TCGA cohort, a normal sample had a relatively low SHAP

prediction score of 0.32 (Figure 3I), while a BC sample had a

higher SHAP prediction score of 1.00 (Figure 3J). Similarly, two

representative samples were selected and validated in the GEO

cohort (Figures 3O, P). Furthermore, we obtained blood samples

from 6 patients with breast fibroadenoma and 9 patients with BC as

a clinical validation cohort for the diagnostic model. The RF model

demonstrated robust performance in this cohort, achieving an AUC

of 0.811 (Supplementary Figure S2A), and DCA confirmed its

clinical applicability (Supplementary Figure S2B).
FIGURE 2

Candidate NRGs screening for ML models construction. (A) Heat map shows differentially expressed NRGs expression between the BC and normal
groups from TCGA, with red indicating up-regulation and blue indicating down-regulation. (B) Volcano plot shows differentially expressed NRGs
expression between the BC and normal groups with |Log Fold Change| > 1 and adjusted P-value < 0.05. (C, D) Univariate (C) and multivariate (D)
Cox regression analyses to identify seven NRGs most strongly associated with OS. (E) Network diagram illustrates the Spearman correlations among
the identified NRGs. (F) Bubble plot illustrates the key findings of the GO and KEGG pathway enrichment analyses for differentially expressed NRGs
between the BC and normal groups.
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Additionally, we evaluated the clinical application value of the

RF model. As shown in Supplementary Figure S3, the RF diagnostic

model demonstrated an AUC close to 1.0 in both the training and

testing sets across different pathologic stages and PAM50 subtypes

of BC. This highlights the high accuracy and universality of the ML

diagnostic model, showcasing its promising performance and

potential for clinical application.
3.4 Construction, evaluation and validation
of the ML prognostic model

After identifying the candidate NRGs, we constructed a

prognostic model using LASSO regression analysis (Figures 4A,

B). The final risk score for each sample was calculated using the

following formula (Equation 1):
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Risk score = 0:106� ULBP2 − 0:019� CCL5 + 0:003

� PRDX1 − 3:561� IL21 − 0:048� NFATC2

+ 0:055� CD2 − 0:009� VAV3 (1)

PCA (Figure 4C) and t-SNE (Figure 4D) analyses revealed

distinct clustering between the low-risk and high-risk groups in

the TCGA cohort, which was further validated in the GEO cohort

(Figures 4E, F). KM survival analysis (Figure 4G) demonstrated that

OS was significantly shorter in the high-risk group than in the low-

risk group in the TCGA cohort (p < 0.001). Figures 4H, I

respectively illustrate the survival status and risk score

distribution of the patients. Time-dependent ROC analysis

indicated that the model’s AUC for predicting 1-year, 3-year, and

5-year OS was 0.773, 0.724, and 0.683, respectively (Figure 4J). To

assess the model’s applicability and reliability, we applied the above

formula to calculate the risk scores for each BC sample in the GEO
TABLE 1 Performance of ML diagnostic models in training and testing sets.

Sets Models AUC Accuracy Sensitivity Specificity PPV NPV F1‐score

Training set

LR 0.970 0.893 0.887 0.952 0.994 0.466 0.937

XGBoost 0.986 0.941 0.938 0.971 0.997 0.616 0.966

LightGBM 0.840 0.240 0.168 0.950 NaN 0.139 NaN

RF 1.000 0.999 0.999 1.000 1.000 0.986 0.999

AdaBoost 0.995 0.970 0.968 0.997 1.000 0.762 0.983

DT 0.975 0.767 0.744 0.988 NaN 0.348 NaN

GB 1.000 0.998 0.998 1.000 1.000 0.980 0.999

GNB 0.957 0.899 0.894 0.948 0.994 0.493 0.941

CNB 0.909 0.821 0.818 0.853 0.981 0.343 0.892

MLP 0.578 0.548 0.531 0.703 0.949 0.151 0.655

SVM 0.953 0.900 0.901 0.892 0.988 0.501 0.942

KNN 1.000 0.097 0.000 1.000 NaN 0.097 NaN

Testing set

LR 0.963 0.912 0.914 0.892 0.986 0.55 0.949

XGBoost 0.923 0.929 0.936 0.865 0.983 0.615 0.919

LightGBM 0.831 0.835 0.844 0.757 0.967 0.346 0.901

RF 0.971 0.949 0.971 0.757 0.971 0.757 0.971

AdaBoost 0.985 0.96 0.978 0.811 0.978 0.811 0.978

DT 0.885 0.105 0.000 1.000 NaN 0.105 NaN

GB 0.961 0.949 0.984 0.649 0.96 0.828 0.972

GNB 0.929 0.892 0.912 0.706 0.967 0.462 0.939

CNB 0.937 0.835 0.818 1.000 1.000 0.37 0.900

MLP 0.431 0.841 0.918 0.118 0.907 0.133 0.913

SVM 0.962 0.892 0.887 0.941 0.993 0.471 0.937

KNN 0.937 0.097 0.000 1.000 NaN 0.097 NaN
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external validation cohort, successfully validating our findings

(Figures 4K–N).
3.5 Clinical relevance of the risk scores and
clinical subgroups analysis

The clinical information of BC patients from TCGA is

summarized in Table 2. We grouped the patients based on age, T

stage, N stage, M stage, pathological stage, estrogen receptor (ER)

status, progesterone receptor (PR) status, human epidermal growth

factor receptor 2 (HER2) status, PAM50 subtype, and survival

status, and analyzed the differences in risk scores among the

subgroups. As shown in Supplementary Figure S4, we observed
Frontiers in Immunology 09
an increasing trend in the risk score in patients with pathological

stage IV, and it was higher in the M1 stage compared to the M0

stage (p<0.05), suggesting that the risk score effectively reflects the

severity of the disease, particularly in relation to features associated

with distant metastasis. Moreover, we found that BC patients who

were ER-negative and PR-negative had higher risk scores (both

p<0.001), while patients with Luminal A subtype had lower risk

scores compared to those with Luminal B, HER2-enriched, and

Basal-like subtypes (all p<0.05).

Additionally, we analyzed the OS differences between high-risk

and low-risk patients within each clinical subgroup. In the majority

of clinical subgroups, high-risk patients had significantly poorer

prognoses compared to the low-risk group (all p<0.05), although no

statistical difference was observed in M1-stage patients, as well as
FIGURE 3

Construction, evaluation, interpretability and validation of the ML diagnostic models. (A, B) ROC curves, calibration plots, and test decision curves of
RF (A) and AdaBoost (B) models in the TCGA training cohort. (C, D) ROC curves, calibration plots, and test decision curves of RF (C) and AdaBoost
(D) models in the GEO validation cohort. (E, F) Confusion matrices of the RF model in the training set (E) and testing set (F) of the TCGA cohort. (G,
H) SHAP values for each feature at different levels (G) and important features (H) of the RF model in the TCGA cohort. (I, J) Interpretability of the RF
model with a representative sample whose actual and predicted outcomes are both normal (I) and a representative sample whose actual and
predicted outcomes are both BC (J) in the TCGA cohort. (K, L) Confusion matrices of the RF model in the training set (K) and testing set (L) of the
GEO cohort. (M, N) SHAP values for each feature at different levels (M) and important features (N) of the RF model in the GEO cohort. (O, P)
Interpretability of the RF model with a representative sample whose actual and predicted outcomes are both normal (O) and a representative sample
whose actual and predicted outcomes are both BC (P) in the GEO cohort.
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those with Normal-like, Luminal A, Luminal B, and HER2-enriched

subtypes (p>0.05) (Supplementary Figure S5).
3.6 Construction and validation of the
nomogram prognostic model

In the TCGA cohort, we included age, pathological stage, ER,

PR, and HER2 status in both univariate and multivariate regression

analyses. Univariate analysis (Figure 5A) revealed that age,

pathological stage, and risk scores were associated with OS (all

p<0.05). Multivariate regression analysis (Figure 5B) indicated that

the risk scores is an independent prognostic factor for predicting OS

in BC patients (p<0.001). In the GEO validation cohort, the risk

scores was also identified as an independent prognostic factor for

OS (p<0.05) (Figures 5C, D). The clinical information for the GEO

cohort is provided in Supplementary Table S5. Subsequently, by

combining the risk scores with patient clinical characteristics, we

constructed a Nomogram prognostic model to predict 1-year, 3-

year, and 5-year OS (Figure 5E), and evaluated its accuracy using

calibration curves (Figure 5F) and time-dependent ROC curves

(Figure 5G). The time-dependent ROC analysis revealed that the
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AUCs for predicting 1-year, 3-year, and 5-year OS were 0.938,

0.832, and 0.784, respectively. We similarly constructed a

nomogram prognostic model in the GEO cohort by combining

the risk scores with clinical features (Figure 5H) and performed

evaluations (Figures 5I, J), further demonstrating the predictive

potential of the risk scores when combined with clinical indicators

for prognosis.
3.7 Functional enrichment analysis

Between the two risk groups, we identified a total of 1369 DEGs

(Supplementary Table S6), and performed GO and KEGG pathway

enrichment analyses on these DEGs (Supplementary Table S7). The

main findings, as shown in Figure 6A, suggest that immune

responses, antigen recognition, cellular metabolism, and

endocrine regulation may exhibit significant differences between

the two risk groups, implying that the DEGs may play a critical role

in tumorigenesis or immune-related diseases. We further conducted

GSEA for the high-risk (Supplementary Table S8) and low-risk

groups (Supplementary Table S9). The enriched pathways in the

high-risk group were mainly associated with skin development,
frontiersin.or
FIGURE 4

Construction, evaluation and validation of the ML prognostic model. (A) LASSO coefficient profiles of 7 prognostic NRGs. (B) The outcomes of ten-
fold cross-validation indicated the optimal value of the penalty parameter. 7 independent prognostic NRGs were selected to construct the risk
model. (C, D) PCA (C) and t-SNE (D) analyses between the two risk groups in the TCGA cohort. (E, F) PCA (E) and t-SNE (F) analyses between the
two risk groups in the GEO cohort. (G) KM survival analysis between the two risk groups in the TCGA cohort. (H, I) Survival status (H) and risk score
distribution (I) of the patients in the TCGA cohort. (J) ROC curves for predicting 1-, 3-, and 5-year OS in the TCGA cohort. (K) KM survival analysis
between the two risk groups in the GEO cohort. (L, M) Survival status (L) and risk score distribution (M) of the patients in the GEO cohort. (N) ROC
curves for predicting 1-, 3-, and 5-year OS in the GEO cohort.
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keratinization, olfactory perception, complement system, among

others, all of which are linked to immune responses, cellular

differentiation, and sensory functions. This suggests that the high-

risk group may have a stronger response in immune activity,

cellular metabolism, and microenvironment regulation

(Figure 6B). In contrast, the enriched pathways in the low-risk

group were predominantly involved in immune response-related

pathways, including B cell receptor regulation, complement system,

and scavenger receptors, indicating that the low-risk group may

have a more robust immune surveillance function, with a

prominent role of B cells and the complement system in immune

responses (Figure 6C). These differences suggest that the high-risk

group may exhibit more complex immune reactions and cellular

environment alterations, potentially associated with tumor

progression, while the low-risk group may rely on more stable

immune surveillance mechanisms, exhibiting stronger immune

responses. Additionally, we conducted DO analysis for the DEGs

between the two groups (Supplementary Table S10). The diseases

enriched in this analysis suggest that the high-risk group may

exhibit characteristics such as immune dysfunction, immune

evasion mechanisms, immune deficiencies, or hyperactive

immune responses, particularly in immune deficiency diseases

like B cell deficiency, primary immunodeficiencies, HIV infection,

and immunoglobulin deficiencies (Figure 6D). These findings may

indicate a weakened immune response in the high-risk group,

making them more susceptible to infections or chronic immune

diseases. At the same time, diseases related to immune-mediated

inflammation, such as hepatitis, pancreatitis, and allergic alveolitis,

may suggest that this group exhibits heightened immune activity or

an overactive immune response.
3.8 Cancer hallmarks and cell death
pathways analyses

We investigated the differences in cancer hallmarks within the

tumor TME between the two risk groups and found that the high-

risk group was primarily enriched in pathways such as the G2M

checkpoint, tumor proliferation signature, DNA replication, MYC

targets, and cellular response to hypoxia (Supplementary Figure

S6A). Notably, these gene signatures showed the strongest positive

correlation with the risk score (Supplementary Figure S6B),

indicating that tumor cells in the high-risk group possess robust

proliferative and adaptive capabilities, enabling them to survive and

grow under stress conditions such as rapid proliferation, genomic

instability, and hypoxia. These features are typically associated with

tumor aggressiveness, metastatic potential, and resistance to

therapy. In the cell death pathways, Oxeiptosis was primarily

enriched in the high-risk group and showed the strongest positive

correlation with the risk scores (Supplementary Figures S6C, D),

while the low-risk group was predominantly enriched in pathways

related to necroptosis, immunogenic cell death, and pyroptosis.
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TABLE 2 Clinical characteristics of BC patients from TCGA.

Clinical characteristics Group No. of case (%)

Age (year) <60 588 (53.73)

≥60 467 (46.27)

T stage T1 275 (26.07)

T2 610 (57.82)

T3 134 (12.70)

T4 33 (3.13)

Unknown 3 (0.28)

N stage N0 499 (47.30)

N1 347 (32.89)

N2 116 (11.0)

N3 74 (7.01)

Unknown 19 (1.80)

M stage M0 879 (83.32)

M1 20 (1.90)

Unknown 156 (14.79)

Pathologic stage I 180 (17.06)

II 597 (56.59)

III 236 (22.37)

IV 18 (1.71)

Unknown 24 (2.27)

ER status Positive 770 (72.99)

Negative 237 (22.46)

Unknown 48 (4.55)

PR status Positive 670 (63.51)

Negative 334 (31.66)

Unknown 51 (4.83)

HER2 status Positive 153 (14.50)

Negative 544 (51.56)

Unknown 358 (33.93)

Subtype Normal-like 35 (3.32)

Luminal A 490 (46.45)

Luminal B 192 (18.20)

HER2-enriched 75 (7.11)

Basal-like 169 (16.02)

Unknown 94 (8.91)

Survival status Alive 908 (86.07)

Dead 147 (13.93)
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FIGURE 5

Construction and validation of nomogram prognostic models. (A, B) Univariate (A) and multivariate (B) Cox regression analysis of the risk scores and
clinical characteristics in the TCGA training cohort. (C, D) Univariate (C) and multivariate (D) Cox regression analysis of the risk scores and clinical
characteristics in the GEO validation cohort. (E) Nomogram prognostic model for predicting the 1-, 3- and 5-year OS probabilities in the TCGA
cohort. (F) Calibration curve of the nomogram to predict 1-, 3- and 5-year OS probabilities in the TCGA cohort. (G) Time-dependent ROC curves of
the nomogram to predict 1-, 3- and 5-year OS probabilities in the TCGA cohort. (H) Nomogram prognostic model for predicting the 1-, 3- and 5-
year OS probabilities in the GEO cohort. (I) Calibration curve of the nomogram to predict 1-, 3- and 5-year OS probabilities in the GEO cohort.
(J) Time-dependent ROC curves of the nomogram to predict 1-, 3- and 5-year OS probabilities in the GEO cohort. *P < 0.05, **P < 0.01, ***P
< 0.001.
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3.9 Immune characteristic analysis

By analyzing the immune characteristic within the TME, we

found a reduction in the infiltration of anti-tumor immune cells in

the high-risk group, such as CD8+ T cells, NK cells, tumor-

infiltrating lymphocytes, CD4+ T cells, and T follicular helper

cells (all p<0.001) (Figure 7A). In the high-risk group, most

immune functions were down-regulated, including APC co-

inhibition, CC chemokine receptors, checkpoint regulation,

cytolytic activity, human leukocyte antigen, inflammation-

promoting factors, MHC class I molecules, parainflammation, T

cell co-inhibition, T cell co-stimulation, and Type II IFN response

(all p<0.001) (Figure 7B). Moreover, immune scores, stromal scores,

and ESTIMATE scores were significantly lower in the high-risk

group compared to the low-risk group (all p<0.001) (Figure 7C).

Additionally, the expression of the majority of MHC molecules

(Figure 7D), chemokines and receptors (Figure 7E), and ICGs

(Figure 7F) was suppressed in the high-risk group (p<0.05). By

analyzing the differences in anti-tumor immune responses across

multiple steps between the two groups, we observed a marked

suppression of immune responses in the high-risk group (p<0.01)

(Figure 7G). These results reveal an enhanced tumor immune

escape mechanism in the high-risk group, as well as a weakened

immune surveillance function. This suggests that tumors in the

high-risk group are more likely to evade detection and elimination

by the host immune system, leading to a poorer prognosis.
3.10 Immunotherapy response prediction

The IPS score, which evaluates the composition and functional

status of immune cells in the TME, helps predict patient responses

to immune checkpoint inhibitors. We found that regardless of PD-1

and CTLA-4 expression status, the IPS score was significantly lower

in the high-risk group (all p<0.001) (Supplementary Figure S7A).

While there were no differences in TIDE scores between the two

groups (p>0.05), the high-risk group exhibited lower expression of

IFNG, Merck18, CD274, CD8, among others, along with a lower

Dysfunction score and a higher Exclusion score (all p<0.001)

(Supplementary Figure S7B), suggesting a stronger immune

escape mechanism in high-risk BC patients. Additionally, in the
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IMvigor210 real-world study cohort, the low-risk group showed a

higher response rate to immune therapy (p<0.01), although no

statistical difference was observed in the TCGA cohort (p=0.52)

(Supplementary Figures S7C, D). Overall, these findings emphasize

that high-risk patients may exhibit more robust immune escape

features, which could result in a poorer response to immune

checkpoint inhibitors. Therefore, evaluating the IPS score and

immune escape mechanisms may help predict which patients are

more likely to benefit from immunotherapy.
3.11 Drug sensitivity analysis

Based on the GDSC database, we calculated the IC50 values of

235 drugs and assessed their correlation with the risk scores

(Supplementary Table S11, Figure 8A). Additionally, through the

GSE4779 and GSE25066 cohorts, we found that the proportion of

BC patients in the high-risk group achieving pathological complete

response (pCR) after neoadjuvant chemotherapy was lower,

indicating a poorer response to neoadjuvant chemotherapy,

although no statistical significance was reached (both p>0.05)

(Figures 8B, C). Through drug sensitivity analysis, we identified

the five drugs most strongly negatively correlated with risk scores,

namely Thapsigargin, Docetaxel , AKT Inhibitor VIII,

Pyrimethamine, and Epothilone B. Conversely, the five drugs

most strongly positively correlated with risk scores were I-BET-

762, PHA-665752, Belinostat, TL-2-105, and VNLG_124. We

displayed the differences in the IC50 values of these drugs

between the two risk groups using box plots (Figures 8D, E), and

further illustrated the correlation between IC50 values and risk

scores with scatter plots (Figures 8F, G). Additionally, patients were

categorized into drug-sensitive and drug-insensitive groups based

on the median IC50 values for each drug. Through ROC analysis,

we found that among the top five drugs most strongly positively

correlated with risk scores, the risk scores demonstrated the

strongest ability to distinguish the drug-sensitive and drug-

insensitive groups for Thapsigargin, with an AUC of 0.6

(Figure 8H). Among the top five drugs most strongly negatively

correlated with risk scores, the risk scores exhibited the strongest

ability to differentiate for I-BET-762 (Figure 8I). The drug

sensitivity analysis highlights the risk scores as an important
FIGURE 6

Functional enrichment analysis. (A) GO and KEGG pathway enrichment analyses on the DEGs between the two risk groups. (B, C) GSEA of the high-
risk (B) and low-risk groups. (D) DO analysis on the DEGs between the two risk groups.
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predictive factor, aiding in the identification of patient populations

sensitive or resistant to specific drugs. This provides a theoretical

foundation for personalized drug therapy in the treatment for BC.
3.12 Mutation analysis

We examined somatic mutation data from two risk groups,

displaying the results via waterfall plots (Supplementary Figures

S8A, B). In the low-risk group, PIK3CA mutations were the most

common, occurring in 38% of cases. Conversely, TP53 mutations

were the most frequent in the high-risk group, found in 44% of

patients. Moreover, in both groups, single nucleotide variations

(SNVs) were the predominant variation type, with missense

mutat ions being the most frequent var iant category

(Supplementary Figures S8C, D). Furthermore, we observed that

TMB and ITH scores were higher in the high-risk group and
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positively correlated with risk scores (all p<0.001), while MSI

scores showed no significant correlation with risk scores (p>0.05)

(Supplementary Figures S8E–J).
3.13 Single cell analysis

We performed single cell analysis using the GSE114727_10X

dataset from the TISCH database to investigate the expression

patterns of 7 NRGs in immune-related cells of the BC tumor

microenvironment. The cell type annotations are shown in

Supplementary Figures S9A, which include CD4+ T conventional

cells, CD8+ T cells, CD8+ T effector memory cells, Tprolif, and

regulatory T cells. These five cell types were further divided into 17

distinct cell populations (Supplementary Figures S9B).

Supplementary Figures S9C and S9D present the quantities and

proportions of different cell types in the GSE114727_10X dataset.
FIGURE 7

Immune characteristics between two risk groups. (A) Differences in 16 types of immune cell infiltration between the two risk groups. (B) Differences
in 13 types of immune functions between the two risk groups. (C) Differences in immune, stromal, and ESTIMATE scores between the two risk
groups. (D) Differences in MHC molecules expression between the two risk groups. (E) Differences in chemokines and receptors expression between
the two risk groups. (F) Differences in ICG expression between the two risk groups. (G) Differences in enrichment scores of gene sets related to
cancer progression and immune responses between the two risk groups. *P < 0.05, **P < 0.01, ***P < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1581982
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fang et al. 10.3389/fimmu.2025.1581982
FIGURE 8

Drug sensitivity analysis. (A) Spearman correlation analysis between the risk scores and IC50 values of 235 drugs. (B, C) Proportion of BC patients
who achieved pCR and non-pCR after neoadjuvant chemotherapy in the GSE4779 (B) and GSE25066 (C) cohorts. (D, E) Differences in IC50 values of
the top five drugs negatively (D) and positively (E) correlate with the risk scores between the two risk groups. (F, G) Spearman correlation analysis
between the risk scores and IC50 values of the top five drugs negatively (F) and positively (G) correlate with the risk scores. (H, I) ROC analysis to
evaluate the discriminative power of the risk scores in the drug-sensitive and drug-insensitive groups of the top five drugs negatively (H) and
positively (I) correlate with the risk scores. *P < 0.05, **P < 0.01, ***P < 0.001.
Frontiers in Immunology frontiersin.org15

https://doi.org/10.3389/fimmu.2025.1581982
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fang et al. 10.3389/fimmu.2025.1581982
Additionally, Supplementary Figures S9E displays the percentage

and expression levels of the 7 NRGs. Among them, ULBP2, IL21,

and VAV3 are almost negligibly expressed in the immune

microenvironment. CCL5 exhibits strong expression in CD4+

regulatory T cells, CD8+ terminally differentiated T cells, and

CD8+ T cells, while PRDX1 and CD2 show moderate expression

across all five cell types. NFATC2 is expressed at low levels across

various cell types.
3.14 Differential expression and survival
analyses of the 7 NRGs

In the TCGA cohort, we analyzed the differential expression of

the 7 NRGs used to construct the models in BC and normal tissues,

and explored their diagnostic value for BC through ROC analysis.

Among these NRGs, except for NFATC2, which was expressed at

lower levels in BC compared to normal tissues, the remaining NRGs

were highly expressed in BC tissues (all p<0.05) (Supplementary

Figures S9F). Notably, PRDX1 demonstrated a superior diagnostic

ability for BC, with an AUC of 0.864 (Supplementary Figures S9G).

Furthermore, we validated the differential expression of these NRGs

in cell lines using qRT-PCR (Supplementary Figures S9H). In the

KM survival analysis, patients with high expression of ULBP2 had

poorer DSS, while patients with high expression of CCL5 and CD2

had better OS (all p<0.05) (Supplementary Figure S10).
3.15 Knockdown of ULBP2 inhibits tumor
cell proliferation, migration and invasion

In our previous analysis, we observed that ULBP2 expression is

significantly elevated in BC tissues compared to normal tissues, and

its high expression is associated with poor prognosis in BC patients.

Furthermore, ULBP2 expression was markedly increased in the

MDA-MB-231 cell line. Consequently, we selected the MDA-MB-

231 cells for knockdown experiments, with the results validated

using qRT-PCR. Both siRNAs effectively reduced ULBP2

expression (both p<0.001) (Figure 9A). CCK-8 assays

demonstrated that knockdown of ULBP2 significantly impaired

the proliferative capacity of cancer cells (all p<0.01) (Figure 9B).

Clonogenic assays further revealed a substantial reduction in the

proliferation and clonogenic potential of MDA-MB-231 cells

following ULBP2 knockdown (all p<0.001) (Figure 9C). Transwell

migration and invasion assays provided additional evidence that

ULBP2 knockdown significantly decreased the number of migrating

and invading cells (all p<0.001) (Figures 9D, E). Collectively, our

findings demonstrate that silencing ULBP2 suppresses the

proliferation, migration, and invasion of BC cells.
3.16 Comparison with prior studies

To further validate the performance and robustness of our

proposed NRG-based ML models, we conducted a comparative
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analysis with previously published ML approaches for BC diagnosis

and prognosis. As summarized in Table 3, these prior studies have

employed a variety of biological sources and multimodal imaging

modalities to build predictive models using diverse ML algorithms

(25–34). For diagnostic modeling, our RF-based model achieved an

exceptionally high predictive performance, with an accuracy of

0.999 and an AUC of 1.000. These results significantly

outperform previously reported models, including those based on

LR (e.g., Zhao et al. with Accuracy = 0.907), XGBoost (e.g., Saadh

et al. with AUC = 0.920), and SVM (e.g., Hamyoon et al. with AUC

= 0.885). Notably, even models utilizing imaging technologies such

as microwave and multiparametric MRI yielded relatively lower

AUC values, emphasizing the predictive strength of transcriptome-

based NRG features. For prognostic modeling, our model

constructed using LASSO and Cox regression demonstrated

competitive and consistent performance across different survival

time points (1-year AUC = 0.773; 3-year AUC = 0.724; 5-year AUC

= 0.683). When compared with other gene signature-based

prognostic models—such as RNA modification-related models

(e.g., Wang et al., 1-year AUC = 0.694), mitochondrial and

lysosome-associated models (e.g., Chen et al., 1-year AUC =

0.738), and redox-associated models (e.g., Wang et al., 1-year

AUC = 0.730)—our approach shows comparable or improved

predictive capacity. It also maintains performance advantage over

vascular mimicry-related models and tertiary lymphoid structure-

based predictors, especially in the 3- and 5-year AUC metrics.

Taken together, this comparative evaluation demonstrates that our

NRG-based models offer competitive or superior diagnostic and

prognostic efficacy compared to a broad spectrum of existing ML

models. The strong performance, particularly in external validation

cohorts, underscores the potential of incorporating immune cell-

associated signatures—specifically NK-cell related genes—into

clinical decision-support tools for precision oncology.
4 Discussion

As research into the role of NK cells in the TME advances, the

clinical application of NK cell-related genes in various cancers is

gaining increasing attention (14, 35, 36). In this study, we developed

and validated a ML diagnostic model based on the RF algorithm,

utilizing seven NRGs which were ULBP2, CCL5, PRDX1, IL21,

NFATC2, CD2, and VAV3. The model demonstrated high accuracy

across different datasets and clinical subgroups. Furthermore, using

these seven NRGs, we constructed a prognostic ML model that

exhibited strong predictive capability, effectively forecasting the

survival outcomes of BC patients. Our findings highlight the

crucial role of NRGs in BC diagnosis and prognosis, shedding

light on their potential utility in precision medicine. Previously,

Zundong et al. constructed a prognostic risk model using five NRGs

in triple-negative breast cancer (TNBC) patients (37). In

comparison to the study conducted by Zundong et al., our work

introduces a novel integration of NRGs and ML methods to develop

a diagnostic model for BC. This innovative approach not only

enhances the early screening and diagnosis of BC but also
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contributes to a deeper understanding of the role of NRGs in the

pathogenesis of BC. In terms of predicting survival outcomes, our

prognostic model includes a larger sample size and places greater

emphasis on the correlation between risk scores and clinical

indicators in BC patients. These improvements make our model

more robust and enhance its potential for broader clinical

application. Currently, Oncotype DX Breast Recurrence Score
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plays a significant role in predicting the recurrence risk and

chemotherapy benefits for BC patients, and its widespread

application has also driven a shift in treatment paradigms (38–

40). However, Oncotype DX is primarily designed for early-stage

BC patients who are hormone receptor-positive, HER2-negative,

and lymph node-negative, limiting its applicability in other

subtypes and stages of BC. In contrast, our prognostic model
FIGURE 9

Effect of ULBP2 expression on the proliferation, migration, and invasion of MDA-MB-231 BC cells. (A) The knockdown efficiency of ULBP2 by two
siRNAs was evaluated using qRT-PCR. (B) Cell proliferation was assessed using the CCK-8 assay. (C) Colony formation assay was conducted to
assess the proliferation/cloning ability. (D, E) Transwell migration (D) and invasion (E) assays were performed to evaluate the invasion and migration
capabilities of the cells, respectively. **P < 0.01, ***P < 0.001.
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explores clinical applications across various stages and types of BC,

addressing this limitation. Moreover, while Oncotype DX mainly

focuses on gene expression traits related to tumor proliferation and

invasion, our model centers on NK cell-related features. This may

offer a greater clinical advantage in predicting responses to
Frontiers in Immunology 18
immunotherapy, particularly in BC subtypes such as TNBC,

which show higher sensitivity to immune treatments. Therefore,

integrating NK cell characteristics into clinical decision-making

could complement existing tools like Oncotype DX or provide an

alternative when traditional methods are less effective.
TABLE 3 Comparison of NRGs-based ML diagnostic and prognostic models with previously published studies.

Research Characteristics Models
ML

algorithms
Performance evalua-

tion parameters
Paper

reference

The current study NRGs
Diagnosis
Model

RF
Accuracy=0.999;
AUC=1.000

–

Zhao AR, Kouznetsova VL,
Kesari S, et al.

PIWI-interacting RNAs
Diagnosis
Model

LR Accuracy=0.907 (25)

Saadh MJ, Ahmed HH, Kareem
RA, et al.

Transcriptomic profiling
Diagnosis
Model

XGBoost
Accuracy=0.910;
AUC=0.920

(26)

Hamyoon H, Yee Chan W,
Mohammadi A, et al.

Ultrasound images
Diagnosis
Model

SVM
Accuracy=0.860;
AUC = 0.885

(27)

Hu Q, Whitney HM, Giger ML
Multiparametric magnetic

resonance images
Diagnosis
Model

SVM AUC = 0.870 (28)

Oliveira BL, Godinho D,
O’Halloran M, et al.

Microwave Technology
Diagnosis
Model

RF Accuracy=0.870 (29)

The current study NRGs
Prognostic
model

LASSO and Cox

1-year AUC=0.773;

3-year AUC=0.724;

5-year AUC=0.683

–

Wang T, Wang S, Li Z, et al. RNA modification signature
Prognostic
model

CoxBoost and
survival-SVM

1-year AUC=0.694;

3-year AUC=0.696;

5-year AUC=0.682

(30)

Chen H, Wang Z, Shi J, et al.
Mitochondrial and lysosome-related

model signature
Prognostic
model

CoxBoost and
survival-SVM

1-year AUC=0.738;

3-year AUC=0.746;

5-year AUC=0.738

(31)

Zhang X, Li L, Shi X, et al. Tertiary lymphoid structures
Prognostic
model

Enet

1-year AUC=0.659;

2-year AUC=0.736;

3-year AUC=0.668

(32)

Wang T, Wang S, Li Z, et al.
Redox

signatures
Prognostic
model

RSF

1-year AUC=0.730;

3-year AUC=0.715;

5-year AUC=0.683

(33)

X, Li X, Yang B, et al.
Vascular mimicry

signatures
Prognostic
model

RFS

3-year AUC=0.631;

5-year AUC=0.646;

10-year AUC=0.719

(34)
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ULBP2 (UL16-binding protein 2) is one of the ligands for the

natural killer group 2 member D (NKG2D) receptor, and its

expression is up-regulated in various stress, oncogenic, or infected

cells, where it binds to NKG2D, thereby inducing cytotoxicity and

cytokine production by NK cells (41). Interestingly, our current

study reveals that ULBP2 is not only highly expressed in BC patients

but also correlates with poorer prognosis. Furthermore, we

validated through functional assays that its elevated expression

promotes the proliferation, migration, and invasion of BC cells.

Studies have reported that soluble ULBP2, as a ligand of NKG2D,

suppresses the expression of NKG2D and inhibits NK cell activity,

thereby allowing tumor cells to escape immune surveillance and

promoting immune evasion (42). CCL5 (C-C motif chemokine

ligand 5) is a chemokine that primarily acts on immune cells. By

binding to the CCR5 receptor, it contributes to an increased risk of

BC recurrence by facilitating the recruitment of tumor-associated

macrophages (43). Furthermore, elevated expression of CCL5 is

associated with poor prognosis in BC, particularly in its role in

promoting tumor invasiveness and metastasis (44). Interestingly,

our current study found that patients with high CCL5 expression

exhibited better prognoses. This suggests that the role of CCL5 in

the TME is multifaceted. In addition to its well-documented

involvement in promoting tumor cell migration and invasion,

CCL5 may also enhance anti-tumor immune responses by

modulating immune activity and promoting immune cell

infiltration. These findings indicate that CCL5 could have a dual

role in both immune evasion and immune surveillance. Further

investigation is warranted to elucidate the specific mechanisms of

CCL5 across different BC subtypes. The role of PRDX1

(peroxiredoxin 1) in BC has garnered widespread attention. In

BC cells, PRDX1 may prevent oxidative stress-induced loss of ERa
through its antioxidant function, potentially contributing to the

maintenance of the ER-positive phenotype in BC (45). The

expression level of PRDX1 not only affects cell growth and

survival but is also associated with the invasiveness and

metastatic potential of BC. Studies have shown that down-

regulation of PRDX1 significantly inhibits the growth rate of BC

cells, and in vivo, PRDX1-deficient MCF-7 cells exhibit delayed

tumor growth upon transplantation (46). IL21 (Interleukin-21) is a

cytokine that can influence the development and progression of BC

through various mechanisms that regulate the immune system. The

expression of IL21 is closely associated with processes such as the

proliferation, migration, and immune evasion of BC cells (47).

NFATC2 (nuclear factor of activated T cells 2) is a transcription

factor that plays a critical role in the activation of immune cells.

Research indicates that NFATC2 regulates the expression of matrix

metalloproteinase 13 (MMP13) in BC cells through interactions

with other proteins, thereby promoting the invasiveness of cancer

cells (48), which provides a new therapeutic target for BC treatment.

CD2 is an important cell adhesion molecule primarily expressed on

T cells and NK cells, playing a crucial role in the formation and

organization of the immunological synapse. Studies have shown

that CD2 overexpression can inhibit the activation of nitrogen

metabolism pathways and suppress M2 polarization of

macrophages, thereby preventing brain metastasis of BC (49).
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Additionally, the interaction between CD2 and CD58 is vital in

the early stages of immune responses, as modulating this interaction

can influence the intensity and nature of immune reactions (50). By

regulating CD2-associated signaling pathways, the immune

system’s ability to recognize and eliminate tumor cells can be

enhanced, offering new perspectives and potential strategies for

BC treatment (51). VAV3 (Vav guanine nucleotide exchange factor

3) is a member of the Rho GTPase guanine nucleotide exchange

factor family and plays a pivotal role in cytoskeletal remodeling, cell

motility, and oncogenic signal transduction. Its overexpression in

BC has been reported to drive tumor cell proliferation, invasion,

and metastasis via the Rac1/MAPK signaling pathway (52).

Moreover, studies have indicated that VAV3 expression correlates

significantly with poor prognosis, making it not only a diagnostic

marker but also a prognostic indicator (53). Among the NRGs

identified by the SHAP interpretability analysis, VAV3 consistently

exhibited a high contribution to the RF diagnostic model in both the

TCGA and GEO cohorts, highlighting its potential as a key

biomarker for BC detection. Clinically, the high SHAP value of

VAV3 underscores its importance in the machine learning model

and suggests that VAV3 could serve as a molecular marker for early

identification of aggressive subtypes of BC, particularly those with

high metastatic potential. From a therapeutic perspective, targeting

the VAV3-mediated signaling pathway may offer a novel strategy

for tailored treatment in high-VAV3-expressing patients.

Additionally, as VAV3 plays a role in immune signaling

modulation within the tumor microenvironment, its expression

may also influence response to immunotherapies, a hypothesis

warranting further investigation. Overall, these NRGs not only

play a pivotal role in the immune evasion mechanisms of BC but

are also closely associated with patient survival prognosis, providing

a foundation for the development of ML-based diagnostic and

prognostic models.

To explore the potential factors influencing the prognostic

differences between high-risk and low-risk groups, we identified

DEGs and performed functional enrichment analysis between the

two risk groups. The results suggest that the high-risk group may

experience more complex immune responses and changes in the

cellular environment, potentially rendering it more susceptible to

infections or exhibiting abnormal immune activation, thereby

increasing the risk of immune evasion or inflammation-related

diseases. In contrast, the low-risk group may rely on stable immune

surveillance mechanisms, demonstrating a stronger immune

response capability, which could contribute to better tumor

suppression and prognosis. In the TME of BC, the activity of NK

cells is regulated by various factors, such as TGF-b, soluble HLA-G,

prostaglandin E2, adenosine, extracellular vesicles, and miRNAs

(54). These factors can both inhibit the anti-tumor activity of NK

cells and induce their pro-angiogenic polarization, thereby

supporting tumor progression. The interactions between NK cells

and other immune cells are also crucial. Studies have shown that the

interplay between NK cells, T cells, myeloid-derived suppressor

cells, and tumor-associated macrophages can significantly influence

the dissemination, immune editing, and therapeutic outcomes of

BC (55). Therefore, it is essential to explore the differences in the
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TME between high-risk and low-risk groups. In terms of cancer

hallmark features, tumor cells in the high-risk group are enriched

for pathways related to the G2M checkpoint, tumor proliferation

characteristics, DNA replication, MYC target genes, and cellular

responses to hypoxia, all of which are significantly positively

correlated with risk scores. This suggests that tumor cells in the

high-risk group possess enhanced proliferative capacity, genomic

instability, and adaptability, enabling them to sustain growth even

in adverse environments. These features are typically associated

with increased tumor invasiveness, metastatic potential, and

resistance to therapy (56, 57). Furthermore, the high-risk group

shows significant enrichment in the Oxeiptosis pathway, indicating

a distinctive regulation of oxidative stress-related death signals. In

contrast, the low-risk group is primarily enriched in pathways

related to necroptosis, immunogenic cell death, and pyroptosis,

which are typically associated with inflammation and immune

activation (58–60). Immunological analyses reveal a marked

reduction in the infiltration levels of CD8+ T cells, NK cells,

tumor-infiltrating lymphocytes, CD4+ T cells, and follicular

helper T cells in the high-risk group, accompanied by a general

downregulation of immune functions. Moreover, the expression of

MHC molecules, chemokines and receptors, and ICGs is

suppressed. Taken together, these findings demonstrate that the

high-risk group exhibits enhanced tumor proliferative capabilities,

immune evasion mechanisms, and weakened immune surveillance,

which contribute to its increased ability to escape immune system

clearance, leading to poorer clinical outcomes. Future studies could

further explore how targeting the regulation of cell death pathways

and restoring anti-tumor immune responses can improve treatment

outcomes for high-risk patients. Additionally, intervention

strategies targeting key pathways, including MYC signaling,

hypoxic adaptation, and DNA damage repair, may emerge as

critical directions for personalized therapy in the future.

In recent years, significant progress has been made in the field of

immunotherapy for BC. As an emerging treatment modality,

immunotherapy has been approved as a first-line treatment for

metastatic TNBC with PD-L1 overexpression. However, the clinical

activity of immune checkpoint inhibitors as a monotherapy in

advanced BC has been somewhat limited. Consequently,

increasing attention is being paid to combination therapies,

particularly in the rapidly evolving early-stage disease setting (61).

The IMpassion130 phase III trial compared chemotherapy

combined with atezolizumab to chemotherapy plus placebo,

revealing positive overall survival outcomes in PD-L1-positive

TNBC patients. This underscores the need to further expand the

patient population that may benefit from immunotherapy,

highlighting the importance of discovering and implementing

new biomarkers in this context (62). Additionally, advances in BC

immunotherapy are also reflected in the deeper exploration of the

tumor immune microenvironment. For HER2-negative patients

carrying BRCA1 or BRCA2 mutations, PARP inhibitors have

been associated with improved overall survival in certain

subgroups (63). Therefore, the progress of BC immunotherapy is

not only reflected in the development of new drugs and new

therapies, but also in the in-depth study of patient selection and
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biomarkers, which provide new directions and possibilities for

future treatment strategies. Our study assessed the potential

response of BC patients to immunotherapy through IPS and the

evaluation of immune evasion mechanisms. The results revealed

that, compared to the low-risk group, the IPS scores in the high-risk

group was significantly lower, and this trend persisted despite

differences in the expression of PD-1 and CTLA-4. Moreover,

although there was no significant difference in the TIDE score

between the two groups, the high-risk group exhibited lower

expression of genes such as IFNG, Merck18, CD274, and CD8.

Additionally, the Dysfunction score was lower and the Exclusion

score was higher in the high-risk group. These characteristics

suggest that high-risk breast cancer patients may possess a

stronger immune evasion capability, leading to a poorer response

to ICIs therapy. Further analysis of data from the TCGA cohort and

the IMvigor210 real-world study cohort revealed that, although

statistical significance was not reached in the TCGA cohort, the

low-risk group demonstrated a higher response rate to

immunotherapy. This finding emphasizes the close association

between the TME status and immunotherapy efficacy, suggesting

that high-risk breast cancer patients may exhibit limited responses

to ICIs due to a more suppressive immune microenvironment.

Furthermore, in the GSE4779 and GSE25066 cohorts, the

proportion of BC patients who achieved pCR after neoadjuvant

chemotherapy was relatively low. This phenomenon suggests that

higher risk scores are associated with stronger chemotherapy

resistance. Although patients in the high-risk group may derive

lower benefits from immunotherapy and chemotherapy, a drug

sensitivity analysis of 235 drugs revealed several potential

therapeutic agents that could benefit high-risk patients. Five drugs

that were significantly negatively correlated with risk scores include

Thapsigargin, Docetaxel, AKT Inhibitor VIII, Pyrimethamine, and

Epothilone B, which may hold greater therapeutic potential for

high-risk patients. Thapsigargin, in particular, shows promise in BC

treatment, especially due to its unique calcium signaling mechanism

that induces apoptosis in tumor cells. However, toxicity and

targeting remain critical challenges in current research. In the

future, combining prodrug design, nanodelivery systems, and

combination therapy strategies may position Thapsigargin or its

derivatives as a new therapeutic option for BC treatment (64).

Docetaxel has demonstrated excellent efficacy and tolerability in the

treatment of BC across different stages and subtypes, making it a

crucial component of breast cancer chemotherapy. When combined

with cyclophosphamide and trastuzumab for neoadjuvant therapy

in HER2-positive BC, docetaxel has shown a high pCR rate,

suggesting that this combination regimen could be an effective

option for preoperative treatment of HER2-positive BC (65).

Additionally, the sequential use of docetaxel with doxorubicin

and cyclophosphamide in early-stage BC has also proven to be

feasible for neoadjuvant therapy. Studies have reported a clinical

response rate as high as 90%, with the majority of patients being

able to undergo breast-conserving surgery, highlighting the

potential of this regimen in early-stage BC treatment (66). In

metastatic BC, the combination of docetaxel and gemcitabine as

first-line treatment has shown promising efficacy and tolerability
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(67). Overall, our study uncovers the immune evasion mechanisms

in high-risk patients and their impact on treatment response.

Through drug screening, we have identified potential novel

therapies, offering new directions and strategies for the future of

personalized BC treatment.

This study developed a ML-based diagnostic and prognostic

model utilizing NK cell-related genes, providing a novel approach

for personalized medicine in BC. However, there are several

limitations. First, the data primarily came from the TCGA and

GEO databases, which may introduce ethnic and regional biases,

necessitating validation with broader population data. Second, the

inclusion of clinical variables remains limited, as factors such as

treatment regimens and lifestyle were not considered. Furthermore,

the complexity of the machine learning model may reduce its clinical

interpretability, and future studies could integrate methods such as

SHAP to enhance model transparency. Future research can be

advanced in several key directions. Firstly, integrating multi-omics

data to enhance the accuracy and generalizability of the model.

Secondly, incorporating longitudinal data to better predict the

progression and recurrence of BC. Thirdly, investigating the role of

NK cell-related genes in immunotherapy to refine and optimize

personalized treatment strategies. Furthermore, validating the

clinical applicability of the model through clinical trials is crucial to

facilitate its integration into real-world medical decision-making. In

terms of clinical implementation, the proposed ML-based diagnostic

and prognostic models can be embedded into hospital electronic

medical systems as decision-support tools. Specifically, the RF

diagnostic model can assist clinicians in the early identification of

BC by analyzing gene expression profiles derived from biopsy or

blood samples, which could be particularly beneficial for patients at

early stages or with ambiguous imaging findings. The prognostic risk

score model allows stratification of patients into different risk groups,

helping guide treatment intensity—especially in selecting candidates

for chemotherapy or immunotherapy. The integration of a

nomogram that combines clinical factors with model-derived risk

scores enhances interpretability and usability in clinical practice.

While retrospective validation shows strong potential, future

prospective studies and integration with electronic health record

systems will be essential for full clinical translation. Despite the

limitations of the current study, its findings lay a critical theoretical

foundation for future research on the immune mechanisms of BC

and the advancement of personalized medicine.
5 Conclusion

In this study, we developed and validated ML-based diagnostic

and prognostic models for BC using NRGs. The diagnostic model,

built using the RF algorithm, demonstrated high accuracy across

multiple datasets, offering a reliable tool for BC detection. The

prognostic model effectively stratified patients into high-risk and

low-risk groups, highlighting differences in survival outcomes,

immune characteristics, and treatment responses. High-risk

patients exhibited enhanced tumor proliferation, immune evasion,

and reduced immune cell infiltration, which correlated with poorer
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clinical outcomes. Moreover, the high-risk group showed lower IPS

values and a weaker response to immune checkpoint inhibitors,

underscoring the importance of precise risk stratification in

treatment planning. These findings reveal the critical role of

NRGs in BC progression and underscore the potential of

integrating ML-based NRG models into precision oncology to

improve diagnostic accuracy, guide personalized treatment, and

ultimately enhance patient outcomes. Further clinical validation

and prospective studies are warranted to fully realize their

translational potential.
Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Ethics statement

The studies involving humans were approved by Research

Ethics Committee of the Cancer Hospital of Shantou University

Medical College. The studies were conducted in accordance with

the local legislation and institutional requirements. The participants

provided their written informed consent to participate in this study.
Author contributions

YF: Writing – original draft, Writing – review & editing. RZ:

Writing – review & editing. YX: Writing – original draft. QZ:

Writing – review & editing. JL: Writing – original draft. JW:Writing

– original draft.
Funding

The author(s) declare that financial support was received for the

research and/or publication of this article. This work was supported

by the Youth Science Foundation of the Cancer Hospital of Shantou

University Medical College (Grant No. 2023A002).
Acknowledgments

We would like to give many thanks to our physicians, engineers,

and nurses as well as other staff in the department for their

extensive support.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1581982
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fang et al. 10.3389/fimmu.2025.1581982
Generative AI statement

The author(s) declare that no Generative AI was used in the

creation of this manuscript.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,
Frontiers in Immunology 22
or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fimmu.2025.

1581982/full#supplementary-material
References
1. Bray F, Laversanne M, Sung H, Ferlay J, Siegel RL, Soerjomataram I, et al. Global
cancer statistics 2022: GLOBOCAN estimates of incidence andmortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. (2024) 74:229–63. doi: 10.3322/caac.21834

2. Gao FY, Li XT, Xu K, Wang RT, Guan XX. c-MYCmediates the crosstalk between
breast cancer cells and tumor microenvironment. Cell Commun Signal. (2023) 21:28.
doi: 10.1186/s12964-023-01043-1

3. Chen S, Zhou Z, Li Y, Du Y, Chen G. Application of single-cell sequencing to the
research of tumor microenvironment. Front Immunol. (2023) 14:1345222.
doi: 10.3389/fimmu.2023.1345222

4. Song P, Li W, Guo L, Ying J, Gao S, He J. Identification and validation of a novel
signature based on NK cell marker genes to predict prognosis and immunotherapy
response in lung adenocarcinoma by integrated analysis of single-cell and bulk RNA-
sequencing. Front Immunol. (2022) 13:850745. doi: 10.3389/fimmu.2022.850745

5. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the
tumor microenvironment. Cancer Cell. (2012) 21:309–22. doi: 10.1016/j.ccr.2012.02.022

6. Wolf NK, Kissiov DU, Raulet DH. Roles of natural killer cells in immunity to
cancer, and applications to immunotherapy. Nat Rev Immunol. (2023) 23:90–105.
doi: 10.1038/s41577-022-00732-1

7. Laskowski TJ, Biederstädt A, Rezvani K. Natural killer cells in antitumour
adoptive cell immunotherapy. Nat Rev Cancer. (2022) 22:557–75. doi: 10.1038/
s41568-022-00491-0

8. Peng L, Sferruzza G, Yang L, Zhou L, Chen S. CAR-T and CAR-NK as cellular
cancer immunotherapy for solid tumors. Cell Mol Immunol. (2024) 21:1089–108.
doi: 10.1038/s41423-024-01207-0

9. Moustafa AF, Cary TW, Sultan LR, Schultz SM, Conant EF, Venkatesh SS, et al.
Color doppler ultrasound improves machine learning diagnosis of breast cancer.
Diagnostics (Basel). (2020) 10:631. doi: 10.3390/diagnostics10090631

10. Xie X, Fang Y, He L, Chen Z, Chen C, Zeng H, et al. Individualized prediction of
non-sentinel lymph node metastasis in Chinese breast cancer patients with ≥ 3 positive
sentinel lymph nodes based on machine-learning algorithms. BMC Cancer. (2024)
24:1090. doi: 10.1186/s12885-024-12870-x

11. Fang Y, Zhang Q, Guo C, Zheng R, Liu B, Zhang Y, et al. Mitochondrial-related
genes as prognostic and metastatic markers in breast cancer: insights from
comprehensive analysis and clinical models. Front Immunol. (2024) 15:1461489.
doi: 10.3389/fimmu.2024.1461489

12. The cancer genome atlas program. National Cancer Institute. Available online at:
https://www.cancer.gov/ccg/research/genome-sequencing/tcga.

13. Edgar R, Domrachev M, Lash AE. Gene Expression Omnibus: NCBI gene
expression and hybridization array data repository. Nucleic Acids Res. (2002) 30:207–
10. doi: 10.1093/nar/30.1.207

14. Chi H, Xie X, Yan Y, Peng G, Strohmer DF, Lai G, et al. Natural killer cell-related
prognosis signature characterizes immune landscape and predicts prognosis of
HNSCC. Front Immunol. (2022) 13:1018685. doi: 10.3389/fimmu.2022.1018685

15. Wei J, Huang K, Chen Z, Hu M, Bai Y, Lin S, et al. Characterization of glycolysis-
associated molecules in the tumor microenvironment revealed by pan-cancer tissues and
lung cancer single cell data.Cancers (Basel). (2020) 12:1788. doi: 10.3390/cancers12071788

16. Zeng H, Jiang Q, Zhang R, Zhuang Z, Wu J, Li Y, et al. Immunogenic cell death
signatures from on-treatment tumor specimens predict immune checkpoint therapy
response in metastatic melanoma. Sci Rep. (2024) 14:22872. doi: 10.1038/s41598-024-
74636-6

17. He Y, Jiang Z, Chen C, Wang X. Classification of triple-negative breast cancers
based on Immunogenomic profiling. J Exp Clin Cancer Res. (2018) 37:327. doi: 10.1186/
s13046-018-1002-1

18. Xu L, Deng C, Pang B, Zhang X, Liu W, Liao G, et al. TIP: A web server for
resolving tumor immunophenotype profiling. Cancer Res. (2018) 78:6575–80.
doi: 10.1158/0008-5472.CAN-18-0689
19. Charoentong P, Finotello F, Angelova M, Mayer C, Efremova M, Rieder D, et al.
Pan-cancer immunogenomic analyses reveal genotype-immunophenotype
relationships and predictors of response to checkpoint blockade. Cell Rep. (2017)
18:248–62. doi: 10.1016/j.celrep.2016.12.019

20. Jiang P, Gu S, Pan D, Fu J, Sahu A, Hu X, et al. Signatures of T cell dysfunction
and exclusion predict cancer immunotherapy response. Nat Med. (2018) 24:1550–8.
doi: 10.1038/s41591-018-0136-1

21. Balar AV, Galsky MD, Rosenberg JE, Powles T, Petrylak DP, Bellmunt J, et al.
Atezolizumab as first-line treatment in cisplatin-ineligible patients with locally
advanced and metastatic urothelial carcinoma: a single-arm, multicentre, phase 2
trial. Lancet. (2017) 389:67–76. doi: 10.1016/S0140-6736(16)32455-2

22. Geeleher P, Cox NJ, Huang RS. Clinical drug response can be predicted using
baseline gene expression levels and in vitro drug sensitivity in cell lines. Genome Biol.
(2014) 15:R47. doi: 10.1186/gb-2014-15-3-r47

23. Bonneville R, Krook MA, Kautto EA, Miya J, Wing MR, Chen HZ, et al.
Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol. (2017)
2017:1–15. doi: 10.1200/PO.17.00073

24. Sun D, Wang J, Han Y, Dong X, Ge J, Zheng R, et al. TISCH: a comprehensive
web resource enabling interactive single-cell transcriptome visualization of tumor
microenvironment. Nucleic Acids Res. (2021) 49:D1420–30. doi: 10.1093/nar/
gkaa1020

25. Zhao AR, Kouznetsova VL, Kesari S, Tsigelny IF. Machine-learning diagnostics
of breast cancer using piRNA biomarkers. Biomarkers. (2025) 30:167–77. doi: 10.1080/
1354750X.2025.2461067

26. Saadh MJ, Ahmed HH, Kareem RA, Yadav A, Ganesan S, Shankhyan A, et al.
Advanced machine learning framework for enhancing breast cancer diagnostics
through transcriptomic profiling. Discov Oncol. (2025) 16:334. doi: 10.1007/s12672-
025-02111-3

27. Hamyoon H, Yee Chan W, Mohammadi A, Yusuf Kuzan T, Mirza-Aghazadeh-
Attari M, Leong WL, et al. Artificial intelligence, BI-RADS evaluation and
morphometry: A novel combination to diagnose breast cancer using
ultrasonography, results from multi-center cohorts. Eur J Radiol. (2022) 157:110591.
doi: 10.1016/j.ejrad.2022.110591

28. Hu Q, Whitney HM, Giger ML. Radiomics methodology for breast cancer
diagnosis using multiparametric magnetic resonance imaging. J Med Imaging
(Bellingham). (2020) 7:044502. doi: 10.1117/1.JMI.7.4.044502

29. Oliveira BL, Godinho D, O’Halloran M, Glavin M, Jones E, Conceição RC.
Diagnosing Breast Cancer with Microwave Technology: remaining challenges and
potential solutions with machine learning. Diagnostics (Basel). (2018) 8:36.
doi: 10.3390/diagnostics8020036

30. Wang T, Wang S, Li Z, Xie J, Jia Q, Hou J. Integrative machine learning model of
RNA modifications predict prognosis and treatment response in patients with breast
cancer. Cancer Cell Int. (2025) 25:43. doi: 10.1186/s12935-025-03651-y

31. Chen H, Wang Z, Shi J, Peng J. Integrating mitochondrial and lysosomal gene
analysis for breast cancer prognosis using machine learning. Sci Rep. (2025) 15:3320.
doi: 10.1038/s41598-025-86970-4

32. Zhang X, Li L, Shi X, Zhao Y, Cai Z, Ni N, et al. Development of a tertiary
lymphoid structure-based prognostic model for breast cancer: integrating single-cell
sequencing and machine learning to enhance patient outcomes. Front Immunol. (2025)
16:1534928. doi: 10.3389/fimmu.2025.1534928

33. Wang T, Wang S, Li Z, Xie J, Du K, Hou J. Machine learning unveils key Redox
signatures for enhanced breast Cancer therapy. Cancer Cell Int. (2024) 24:368.
doi: 10.1186/s12935-024-03534-8

34. Li X, Li X, Yang B, Sun S, Wang S, Yu F, et al. Deciphering breast cancer
prognosis: a novel machine learning-driven model for vascular mimicry signature
prediction. Front Immunol. (2024) 15:1414450. doi: 10.3389/fimmu.2024.1414450
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1581982/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1581982/full#supplementary-material
https://doi.org/10.3322/caac.21834
https://doi.org/10.1186/s12964-023-01043-1
https://doi.org/10.3389/fimmu.2023.1345222
https://doi.org/10.3389/fimmu.2022.850745
https://doi.org/10.1016/j.ccr.2012.02.022
https://doi.org/10.1038/s41577-022-00732-1
https://doi.org/10.1038/s41568-022-00491-0
https://doi.org/10.1038/s41568-022-00491-0
https://doi.org/10.1038/s41423-024-01207-0
https://doi.org/10.3390/diagnostics10090631
https://doi.org/10.1186/s12885-024-12870-x
https://doi.org/10.3389/fimmu.2024.1461489
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://doi.org/10.1093/nar/30.1.207
https://doi.org/10.3389/fimmu.2022.1018685
https://doi.org/10.3390/cancers12071788
https://doi.org/10.1038/s41598-024-74636-6
https://doi.org/10.1038/s41598-024-74636-6
https://doi.org/10.1186/s13046-018-1002-1
https://doi.org/10.1186/s13046-018-1002-1
https://doi.org/10.1158/0008-5472.CAN-18-0689
https://doi.org/10.1016/j.celrep.2016.12.019
https://doi.org/10.1038/s41591-018-0136-1
https://doi.org/10.1016/S0140-6736(16)32455-2
https://doi.org/10.1186/gb-2014-15-3-r47
https://doi.org/10.1200/PO.17.00073
https://doi.org/10.1093/nar/gkaa1020
https://doi.org/10.1093/nar/gkaa1020
https://doi.org/10.1080/1354750X.2025.2461067
https://doi.org/10.1080/1354750X.2025.2461067
https://doi.org/10.1007/s12672-025-02111-3
https://doi.org/10.1007/s12672-025-02111-3
https://doi.org/10.1016/j.ejrad.2022.110591
https://doi.org/10.1117/1.JMI.7.4.044502
https://doi.org/10.3390/diagnostics8020036
https://doi.org/10.1186/s12935-025-03651-y
https://doi.org/10.1038/s41598-025-86970-4
https://doi.org/10.3389/fimmu.2025.1534928
https://doi.org/10.1186/s12935-024-03534-8
https://doi.org/10.3389/fimmu.2024.1414450
https://doi.org/10.3389/fimmu.2025.1581982
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Fang et al. 10.3389/fimmu.2025.1581982
35. Li M, Song J, Wang L, Wang Q, Huang Q, Mo D. Natural killer cell-related
prognosis signature predicts immune response in colon cancer patients. Front
Pharmacol. (2023) 14:1253169. doi: 10.3389/fphar.2023.1253169

36. Xi D, Wang J, Yang Y, Ji F, Li C, Yan X. A novel natural killer-related signature
to effectively predict prognosis in hepatocellular carcinoma. BMC Med Genomics.
(2023) 16:211. doi: 10.1186/s12920-023-01638-0

37. Liu Z, Ding M, Qiu P, Pan K, Guo Q. Natural killer cell-related prognostic risk
model predicts prognosis and treatment outcomes in triple-negative breast cancer.
Front Immunol. (2023) 14:1200282. doi: 10.3389/fimmu.2023.1200282

38. Syed YY. Oncotype DX breast recurrence score®: A review of its use in early-
stage breast cancer. Mol Diagn Ther. (2020) 24:621–32. doi: 10.1007/s40291-020-
00482-7

39. Schaafsma E, Zhang B, Schaafsma M, Tong CY, Zhang L, Cheng C. Impact of
Oncotype DX testing on ER+ breast cancer treatment and survival in the first decade of
use. Breast Cancer Res. (2021) 23:74. doi: 10.1186/s13058-021-01453-4

40. de Jongh FE, Efe R, Herrmann KH, Spoorendonk JA. Cost and clinical benefits
associated with oncotype DX® Test in patients with early-stage HR+/HER2- node-
negative breast cancer in the Netherlands. Int J Breast Cancer. (2022) 2022:5909724.
doi: 10.1155/2022/5909724

41. Brennan K, McSharry BP, Keating S, Petrasca A, O'Reilly VP, Keane J, et al.
Human Natural Killer cell expression of ULBP2 is associated with a mature functional
phenotype. Hum Immunol. (2016) 77:876–85. doi: 10.1016/j.humimm.2016.06.018

42. Meyer G, Siemes AR, Kühne JF, Bevzenko I, Baszczok V, Keil J, et al. HCMV
Variants Expressing ULBP2 Enhance the Function of Human NK Cells via its Receptor
NKG2D. Eur J Immunol. (2025) 55:e202451266. doi: 10.1002/eji.202451266

43. Walens A, DiMarco AV, Lupo R, Kroger BR, Damrauer JS, Alvarez JV. CCL5
promotes breast cancer recurrence through macrophage recruitment in residual
tumors. Elife. (2019) 8:e43653. doi: 10.7554/eLife.43653

44. Ma G, Huang H, Li M, Li L, Kong P, Zhu Y, et al. Plasma CCL5 promotes EMT-
medicated epirubicin-resistance in locally advanced breast cancer. Cancer Biomark.
(2018) 22:405–15. doi: 10.3233/CBM-170986

45. O'Leary PC, Terrile M, Bajor M, Gaj P, Hennessy BT, Mills GB, et al.
Peroxiredoxin-1 protects estrogen receptor a from oxidative stress-induced
suppression and is a protein biomarker of favorable prognosis in breast cancer.
Breast Cancer Res. (2014) 16:R79. doi: 10.1186/bcr3691

46. Bajor M, Zych AO, Graczyk-Jarzynka A, Muchowicz A, Firczuk M, Trzeciak L,
et al. Targeting peroxiredoxin 1 impairs growth of breast cancer cells and potently
sensitises these cells to prooxidant agents. Br J Cancer. (2018) 119:873–84. doi: 10.1038/
s41416-018-0263-y

47. You Y, Deng J, Zheng J, Hu M, Li N, Wu H, et al. IL-21 gene polymorphism is
associated with the prognosis of breast cancer in Chinese populations. Breast Cancer
Res Treat. (2013) 137:893–901. doi: 10.1007/s10549-012-2401-1

48. Rohini M, Vairamani M, Selvamurugan N. TGF-b1-stimulation of NFATC2 and
ATF3 proteins and their interaction for matrix metalloproteinase 13 expression in
human breast cancer cells. Int J Biol Macromol. (2021) 192:1325–30. doi: 10.1016/
j.ijbiomac.2021.10.099

49. Huang G, Wu Y, Gan H, Chu L. Overexpression of CD2/CD27 could inhibit the
activation of nitrogen metabolism pathways and suppress M2 polarization of
macrophages, thereby preventing brain metastasis of breast cancer. Transl Oncol.
(2023) 37:101768. doi: 10.1016/j.tranon.2023.101768

50. Gokhale A, Kanthala S, Latendresse J, Taneja V, Satyanarayanajois S.
Immunosuppression by co-stimulatory molecules: inhibition of CD2-CD48/CD58
interaction by peptides from CD2 to suppress progression of collagen-induced
arthritis in mice. Chem Biol Drug Des. (2013) 82:106–18. doi: 10.1111/
cbdd.2013.82.issue-1
Frontiers in Immunology 23
51. Binder C, Cvetkovski F, Sellberg F, Berg S, Paternina Visbal H, Sachs DH, et al.
CD2 immunobiology. Front Immunol. (2020) 11:1090. doi: 10.3389/fimmu.2020.01090

52. Jiang K, Lu Q, Li Q, Ji Y, Chen W, Xue X. Astragaloside IV inhibits breast cancer
cell invasion by suppressing Vav3 mediated Rac1/MAPK signaling. Int
Immunopharmacol. (2017) 42:195–202. doi: 10.1016/j.intimp.2016.10.001

53. Barrio-Real L, Benedetti LG, Engel N, Tu Y, Cho S, Sukumar S, et al. Subtype-
specific overexpression of the Rac-GEF P-REX1 in breast cancer is associated with
promoter hypomethylation. Breast Cancer Res. (2014) 16:441. doi: 10.1186/s13058-
014-0441-7

54. Bassani B, Baci D, Gallazzi M, Poggi A, Bruno A, Mortara L. Natural killer cells
as key players of tumor progression and angiogenesis: old and novel tools to divert their
pro-tumor activities into potent anti-tumor effects. Cancers (Basel). (2019) 11:461.
doi: 10.3390/cancers11040461

55. Ruocco MR, Gisonna A, Acampora V, D'Agostino A, Carrese B, Santoro J, et al.
Guardians and mediators of metastasis: exploring T lymphocytes, myeloid-derived
suppressor cells, and tumor-associated macrophages in the breast cancer
microenvironment. Int J Mol Sci. (2024) 25:6224. doi: 10.3390/ijms25116224

56. Bakhoum SF, Cantley LC. The multifaceted role of chromosomal instability in
cancer and its microenvironment. Cell. (2018) 174:1347–60. doi: 10.1016/
j.cell.2018.08.027

57. Campos Gudiño R, McManus KJ, Hombach-Klonisch S. Aberrant HMGA2
expression sustains genome instability that promotes metastasis and therapeutic
resistance in colorectal cancer. Cancers (Basel). (2023) 15:1735. doi: 10.3390/
cancers15061735

58. Heckmann BL, Tummers B, Green DR. Crashing the computer: apoptosis vs.
necroptosis in neuroinflammation. Cell Death Differ. (2019) 26:41–52. doi: 10.1038/
s41418-018-0195-3

59. Yang X, Cui X, Wang G, Zhou M, Wu Y, Du Y, et al. HDAC inhibitor regulates
the tumor immune microenvironment via pyroptosis in triple negative breast cancer.
Mol Carcinog. (2024) 63:1800–13. doi: 10.1002/mc.23773

60. Kielbik M, Szulc-Kielbik I, Klink M. Calreticulin-multifunctional chaperone in
immunogenic cell death: potential significance as a prognostic biomarker in ovarian
cancer patients. Cells. (2021) 10:130. doi: 10.3390/cells10010130

61. Franzoi MA, Romano E, Piccart M. Immunotherapy for early breast cancer: too
soon, too superficial, or just right? Ann Oncol. (2021) 32:323–36. doi: 10.1016/
j.annonc.2020.11.022

62. Marra A, Viale G, Curigliano G. Recent advances in triple negative breast cancer:
the immunotherapy era. BMC Med. (2019) 17:90. doi: 10.1186/s12916-019-1326-5

63. Welslau M, Hartkopf AD, Müller V, Wöckel A, Lux MP, Janni W, et al. Update
breast cancer 2019 part 5 - diagnostic and therapeutic challenges of new, personalised
therapies in patients with advanced breast cancer. Geburtshilfe Frauenheilkd. (2019)
79:1090–9. doi: 10.1055/a-1001-9952

64. Zimmermann T, Christensen SB, Franzyk H. Preparation of enzyme-activated
thapsigargin prodrugs by solid-phase synthesis. Molecules. (2018) 23:1463.

65. Nakatsukasa K, Koyama H, Oouchi Y, Imanishi S, Mizuta N, Sakaguchi K, et al.
Docetaxel, cyclophosphamide, and trastuzumab as neoadjuvant chemotherapy for
HER2-positive primary breast cancer. Breast Cancer. (2017) 24:92–7. doi: 10.1007/
s12282-016-0677-4

66. Estevez LG, Fortes JL, Adrover E, Peiró G, Margel M, Castellá E, et al.
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Glossary

BC breast cancer
Frontiers in Immunol
TME tumor microenvironment
NK natural killer
CAR-NK chimeric antigen receptor NK
CARs chimeric antigen receptors
ML machine learning
TCGA The Cancer Genome Atlas
GEO Gene Expression Omnibus
DEGs differentially expressed genes
OS overall survival
LR logistic regression
XGBoost extreme gradient boosting
LightGBM light gradient boosting machine
RF random forest
AdaBoost adaptive boosting
DT decision tree
GB gradient boosting
GNB gaussian naive bayes
CNB complement naive bayes
MLP multi-layer perceptron neural networks
SVM support vector machine, KNN, k-nearest neighbors
AUC area under the curve
PPV positive predictive value
NPV negative predictive value
DCA Decision Curve Analysis
SHAP SHapley Additive exPlanations
PCA principal component analysis
t-SNE t-distributed stochastic neighbor embedding
KM Kaplan-Meier
ROC receiver operating characteristic
GO Gene Ontology
KEGG Kyoto Encyclopedia of Genes and Genomes
ogy 24
GSEA Gene Set Enrichment Analysis
DO Disease Ontology
ssGSEA single sample gene set enrichment
MHC major histocompatibility complex
ICGs immune checkpoint genes
IPS Immunophenoscore
TCIA The Cancer Immunome Atlas
TIDE Tumor Immune Dysfunction and Exclusion
GDSC Drug Sensitivity in Cancer
IC50 50% inhibitory concentration
TMB tumor mutational burden
MSI microsatellite instability
ITH intratumor heterogeneity
TISCH Tumor Immune Single-cell Hub
qRT-PCR quantitative real-time PCR
OD optical density
ER estrogen receptor
PR progesterone receptor
HER2 human epidermal growth factor receptor 2
pCR pathological complete response
SNV single nucleotide variations
TNBC triple-negative breast cancer
ULBP2 UL16-binding protein 2
NKG2D natural killer group 2 member D
CCL5 C-C motif chemokine ligand 5
PRDX1 peroxiredoxin 1
IL21 Interleukin-21
NFATC2 nuclear factor of activated T cells 2
MMP13 matrix metalloproteinase 13
CD2 cluster of differentiation 2
VAV3 Vav guanine nucleotide exchange factor 3.
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