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Alzheimer’s disease (AD) is a progressive neurodegenerative disorder

characterized by amyloid-beta (Ab) plaques, tau hyperphosphorylation, and

chronic neuroinflammation. While neuroinflammation—mediated by microglial

and astrocyte activation—has long been considered a secondary response to Ab
pathology, emerging evidence positions it as a primary driver of cognitive

decline. Notably, the gut microbiota, through the microbiota-gut-brain axis

(MGBA), is crucial in modulating neuroinflammation. Dysbiosis disrupts gut

barrier integrity, promotes systemic inflammation, and exacerbates

neuroinflammatory responses, thereby accelerating AD progression. Recent

advances reveal that gut microbiota-derived metabolites (e.g., short-chain fatty

acids, lipopolysaccharides) directly influence microglial activation and Ab
aggregation. These findings have opened new therapeutic possibilities, with

microbiota-targeted approaches such as probiotics, prebiotics, and fecal

microbiota transplantation demonstrating promising neuroprotective effects in

preclinical studies by reducing neuroinflammation and preserving cognitive

function. However, translating these findings into clinical applications requires

further validation through randomized controlled trials. This review summarizes

the current understanding of gut microbiota-driven neuroinflammation in AD,

from molecular mechanisms to potential therapeutic strategies. Targeting the
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MGBA represents a paradigm shift in AD management, emphasizing the

modulation of neuroinflammation and pathological progression through gut

microbiota interventions. The discussion also addresses existing research

challenges and outlines future directions to advance this promising field.
KEYWORDS
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1 Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative

disorder primarily affecting aging individuals and a leading cause

of dementia (1). It is characterized by memory loss, cognitive

decline, and behavioral changes. Currently, approximately 6.7

million Americans aged 65+ live with AD, with projections

reaching 13.8 million by 2060 (1). The global prevalence of AD

and related dementias has witnessed a striking 160.8% increase

between 1990 and 2019, nearly tripling over this period. Notably,

the most substantial rises in age-standardized prevalence rates were

observed in East Asia and high-income Asia-Pacific regions,

including Brunei, Japan, South Korea, and Singapore (2). The

increasing prevalence poses significant financial challenges, as

those with severe AD require extensive long-term care (3). In

2015, the global economic burden of dementia was estimated at

$818 billion (4).

The “amyloid hypothesis” suggests that misfolded b-amyloid

(Ab) peptides trigger amyloid plaques and tau protein deposits,

leading to neurofibrillary tangles (NFTs). However, evidence

indicates this alone cannot fully explain AD. Increasing

inflammation in AD patients and the association of AD risk

genes with immune function highlight neuroinflammation as a

critical factor in disease progression (5). Neuroinflammation, an

inflammatory response in the central nervous system (CNS)

triggered by neuronal damage, initially serves a protective role

through glial cells like microglia and astrocytes (6). However,

chronic injury leads to sustained glial activation (7), releasing

pro-inflammatory cytokines and damaging molecules, thereby

perpetuating neuronal damage (8). In AD, Ab accumulation

activates microglia and astrocytes, resulting in the release of

reactive oxygen species (ROS), nitric oxide (NO), and cytokines

(6), which not only exacerbate neuroinflammation but also promote

further Ab deposition and tau-related NFT formation.

Recent research highlights the gut microbiota’s role in AD, with

dysbiosis linked to neuroinflammation through pro-inflammatory

metabolites. The microbiota-gut-brain axis, a bidirectional

communication network, is crucial for maintaining homeostasis

between the gut and brain (9). In AD, microbial imbalance

promotes harmful bacteria that produce metabolites like

lipopolysaccharides (LPS), which disrupt the blood-brain barrier
02
(BBB) and trigger brain inflammation (10). Reduced production of

short-chain fatty acids (SCFAs), such as butyrate, exacerbates

chronic neuroinflammation (11). Additionally, gut-derived

metabolites activate microglia, amplifying neuroinflammation and

accelerating Ab plaque and tau tangle accumulation (12).

This review investigates the interplay between gut microbiota

and neuroinflammation in AD, emphasizing how chronic

neuroinflammation accelerates disease progression. It explores the

role of gut microbiota and its metabolites in modulating

neuroinflammatory processes, highlighting the significance of the

gut-brain axis. By analyzing these interactions, the review

underscores the potential of targeting the microbiota-gut-brain

axis as a therapeutic strategy to mitigate neuroinflammation and

slow the progression of AD.
2 Roles of neuroinflammation in AD
pathogenesis

In the early stages of AD, the accumulation of Ab and tau

proteins activates microglia and astrocytes, which initially play a

protective role by clearing these proteins through phagocytosis,

thereby temporarily slowing disease progression (13–15). However,

as AD advances, the efficiency of these glial cells in clearing Ab and

tau diminishes, and their response becomes increasingly harmful to

the brain. This leads to the accumulation of these proteins and the

formation of neural plaques (NPs) and NFTs. The persistent

buildup of Ab and tau chronically activates microglia and

astrocytes, triggering the release of pro-inflammatory mediators

such as cytokines, complement components, and neurotoxic

molecules. This ongoing neuroinflammation results in neuronal

dysfunction and cell death, establishing a vicious cycle that

accelerates the progression of AD (16) (Figure 1).
2.1 Evidence for neuroinflammation in AD

CNS neuroinflammation in AD is characterized by complex

interactions between microglia and astrocytes. Microglia, which

make up about 10% of CNS cells, act as resident macrophages and

can shift between pro-inflammatory (M1) and anti-inflammatory
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(M2) states (17). M1 microglia, activated by stimuli such as LPS and

interferon-g (IFN-g), release pro-inflammatory cytokines like IL-1b,
TNF-a, and inducible nitric oxide synthase (iNOS), leading to

chronic inflammation. In contrast, M2 microglia support

inflammation resolution and regulate immune responses, with

subtypes (M2a, M2b, M2c) involved in suppressing pro-

inflammatory cytokines (18, 19). In AD, neuroinflammation plays

a significant role in disease progression. For example, Yan et al.

demonstrated that Ab activates microglia by binding to the receptor

for advanced glycation end products (RAGE), leading to the release

of cytokines such as TNF-a and IL-6 (20). Additionally, Ab
exposure stimulates RAGE-expressing neurons to produce

macrophage colony-stimulating factor (M-CSF), which recruits

peripheral microglia to the site of accumulation. These microglia

further activate inflammatory signaling pathways, including the

mitogen-activated protein kinase (MAPK) pathway and NF-kB,
thereby amplifying the inflammatory response (21). Ab also

activates the NLRP3 inflammasome, which leads to caspase-1

a c t i v a t i on and the r e l e a s e o f IL -1b , e x a c e rba t i ng

neuroinflammation (22). Furthermore, tau pathology also

contributes to microglial activation through PQBP1-cGAS-STING

signaling. The deletion of PQBP1 worsens inflammation and

cogn i t i ve dec l ine , under scor ing the ro l e o f t au in

neuroinflammation (13). Both Ab and tau pathologies play
Frontiers in Immunology 03
critical roles in activating microglia and triggering inflammatory

pathways that accelerate the progression of AD (23–25).

Astrocytes, the most abundant glial cells in the CNS

(comprising about 25% of brain volume), also show significant

activation in AD, especially around amyloid plaques. Astrocytes are

essential for maintaining CNS homeostasis, supporting

synaptogenesis, providing nutrients and neurotrophic factors to

neurons, and regulating extracellular ion balance and BBB integrity

(26, 27). Wyss-Coray et al. demonstrated that astrocytes can clear

Ab deposits in the brain. However, their accumulation around Ab
plaques can trigger their transformation into reactive astrocytes

(28). A1 astrocytes, a reactive subtype, have been found in AD

brains. These cells lose their homeostatic functions and contribute

to the apoptosis of neurons and oligodendrocytes, further

aggravating neuroinflammation (29). Additionally, A1 astrocytes

can disrupt microcirculation and damage the BBB, facilitating the

accumulation of Ab and promoting disease progression (30, 31).

Tau internalization via integrin aV/b1 receptors activates astrocytic
NF-kB signaling, which upregulates inflammatory mediators, while

signals derived from microglia further promote A1 astrocyte

differentiation (32, 33). Thus, the progression of AD involves a

dysregulation of microglial M1/M2 polarization and a shift in

astrocytes from homeostatic to neurotoxic states. The interactions

between microglia and astrocytes create a self-perpetuating
FIGURE 1

Neuroinflammation and its feedback loops in Alzheimer’s disease. In the context of brain injury, pathological signals such as amyloid-beta (Ab) and
tau proteins can activate resting microglia and astrocytes. This activation triggers the release of pro-inflammatory cytokines and the activation of the
complement system, which contributes to neuronal damage. In turn, the damaged neurons release more Ab and tau, promoting their aggregation
into amyloid plaques (NPs) and neurofibrillary tangles (NFTs). These pathological products serve as signals of neuronal injury, initiating a positive
feedback loop that further exacerbates neurodegeneration.
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inflammatory cascade, which accelerates neuronal damage and

cognitive decline.
2.2 Molecular mechanisms underlying
neuroinflammation in AD

In AD, neuroinflammation is driven by the activation of the

innate immune system, primarily mediated by Ab plaques, tau

protein pathology, and dysregulation of the complement system.

The aggregation of Ab and tau proteins stimulates the release of

proinflammatory cytokines, thereby exacerbating neuronal damage.

Complement proteins interact with Ab deposits, recruiting

microglia to facilitate their clearance. However, chronic

complement activation can lead to pathological synaptic pruning

and neurotoxic inflammation. This inflammatory cascade is further

amplified through cytokine-driven feed-forward loops, accelerating

neurodegeneration. Consequently, the interplay between Ab/tau
pathologies, complement activation, and cytokine signaling

establishes a self-perpetuating cycle that drives AD progression

through sustained neuroinflammation and synaptic loss.

2.2.1 Cytokines
Cytokines play a pivotal role in regulating the initiation,

progression, and immune crosstalk of neuroinflammation in AD,

influencing both localized CNS responses and systemic immune

signaling (34). Pro-inflammatory cytokines, such as TNF-a and IL-

1b, exacerbate neuroinflammation by activating immune cells,

amplifying cytokine cascades, and inducing neuronal damage. In

contrast, anti-inflammatory cytokines like IL-10 help to

counterbalance this inflammation and promote neuroprotection

(35) . Disruption of this del icate balance accelerates

neurodegeneration through mechanisms such as the bystander

effect, where inflammatory mediators indiscriminately harm

adjacent neurons. Chemokines, including CXCL1, CCL2, and

CX3CL1, direct immune cell chemotaxis toward Ab plaques,

aiding amyloid clearance but perpetuating neurotoxicity under

chronic activation (17).

In AD, microglia and astrocytes are the primary sources of

cytokines, including TNF-a, IL-1b, IL-6, IL-2, IL-12, and IFN-g,
which drive neuroinflammatory cascades (35). M1-polarized

microglia exacerbate inflammation through the secretion of pro-

inflammatory cytokines (such as IL-1b, TNF-a, and IL-6) and ROS

production, both of which are strongly associated with neuronal

degeneration. Conversely, M2-polarized microglia help to attenuate

inflammation and promote tissue repair by secreting anti-

inflammatory cytokines (IL-10, IL-4, IL-13, TGF-b) while

suppressing pro-inflammatory mediators. The phenotypic shift

between M1 and M2 microglial states is crucial for maintaining a

balance between inflammatory responses and reparative processes

in the AD brain. A meta-analysis by Chen et al., which included

2,629 AD patients and 2,049 controls, found that cerebrospinal fluid

(CSF) levels of IL-1b, IL-6, IL-8, TNF-a, TGF-b, and MCP-1 were

significantly higher in AD patients compared to controls (36).
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Chemokines play a pivotal role in AD by regulating microglial

migration to sites of neuroinflammation, where they amplify the

inflammatory response. In AD patients, chemokines such as CCL2

and their receptors CCR3 and CCR5 are upregulated in reactive

microglia, leading to increased immune cell recruitment and further

exacerbating neuronal damage. Moreover, CCL4, expressed by

astrocytes surrounding Ab plaques, underscores the involvement

of glial cell interactions in the inflammatory process. This chronic

inflammatory environment promotes the accumulation of toxic

substances like Ab and tau. In transgenic mice, overexpression of

CCL2 resulted in increased microglial accumulation in areas of

neuroinflammation, worsening the inflammatory response. This

overexpression was also associated with higher Ab deposition,

potentially linked to elevated apolipoprotein E (ApoE) levels, a

protein that affects Ab metabolism and clearance (37, 38). These

findings highlight the intricate relationship between chemokines,

inflammation, and Ab accumulation, suggesting that targeting

chemokine signaling could serve as a promising therapeutic

strategy to slow the progression of AD.

2.2.2 Complement system
The complement system, a cornerstone of innate immunity,

contributes critically to AD pathology through immune surveillance

and synaptic remodeling (39). Activated via classical, lectin, or

alternative pathways, it amplifies inflammation, facilitates pathogen

clearance, and mediates synaptic elimination. The classical

pathway, initiated by C1q binding to pathogens or apoptotic cells,

triggers a protease cascade culminating in C3 deposition. C3

cleavage products (C3b, iC3b) promote phagocytosis via

microglial receptors or induce cell lysis via membrane attack

complexes (MACs) (40). The complement system also supports

brain development, including cortical neuronal migration (41),

CNS development (42), and synaptic pruning (43). Microglia

primarily produce complement proteins in the brain, with

astrocytes also contributing. Dysregulation of the complement

system is linked to various neurodegenerative diseases. In the

mature brain, early synaptic loss is common in many such

conditions, with studies showing that complement proteins are

often upregulated before neuronal loss (44). This suggests that

reactivation of complement-mediated synaptic elimination may

contribute to disease progression.

In AD, the activation of the complement system is closely linked

to Ab deposition. Complement proteins, such as C1q, C3 (including

its activated forms C3b, C3c, and C3d), and C4, are produced by

glial cells surrounding these plaques and contribute to the

disease’s progression (40). These proteins are commonly found

near Ab plaques and NFTs in brain regions associated

with memory, indicating that complement activation may

facilitate the persistence and spread of these pathological features

(43, 45). When complement components interact with other

inflammatory pathways, they trigger a cascade of events that

increase the production of pro-inflammatory cytokines and toxic

molecules, further damaging neurons and accelerating cognitive

decline (46).
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Hence, neuroinflammation is central to AD, driven by

microglial and astrocytic activation due to Ab and tau

accumulation. Initially protective, these cells eventually adopt a

pro-inflammatory state, exacerbating neuronal damage and

cognitive decline. Microglial polarization from M1 to M2

illustrates their dual role in inflammation and repair. Neurotoxic

A1 astrocytes further increase inflammation, leading to neuronal

death and blood-brain barrier disruption. Pro-inflammatory

cytokines and complement proteins are critical mediators of

neurodegeneration, perpetuating the inflammatory cycle.

Targeting these immune pathways presents therapeutic potential

to mitigate disease progression. Future research should elucidate the

signaling mechanisms behind glial activation and develop therapies

that modulate inflammation while preserving neuroprotection.
3 Gut microbiota-driven
neuroinflammation

Recent studies have emphasized the crucial role of gut

microbiota in overall health and disease prevention (47–50). The

gut hosts a diverse ecosystem of microorganisms—bacteria, fungi,

archaea, and viruses—that contribute to digestion, metabolism, and

immune function. Beyond these traditional roles, gut microbiota

also affects the brain and nervous system, particularly in

neuropsychiatric disorders. Alterations in the gut microbiota have

been linked to neurodegenerative diseases, such as AD. These

microorganisms influence neuroinflammation through various

mechanisms, including the production of metabolites, modulation

of immune responses, and the maintenance of intestinal

barrier integrity.
3.1 Gut microbiota and microbiota–gut–
brain axis

3.1.1 Composition and functional dynamics of gut
microbiota

The gut harbors a diverse community of microbiota that can

influence the risk of neuropsychiatric disorders (51). The

microbiota consists of approximately 3.8 × 10¹³ microorganisms,

roughly equal to the number of human cells, and contains over 4

million genes—150 times more than the human genome (52, 53). It

hosts around 1,000 bacterial species and 7,000 strains, with

Firmicutes and Bacteroidetes being the most predominant (54).

Gut microbiota plays a crucial role in health by regulating

metabolism, breaking down complex food polysaccharides,

modulating intestinal motility, supporting the gut barrier, and

influencing fat distribution. Additionally, gut microbiota interacts

with the CNS through the microbiota–gut–brain axis, affecting

neurona l func t ion and poten t i a l l y con t r ibu t ing to

neurodegenerative diseases such as AD, and Parkinson’s disease.

Emerging research has shown that gut microbiota composition can

be influenced by diet, lifestyle, and even environmental factors, with

alterations in microbiota diversity linked to various neurological
Frontiers in Immunology 05
and psychiatric conditions. For instance, recent studies found that

dysbiosis—an imbalance in microbiota composition—can lead to

increased gut permeability, a condition often referred to as “leaky

gut”. This allows harmful substances to enter the bloodstream,

triggering systemic inflammation, which can then impact brain

function and contribute to conditions such as autism spectrum

disorders and multiple sclerosis (55–57). Moreover, recent studies

have highlighted the role of microbial metabolites, particularly

short-chain fatty acids (SCFAs) such as acetate, propionate, and

butyrate. These are produced by gut bacteria during the

fermentation of dietary fiber and have been shown to have

significant anti-inflammatory effects. SCFAs not only help

maintain gut integrity but also play a critical role in regulating

brain function by influencing neuronal activity and modulating

immune responses in the CNS (58, 59). Given these insights,

current research is increasingly focused on understanding how

microbiota diversity and composition affect both gut and brain

health. This knowledge holds promise for novel therapeutic

approaches aimed at preventing or treating neuropsychiatric

disorders through microbiota modulation.

3.1.2 Mechanisms of the microbiota-gut-brain
axis

The gut is not only one of the largest immune organs in the

body, housing over 70% of immune cells, but it also possesses neural

functions similar to those of the brain. A variety of microorganisms

within the gut produce metabolic byproducts that significantly

influence overall health. Recent research has revealed the complex

mechanisms behind the gut’s bidirectional communication with the

brain, known as the gut-brain axis (GBA) (60, 61). This

communication is mediated through neural, endocrine, and

immune pathways that are crucial for maintaining physiological

homeostasis. The microbiota-gut-brain axis (MGBA) represents the

continuous dialogue between the gut and the brain, involving

interconnected systems such as the autonomic nervous system,

neuroendocrine pathways, the vagus nerve, immune responses, and

metabolites produced by gut microbiota (62). The Enteric Nervous

System (ENS), often called the “second brain,” serves as the primary

integrative hub for bidirectional GBA signaling. Comprising a dense

network of neurons and glial cells, the ENS is a specialized, semi-

autonomous subdivision of the peripheral nervous system (63, 64).

Distributed along the gastrointestinal tract, ENS neurons form

ganglionated plexuses—most notably the myenteric and

submucosal plexuses (63–65), which regulate motility, secretion,

and absorption to ensure digestive efficiency and maintain intestinal

microbiota homeostasis (66). As a critical interface between gut

microbiota and the CNS, the ENS responds to microbial signals

through direct interactions with metabolites and indirect pathways

involving enteroendocrine signaling, immune mediators, and

bidirectional vagal afferents (67). This crosstalk enables constant

brain-gut communication, with microbiota playing a central role in

its regulation. Notably, microbiota influence neurotransmitter

synthesis and neuromodulation, impacting gut-brain signaling

and broader brain functions like cognition, emotional regulation,

and stress responses (68, 69).
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There is growing evidence that the gut microbiota plays a

significant role in modulating brain function, primarily through

the production of specific metabolites. The microbiota also

influences immune responses and the gut microenvironment

through Toll-like receptors (TLRs), which detect microbial

components and trigger immune reactions that extend beyond

the gut to other organs, including the brain. This immune

activation can lead to systemic inflammation, a process linked to

the development of neurodegenerative diseases, such as AD (70).

Animal studies, particularly those conducted in rodents, have

provided valuable insights into how specific gut microbes impact

both brain function and immune activity (71, 72). For instance,

Bifidobacterium infantis has been shown to support neuroimmune

responses, offering protection to the brain from neuroinflammation

(73). Similarly, increased populations of Lactobacillus casei,

Anaplasma fragilis, and Streptococcus thermophilus positively

affect brain activity and cognition (74–76). Conversely, certain

pathogenic bacter ia , such as Fusobacter ium rectum ,

Porphyromonas gingivalis, and Lactobacillus rhamnosus, have

been implicated in the development of AD, suggesting a

detrimental role in brain health (77, 78). These findings revealed

the significant influence of the gut microbiota on neurodegenerative

diseases and brain function, suggesting that modulating the gut

microbiome could offer potential therapeutic strategies for

improving brain health and managing related diseases (9, 79, 80).
3.2 AD-associated gut microbiota
alterations

The gut microbiota plays a critical role in the pathogenesis of

AD. Recent studies have linked gut dysbiosis to various conditions,

including AD, obesity, diabetes, and neuropsychiatric disorders

(81–83). This imbalance disrupts the normal microbial ecosystem,

leading to improper metabolite production and harmful

byproducts, which can negatively affect overall health, including

the CNS. In AD, gut dysbiosis has been shown to contribute to

cognitive decline, suggesting it plays a central role in both the onset

and progression of the disease (11, 84).

Studies on the gut microbiota of AD patients have identified

significant differences compared to healthy individuals. For

example, Vogt et al. discovered changes in bacterial composition,

such as a reduction in Firmicutes, an increase in Cyanobacteria, and

a decline in beneficial Bifidobacteria, indicating a shift toward a

more inflammatory microbiota in AD (85). Additionally, studies

have shown that AD patients exhibit lower gut microbial diversity,

characterized by an increase in pro-inflammatory bacteria and a

decrease in beneficial species (84, 86, 87). Ling et al. also observed a

decrease in Faecalibacterium and an increase in Lactobacillus and

Bifidobacterium, suggesting that these changes may contribute to

the neuroinflammation seen in AD (11). Furthermore, differences

in microbiota composition are observed between patients with mild

cognitive impairment (MCI) and those with advanced AD,

indicating a gradual microbiota shift as the disease progresses

(87). This progression suggests that gut microbiota alterations
Frontiers in Immunology 06
may not only be a characteristic of AD but could also provide

insight into the disease’s early stages and progression.

Dysbiosis is thought to contribute to early AD pathology by

promoting immune aging , cytokine imbalances , and

neuroinflammation (88). For example, Cattaneo et al. found an

increase in pro-inflammatory bacteria, such as Escherichia/Shigella,

and a decrease in anti-inflammatory species, such as

Enterobacteriaceae, which correlated with amyloid plaque

accumulation and a heightened inflammatory response (84). The

decline in beneficial gut bacteria, such as those producing butyrate,

further exacerbates the inflammatory state in AD. Animal studies

show that ADmice have lower levels of butyrate-producing bacteria

and reduced SCFAs like butyrate, propionate, and acetate (89, 90).

These SCFAs are crucial for energy production, immune regulation,

and gut homeostasis (91). Impaired SCFA production leads to

amyloid plaque accumulation, metabolic dysfunction, and

microglial impairment, all of which accelerate cognitive decline

(92–94).

Moreover, the decline in butyrate-producing bacteria is often

accompanied by an increase in pro-inflammatory bacteria,

triggering both local and systemic inflammation, further

exacerbating neuroinflammation (95). This microbial shift is also

linked to altered T cell function, increased gut permeability, and

bacterial translocation (96, 97). These changes facilitate the entry of

pro-inflammatory substances, like LPS, into the bloodstream,

triggering systemic inflammation and disrupting the BBB,

intensifying neuroinflammation (98). Additionally, reduced gut

microbiota diversity can alter tryptophan and serotonin levels,

impacting the production of critical brain molecules such as

dopamine and brain-derived neurotrophic factor (BDNF) (96, 99,

100). Overall, these microbial imbalances play a significant role in

the neurodegenerative processes of AD, with gut dysbiosis closely

linked to disease progression and neuroinflammation.
3.3 MGBA-mediated neuroinflammation

Recent studies have highlighted the increased risk of AD in

patients with inflammatory bowel disease (IBD). A Taiwanese study

of 1,742 IBD patients and 17,420 healthy controls found that 5.5%

of IBD patients developed dementia, compared to just 1.4% in

healthy individuals (101). This significant difference suggests that

intestinal inflammation may influence brain inflammation. A key

factor in this link is the disruption of the gut-blood barrier. Research

has shown that tight junction proteins, such as occludin and zonula

occludens-1 (ZO-1), are reduced in AD animal models, leading to

increased gut permeability (102–105). This breakdown may allow

harmful bacterial metabolites to enter the bloodstream, potentially

affecting the CNS and contributing to AD.

The gut microbiota produces various microbial byproducts,

including LPS, amyloid, and trimethylamine N-oxide (TMAO).

Gram-negative bacteria, such as Bacteroides fragilis and

Escherichia coli, secrete LPS (106, 107), which, when disrupted or

released via outer membrane vesicles, can damage the gut-blood

barrier (108). This damage impacts intercellular proteins like E-
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cadherin, allowing LPS to enter circulation. Once in the

bloodstream, LPS can cross the BBB, increasing the risk of pro-

inflammatory substances entering the CNS. Elevated LPS levels

have been found in the hippocampus, cortex, and plasma of AD

patients, compared to healthy individuals (109). LPS is highly

immunogenic and induces potent pro-inflammatory effects on

neurons (110). In AD, LPS exposure activates TLRs on microglia,

triggering an inflammatory response through interactions with

proteins like CD14 and MD-2. TLR4 receptors, activated by

CD14, are critical in the brain’s response to Ab (111, 112). This

inflammatory cascade not only modulates immune responses but

also exacerbates neuroinflammation, accelerating the progression

of AD.

Recent research has revealed that LPS derived from Bacteroides

fragilis (BF-LPS) activate neuroinflammatory pathways that are

linked to AD. BF-LPS has been shown to significantly activate the

NF-kB signaling pathway in human brain cells, which leads to an

inflammatory cascade that contributes to neuroinflammation

associated with AD (113). The presence of LPS in amyloid

plaques suggests an interaction between microbial LPS and Ab,
further intensifying neuroinflammatory responses (114). In AD,

LPS from E. coli has been detected in critical regions such as the

hippocampus and cortex, areas essential for memory and learning.

These regions are particularly susceptible to neuroinflammatory

damage due to the presence of LPS (115). Animal studies confirm

these findings, showing that LPS injections impair hippocampal-

dependent cognitive functions, including learning and memory.

Repeated LPS administration also leads to increased Ab
accumulation and plaque formation in the hippocampus (116).

Additionally, LPS injections into the fourth ventricle of mice induce

inflammatory responses and brain changes similar to those seen in

AD, such as microglial activation and neuronal dysfunction. LPS

also increases the levels of pro-inflammatory cytokines like IL-1b,
IL-6, IL-10, and TNF-a, both in the brain and the bloodstream

(117). These cytokines contribute to AD by promoting the

expression of b-amyloid precursor protein (b-APP) and

increasing the activity of b-secretase 1 (BACE1), crucial steps in

the production of Ab (118). Moreover, LPS activates the NLRP3

inflammasome in microglia, enhancing the processing of pro-

inflammatory cytokines like IL-1b and IL-18, further amplifying

neuroinflammation and Ab aggregation (119, 120). This

inflammatory cascade recruits additional immune cells,

accelerating the progression of AD. Recent studies also highlight

the potent pro-inflammatory and neurotoxic effects of gut-derived

LPS, suggesting that the gut-brain axis plays a crucial role in AD

pathology. The neurotoxic effects of gut-derived LPS on cultured

human neurons underscore its potential contribution to

neurodegenerative processes (121, 122).

In addition to LPS, various gut bacteria, including Escherichia

coli, Bacillus subtilis, Salmonella spp., Mycobacterium tuberculosis,

and Staphylococcus aureus, contribute to amyloid protein

accumulation by producing misfolded Ab oligomers and fibers

(123, 124). This process may play a key role in AD pathology.

Amyloids are insoluble, protein-rich aggregates that form deposits

in tissues, and they can promote biofilm formation among bacteria,
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enhancing their aggregation and resistance to physical and immune

challenges. Bacterial amyloids, especially those found in the gut, can

activate the immune system, potentially leading to the formation of

amyloid deposits in the brain (124). This may further amplify

immune responses, contributing to neuroinflammation. Research

into microbial-derived amyloids is still ongoing, but some bacterial

proteins, such as Frizzled, may influence Ab accumulation in the

brain through prion-like mechanisms. These mechanisms initiate

inflammatory responses both in the brain and peripherally.

Additionally, bacterial amyloids in the gut may trigger the

immune system, increasing responses against endogenous

neuronal amyloids in the brain (124). As pathogen-associated

molecular patterns (PAMPs), these bacterial amyloids activate the

innate immune system by stimulating pathways such as TLR2, NF-

kB, and CD14, ultimately leading to neuroinflammation. This

cascade of immune activation can further exacerbate the

progression of AD (125).

The gut microbiota-derived metabolite TMAO plays a

significant role in the development of AD (126). Elevated levels of

TMAO have been observed in CSF of AD dementia patients

compared to healthy individuals (127). These increased TMAO

levels are correlated with key AD biomarkers, such as

phosphorylated tau protein, the tau to amyloid-beta (Ab42) ratio,
and markers of neuronal degeneration, including total tau and

neurofilament light chain proteins (127). In addition, TMAO levels

also increase with age in both wild-type and APP/PS1 transgenic

mice, which are commonly used as AD models (128). TMAO

contributes to cognitive decline and the progression of AD by

enhancing the activity of BACE, an enzyme that accelerates Ab
accumulation in the brain. Furthermore, TMAO promotes platelet

hyperreactivity by releasing calcium ions from intracellular stores,

which is linked to AD-related neuroinflammation and vascular

changes (129). This suggests that TMAO may not only influence

amyloid pathology but also contribute to the vascular and

inflammatory components of AD.

Bile acids (BAs), produced by circulating bacteria, have been

linked to increased Ab production in AD. BAs may disrupt the BBB

by impairing tight junctions between endothelial cells, which

facilitates the entry of both BAs and peripheral cholesterol into

the CNS (130). Once inside, elevated cholesterol levels play a pivotal

role in AD pathology. Cholesterol binds to amyloid precursor

protein (APP) and promotes its integration into lipid rafts,

specialized membrane microdomains involved in APP processing.

This interaction facilitates the cleavage of APP by b-secretase,
leading to increased production of Ab (131). Additionally, BAs

may interfere with the brain’s cholesterol clearance mechanisms,

further accumulating cholesterol. This accumulation promotes Ab
formation, linking cholesterol dysregulation to AD progression.

Thus, BAs contribute not only to Ab production but also to the

processes that foster the formation of toxic Ab aggregates.

The immune system plays a critical role in shaping the gut

microbiota, influencing its structure, composition, and function

(132). This regulation is driven by feedback from microbial

symbionts that interact with the host’s immune system (133,

134), maintaining gut homeostasis and impacting broader
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processes such as neuroinflammation and aging. Research in rodent

models shows how changes in the gut microbiota can affect immune

responses and neuroinflammation (135–138). For example,

Boehme et al. found that modifying the gut microbiota in young

and middle-aged mice reversed stress-induced immune activation

in middle-aged mice, reducing the infiltration of Ly-6Chi

monocytes in the brain—a marker of neuroinflammation related

to aging. This suggests that the microbiota not only influences local

immune responses but also affects systemic processes that impact

brain health and aging (139).

The inflammatory response begins when immune cells detect

PAMPs and microbe-associated molecular patterns (MAMPs)

through pattern recognition receptors (PRRs). Host cells, such as

tumor or apoptotic cells, also release damage-associated molecular

patterns (DAMPs), which are recognized by PRRs and activate the

immune system. This activation triggers the production of pro-

inflammatory cytokines and chemokines by immune cells like

macrophages and mast cells, often accompanied by complement

activation. Dendritic cells and macrophages present antigens to
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local immune cells via major histocompatibility complex (MHC)

molecules, activating the adaptive immune system, including T

cells, to mount a targeted response (12). If inflammation persists,

additional immune cells, including effector T-cells, infiltrate tissues,

exacerbating the inflammation and contributing to a chronic

inflammatory state. Chronic neuroinflammation is linked to

neurodegenerative diseases, highlighting the need for immune

balance in maintaining brain health.

The evidence above emphasizes the important role of the gut

microbiota and its metabolites in influencing inflammatory

processes within the CNS, thereby influencing neuroinflammation

and the progression of AD. Disruptions to the gut-blood barrier,

which permit harmful microbial metabolites like LPS, BAs, TMAO,

and amyloids to leak into the brain, play a significant role in

neuroinflammation. This inflammation accelerates the

accumulation of amyloid plaques and tau tangles, which in turn

disrupt neuronal function and advance the progression of AD. A

better understanding of the relationship between the gut

microbiota, immune responses, and brain health could open up
FIGURE 2

Schematic diagram illustrating the regulatory mechanism of gut dysbiosis in AD neuroinflammation. In AD, gut dysbiosis triggers immune responses
and the production of harmful metabolites, including lipopolysaccharides (LPS), amyloid, Bile acids (BAs), and trimethylamine N-oxide (TMAO). These
metabolites disrupt the integrity of the intestinal mucosal barrier, allowing LPS to enter systemic circulation. This, in turn, promotes systemic
inflammation and activates microglia via the microbiota-gut-brain axis (MGBA). Additionally, amyloid accumulation accelerates the formation of
neuronal amyloid plaques by enhancing immune system activity. Elevated levels of BAs and TMAO are associated with increased brain Ab
concentrations, while the interaction between TMAO and tau pathology may further intensify neuroinflammation, contributing to AD progression in
the brain.
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new therapeutic avenues, particularly those targeting the gut

microbiome to slow or prevent the onset and progression of

AD (Figure 2).
4 Targeting gut microbiota to mitigate
neuroinflammation in AD

Emerging evidence has established the gut microbiota as a key

modulator of neuroinflammation in AD pathogenesis. The

bidirectional communication network of the gut-brain axis serves

as a critical interface linking microbial communities to CNS

homeostasis. Current therapeutic approaches targeting this axis

include probiotics, prebiotics, synbiotics, postbiotics, and fecal

microbiota transplantation (FMT). These interventions exert their

beneficial effects by restoring microbial homeostasis, reinforcing

intestinal barrier integrity, and modulating systemic and

neuroimmune responses, thereby potentially ameliorating AD-

related pathological processes (Table 1). While challenges remain

in clinical translation, optimizing microbial formulations and

personalizing treatment strategies may unlock novel, disease-

modifying therapies for AD.
4.1 Probiotics

Probiotics, particularly Lactobacilli and Bifidobacteria strains,

are live microorganisms that support gut health and offer several

benefits, including immune regulation, stress resistance, pathogen

inhibition, and improved intestinal barrier function (103, 140–142).

In a BALB/c mouse model, B. longum supplementation improved

cognitive performance, as demonstrated by better performance in

tasks like the NOR and Barnes maze tests (143). Other probiotics,

such as L. spiralis, B. breve A1, and L. casei Shirota, have been

shown to promote APP metabolism, enhance memory, and lower

Ab levels in rats, helping to reduce neuroinflammation—crucial in

preventing AD progression (144–146). Clostridium butyricum has

also been found to prevent cognitive decline and reduce Ab
accumulation while inhibiting microglial activation and

inflammatory cytokines in APP/PS1 mice (147). Additionally,

probiotics can modulate the hypothalamic-pituitary-adrenal

(HPA) axis and restore neuronal activation under stress, as seen

in increased c-Fos and BDNF expression in the hippocampus (148).

Akkermansia muciniphila alleviates inflammatory responses and

enhances immune function through the enzymatic degradation of

mucin, yielding SCFAs and oligosaccharides. The release of SCFAs

further reduces intestinal permeability, thereby reinforcing

intestinal barrier integrity and promoting overall gut health (149).

Combining multiple probiotic strains often confers greater

benefits than single-strain interventions. For example, Hang et al.

demonstrated that administration of probiotics-2 (P2; B. lactis and

L. rhamnosus) and probiotics-3 (P3; B. lactis, L. acidophilus, and L.

rhamnosus) to 6-month-old SAMP8 mice significantly ameliorated

AD-like cognitive impairment. This intervention concurrently

mitigated neuronal damage, reduced the pathological deposition
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of Ab and tau proteins, and attenuated neuroinflammatory

responses within the hippocampus and cerebral cortex (150).

VSL#3, a blend of eight Gram-positive strains, promotes

beneficial gut microbiota changes in AD models, improving long-

term memory, reducing inflammation, and enhancing

neuroplasticity (151). Similarly, SLAB51, a mixture of nine

bacterial strains, has been shown to reduce brain damage, Ab
accumulation, and amyloid plaque formation in transgenic AD

mice (152). Probiotics-4, a combination of L. casei, L. acidophilus, B.

lactis, and B. bifidum, improved memory, reduced neuronal

damage, and protected the gut and blood-brain barrier in aging

mice. It also lowered inflammatory markers like IL-6 and TNF-a, as
well as plasma and brain LPS levels (153). Likewise, a combination

of L. acidophilus, L. fermentum, B. lactis, and B. longum improved

learning and reduced oxidative stress in rats following Ab1–42
injection, highlighting the potential of probiotic combinations in

AD therapy (154).

Probiotics have gained attention as a potential treatment for AD

due to their influence on the MGBA, which may help clear amyloid

buildup and reduce neuroinflammation. While animal models have

shown promising results, clinical trials in AD patients have yielded

inconsistent outcomes. Some studies report improvements in

cognitive function, such as higher Mini-Mental State Examination

(MMSE) scores after probiotic supplementation (155). For example,

a clinical trial with 20 advanced AD patients found that a 4-week

regimen of a specific probiotic mixture (including L. lactis W19, L.

paracaseiW20, L. acidophilusW22, L. alialiusW24, L. caseiW56, L.

plantarum W62, B. bifidum W23, B. lactis W51, and B. lactis W52)

led to significant decreases in fecal zonulin levels, a marker of

intestinal inflammation. The intervention also increased levels of

Faecalibacterium prausnitzii, an anti-inflammatory bacterium, and

elevated serum levels of inflammatory markers such as neopterin

and kynurenine, suggesting an immunomodulatory effect on

macrophages and dendritic cells (156). Furthermore, a 12-week,

double-blind, placebo-controlled trial involving 90 patients with

mild-to-moderate AD demonstrated that administration of two

distinct single-strain probiotics (L. rhamnosus HA-114 or B.

longum R0175) significantly improved subjects’ average MMSE

scores (157). Further studies indicate preventive benefits in

heal thy elder ly individuals . For example , a 12-week

supplementation with probiotics containing B. bifidum BGN4 and

B. longidum BORI led to a reduction in pro-inflammatory gut

bacteria, along with improvements in mental flexibility, stress

performance, and elevated serum levels of BDNF, a protein linked

to neuroplasticity (158). However, the exact mechanisms by which

probiotics impact AD remain unclear. Some trials show that mixed

probiotic therapies do not significantly improve cognitive function

or biochemical markers, especially in patients with severe AD. For

instance, research on fermented milk products containing B.

animalis did not lead to notable changes in bacterial composition

or gene expression in fecal samples, questioning the consistency of

probiotic effects (159). These mixed results suggest that while

probiotics can influence gut microbial function, they do not

always lead to significant changes in microbiota composition or

cognitive outcomes. Further research is needed to identify the most
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TABLE 1 Targeting gut microbiota to mitigate neuroinflammation in AD.

Therapy Experimental subject Major finding References

Probiotics B. breve A1 Male 10-week-old ddY mice • Ameliorates Ab-induced memory dysfunction
• Plasma acetate↑

(144)

L. casei Shirota Male R1.40 mice • Enhanced spatial memory
• APP and BACE-1 mRNA↑

(146)

C. butyricum APP/PS1 mice • Ameliorated cognitive deficits
• Improve the degenerated neurons
• Ab42↓, IL-1b and TNF-a↑
• Suppressed the Activation of Microglia
• Helicobacteraceae and Porphyromonadaceae ↓
• Butyrate↑

(147)

VSL#3 Aged male Wistar rats • Actinobacteria↑, Firmicutes↓
• Reverses aging gene effects
• Promotes synaptogenesis via BDNF

(151)

SLAB51
probiotic formulation

3×Tg-AD mice • Mitigates AD cognitive damage
• Bifidobacterium spp. ↑, Campylobacterales↓
• Acetic, propionic and butyric acids↑
• IL-1a, IL-1b, IL2, IL-12, IFN-g, and TNF-a↓
• Ghrelin, leptin, GLP-1 and GIP↑
• Ab1–42↓

(152)

Probiotics-4 (B. lactis, L.
casei, B. bifidum, and
L. acidophilus)

Senescence-accelerated mouse
prone 8 (SAMP8) mice.

• Ameliorates neurocognitive deficits
• Proteobacteria, Pseudomonas and
Lachnospiraceae_NK4A136↓
• Reduces intestinal barrier injury
• LPS↓, IL-6 and TNF-a↓
• Improves BBB, neuroinflammation via TLR4/
NF-kB

(153)

Probiotics (L. acidophilus,
L. fermentum, B. lactis, and
B. longum)

Ab1–42 injected rats • Improved spatial memory
• Improve oxidative stress

(154)

Multi-strain
probiotic supplements

AD Patients • BDNF↑, IL-1b↓
• Cognitive decline reduction trend
• Bifidobacterium, Lactobacillus, Ruminococcus,
Clostridium and Akkermansia↑

(155)

B. bifidum BGN4 and B.
longum BORI

Community-dwelling older Adults • Eubacterium, Allisonella, Clostridiales, and
Prevotellaceae↓
• BDNF↑

(158)

Prebiotics FOS from
Morinda officinalis

Adult male Sprague–Dawley rats • Ameliorate learning and memory dysfunction
• Improve oxidative stress and inflammation
disorder
• Regulate the synthesis and secretion of
neurotransmitter
• Ameliorates cerebral edema, apoptosis
• Tau and Ab1-42↓

(164)

FOS APP/PS1 mice • Ameliorates cognitive and pathology
• Synapsin I and PSD-95↑
• GLP-1↑, GLP-1R↓
• Helicobacteraceae and Deferribacteraceae↓

(165)

Mannan oligosaccharide 5×FAD mice • Alleviates cognitive/neuropsychiatric deficits
• Ab↓
• Modulates redox, neuroinflammation
• Prevents gut barrier damage/LPS leak
• Lactobacillus↑, Helicobacter↓
• Butyrate↑

(166)

Oligosaccharides
From Morinda

APP/PS1 mice • Alleviates cognitive deficits
• Ameliorates cerebral edema, apoptosis
• Ab1−42 ↓

(167)

Fructan Multiethnic population • Dietary fructan reduces AD risk (169)

(Continued)
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TABLE 1 Continued

Therapy Experimental subject Major finding References

Synbiotics NMN Synbiotics APP/PS1 mice • Ab↓
• Ameliorates colon histopathology, upregulates
barrier proteins
• IL-1b, IL-6, and TNF-a↓
• Reduce ROS/oxidative stress

(173)

Novel synbiotic Drosophila genetic model of AD • Increased survivability and motility
• Ab↓
• Acetylcholinesterase activity↑

(174)

Vitalon Probiotics
and inulin

The APP transgenic mouse
line J20

• Ameliorated cognitive impairment
• Ab↓
• IL-1b and TNF-a↓

(175)

Probiotic and selenium AD patients • Improve MMSE
• Total antioxidant capacity↑

(176)

Probiotic-fermented
milk supplementation

AD patients • Ameliorated cognitive impairment
• Inflammation and oxidative markers↓

(177)

Postbiotics Sodium butyrate 5×FAD mice • Attenuates memory deficits
• Ab↓

(189)

Sodium butyrate C57BL/6J mice with lead chloride • Alleviates neurobehavioral impairment
• IL-1b, TNFa, and IL-6↓
• BDNF↑

(190)

Butyrate Caco-2/PBMC Co-Culture Model • Improved intestinal barrier function (197)

FMT Fresh fecal solution of wild-
type mice

APP/PS1 mice • Attenuate spatial learning impairment
• Ab accumulation and Tau
hyperphosphorylation↓
• Attenuate synaptic dysfunction
• Attenuate neuroinflammation
• Proteobacteria and Verrucomicrobia↓
Bacteroidetes↑
• Butyrate↑

(90)

Fresh fecal solution of wild-
type mice

ADLPAPT mice • Attenuate cognitive impairment
• Ab accumulation and Tau
hyperphosphorylation↓
• Normalize Ly6G−Ly6CCD115
myeloid overpopulation

(207)

Fecal matter from healthy
B6SJL wildtype donor mice

5xFAD mice • Attenuate cognitive impairment
• Ab↓

(210)

FMT from 5×FAD mice Wild-type mice • Induce memory dysfunction
• Neuroinflammation↑
• Inflammation in the colon↑

(209)

FMT from healthy spouse Male AD patient • Improve memory and cognition (211)

FMT from healthy
young man

An old woman with AD • Improve cognitive functions (212)

Others Grape seed
polyphenol extract

Male Sprague-Dawley rats • Accumulation of GSPE phenolic acid
metabolites in GI
• Brain phenolic acid metabolites inhibit
neurotoxic Ab42 aggregation

(216)

Anthocyanins Healthy adults • Inhibit NF-kB reducing chronic
inflammatory mediators

(221)
F
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APP, Amyloid precursor protein; Ab, b-amyloid; BACE-1, Beta-site APP cleaving enzyme 1; BBB, Blood-brain barrier; BDNF, Brain-derived neurotrophic factor; GI, Gastrointestine; GIP,
Gastric inhibitory polypeptide; GLP-1, Glucagon-like peptide-1; IFN-g, Interferon g; IL-1b, Interleukin-1b; LPS, lipopolysaccharides; MMSE, Mini-Mental State Examination; NF-kB, Nuclear
factor kappa B; PS1, Presenilin 1; TLR4, Toll-like receptor 4; TNF-a, Tumor Necrosis Factor-a.
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effective probiotic strains and mechanisms for preventing or

treating AD.
4.2 Prebiotics

Prebiotics are compounds that promote the growth of beneficial

gut bacteria and are found in various foods (160, 161). They are

linked to improvements in cognitive function and the management

of neurodegenerative diseases like AD. Examples include resistant

starch (RS), inulin, oligosaccharides (e.g., fructooligosaccharides

[FOS] and alginate), galactose, and oligo-xylulose (162). Studies

suggest RS boosts butyrate production, which supports gut health

and may reduce inflammation (163). Fructose and alginate have

been shown to enhance cognitive function by improving short-term

memory and inhibiting the proliferation of astrocytes triggered by

Ab accumulation. FOS, in particular, have shown promise in AD

animal models, enhancing gut microbiota diversity, protecting

neurons, and reducing Ab1–42 and tau protein levels, which are

linked to AD pathology (164). FOS may also modulate the GLP-1/

GLP-1 receptor pathway, offering neuroprotective effects (165). In a

study with 5×FAD mice, mannan-oligosaccharides promoted

beneficial bacteria like Lactobacillus, reduced harmful bacteria like

Helicobacter, and strengthened the intestinal and blood-brain

barriers. This resulted in decreased Ab accumulation, restored

redox balance, and increased butyrate levels in key brain regions

(166). Similarly, Malinda oligosaccharides improved memory,

reduced plaque formation, and alleviated oxidative stress and

inflammation in AD models (164, 167).

While human studies are ongoing, prebiotic supplementation

shows potential in the elderly, particularly in regulating cytokine

gene expression, which affects inflammation and immune responses

(168). A study of 1,837 participants found that each 1g increase in

dietary fructose intake was associated with a 24% reduction in AD

risk, suggesting that prebiotics like FOS may help reduce the risk of

clinical AD in older adults (169).
4.3 Synbiotics

Synbiotics are combinations of probiotics and prebiotics

introduced by Gibson and Roberfroid (170). They are classified

into two types: complementary synbiotics, which are simple

mixtures of probiotics and prebiotics, and synergistic synbiotics,

where the prebiotic enhances the growth of specific probiotics

(171). The goal is to help probiotics survive the gastrointestinal

tract and maximize the benefits of both components (172).

Synbiotics often provide more effective health benefits than

probiotics or prebiotics alone (173–176). Studies suggest

synbiotics can regulate gut microbiota, reduce inflammation, and

improve intestinal barrier function, offering neuroprotective effects

for AD. For example, a nicotinamide mononucleotide (NMN)

synbiotic, containing NMN, Lactiplantibacillus plantarum

CGMCC 1.16089, and lactulose, reduced Ab deposition in the

cerebral cortex and hippocampus in APP/PS1 mouse models. It
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also improved colon health, restored goblet cells, and increased

tight junction proteins like Claudin-1 and ZO-1, strengthening the

intestinal barrier while reducing proinflammatory cytokines and

oxidative stress (173). Another study using transgenic AD

Drosophila melanogaster found that a synbiotic formula with L.

plantarum NCIMB 8826, L. fermatus NCIMB 5221, and B. longum

spp. infantis NCIMB 702255combined with polyphenol-rich plant

extracts improved survival, mobility, reduced Ab deposition, and

acetylcholinesterase activity (174). Additionally, a complementary

synbiotic with inulin and probiotics like Bacillus natto, Bacillus

coagulans, L. casei, L. acidophilus, B. longum, B. breve improved

memory, neurogenesis , and reduced Ab42 levels and

neuroinflammation in AD mice (175).

While human clinical studies on synbiotics are limited, some

promising results have been observed. A study of 79 AD patients

showed that supplementing with 200 mg of selenium and specific

probiotics for 12 weeks improved cognitive and metabolic

functions, as indicated by higher MMSE scores, and reduced

inflammation and oxidative stress markers (176). Another study

using probiotic-fermented kefir milk in elderly AD patients showed

significant improvements in cognitive function, including memory,

language skills, and executive function, as well as reduced

inflammation, oxidative stress, and blood cell damage (177).

Although still in the early stages, these studies suggest that

synbiotics could be a promising approach for improving cognitive

function and overall health in AD patients. Further clinical research

is needed to fully understand their therapeutic potential in

neuroprotection and AD management.
4.4 Postbiotics

Postbiotics are a promising approach for treating inflammatory

diseases, offering the benefits of probiotics without the risks of live

microorganisms. This makes them particularly suitable for

individuals with compromised immune systems (178). Key

components of postbiotics include SCFAs, produced during fiber

fermentation, and neuroactive substances that influence both the

gut and the CNS. These substances have the potential to modulate

cognitive and behavioral functions in animals and humans

(179, 180).

SCFAs, fatty acids with 2 to 6 carbon atoms, are primarily

produced by colonic bacteria like Bacillus spp., Bifidobacterium

spp., and Clostridium spp (181, 182). SCFAs activate G-protein-

coupled receptors (GPCRs), triggering signaling pathways that

regulate immune and inflammatory responses, such as the release

of cytokines like TNF-a, IL-1, and IL-6. Notably, butyrate has

shown significant promise in improving cognitive function in AD

mouse models (183). As a histone deacetylase (HDAC) inhibitor,

butyrate attenuates histone deacetylation (184), thereby suppressing

the expression of genes encoding pattern recognition receptors,

kinases, transcriptional regulators, cytokines, and chemokines (185,

186). Concurrently, butyrate enhances chromatin accessibility,

enabling the aryl hydrocarbon receptor (AhR)-ligand complex to

bind regulatory elements within target gene promoters (187). This
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triggers AhR activation, which suppresses pro-inflammatory

cytokines (e.g., IFN-g, IL-6, IL-12, TNF-a, IL-7, and IL-17),

inhibits microbial translocation and tissue fibrosis, and enhances

mucosal protection by inducing anti-inflammatory cytokines (IL-

10, IL-22), stimulating antimicrobial peptides, and promoting

intestinal epithelial repair (185, 188).

In AD, both clinical and preclinical studies have shown that

SCFAs, particularly butyrate, play significant roles at various stages

of the disease (189, 190). In the immune system, SCFAs influence

neutrophil and lymphocyte migration, promote the production of

Tregs, and modulate T cell activity (96, 191, 192). They also affect

neutrophil recruitment and the production of inflammatory

mediators like TNF-a (191, 193). SCFAs strengthen BBB by

increasing tight junction proteins like occludin, improving barrier

integrity (194, 195). Butyrate has been particularly effective in

enhancing cognition and immune function (196, 197).

Gut microbiota also play a critical role in producing

neurotransmitters and neuromodulators that affect gut-brain

communication and brain function (68, 69, 198). Gut bacteria

metabolize amino acids like tryptophan and tyrosine to produce

neurotransmitter precursors, which influence immune function and

T cell differentiation (199, 200). Bacterial strains such as E. coli,

Lactobacillus spp., and Saccharomyces cerevisiae produce

neurotransmitters like GABA, serotonin (5-HT), and dopamine,

which regulate emotional health, stress, mood, and cognition.

Imbalances in these neurotransmitters can affect mental health

(201). These neurotransmitters can enter the bloodstream and

impact brain function by influencing microglial activation (202).

Additionally, some gut microbes regulate BDNF, crucial for

neuronal growth (203). This highlights the complex gut-brain

connection, offering potential therapies for neurological and

psychiatric disorders.
4.5 FMT

FMT involves transferring carefully selected donor feces into a

patient’s gastrointestinal tract to restore microbiota diversity and

functionality. It has shown promise in treating inflammatory

diseases linked to microbiota imbalance, such as AD (204, 205).

Studies suggest FMT can reduce key AD features like Ab deposition,
tau protein formation, memory impairment, and microglial

activation, while also lowering neuroinflammation biomarkers.

Mechanisms include anti-inflammatory effects, regulation of Ab
accumulation, improved synaptic plasticity, and increased

production of SCFAs (90, 206–210). In animal models, such as

the APP/PS1 transgenic mouse model, FMT from healthy mice

improved cognitive function, reduced Ab and tau protein levels,

and increased synaptic protein expression. Pro-inflammatory

microglia and cyclooxygenase-2 (COX-2) were reduced, and

SCFA-producing bacteria increased (90). Similarly, daily FMT in

the ADPLAPT transgenic model for four months improved

cognition, reduced Ab and tau, and decreased activated microglia,

astrocytes, and inflammatory markers (207). In familial AD models

like 5×FAD mice, FMT decreased amyloid plaques and improved
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cognitive performance (210). FMT also suppressed pro-

inflammatory cytokines while boosting anti-inflammatory

cytokines such as IL-10, IL-22, IL-2, and TGF-b. However,

microbiota from AD patients increased gut NLRP3 expression

and peripheral inflammatory markers, worsening cognitive

decline, indicating that AD-derived microbiota may promote

inflammation (209).

Though animal studies are promising, clinical evidence is

limited. One case report described an AD patient who improved

cognitive function after receiving FMT for recurrent C. difficile

infection (211). Another case involved a 90-year-old woman with

AD and C. difficile infection, who showed improved cognition and

microbiome diversity after FMT from a healthy donor (212).

Despite these positive outcomes, further research is needed to

confirm FMT as a viable treatment for AD.
4.6 Others

Phenolic compounds, polyphenols, and tannins (PPT) influence

microbial metabolism and offer potential benefits for neural health.

These bioactive compounds regulate neuron-glial cell interactions,

essential for brain homeostasis. PPT also enhance blood flow,

improving nutrient and oxygen delivery while aiding metabolic

waste clearance, helping protect neurons from neurotoxins and

inflammation, which may offer therapeutic benefits for

neurodegenerative diseases (213, 214).

Flavan-3-ols, a key component of dietary flavonoids, support

neural health by scavenging free radicals, chelating metals, and

modulating enzyme activity. They possess anti-inflammatory

properties that reduce oxidative damage (215). After absorption,

flavonoids are metabolized by gut microbiota into phenolic acids

and metabolites that accumulate in the brain. These metabolites

inhibit the self-assembly of Ab peptides, preventing toxic amyloid

aggregation in neurodegenerative diseases like AD (216).

Flavonoids also cross the blood-brain barrier, reduce microglial

activation, and lower pro-inflammatory cytokines such as TNF-a
and IL-1b, promoting a healthier neural environment (217, 218).

Anthocyanins, a subclass of flavonoids, modulate inflammation

and provide neuroprotective effects. They regulate pro-

inflammatory cytokines and inhibit neuroinflammation pathways

(219). Studies in older mice show that blueberry anthocyanins

improve cognitive function, enhance memory, and reduce

inflammation associated with aging and neurodegeneration (220).

Human clinical trials further support these findings, showing

reduced plasma inflammatory markers, suggesting potential

benefits for mitigating chronic inflammation, a risk factor for

cognitive decline (221).

Thus, modulating the microbiota through probiotics, prebiotics,

postbiotics, FMT, and other bioactive compounds offers a

promising approach for managing AD and neuroinflammation.

Both preclinical and clinical studies highlight the complex gut-brain

relationship, showing how these interventions may reduce AD-

related pathologies like Ab accumulation and cognitive decline.

However, much of the research is based on animal models, and
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1582119
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lei et al. 10.3389/fimmu.2025.1582119
further clinical trials are needed to confirm these findings in

humans. Future research should focus on identifying specific

microbial strains and metabolites with neuroprotective effects and

optimizing delivery methods, with the goal of developing

personalized treatments for AD. Understanding the MGBA could

lead to innovative strategies for preventing and treating AD,

improving quality of life for affected individuals (Figure 3).
5 Conclusion

This review underscores the crucial role of gut microbiota-driven

neuroinflammation in AD, shedding light on how this interaction

contributes to disease mechanisms such as the accumulation of Ab
and tau proteins and the activation of glial cells. The persistent

activation of microglia and astrocytes leads to a chronic inflammatory

environment that accelerates neurodegeneration. The emerging link

between gut dysbiosis and neuroinflammation offers promising

therapeutic opportunities, as dysbiosis has been shown to drive

both neuroinflammation and cognitive decline. While preclinical
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studies suggest potential for probiotics, prebiotics, postbiotics, and

FMT, clinical efficacy remains to be proven. Future research should

focus on identifying neuroprotective microbial strains and

metabolites, refining delivery methods, and developing personalized

treatments. A deeper understanding of the MGBA could

revolutionize AD treatment, offering new ways to prevent or delay

onset, improve quality of life, and alleviate healthcare burdens.

Integrating insights into neuroinflammatory mechanisms and gut

microbiota dynamics is key to developing more targeted and effective

therapeutic strategies for combating this devastating disease.
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FIGURE 3

Schematic diagram illustrating the therapeutic potential of gut microbiota in AD neuroinflammation. Interventions targeting gut microbiota (such as
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