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Metabolic reprogramming is a process by which cells adapt to the nutrient

microenvironment by regulating energy metabolism. Compared with normal

cells, tumor cells tend to undergo metabolic reprogramming, which is one of the

hallmarks of concurrent genomic instability, and immune evasion in tumor cells.

The microbial community, known as “second genome” of human beings, can

cause systemic disease by predisposing cells to tumors, and modulating immune

responses to cancer. Metabolic reprogramming and microorganisms can

crosstalk with each other in multiple ways to influence various physiological

and pathological responses in cancer progression. The products of increased

synthesis by tumor cells can reach the intestinal tract via the circulation and act

on the microorganisms, promoting mucosal inflammation, causing systemic

disorders, and may also regulate the immune response to cancer. In addition,

the metabolites of the microorganisms can in turn be transported to the tumor

microenvironment (TME) through the systemic circulation and participate in the

process of tumor metabolic reprogramming. Different molecular mechanisms

related to metabolic reprogramming and microbiota imbalance control the

outcome of tumor or anti-tumor responses, depending on the type of cancer,

stage of the disease and the TME. In this review, we focus on the fundamental

role of metabolic reprogramming in the interaction between microorganisms

and cancers and explore the molecular mechanisms by which metabolic

reprogramming modulates this complex biological process. This comment

aims to provide valuable resources for clinicians and researchers and promote

further research in the field.
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Background

Metabolism encompasses complex biochemical networks that

convert nutrients into metabolites (1), enabling cells to generate

energy, synthesize macromolecules, and maintain cellular functions

(2). The most prominent biological characteristic of tumor cells is

their uncontrolled proliferation. To meet the biosynthetic demands

of rapid growth, cancer cells exhibit distinct metabolic patterns

compared with normal cells. Under the influence of factors such as

the harsh tumor microenvironment (TME), the metabolic

characteristics of cancer cells undergo adaptive changes, which is

called metabolic reprogramming (3), and it is one of a hallmark of

malignancy (4). This phenomenon was first described by Otto

Warburg, who observed that cancer cells preferentially utilize

aerobic glycolysis even under oxygen-rich conditions (the

Warburg effect) (5). Subsequent research has revealed that

metabolic reprogramming extends far beyond the Warburg effect,

involving diverse pathways including fatty acid synthesis, glutamate

metabolism, and other complex biochemical processes (2, 6).

Importantly, these metabolic alterations are dynamic, evolving

throughout cancer progression (4). Furthermore, emerging

evidence indicates that cancer cells are able to reshape the TME

and suppress anti-tumor immune response by depleting essential

nutrients (7, 8).

Despite years of research and significant advances in cancer

prevention, diagnosis, and treatment, cancer remains a major health

burden worldwide (9). As a complex disease, cancer development

involves dynamic interactions between tumor cells and the TME

(10), with emerging evidence highlighting the critical role of

microorganisms (11). It has been found that multiply types of

cancers are associated with microbiota, including in breast cancer,

lung cancer, gastric cancer, ovarian cancer, and et. al (12–15). The

correlation between cancer and microbiota has become a focal point

in oncology research, with remarkable progress has been made

revealing the functional roles and therapeutic potential of

microbiota in cancer progression (16). Clinically, human

papillomavirus vaccination has demonstrated remarkable success

in reducing gynecological cancers, such as cervical cancer (17).

Meanwhile, Helicobacter pylori screening and eradication programs

have shown efficacy in gastric cancer (GC) prevention (18). In

addition, intratumor microbiota have been implicated in

influencing both tumor initiation and metastatic processes (19).

These findings have spurred the development of innovative

treatment strategies targeting cancer-associated microorganisms,

including approaches that modulate microbial communities to

enhance therapeutic responses, which is an emerging paradigm

with significant clinical potential.

The therapeutic potential of microorganisms against solid

tumors was documented firstly over a century ago (20), yet

significant progress in this field remained limited until recently.

Advances in detection technologies, microbial cultivation methods,

and our growing understanding of the TME have now provided

compelling evidence of microbial influences on host metabolism

and cancer biology, revitalizing research in this area (16). In

addition to their individual roles in physiological and pathological
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processes, the interaction between microbiota and the metabolic

reprogramming has emerged as a critical factor in tumorigenesis

and therapeutic response (21, 22). For instance, Akkermansia

muciniphila promotes lung cancer progression by modulating

glycolytic, glutaminolytic, and nucleotide metabolism to shape the

TME (23). Conversely, certain commensals like Bifidobacterium

pseudolongum, Lactobacillus johnsonii, and Olsenella species

enhance anti-tumor immunity through inosine-mediated T cell

activation (24). Further studies on the crosstalk between

metabolic reprogramming and the microorganisms are needed to

better examine the correlations between them, and the potential

mechanisms by which they influence cancer progression. Therefore,

a systematic treatment strategy is urgently needed to effectively

identify the current cancer phase and the crosstalk between

metabolic reprogramming and the microorganisms, then provide

appropriate and effective interventions to discusses their potential

for cl inical translation to provide new insights into

cancer treatment.

In this review, we systematically examine the critical roles of

metabolic reprogramming and microorganisms in cancer

progression, highlighting their distinct contributions to tumor

development. We further analyze how specific bacteria regulate

metabolic pathways to influence tumor behavior, as well as how

metabolic reprogramming may drive microbiota-mediated

carcinogenesis. Our discussion underscores the central role of

metabolic reprogramming in mediating the dynamic interplay

between microbiota and human tumors. Moreover, we

summarized the crosstalk between them and proposed a

therapeutic concept based on the theory. That is a set of clinical

therapeutic interventions tailored for different cancer stages by

targeting the metabolic reprogramming/microbiota axis. In

addition, multiple drugs were summarized, and clinical trials or

animal experiments were evaluated to assess the therapeutic

potential of targeting the metabolic reprogramming/microbiota

axis as anticancer strategies.
Overview of metabolic
reprogramming and microbiota

Metabolic reprogramming and cancer

Metabolic reprogramming plays a critical role in the

maintenance of increased nutrient demands while producing

oncometabolites and coping with the demanding the TME

(Figure 1). Metabolic reprogramming has expanded to cover

almost entirely metabolic progressions, including in the

metabolism of glucose, fatty acid, and amino acid. This process

involves a variety of mechanisms, including regulation of gene

expression, the activity of metabolic enzymes, metabolite

accumulation and activating signaling pathways (25). In general,

there are three main mechanisms in which changes occur: first, the

transcriptional level including the activation of transcription factors

and the regulation of metabolic pathways by epigenetic

modifications (26, 27); second, regulation of metabolic enzyme
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1582166
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1582166
activit ies by post-translational modifications, such as

phosphorylation and ubiquitination (28, 29); third, changes of

metabolites in the TME may also lead to inhibition or activation

specific signaling pathways resulting in metabolic reprogramming

(30). A large number of studies have found that metabolic

reprogramming is closely but complexly related to tumor
Frontiers in Immunology 03
development, metastasis and drug resistance (4, 25, 31). circRNA

circSLIT2 is highly expressed in pancreatic ductal adenocarcinoma

and promoted the aerobic glycolysis by targeting miR-510-5p/c-

Myc/LDHA axis, ultimately promoting proliferation of cancer cells

(32). In colorectal cancer, SIRT1, a hub of metabolic glucolipid

conversion, is upregulated and increases the level of deacetylated b-
FIGURE 1

Metabolic reprogramming in cancer. Cancer cells usually exhibit aberrant metabolism resulting from metabolic reprogramming. Metabolic
reprogramming is dependent on many factors, including oncogenes, tissue of origins, the TME, tumor progression stage and epigenetic changes.
Metabolic reprogramming plays a key role in the reprogramming of adaptation plasticity to various conditions, avoidance of immune response, and
resistance to radio and chemotherapy for cancer cells.
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catenin in response to oxidative stress (33). Sodium butyrate can

suppress glycolysis by downregulation the expression of HK2

through the c-myc signaling pathway, which results in the

suppression of proliferation of the hepatocellular carcinoma (34).

Inoue et al. found that pyruvate dehydrogenase (PDH) component

X expression is necessary for PDH activity and inhibition of its

activity is involved with glycolysis via conversion of pyruvate to

lactate, essential for the development of esophageal squamous cell

carcinoma (35). Lipids are important components of biological

membranes and the type and saturation of fatty acids in the

membrane affect its stability and function (8). The key enzyme

SCD1 reduces the fatty acid ratio and contributes to the protection

of ovarian cancer cells from ferroptosis (36). Lipids are also

involved in signal transduction. Prostaglandins (PGs) reduce

oxidative stress and prevent lipid peroxidation in tumor cells

(37). cPLA2 inhibition shows remarkable synergy restriction to

inhibit growth of mutant PIK3CA-bearing breast tumors through

influencing the secretion of arachidonic acid (AA) (30).

Furthermore, in luminal breast cancer, the mutant of PIK3CA

gene initiated the AA metabolic reprogramming through 5-LOX

(38). Nelson et al. reported that the USP25/HIF-1a axis is an

essential mechanism of metabolic reprogramming and survival in

pancreatic ductal adenocarcinoma (39). In addition, the enhanced

glycolysis and pentose phosphate pathway were associated with

increased HIF-1a expression in colorectal cancer (26). Metabolic

phenotypes vary among different types of tumor cells and different

stages of tumorigenesis and even in different parts of tumor tissue.

Faubert et al. reported that metabolic phenotypes develop as cancer

progresses from precancerous lesions to localized, clinically

apparent malignancies to metastatic cancer (4). Firstly, metabolic

reprogramming can provide malignancy cells with energy and

metabolites needed for growth and maintain the stability of the

microenvironment (40). Secondly, tumor cells can undergo
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metabolic reprogramming due to DNA damage, inactivation of

genes, and activation of the signaling pathway, thus promoting

cancer (41). The above molecules and their mechanisms of

regulating metabolic reprogramming are summarized in Table 1.
Microbiota and cancer

So far, many important discoveries about microbiota have been

reported (Figure 2). The microbial community may have an indirect

or direct carcinogenic function to regulate cancer initiation,

progression and response to therapies by regulation of oncogenic

pathways, or modulation of the immune system (42). Bacteria,

viruses and fungi are the main microorganisms that regulate

promoting mucosal inflammation and human immunity (43–45),

where most studies focused on the extra-tumoral microbiota and

intra-tumoral microbiota.

Abundant microbes (approximately 4×1013 microbial cells)

exist and colonize on and inside human (46). The most abundant

microorganisms are harbored in the mucosal organs of human

bodies, including in the intestinal tract, oral cavity, and skin (11,

16). The microbiota and the mucosal organs form a symbiotic,

holistic system together, and maintain the homeostasis as a

biological barrier. Interestingly, the mice which are bred and

housed in an environment devoid of microorganisms were

immune deficient and exhibited a flimsy gut barrier (47). Indeed,

studies have shown that pathogenic bacteria in mucosal organs are

associated with multiple cancers, such as head and neck cancer,

lung cancer, colorectal cancer, esophageal cancer, and pancreatic

cancer (48–51). The progression of skin cancer has been reported to

be related to bacteria through the TLR-5 signaling pathway (52).

Fusobacterium nucleatum might utilize the TLR4/Keap1/NRF2

signaling to promote colorectal cancer development and
TABLE 1 Representative molecules of metabolic targets.

Cancer type Targeting
molecules

Function Mechanism Reference

Pancreatic ductal
adenocarcinoma cancer

circSLIT2 Aerobic glycolysis Via the miR-510-5p/c-Myc/LDHA axis (32)

HIF-1a Glycolysis Ubiquitin proteasome pathway (39)

Colorectal carcinoma SIRT1 Glucolipid
metabolic conversion

By upregulating deacetylated b-catenin and translocating it from
the nucleus to the cytoplasm

(33)

HIF-1a Glucose metabolism Activating the ROS/PI3K/Akt and Wnt/b-catenin
signaling pathways

(26)

Hepatocellular cancer Hexokinase 2 Aerobic glycolysis Through the c-myc/hexokinase 2 pathway (34)

Esophageal squamous
cell cancer

PDHX Tricarboxylic acid cycle Inhibiting the proliferation of cancer stem cells (35)

Ovarian cancer stearoyl-
CoA desaturase

Monounsaturated fatty
acid synthesis

Ferroptosis (36)

Breast cancer cPLA2 Arachidonic
acid metabolism

Through the mTORC2-PKCz axis (30)

5-lipoxygenase Arachidonic
acid metabolism

Through the Akt/STAT3 signaling pathway (38)
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metastasis (53). The detection rate of Streptococcus and Clostridium

in gastric cancer are higher than those in normal tissue, whereas

Lactobacillus brevis is more enriched in normal controls (54). Shi

et al. reported that microbial richness is significantly decreased in

gastric cancer tissues compared with adjacent normal tissues, and

some microbes, such as Cupriavidus and Sphingomonas, are

enriched in cancer tissues, while Ochrobactrum are enriched in

normal tissues (55). In addition, the mycobiome also plays an

important role in tumorigenesis of pancreatic ductal

adenocarcinoma. The cancer tissues displayed an increase in

fungi of about 3,000-fold compared to normal pancreatic tissue,

and the Malassezia species were found to be associated with

oncogenesis (56). Researchers also found Porphyromonas

gingivalis, which is highly epidemically connected with pancreatic

cancer, promoted pancreatic cancer progression via elevating the

secretion of neutrophilic chemokines and neutrophil elastase (57).
Frontiers in Immunology 05
The tumor tissues once considered sterile before, however, with

the development of technology, researchers actually discovered a

variety of microorganisms are also found in tumors that do not arise

from mucosal sites (58, 59). Therefore, the concept of intra-tumoral

microbiota present in tumor tissues is proposed (60), and intra-

tumoral microorganisms have been found in at least 33 major cancer

types, such as breast cancer (61, 62). Certain bacteria in the breast

tissues are associated with cell dysplasia and carcinogenic effects. The

levels of Pseudomonas, Porphyromonas, and Proteus in breast cancer

tissues are significantly higher than those in normal tissue, while

Propionbacterium and Staphylococcus are less enriched than that in

the non-tumor tissue conversely (62). Enterotoxigenic Bacteroides

fragilis have been shown to be cancer-causing bacteria in breast

cancer, it activates the notch and beta-catenin axes and induces

growth and metastasis (63). Furthermore, Faecalibacterium

prausnitzii is less abundant in breast cancer patients, which could
FIGURE 2

Overview of the sources of the microbiota and mechanisms by which bacteria regulate tumor progression. There are three potential sources of
microbiota: microbiota originating from normal adjacent tissues, microbiota from mucosal organs through mucosal barriers, and microbiota which
are the result of hematogenous spread. Microbiota influence tumorigenesis and treatment through DNA damage, activating the signaling pathway,
influencing the anti-tumor immunity and metabolize drugs.
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suppress the growth of breast cancer cells through inhibition the

JAK2/STAT3 signaling pathway (64). Recent studies have revealed

that H. pylori‐NF‐kB activates the PIEZO1‐YAP1‐CTGF axis to

remodel the GC microenvironment by promoting CAF infiltration

(65). The detection rate of Aquificae and Planctomycetes in ovarian

carcinoma is higher than that in adjacent tissue, and the level of

Crenarchaeota is decreased (66). Researchers also found that the

development of ovarian carcinoma is related to Chlamydia,

Mycoplasma, Acinetobacter, and Brucella (67). A recent study

analyzed the composition of intra-tumoral microbiota in

pituitary neuroendocrine tumors. In this study, researchers

found that Fusobacteriaceae, Tissierellaceae, Aerococcaceae, and

Corynebacteriaceae may correlate with the pathogenesis and

development of the tumors (68). Nejman et al. reported that

microbiota (such as Fusobacteriaceae, Tissierellaceae, Aerococcaceae,

and Clostridiales) was detected in tumors that have no direct

connection with the external environment, such as glioblastoma

multiforme and bone cancer (58). The abovementioned bacteria

and other microbiota in a few cancers are all summarized to

understand their role cancer progression (Table 2).
Crosstalk between metabolic
reprogramming and microbiota in
cancer development

Specific microbiota intricately regulates tumor progression

through dynamic interactions with the metabolic pathways in the

host through three key mechanisms: regulation the metabolism of

cancer cells, nutrient competition with immune cells and reshaping

the TME, and immune-metabolic reprogramming (69–71)

(Figure 3). Commensal bacteria like Clostridium butyricum and

Bacteroides ferment dietary fiber to produce short-chain fatty acids

(SCFAs), where butyrate triggered superoxidative stress and

intracellular lipid accumulation, which enhanced ferroptosis

susceptibility in cancer cells (72, 73). Concurrently, species such

as Clostridium transform primary bile acids into tumor-promoting

secondary bile acids that activate the expression of urokinase-type

plasminogen activator receptor (uPAR) to drive ERK and AP-1

signaling in colon cancer cells (74). The TME is further shaped

through microbial nutrient metabolism, where tryptophan

metabolism by Lactobacillus activates the aryl hydrocarbon

receptor to enhanced T cell production of IL-17 (75), while

Bifidobacterium breve-derived indole-3-lactic acid (ILA)

ameliorates tumorigenesis by directing the differentiation of

macrophages (76). Microbiota also orchestrate immune-metabolic

crosstalk, with streptococcal pyrogenic exotoxin A (SPEA) of

Streptococcus promoting CD25+/Foxp3+ Treg expansion via PD-

L1 and kynurenine (77), whereas Lactobacillus gallinarum-derived

metabolites inhibit the function of Tregs through modulating

IDO1/Kyn/AhR axis (78). Epigenetic modifications, including

Lactobacillus plantarum and its metabolite enhancing H3K27ac

binding at the enhancer regions of IL-12a, further priming CD8+ T

cell immunity against tumor growth (79). These findings highlight
Frontiers in Immunology 06
the microbiome as a master regulator of tumor metabolism, offering

novel avenues for intercepting cancer progression through

microbial-metabolic reprogramming. The crosstalk between

metabolic reprogramming and microbiota varies substantially

across different types and stages of malignancy. Here, we

summarized the microbiota in a few cancers to understand the

role in cancer development (Figure 4).
Gastric cancer

The gastric microbiota and their metabolites are the major risk

factors for the development and progression of gastric cancer (GC).

Helicobacter pylori is the most predominant microorganism

detected in GC, and it has been associated with precancerous

lesions that can eventually promote the development of GC (80).

The specific mechanisms by which H. pylori mediate the

carcinogenesis and progression of GC are still unclear, and is

associated with multiple factors, including in inflammatory

responses, host genetic diversity, and environmental influences

(11). Recent studies have revealed that the reason for the

differences in metabolome profiles between GC tumor and non-

tumor tissues may due to the collective activities of H. pylori,

Lactobacillus, and other microorganisms (81). The metabolome

analysis demonstrated that H. pylori is negatively and positively

correlated with the majority of differential metabolites in the classes

of amino acids, carbohydrates, nucleosides, nucleotides, and

glycerophospholipids, respectively, suggesting that it might play a

key role in degradation and synthesis of the majority of differential

metabolites (82). Moreover, alterations in gut microbiota and

metabolism are potentially linked to chronic inflammation and

GC (83). In precancerous lesions of GC rat model, Lactobacillus and

Bifidobacterium increased significantly while Turicibacter and

Romboutsia reduced significantly, mechanically, the microbiota

and the metabolites are related to the lipid metabolism and PPAR

signaling pathway (84). Additionally, Wang et al. reported that

Lactobacillus could enhance the production of N-nitroso

compounds, thus, these enriched bacteria could participate in the

carcinogenesis (85). Yang et al. observed that Methylobacterium-

Methylorubrum was significantly increased in distal gastric cancer

tissues, positively correlated with cancer-promoting metabolites,

including in arginine biosynthesis, sphingolipid signaling pathway,

and glutamate metabolism (86). Meanwhile, Porphyromonas,

Catonella, Proteus, Oribacterium, and Moraxella were significantly

correlated with hormone metabolism in proximal gastric

cancer (86).
Colorectal cancer

Metabolic reprogramming are important components in the

crosstalk between the gut microbiota and the human body and play

key roles in the development of colorectal cancer (CRC) (87).

Mechanistically, microorganisms produce metabolites after the

uptake of certain nutrients, which include lipids, proteins,
frontiersin.org
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TABLE 2 Microbial heterogeneity in different tumors.

Cancer type Microorganisms Quantitative
dynamics

Tumor behavior Mechanism Reference

Colorectal cancer Fusobacterium nucleatum Increase Proliferation (51)

Bifidobacterium Increase Facilitate immunotherapy (49)

Fusobacterium Nucleatum Increase Invasion and migration Activating a Cytochrome
P450/Epoxyoctadecenoic Acid
Axis via TLR4/Keap1/
NRF2 Signaling

(53)

Gastric Cancer Peptostreptococcus, Streptococcus,
and Fusobacterium

Increase Enrichment in tumor tissues (54)

Lactococcus lactis and
Lactobacillus brevis

Decrease Enrichment in non-tumor tissues (54)

Helicobacter pylori Increase Carcinogenesis (54)

Cupriavidus and Sphingomonas Increase Enrichment in tumor tissues (55)

Helicobacter pylori Increase Progression and
peritoneal metastasis

By activating the PIEZO1-
YAP1-CTGF axis and
remodeling
the microenvironment

(65)

Ochrobactrum Decrease Enrichment in non-tumor tissues (55)

Pancreatic
ductal adenocarcinoma

Malassezia spp Increase Carcinogenesis Ligation of mannose-
binding lectin

(56)

Pancreatic cancer P. gingivalis Increase Promoted the
tumor progression

Shapes the immune system (57)

Breast cancer Pseudomonas, Porphyromonas,
and Proteus

Increase Carcinogenesis (62)

Propionbacterium
and Staphylococcus

Decrease Enrichment in non-tumor tissues (62)

Bacteroides fragilis Increase Tumor growth
and metastasis

Activating the Notch and b-
Catenin Axes

(63)

Faecalibacterium prausnitzii Decrease Aapoptosis Inhibit the secretion of IL-6
and the JAK2/
STAT3 pathway

(64)

Firmicutes and Bacteroidetes Decrease Enrichment in non-
tumor tissues

Metabolic reprogramming (64)

Verrucomicrobla, proteobacteria
and actinobacteria

Increase Enrichment in
tumor tissues

Metabolic reprogramming (64)

Ovarian cancer Aquificae and Planctomycetes Increase Enrichment in tumor tissues (66)

Crenarchaeota Decrease Enrichment in non-tumor tissues (66)

Chlamydia, Mycoplasma,
Acinetobacter, and Brucella

Increase Enrichment in tumor tissues (67)

Pituitary
neuroendocrine tumor

Fusobacteriaceae, Tissierellaceae,
Aerococcaceae,
and Corynebacteriaceae

Increase Carcinogenesis (68)

Glioblastoma Fusobacteriaceae, Tissierellaceae,
Aerococcaceae, and Clostridiales

Increase Carcinogenesis (58)

Bone cancer Fusobacteriaceae, Tissierellaceae,
Aerococcaceae, and Clostridiales

Increase Carcinogenesis (58)
F
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secondary bile products, biogenic amines, oligosaccharides,

glycolipids, organic acids, and amino acids, and then the

metabolites act as signaling elements and substrates in metabolic

reactions (88, 89). Metabolic reprogramming serves vary functions

in the progression of CRC, and further studies have shown that

metabolic reprogramming plays a dual role (90). Coker et al.

demonstrated that gut metabolites and their association with

amino acids metabolic pathways in the colorectum are altered in

the early the stages leading to CRC (91). Bile acid was recently been

demonstrated to be bio-transformed by the microbiota and play a

role in the microenvironment in Inflammatory bowel disease and

CRC (92). Clostridium Butyricum is one of the original gut

microbiota species found in human. C. butyricum can produce

SCFAs, which can directly activate G-coupled-receptors, inhibit

histone deacetylases, and serve as a protector in CRC (93). Li ert.al

verified that Streptococcus Thermophilus could secret b-
Galactosidase to activate oxidative phosphorylation and

downregulate the Hippo signaling pathway, which lead to the

suppressive effects of CRC cells (94). Fusobacterium nucleatum

enrichment and short-chain fatty acid depletion characterizes late-

onset CRC, while early-onset CRC tended to be associated with

increased tryptophan, bile acid and choline metabolism

and enriched Flavonifractor plauti (95). Furthermore, high-fat

diet drives CRC through modulating microbiota and

metabolites (96). Yang et al. reported that the increased bacteria

of Alistipessp.Marseille-P5997 and Alistipessp.5CPEGH6, and

depleted probiotic Parabacteroides distasonis, along with elevated

lysophosphatidic acid in CRC mice model (97). In addition, the
Frontiers in Immunology 08
smoke-induced gut microbiota dysbiosis, including the enrichment

of Eggerthella lenta and depletion of Parabacteroides distasonis and

Lactobacillus spp, increased the bile acid metabolism and impaired

gut barrier function, through activating the MAPK/ERK signaling

pathway in CRC cells (98).
Breast cancer

Breast cancer (BC) is the most widespread malignant cancer

among women worldwide and presents significant challenges to

female health (99). The microorganisms exert a profound impact on

the host and has emerged as a pivotal frontier in the BC

pathogenesis (100). In recent years, a growing number of scholars

have reported that BC tissues have a great diversity and abundance

of microorganisms (58). Hieken et al. discovered that the differences

of Lactobacillus between the breast tissue in benign and malignancy,

which are associated with metabolic pathway involving cysteine and

methionine metabolism, glycosyltransferases, fatty acid

biosynthesis (101). Xuan et al. demonstrated that genus

Cytophagaceae, Conexibacteraceae, and Flavobacteriaceae possibly

modulate the BC immune microenvironment and elicit an

antitumor response through lipid pathways (102). Another study

revealed that metabolite of Clostridiales, trimethylamine N-oxide,

induced pyroptosis by activating the endoplasmic reticulum stress

kinase PERK in triple-negative BC (103). Heath et al. reported that

gut microbiota-derived metabolites alter estrogen receptor activity

and endocrine therapy responsiveness in ER+ BC, and targeting
FIGURE 3

Crosstalk between metabolism pathway and microbiota in cancer. The crosstalk between metabolism pathway and microbiota regulates multiple
physiological and pathological responses, including cancer progression and reshaping the TME.
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metabolic pathways through diet or drugs could be useful to

improve endocrine therapy efficacy in the clinic (104).

Interestingly, women with malignant breast carcinoma are found

to exhibit enriched level of Citrobacter in their gut, which is

associated with elevated glycan and lipopolysaccharide

biosynthesis, in comparison to the group with benign tumors

(105). One of the pivotal independent risk factor for breast

tumorigenesis is hormonal deregulation, and multiple studies

have shown a direct role of gut microbiota in hormonal

deregulation through influence the expression of b-glucuronidase
(100). Furthermore, indicated the relationship between

microorganisms and metabolism, and found their potential roles

in the prognosis value, indicating that patients with both high
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Campylobacter abundance and inositol phosphate metabolic

activity had the worst survival probability (106).
Lung cancer

The lung is another organ with an abundant microbiome, which

leads to the exposure of lung cancer to numerous microorganisms

(107). It is certain that the composition of lung microbiota is altered

in lung cancers, which promoted tumor growth and metastatic

progression (16). Smoking is the most important environmental

risk factor associated with lung cancer (108). A recent study

analyzed the correlation of microbes and smoking‐related
FIGURE 4

Crosstalk between metabolic reprogramming and microbiota in different tumors. The crosstalk between metabolic reprogramming and microbiota
regulates cancer progression. metabolic reprogramming can play a role in microbiota-mediated tumorigenesis, metastasis and drug resistance in
different cancers.
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metabolic pathways (109). In this study, researchers found that

Acidovorax is enriched in smokers. Additionally, Ma et al. found

that Roseburia-derived butyrate promotes lung cancer metastasis by

increasing expression of H19 in tumor cells through inhibiting

HDAC2 and increasing H3K27 acetylation at the H19 promoter

and inducing M2 macrophage polarization (110). Notably, deep

microbiome sequencing and targeted bacterial culture confirmed

that the tumor-resident Lactobacillus in the TME in lung cancers

can alter tumor metabolism and lactate signaling pathways (111). A

retrospective study showed that the characteristics of the

microbiome and metabolite presented significantly differences

between lung cancer patients and benign pulmonary nodules

patients (112). The abundance of Subdoligranulum and

Romboutsia increased in lung cancer patients, combined with the

enrichment in beta-Alanine metabolism, styrene degradation and

pyrimidine metabolism pathway. Liu et al. found that the

microbiome of lung cancer patients, such as Enterobacteriaceae

and Streptococcus, had increased expression of gene modules

involved in metabolism and amino acid metabolism (113).

Microorganisms have been shown to participate in the

metabolism of bile acids and proteins and to help form aromatic

amines and sulfides, subsequently promoting lung cancer

progression (114). Moreover, microbial metabolites were shown

to be significantly altered in lung cancer (115). Recently, Wang and

colleagues reported evidence that Bacteroides, Faecalibacterium,

and Prevotella may participate in regulating metabolism-related

pathways, such as the pentose phosphate pathway and glutathione

metabolism, in lung adenocarcinoma (116).
Pancreatic cancer

The incidence of and number of deaths caused by pancreatic

cancer have been gradually rising, and it is a leading cause of cancer

death worldwide (117). The role of microbiota and metabolic

reprogramming in pancreatic cancers have been proven in several

studies. Tintelnot et al. reported that the tryptophan metabolite, 3-

IAA, derived from microbiota as a key amplifier of the response to

chemotherapy in pancreatic ductal adenocarcinoma (PDAC) (118).

Furthermore, a recent study showed that Lactobacillus participate in

the process that tryptophan-derived metabolites activate the aryl

hydrocarbon receptor in tumor-associated macrophages to

suppress immunotherapy (119). Alam et al. discover that

intratumor mycobiome, such as Malassezia and Alternaria,

activates the secretion of IL-33, which can induce metabolic

reprogramming and accelerate the development of PDAC (45).

High-fat diet has been confirmed as one of a risk factor for the

development of pancreatic cancer (120). The disturbance of lipid

metabolism could induce changes the intestinal environment and

further leading to the dysbiosis of internal microflora in mice model

of pancreatic cancer (121). Ruze and colleagues reported that the

main mechanisms involved in the pancreatic carcinogenesis include

microbiome dysfunction further compromise immunometabolic

regulation while also aggravating mutagenic and carcinogenic

metabolic disorders by affecting multiple pathways (122).
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In addition to the cancers reported above, multiple studies have

also shown the crosstalk between microbiota and metabolic

reprogramming in other tumors. A clinical study showed that the

existence of microorganisms in the tumor tissue of head and neck

squamous cell carcinoma (HNSCC) patients (123). Sun et al.

reported that F. nucleatum affects the tumor immune

microenvironment via modulating via GLUT1-driven glycolysis

and extracellular lactate deposition (124). This is consistent with

a study by Colbert et al. showed that lactic acid bacteria in the TME

can alter tumor metabolism and lactate signaling pathways,

affecting chemoradiation response in patients with cervical cancer

(111). Yost et al. showed that the microorganisms of OSCC patients

are associated with the increased activities of iron ion transport-

related enzymes, tryptophanase, glutamate dehydrogenase, starch

synthase, and superoxide dismutase (125). Additionally, recent

studies have demonstrated that microbiota, which drastically alter

the metabolome of cervical cancer, is involved in HPV persistence,

progression of cervical neoplasia, and genital inflammation (126).

Ilhan and colleagues showed that cervicovaginal metabolic profiles,

charactered by amino acid and nucleotide metabolisms, were driven

by genital inflammation, HPV infection, and vaginal microbiota,

including Sneathia, Streptococcus, Prevotella, and Gardnerella (127).

16S rRNA gene sequencing and untargeted metabolomics revealed

that Prevotella is involved in the synthesis of fatty acyl, carboxylic

acids and derivatives, benzenes and substituted derivatives, organic

oxygenates, and indoles and derivatives as metabolites.

Fusicatenibacter and Lachnospira are involved in the degradation

of indoles and derivatives. Alistipes, Agathobacter, and

Parabacteroides are involved in the synthesis of indoles in

esophageal squamous cell carcinoma (ESCC) (128). Further

analysis revealed that Prevotella, Alistipes, Agathobacter, and

Parabacteroides might regulate the synthesis of indoles and

promote ESCC. Cheung et al. observed that an enrichment of

carcinogenic bacteria, such as Butyricimonas, Veillonella, and

Streptococcus, and a depletion of Butyricicoccus of ESCC patients

(129). Recently, Lau et al. reported that L. acidophilus exhibits anti-

tumorigenic effect in mice by secreting valeric acid, and probiotic

supplementation is a potential prophylactic of hepatocellular

carcinoma (130). The relationships between metabolic

reprogramming and microorganisms of cancers have not been

thoroughly studied.
Targeting metabolism/microbiota as
an emerging therapy in cancer

Since metabolism plays an important role in the development of

human malignancy, it may promote tumor formation, or inhibit

tumor cell growth. Alternatively, the abovementioned

microorganisms may cause cancer through certain mechanisms.

In recent years, breakthrough results have been obtained in clinical

trials assessing the relationship between metabolic reprogramming

and microorganisms in cancer. In the following section, we
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summarized the drugs, as well as the corresponding clinical trials,

that target metabolic reprogramming or microbiota and exert

anticancer effects and their mechanisms. More importantly, we

emphasized the critical role of metabolism reprogramming in

mediating microbial communities and cancer. A variety of

bacteria regulate tumor development, metastasis and treatment-

resistant through metabolic reprogramming. Therefore, the

simultaneous use of drugs targeting metabolism and

microorganisms may play a synergistic anticancer role. However,

few such studies have been performed, and more clinical trials are

urgently needed to better understand the therapeutic potential of

drugs targeting the metabolic reprogramming/microbiota axis,

which could help to develop new drugs to prevent or treat

human cancer.
Targeting metabolism for cancer
treatment

Metabolic reprogramming is not only a biological hallmark of

cancer but also reveals treatment vulnerabilities. The vulnerability

caused by metabolism rewiring may present therapeutic

opportunities as malignancy cells become more and more

dependent on specific metabolic pathways. Farber and Diamond

reported that the anti-folate drug, aminopterin, could induce

remission in pediatric acute lymphocytic leukemia as early as

1948, and has been used as an anti-tumor therapy for many years

(131). Xiao Y. indicated that the metabolic targets for cancer

treatment could be categorized into three groups: (i) targeting the

metabolic vulnerability of tumor cells, (ii) targeting metabolism of

the TME, and (iii) regulating body metabolism (132). Considering

the active nucleotide synthesis and high proliferation rate of cancer

cells, disrupting nucleotide metabolism is considered a promising

anti-tumor therapeutic strategy (133). Except the aminopterin,

many purine and pyrimidine analogs have been widely used in

the clinic, including in 5-fluorouracil, 6-mercaptopurine,

gemcitabine, capecitabine, and fludarabine (132, 134, 135). Jin

et al. reported that the treatment of leflunomide, a drug that

inhibits dihydroorotate dehydrogenase, prevented lung metastasis

in the mouse lung cancer metastasis model (136). Studies have

shown that inhibitors of dihydroorotate dehydrogenase can exhibit

antitumor effects in a variety of preclinical models, such as glioma

(137, 138) and lymphoma (139). Furthermore, studies have shown

that some promising metabolic targets in energy metabolism for

cancer treatment, including in glycolysis, fatty acid metabolism,

glutamine metabolism, the tricarboxylic acid (TCA) cycle, and

oxidative phosphorylation (OXPHOS) (140, 141). Tran et al.

reported that a-Ketoglutarate promote stemness and leads to

CRC formation through Wnt signaling pathway (142). Inhibitors

targeting glucose transporters (GLUT), hexokinase, lactate

dehydrogenase, and lactate-proton symporters have shown

promise in impairing tumor growth (132). Additionally, enzymes

involved in fatty acid oxidation (FAO) and fatty acid synthesis and
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desaturation are being actively studied (143). Inhibitors of

glutamine transporters and glutaminases have also been

investigated (144). Han et al. demonstrated that activation of

polyamine catabolism promotes glutamine metabolism and

creates a targetable vulnerability in lung cancer cells (145). A

phase I clinical trial and pharmacodynamic study of complex I

inhibitor of oxidative phosphorylation in advanced solid tumors

and acute myeloid leukemia patients showed that strategies

targeting the TCA cycle and OXPHOS, such as inhibitors

targeting electron transport chain (ETC) complexes, have

displayed antitumor effects (146). Metformin, a drug known to

inhibit ETC complex I, has been extensively studied in clinical trials

for cancer treatment (147). Moreover, except for tumor cells,

immune cells also have metabolic reprogramming during tumor

progression to facilitate the escape of tumor cells from immune

surveillance (148, 149). Myeloid cells play a pivotal role in tumor

biology, and they play key roles on tumor growth and antitumor

immune responses (150). Geiger et al. reported that L-arginine

concentrations directly impact the metabolic fitness and survival

capacity of T cells, which are crucial for anti-tumor responses (151).

In addition, the metabolic reprogramming also could happen in the

stromal cells, such as cancer-associated fibroblasts (CAFs). CAFs

require proline synthesis by PYCR1 for the deposition of pro-

tumorigenic extracellular matrix (152). Beyond metabolic

reprogramming at the tumor site, the metabolism of the whole

body also presents as a potential therapeutic target. Physical

exercise and dietary interventions are the two most important

and easily controlled factor that can reduce cancer progression

(153, 154). For instance, cPLA2 inhibition shows remarkable

synergy with dietary fat restriction to restore tumoral immune

cell infiltration and inhibit growth of mutant PIK3CA-bearing

breast tumors (30).
Targeting microorganisms for cancer
treatment

Traditionally, some specific microorganisms may act as direct

factors responsible for the development of cancer (61). However,

the survival benefits of tumor bacteria on tumor cells are most

prominent during metastasis rather than primary tumor growth in

recent studies (155). Antibiotics have been used clinically to

eradicate microorganisms to prevent cancer as much as possible

and to assist in the treatment of cancer. For instance, the eradication

of H. pylori may inhibit the occurrence of gastric cancer (156).

Additionally, a retrospective investigation found that antibiotic

therapy improves the survival of pancreatic adenocarcinoma

patients (157). Recent studies demonstrated that reduction of

Staphylococcus in the mammary tumor microbiota induces

antitumor immunity and decreases breast cancer aggressiveness

in mice models (158). Another mouse study indicated that a direct

influence of long-term ampicillin exposure can alter the lung

microbiota of rats (159). In addition, the treatment of mice
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bearing a colon cancer xenograft with the antibiotic metronidazole

reduced Fusobacterium load, cancer cell proliferation, and overall

tumor growth (160). Furthermore, some studies indicated that the

use of antibiotics can disturb the balance of the gut microbiome,

which further might ultimately lead to an unpredictable array of

consequences (161). A study indicated that wide-spectrum

antibiotics treatment prior to CD19-targeted chimeric antigen

receptor T-cell immunotherapy (CAR-T) is associated with

adverse outcomes for B cell lymphoma patients (162). In addition

to antibiotics treatment, using microorganisms to active anti-tumor

immune response and using bacteria as carriers that can release

drugs are the main frontier in the treatment of malignancy (16).

One example is the use of the BCG vaccine, which is one of the most

successful immunotherapies in oncology to date (163). Treatment

with BCG is effective for many cancers in clinical therapies,

especially bladder cancer (164, 165). Routy et al. demonstrated

that fecal microbiota transplant and sufficient dietary fiber intake

could improve immunotherapy response rates, and was associated

with improved progression-free survival of melanoma patients

(166). Besides, some microbiota such as Listeria and Salmonella

typhimurium are used as delivery platforms for drug targeting (167–

169). Furthermore, Wu and the colleagues constructed a bacteria-

inspired microbots for the treatment of metastatic triple negative

breast cancer (170). Recently, a group of researchers developed an

engineered probiotic Escherichia coli that improved the anti‐tumor

effect (171). We summarized representative clinical trials that

focused on metabolism and microbiota (Table 3). Together,

therapies based on microorganisms have attracted a lot of attention.
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Antitumor effects of microorganisms
combined with metabolic targets

At present, there are few antitumor studies evaluating the effect

of combined therapy with antibiotics and metabolic targets, and

most current studies are based on gut microbes. It remains

unknown whether changing the gut microbes will affect the

characteristics of the host metabolism and the progression of

cancer; these aspects need to be explored. Gut microbiota‐derived

metabolites are key hubs connecting the gut microbiome and cancer

progression (172). The study by Canale et al. can provide a way

forward (171). Increase intra-tumoral L-arginine levels is a key

determinant of an efficient anti-tumor T cell response (173). Canale

et al. reported that they used the synthetic biology approach to

develop an engineered probiotic Escherichia coli Nissle 1917 strain

that colonizes tumors and continuously converts ammonia to L-

arginine. There is a growing recognition that using live engineered

bacteria for metabolic modulation is a new strategy for cancer

immunotherapy (174). Moreover, He et al. reported that mice

infused back with butyric acid or supplemented with intestinal

flora were also able to promote CD8+ T-cell infiltration and

func t ion in tumors and rescue the e fficacy o f the

chemotherapeutic agent oxaliplatin (175). Moreover, a recent

study showed that Pien Tze Huang suppresses colorectal

tumorigenesis through restoring gut microbiota and metabolites

(176). Traditional medicine regulated the crosstalk between

microbiota and metabolites, which provided novel ideas for

clinical treatment of cancer. Some scholars attempted to use
TABLE 3 Representative clinical trials targeting metabolism and microbiota.

Cancer type Arms and interventions Outcome measures Trial ID

Colorectal cancer Dietary intervention Changes in inflammatory markers and microbial metabolites. NCT06603519

Colorectal cancer Dietary intervention Bile acid metabolism and gut microbiome. NCT04753359

Prostate cancer Observation Metabolic characteristics in the prostate tissue in men with different gut
microbiota signatures.

NCT06116851

Melanoma, lung cancer, or
breast cancer

MetfOrmin Glucocorticoid-induced diabetes and other metabolic perturbations on gut
microbiota populations.

NCT04001725

Head and Neck Squamous
Cell Carcinoma

Observation Trp pathway and oral dysbiosis in human HNSCC cases. NCT05837221

Colorectal cancer PD-1 inhibitors Effect of gut microbiota and its metabolites on the efficacy of immunotherapy
in metastatic colorectal cancer.

NCT06714903

Oesophageal cancer Observation Profiling microbiome associated metabolic pathways. NCT06302660

Colorectal adenocarcinoma Antibiotic administration or
probiotic oral intake

Overall survival. NCT03843905

Skin cancer Immunotherapy The relationship between microbes and metabolism during skin
cancer immunotherapy.

NCT03370861

Non-small cell lung carcinoma Immune checkpoints inhibitors Link metabolic signature with microbiota composition and immune profile. NCT04189679

Gastric cancer Observation Explore the differences in microbial and metabolic characteristics for early
screening of gastric cancer.

NCT05812287

Colorectal cancer and
pancreaticobiliary cancer

Observation Analysis for microbiota and metabolism on gastrointestinal neoplasms. NCT04363983
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dietary improvement (177, 178), utilizing phages to eliminate

certain microorganisms which secret metabolites (179), fecal

microbiota transplantation (180), and so on for cancer treatment

by modulating the crosstalk between microbiota and

metabolic reprogramming (Figure 5). Understanding the complex

relationship between microbes and metabolic reprogramming could

provide valuable insights into potential cancer treatment options.
Concluding remarks

Metabolic reprogramming plays a critical role in the

maintenance of increased nutrient demands for cancer cells.
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Metabolic reprogramming is a hallmark of cancer and often

observed in human malignancy. Therefore, it is speculated that

certain metabolism can play a regulatory role, as it can promote

tumor growth or inhibit tumor cells by providing metabolic energy

or activating certain intracellular signaling pathways. The complex

community of microorganisms found in the human body has the

potential to regulate tumor progression and the treatment response

of multiple types of cancer. More importantly, bacteria have been

globally proven to be involved in the progression of cancer via

metabolic regulation, suggesting a complex interaction between

metabolic reprogramming and microbiota. Despite significant

progress, studies on microbiota and metabolic reprogramming

face several critical limitations. Firstly, while high-throughput

sequencing (16S rRNA or metagenomics) reveals associations
FIGURE 5

Treatment strategies and prospect of clinical application based on the crosstalk between metabolic reprogramming and microbiota. Metabolic
reactions imply three components: substrates, enzymes, and products. The regulation and alteration of each component will affect the metabolic
process and have an impact on cancer treatment. Potential strategies enhance the efficiency of anti‐tumor therapies including in researching better
bacterial carries, normalizing microbiota in tumor patients, and bacterial therapies combined with other anti‐tumor therapies.
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between microbial composition and metabolic phenotypes, it

cannot prove direct mechanistic links. Mice models often fail to

fully recapitulate human host-microbe interactions due to

interspecies differences and individual variability. Secondly, the

factors like age, diet, geography, and genetics lead to substantial

baseline variations, making it difficult to define a “healthy”

microbiome. Additionally, microbial communities are highly

dynamic and sensitive to short-term perturbations (such as

antibiotic use or dietary changes), requiring complex longitudinal

study designs. Thirdly, a single bacterial species may influence the

host through multiple metabolites, and host-microbe co-

metabolism is challenging to replicate in vitro. Additionally, the

current technology cannot distinguish live/dead bacteria and lacks

sensitivity for low-abundance taxa. Finally, clinical translation faces

barriers, with current interventions showing inconsistent efficacy

and safety risks that need to be carefully evaluated. Thus, prolonged

efforts will be required to solve the problems to create the best

therapeutic protocols that can bring a new hope for patients

with cancer.

This review explains how microbiota regulate the development

of malignancy by the metabolism and summarizes the influence of

various bacteria-related metabolic reprogramming mechanisms on

the biological behavior of cancer. Considering that both metabolic

reprogramming and microbiota play a key role in tumor

progression and that crosstalk between them has been discovered

recently, targeting metabolism and/or microbiota with drugs may

be beneficial for controlling tumor development. We believe that

the unique metabolic pathways related to the certain microbiota;

identifying the crosstalk between them and exploring their

mechanisms will advance the field of cancer research.
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