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METTL1-driven nucleotide
metabolism reprograms the
immune microenvironment in
hepatocellular carcinoma: a
multi-omics approach for
prognostic biomarker discovery
Xie Weng1, Yangyue Huang2, Zhuoya Fu2, Xingli Liu1, Fuli Xie1,
Jiale Wang1, Qiaohua Zhu1* and Dayong Zheng1,2*

1Department of Oncology, Shunde Hospital, Southern Medical University, The First People’s Hospital
of Shunde, Foshan, China, 2Hepatic Department, Integrated Hospital of Traditional Chinese Medicine,
Southern Medical University, Guangzhou, China
Background:Hepatocellular carcinoma (HCC) remains one of the leading causes

of cancer-related mortality worldwide, partly due to an incomplete

understanding of the metabolic and immune dysregulation driving its

progression. Here, we uncover a novel role of METTL1 in driving nucleotide

metabolism reprogramming, which significantly modulates the tumor

immune microenvironment.

Methods: Utilizing an integrated multi-omics approach, we analyzed nucleotide

metabolism-related genes derived from TCGA, GEO, and ICGC datasets. Non-

negative matrix factorization (NMF) clustering stratified HCC patients into distinct

subgroups with varied clinical features. Weighted Gene Co-expression Network

Analysis (WGCNA) identified hub genes that were subsequently used to construct

robust prognostic models via multiple machine learning algorithms. These

computational findings were validated through in vitro experiments, immune

infiltration assessments, and single-cell RNA sequencing analysis.

Results:Our analyses demonstrate that METTL1 is markedly upregulated in HCC,

driving a reprogramming of nucleotide metabolism that modulates the

expression of key immune checkpoints, including PD-L1 and CTLA-4. This

regulation is associated with an immunosuppressive tumor microenvironment,

reduced infiltration of activated T cells, and poorer clinical outcomes. Moreover,

the prognostic model integrating METTL1 expression and immune checkpoint

profiles shows strong predictive performance across independent cohorts,

highlighting its potential clinical utility.
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Conclusion: This study highlights the innovative role of METTL1-driven

nucleotide metabolism reprogramming in reshaping the immune

microenvironment of HCC. The findings provide novel insights into HCC

pathogenesis and pave the way for developing personalized therapeutic

strategies based on targeting METTL1 and its associated metabolic pathways.
KEYWORDS

pancreatic hepatocellular carcinoma, nucleotide metabolism, non-negative matrix
factorization clustering, immune cell correlation, METTL1
1 Introduction
Liver cancer is the second leading cause of cancer-related

mortality worldwide, with hepatocellular carcinoma (HCC)

accounting for approximately 90% of cases (1). In 2020, nearly

900,000 new HCC cases were reported globally, highlighting its

significant public health burden (2). China alone will have 410,000

new cases in 2020, accounting for 45.3% of new cases worldwide (3,

4), and is expected to cause more than 1.3 million deaths per year by

2040 (5). Common risk factors for HCC include viral infections

such as hepatitis B and C, as well as chronic liver diseases (CLD)

such as fatty liver, cirrhosis, alcoholic liver disease, and even

metabolic diseases including diabetes, haemochromatosis,

autoimmune hepatitis, and toxin exposure (1). Chronic hepatitis

and cirrhosis from any other cause are the strongest risk factors for

HCC, and despite advances in antiviral therapies for HBV and

HCV-associated cirrhosis, the incidence of HCC continues to rise

due to chronic alcohol consumption, dietary habits, and sedentary

lifestyle factors (6). For HCC, tumor stage is an important

prognostic factor, but less than 20% of HCC patients can be

diagnosed at an early stage due to predictive power and other

reasons (7), according to the Bridge to Better Outcomes in HCC

(BRIDGE) study, 64% of advanced HCC cases in China are no

longer eligible for radical treatment (8). The 5-year survival rate for

local HCC was 32.6% and only 2.4% for metastatic HCC (9). For

early HCC, tumor resection, local percutaneous ablation such as

radiofrequency ablation, and liver transplantation are often used

(10), however, the risk of recurrence is very high, with a 5-year

recurrence rate of 40-70%, and there is no clear way to reduce the

risk of disease recurrence (11); For advanced HCC, systemic

therapy with sorafenib has been limited over the past decade (10).

At present, the treatment of advanced HCC has been upgraded, and

immune checkpoint inhibitor (ICI) has become a main treatment

method in order to treat advanced HCC, and a large number of

clinical studies still regard ICI as a part of the new combination

therapy regimen for further research (6). However, considering the

low sensitivity and drug resistance of ICI (12), we still need to

continue to explore more reliable biomarkers and find key target

genes, so as to improve the efficiency of immunotherapy and
02
accuracy of prognosis prediction of HCC, and reduce its

recurrence rate.

Nucleotides are the main components of cellular genetic

material and exert a decisive influence on the synthesis of DNA

and RNA, cell signaling, enzyme regulation and metabolism (13).

Although numerous studies have documented metabolic

reprogramming in HCC, the direct link between nucleotide

metabolism and immune evasion remains poorly understood. In

particular, most existing research has not clarified how alterations

in nucleotide synthesis and degradation contribute to the

modulation of immune checkpoints and the suppression of anti-

tumor immunity. Notably, the role of METTL1—a key regulator of

m7G tRNA methylation—in this context is largely unexplored. In

this study, we aim to fill this critical gap by investigating how

METTL1-driven reprogramming of nucleotide metabolism

influences immune checkpoint expression and promotes an

immunosuppressive microenvironment in HCC. The synthesis

and excessive use of nucleotide triphosphate and its deoxidation

products have been shown by a very large number of experiments to

be common characteristics of cancer cells, which may play a strong

role in promoting various malignant manifestations of cancer cells,

such as uncontrolled proliferation, immune escape, and drug

resistance, which means that the process of nucleotide

metabolism may become a good entry point for tumor treatment.

In addition, recent studies have shown that abnormal nucleotide

metabolism may also alter the immune response of the tumor

microenvironment (TME), further promoting the immune escape

and drug resistance of the tumor (14). There are two synthesis

pathways of purine and pyrimidine nucleotides: de novo synthesis

and remedial synthesis. Many oncogenes have been shown to play a

role in the synthesis process, such as KRAS, PI3K, MYC and other

gene mutations can improve the activity of key enzymes in de novo

pathway and promote the expression of key enzymes (15). In the

process of nucleotide degradation, the inactivation or silencing of

SAM domain and HD domain-containing 1 (SAMDH1) will

prevent the degradation of nucleotides, thereby increasing the

nucleotide content in the body (15), the occurrence and

development of HCC, breast cancer, and gastric cancer can be led

to by the downregulation of xanthine dehydrogenase (XDH) (16),

and dihydropyrimidine dehydrogenase (DPYP), as a rate-limiting
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enzyme of pyrimidine degradation, plays a crucial role in the

epithelial-mesenchymal transformation (EMT) of tumor cells and

cancer progression (17). However, in the process of developing

antitumor drugs related to inhibition of nucleotide synthesis,

researchers often use analogues of nucleotide metabolites to

inhibit cellular nucleotide metabolism, but this lacks specificity

for cancer cells, and may inhibit normal cell metabolic processes

and cause adverse reactions (13), although the research on

nucleotide metabolism-related drugs for the treatment of HCC

has been gradually carried out, we still need to further explore

them, and find new targets for the diagnosis, treatment and

prognosis of HCC.

In this study, we hypothesize that METTL1 plays a pivotal role

in reprogramming nucleotide metabolism and modulating the

tumor immune microenvironment in HCC. Accordingly, our

objectives were to (1) evaluate the expression and prognostic

significance of METTL1 in HCC (2), elucidate its impact on key

metabolic pathways and immune checkpoint regulation, and (3)

develop a robust prognostic model integrating multi-omics data

and advanced machine learning approaches. By addressing these

questions, our study aims to uncover the mechanisms underlying

METTL1-mediated immune evasion and provide a foundation for

the development of targeted therapeutic strategies in HCC.
2 Materials and methods

2.1 Gathering and preparation of data for
analysis

To obtain bulk RNA-sequencing (Bulk RNA-seq) data from

HCC patients, we downloaded the TCGA-LIHC dataset from The

Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov) using

the “TCGAbiolinks” R package. In addition, we retrieved the

GSE14520 and GSE76427 datasets from the Gene Expression

Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) using the

“GEOquery” R package. Furthermore, we obtained the ICGC-JP

dataset from the International Cancer Genome Consortium (ICGC,

https://dcc.icgc.org/) and incorporated single-cell RNA-sequencing

(scRNA-seq) data from Liu et al. (Journal of Hepatology, DOI:

10.1016/j.j.Hep 2023.01.011) to enrich our study. Moreover, we

downloaded metabolism-related gene sets—including those for

nucleotide metabolism, amino acid metabolism, glycolysis, and

lipid metabolism—from The Molecular Signatures Database

(MsigDB, https://www.gsea-msigdb.org/gsea/) using the

“msigdbr” R package. For all RNA-seq datasets obtained from

TCGA, GEO, and ICGC, rigorous quality control (QC)

procedures were applied prior to downstream analysis. Raw count

data were initially processed to remove low-quality reads and

samples with excessive missing values. To ensure comparability

among datasets generated from different platforms and centers,
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batch effects were corrected using the ComBat function

implemented in the sva R package. This method adjusts for

technical variations while preserving the underlying biological

signal. Furthermore, normalization was performed using the

TMM (trimmed mean of M-values) method from the edgeR

package to standardize library sizes across samples. These

combined QC and batch-effect correction steps were essential for

const ruct ing an integra ted and re l iab le datase t for

subsequent analyses.
2.2 Molecular typing and correlation
analysis

Based on nucleotide metabolism genes, we used Non-negative

Matrix Factorization (NMF) algorithm to perform dimensionality

reduction clustering on TCGA-LIHC. And generate line charts of

cophenetic, dispersion, evar, residuals, residual sum of squares

(RSS), silhouses, sparseness as the rank value changes from 2 to

10. The above line chart is comprehensively analyzed to determine

the selection of the best rank value. To determine the optimal

number of clusters (k) in our NMF analysis, we evaluated multiple

quantitative metrics across k values ranging from 2 to 10. In

particular, we assessed the cophenetic correlation coefficient,

dispersion, residual sum of squares (RSS), and silhouette values.

We observed that at k=2, the cophenetic correlation reached a local

maximum, and the consensus matrix exhibited clear, well-defined

block-diagonal structures, indicating high cluster stability.

Additionally, the silhouette scores for k=2 were significantly

higher compared to other k values, reflecting robust separation

between the clusters. Based on these specific indicators, we selected

k=2 as the optimal number of clusters for further analysis.

The matrix heat map was used to visualize the optimal

partitioning results. Next, we evaluated and compared the clinical

characteristics of patients across different nucleotide metabolic

subsets. Specifically, we performed Kaplan-Meier (KM) survival

analysis to demonstrate the differences in prognosis among the

patient clusters using survival curves. Differences in overall age

among the clusters were compared and visualized with box plots,

and the distribution of tumor stages (stage I-IV) was presented

using bar plots.

To analyze the crosstalk between nucleotide metabolism subsets

and the three classical metabolic pathways (glycolysis, amino acid

metabolism, and lipid metabolism), we identified metabolism-

related genes that were significantly differentially expressed

between the nucleotide metabolism subsets. Heat maps were

generated to visualize the gene expression patterns. Additionally,

we explored differences in functional pathways between the

nucleotide subsets using Gene Set Enrichment Analysis (GSEA)

to identify pathways that were upregulated or downregulated in

each subset.
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2.3 Weighted gene co-expression network
analysis and multi-machine learning model
building (prognostic model construction)

2.3.1 Model building via WGCNA and machine
learning

We used the “WGCNA” R package to perform weighted gene

co-expression network analysis. First, we preprocessed the data to

exclude genes expressed at low levels or with minimal variation

across samples, ensuring a robust scale-free network. Next, we

constructed a correlation matrix and applied a power function to

convert it into an adjacency matrix. The optimal soft threshold (b)
was determined based on two criteria (1): achieving scale-free

topology characteristics and (2) maintaining appropriate

connectivity or sparsity. We visualized the trend of the scale-free

topology model fit and average connectivity as the soft threshold

changed, and selected the best threshold accordingly. Based on this,

we constructed the Topological Overlap Matrix (TOM).

Subsequently, we built a gene co-expression network and

employed the Dynamic Tree Cut algorithm to partition the

network into distinct modules, generating corresponding cluster

trees. We then analyzed the correlation between these modules and

clinically relevant indicators (age, stage, survival status, OS time) as

well as nucleotide metabolism subsets, with the results visualized in

a module-feature relationship heat map. Hub genes were extracted

from the modules most strongly associated with nucleotide

metabolism subsets based on gene significance (GS) > 0.4 and

module membership (MM) > 0.6. Finally, we performed Gene

Ontology (GO) enrichment analysis on the genes within the co-

expression modules and visualized the top five GO terms for each

module using bar charts.

2.3.2 Prognostic model construction and model
validation

A prognostic prediction model was constructed based on the

hub genes identified above. We employed the “Mime” package to

integrate 10 different algorithms, resulting in 101 machine learning

model combinations. Using TCGA-LIHC (Dataset1) as the training

set and GSE14520 (Dataset2), GSE76427 (Dataset3), and ICGC-JP

(Dataset4) as validation sets, we input the hub genes into the

machine learning pipeline, calculated the C-index for all four

datasets, and selected the combination with the highest average

C-index across all cohorts as the final model. The predictive

performance of this model was then verified using multiple

datasets. We divided the datasets into two risk groups based on

the median risk score and compared their prognoses using Kaplan-

Meier survival curves. Time-dependent Receiver Operating

Characteristic (ROC) curves were generated using the 1-, 3-, and

5-year survival rates; an area under the curve (AUC) > 0.6 was

considered indicative of good predictive performance. Finally, we

performed a meta-analysis of univariate Cox regression to

comprehensively assess the efficacy of the prognostic model. To

ensure the robustness and generalizability of our prognostic model,
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we employed a 5-fold cross-validation strategy for each dataset. In

this approach, the dataset was randomly divided into five equal

parts. In each iteration, four parts were used for training and the

remaining part was used for testing. This process was repeated until

each fold had served as the test set exactly once. Performance

metrics, including the concordance index (C-index) and time-

dependent ROC values, were then averaged across the five folds.

This rigorous cross-validation procedure minimized potential

overfitting and validated the model’s predictive power across the

TCGA, GEO, and ICGC cohorts. Moreover, the same procedure

was applied within our integrated machine learning pipeline to

compare and select the optimal candidate model based on the

highest average C-index.
2.4 Differences in expression profiles of
risk groups

By generating a Sankey diagram, we visualized both the

distribution of the two risk groups across the different nucleotide

metabolic subsets and the distribution of risk groups according to

patient survival (Alive and Death). Next, we analyzed the

differences in gene expression between the risk groups. Genes

with log2FoldChange > 0.5 and adjusted P-value < 0.05 were

considered significantly differentially expressed, and these DEGs

were visualized using a volcano plot. Additionally, we compared

and visualized the differences in the activity of classical cancer-

related pathways and model gene expression levels between the risk

groups using heat maps. We also employed a butterfly plot to

illustrate the differences in the activity of apoptosis-related and

proliferation-related genes between the risk groups. Moreover, we

analyzed the mutations in the two groups by generating waterfall

plots to display the top 10 genes with the highest mutation rates, as

well as the mutation types (single nucleotide polymorphisms) for

these genes. Finally, we calculated enrichment scores for 13 classical

tumor pathways and analyzed their correlations with risk scores,

with the results visualized in correlation heat maps.
2.5 Analysis of the correlation between risk
score and immune microenvironment

We used the “IOBR” R package, which incorporates several

TME parsing algorithms (CIBERSORT, EPIC, MCP, quanTIseq,

TIMER, and xCell), to analyze immune infiltration in the TCGA-

LIHC dataset. We quantified the relative abundance of 22 immune

cell types in the two defined risk groups and visualized the results

with box plots. We also examined the correlation between immune

cell infiltration and the risk score using these six algorithms. In

addition, the ESTIMATE algorithm was applied to evaluate the

relative levels of immune and stromal components in different risk

groups, with ImmuneScore and StromalScore differences visualized

using box plots. Furthermore, immunophenotype scores (IPS) for
frontiersin.org
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TCGA-LIHC samples, downloaded from the TCIA database

(https://tcia.at/home), were used to predict patient responses to

immune checkpoint inhibitors (anti-CTLA-4 and anti-PD-1). IPS

were categorized into four types: ips_ctla4_pos_pd1_pos,

ips_ct la4_pos_pd1_neg , ips_ct la4_neg_pd1_neg , and

ips_ctla4_neg_pd1_pos. The differences in IPS between the two

groups are displayed in the figure.
2.6 Single cell analysis

We downloaded single-cell data from patients after ICB

treatment from the Journal of Hepatology and performed a

single-cell analysis. The UMAP algorithm was used to reduce the

high-dimensional single-cell data to two dimensions, allowing us to

identify multiple cell clusters under a specific resolution. UMAP

visualizes the distribution of these clusters and highlights

differences between two ICB response groups: non-response (NR)

and response (R). Using cell annotation information from the

literature, we classified cells into several major cell types, and

their distribution was visualized on the UMAP map. Next, we

compared the NR and R groups and found differences in the

composition and proportion of cell types. We also used the

AddModuleScore function in the “Seurat” package to score the

expression levels of model genes in different treatment response

groups. The distribution of the signature score was shown on the

UMAP, and a box plot was used to compare the overall signature

score between the two groups. Subsequently, we ranked the different

cell types in descending order according to the signature positive

ratio, and the results were displayed in a bar chart. To specifically

analyze the activity differences of the model genes between NR and

R groups, we generated heat maps to display their expression

profiles. Finally, we divided all cells into high and low score

groups based on the median signature score, used GSEA to

identify functional pathways that were significantly upregulated

or downregulated in the high-score group, and plotted bubble

maps accordingly.
2.7 Correlation analysis of single gene
METTL1 and immune landscape

We analyzed the effects of single-gene METTL1 on the immune

landscape across multiple cancer types. First, we calculated the

correlation coefficients between METTL1 and five types of

immunoregulatory factors (receptors, chemokines, immunoinhibitors,

immunostimulators, and MHC molecules) in 33 cancer types and

visualized the results in a heat map. Next, we performed a multi-

cancer analysis to examine the correlations between METTL1 and four

immune checkpoints—CD274 (PD-L1), CTLA-4, LAG-3, and PDCD1

(PD-1)—using Pearson correlation (r) as the metric. In addition, we

investigated the relationship between METTL1 and the infiltration levels

of 28 immune cell subtypes, quantifying immune cell abundance with the

ssGSEA method and presenting the correlations in heat maps.
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Furthermore, we specifically analyzed the association of

METTL1 with various immune features in Liver Hepatocellular

Carcinoma (LIHC). First, patients were divided into high and low

METTL1 expression groups, and the activity levels of the five types

of immunomodulators were compared between these groups using

heat maps. We then compared the degree of gene enrichment at

each stage of the anticancer immunity cycle between the two

METTL1 status groups, with the differences clearly visualized in

box plots. Next, we quantified and visualized the expression levels of

effectors associated with five tumor-infiltrating immune cell types

(dendritic cells, CD8+ T cells, macrophages, Th1 cells, and NK

cells) in these subgroups. Finally, we analyzed the correlation

between METTL1 and 24 immunosuppressive molecules, and the

results were visualized using a correlation pie chart.
2.8 Cell culture and RT-qPCR

Human hepatocellular carcinoma cell lines (HepG2, Hep3B,

Huh-7) and a normal human liver cell line (LX2) were purchased

from ATCC (Manassas, VA, USA) and cultured in DMEMmedium

(Solarbio, Beijing, China) supplemented with 10% FBS and 1%

penicillin-streptomycin. Total RNA was isolated using TRIzol

reagent (Invitrogen, Carlsbad, CA, USA), and genomic DNA was

removed using the gDNA Remover kit. Subsequently, RNA was

reverse-transcribed into cDNA using the ReverTra Ace qPCR RT

Master Mix. Real-time quantitative PCR (qPCR) was performed

using SYBR Premix Ex Taq II on the Mx3005P real-time

fluorescence quantitative PCR system (Stratagene, San Diego, CA,

USA). GAPDH was used as an endogenous control for mRNA

normalization. The reaction conditions were as follows: initial

denaturation at 95°C for 10 minutes, followed by 45 cycles of

denaturation at 95°C for 5 seconds and annealing at 60°C for 30

seconds. Amplification of target genes and the internal reference

gene was performed separately for each sample, with three replicate

wells per sample group. Data were analyzed using the 2^-DDCt
method. The primer sequences are shown in Table 1.
2.9 Statistical analysis

Our statistical analysis is based on the software R.4.3.1. Unless

otherwise stated, the production of pictures is achieved by the

“ggplot” software package. The KM survival curve was used to

analyze survival, as well as we evaluated the ROC curve using the

AUC. The p value was used to determine whether the difference was

statistically significant, *: p < 0.05; **: p < 0.01; ***: p < 0.001.
3 Results

3.1 Typing analysis and correlation
assessment

The workflow for this article is shown in Figure 1.
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First, we successfully reduced the dimension of TCGA-LIHC by

NMF algorithm. Comprehensive evaluation criteria of cophenetic,

dispersion, evar, residuals, residual sum of squares (RSS), silhouses,

sparseness, We obtained the optimal rank value to achieve

molecular typing (Figure 2a). At the same time, based on the

principle of “high cohesion, low coupling”, we selected k=2 to

obtain the consistent score matrix of all samples, and successfully

obtained two nucleotide metabolic subgroups C1 and C2. This

further demonstrates the powerful power of NMF clustering

(Figure 2b). The survival difference within the two subpopulations

is shown by the KM survival curve, with C1 having a worse

prognosis (p=0.00065, Figure 2c). Subsequently, we compared

and analyzed the overall age difference between the two

subpopulations, and found that the overall age of C1 was

significantly higher than that of C2 (p<0.05, Figure 2d). The bar

chart’s results showed that the clinical stage of C1 was biased

towards late stage, while that of C2 group was mainly

concentrated in early stage, which confirmed the results of

survival analysis (p<0.001, Figure 2e).
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Next, to explore the two subgroups’ metabolic characteristics

and differences, we selected three classical metabolic pathways

(glycolysis, amino acid metabolism, and lipid metabolism) and

compared the metabolism-related genes with significant

differences in expression between different subgroups and

visualized them with heat maps. It was observed that the gene

expression levels’ distribution in these three metabolic pathways of

those two subpopulations was similar, and most of the genes related

to C1 showed relatively low expression (Figures 3a–c). In addition,

we used GSEA to assess the differential pathways between the two

subpopulations. All these results showed that C1 was down-

regulated in Ribosome, Antigen Processing And Presentation,

Cell Cycle, IL-17 Signaling Pathway and other pathways. In

Peroxisome, Glycine, Fatty Acid Degradation, Ppar Signaling

Pathway, Serine And Threonine Metabolism, Bile Secretion,

Chemical carcinogenes-DNA Adducts were up-regulated

(p<0.001, Figures 3d, e).
3.2 Model construction and model
verification based on WGCNA

We applied WGCNA to identify key gene modules associated

with nucleotide metabolism and clinical indicators. The optimal

soft threshold (b = 7) was chosen based on scale-free topology and

moderate connectivity (Figure 4a). We made a cluster tree diagram

of the co-representation module to show the clustering levels and

effects (Figure 4b). Consensus clustering identified five modules,

with the MEblack module showing a significant correlation with
FIGURE 1

Workflow of the study.
TABLE 1 Primer sequences used for qPCR analysis (5’ → 3’).

Gene
Primer

Direction
Sequence (5’ → 3’)

GAPDH Forward GGAGCGAGATCCCTCCAAAAT

GAPDH Reverse GGCTGTTGTCATACTTCTCATGG

METTL1 Forward GGCAACGTGCTCACTCCAA

METTL1 Reverse CACAGCCTATGTCTGCAAACT
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clinical features (age, stage, survival status, OS time) and nucleotide

metabolism subsets (p<0.05; Figure 4c). Hub genes from the

MEblack module were then selected for further analysis

(Figure 4d), and GO enrichment analysis revealed that each

module was enriched in distinct biological pathways—for

example, Module_red in lipid metabolism, Module_blue in small

molecule catabolism, Module_green in immune-related processes,

and Module_black in cell division (Figure 4e).

Using these hub genes, we developed 101 prognostic models by

integrating 10 machine learning algorithms with TCGA-LIHC as

the training set and GSE14520, GSE76427, and ICGC-JP as

validation sets. The “StepCox[forward] + Enet[a=0.1]” model,

which achieved the highest average C-index, was selected as the

final prognostic model (Figure 4f). Patients were stratified into

high- and low-risk groups based on the median RiskScore. Kaplan-

Meier survival curves demonstrated significantly lower survival in

the high-risk group in TCGA-LIHC, GSE14520, and ICGC-JP

(p<0.001; Figure 4g), while ROC curves confirmed good

predictive efficiency (AUC > 0.6 for 1-, 3-, and 5-year survival;

Figure 4h). A meta-analysis of univariate Cox regression further

supported the model’s robust prognostic performance (Figure 4i).
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3.3 Differences in expression profiles of risk
groups

The distribution of high- and low-risk groups across different

nucleotide metabolism subsets and survival samples (Alive and

Death) was visualized using Sankey diagrams. It is not difficult to

find that most of the low-risk groups are distributed in C2, and only

a few of C2 are dead samples. Sankey diagrams revealed that most

low-risk patients are distributed in nucleotide metabolism subset C2

—with few dead samples—whereas high-risk patients

predominantly belong to C1 and exhibit a worse prognosis

(Figure 5a). Differential expression analysis showed that genes

such as RAD54L, MYBL2, and CDC20 are significantly

overexpressed in the high-risk group, while ADRB1, ALDH2, and

CFHR4 are downregulated (Figure 5b). Furthermore, classical

cancer-related pathways, notably Hypoxia and PI3K, display

higher activity in the low-risk group (Figure 5c), and heat maps

confirmed that model gene expression is generally elevated in the

high-risk group (Figure 5d). The butterfly diagram further

illustrated the correlations between risk scores and genes involved

in cell proliferation and apoptosis (Figures 5e, f). Mutation analysis
FIGURE 2

Nucleotide metabolism subclusters and prognosis in TCGA-LIHC. (a) Cophenetic distributions, residual sum of squares (RSS), and dispersion indices
for ranks 2–10. (b) Consensus map from non-negative matrix factorization clustering (K = 2). (c) Overall Kaplan-Meier survival curves for both
subclusters. (d) The age distribution between two subclusters. (e) The stage distribution between two subclusters.
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indicated that TTN is commonly mutated in both groups, with

TP53 mutations being more prevalent in the high-risk group

(Figure 5g). Finally, correlation heat maps revealed a significant

negative correlation between risk scores and the NFkB/TNF-a
pathways, and a strong positive correlation between EGFR and

pathways such as Hypoxia, JAK-STAT, and TNF-a (Figure 5h).
3.4 Correlation analysis between risk score
and immune microenvironment

The boxplot shows that among all statistically significant

scoring items, for the two nucleotide metabolism subgroups, the
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infiltration levels of Macrophages_M0, T_cells_follicular_helper,

and T_cells_regulatory_(Tregs) are higher in subgroup C1

compared to subgroup C2. For all other immune cell infiltrations,

the levels are significantly higher in subgroup C2 than in subgroup

C1 (p<0.05). Furthermore, the differences in immune cell

infiltration levels vary between different risk groups. Specifically,

the infiltration level of Macrophages_M0 is significantly higher in

the high-risk group compared to the low-risk group, while the

infiltration level of T_cells_CD4_memory_resting is significantly

lower in the high-risk group compared to the low-risk group

(p<0.05, Figures 6a, b). In addition, we explored the correlation of

risk scores with various immune cells using six different algorithms

(Figure 6c). By quantifying scores, we compared the relative levels
FIGURE 3

Crosstalk between nucleotide metabolism subclusters and key metabolic pathways. (a) Differences in glycolysis-related genes between subclusters.
(b) Differences in amino acid metabolism-related genes between subclusters. (c) Differences in lipid metabolism-related genes between subclusters.
(d) Gene set enrichment analysis (GSEA) reveals pathways downregulated in subtype C1 relative to C2. (e) GSEA reveals pathways upregulated in
subtype C1 relative to C2.
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FIGURE 4

Models Construction based on nucleotide metabolism subclusters. (a) Analysis of network topology for different soft-threshold power. The left panel
shows the impact of soft-threshold power (power = 7) on the scale-free topology fit index; the right panel displays the impact of soft-threshold
power on the mean connectivity. (b) Cluster dendrogram of the coexpression modules. Each color indicates a co-expression module. (c) Module-
trait heatmap displaying the correlation between module eigengenes and clinical traits. (d) Correlation between module membership and gene
significance in the black module. Dots in color were regarded as the hub genes of the corresponding module (MM > 0.6 & GS > 0.4). (e) Top five
enriched GO terms of module genes in each module except for the grey. (f) A total of 101 kinds of prediction models fitted in TCGA-LIHC (Dataset1)
and verified in the other three validation cohorts (GSE14520 [Dataset2], GSE76427 [Dataset3], and ICGC-JP [Dataset 4]). The model was ordered by
the average of the C-index of validation datasets. The optimal model developed by “StepCox[forward] + Enet[a=0.1]” was utilized in subsequent
analyses. (g) Survival differences between two groups in the four datasets. (h) Time-dependent ROC analysis of the model in the four datasets.
(i) Meta analysis of univariate Cox regression across the four datasets.
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FIGURE 5

Associations between risk scores, clinical features, and oncogenic pathways in TCGA-LIHC. (a) Distribution of risk groups among nucleotide
metabolism subclusters and survival samples. (b) Differential genes between risk groups. (c) Activity differences in classic cancer-related pathways
between risk groups. (d) Relationships between risk groups and model gene expression levels. (e) Correlation of risk scores with apoptosis-related
genes. (f) Correlation of risk scores with cell proliferation-related genes. (g) Distribution of the top 10 genes with the highest mutation frequencies
across different risk groups. (h) Correlation of risk scores with enrichment scores of different classic tumor pathways.
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of immune and matrix components between different risk groups. It

can be found that the ImmuneScore of the high-risk group was

higher than that of the low-risk group and the StromalScore was

lower than that of the low-risk group (p<0.05, Figure 6d).

According to the nimbus map, based on the IPS differences in the

treatment effectiveness of CTLA-4 and PD-1 inhibitors, we found

that the IPS scores of the low-risk group were higher than those of

the high-risk group (Figure 6e).

3.5 Single cell analysis

By using UMAP dimensional-reduction clustering algorithm,

immunochemotherapy treated scRNA-seq cohort was divided into
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multiple clusters (Figures 7a–c). Subsequently, the comparison of cell

type abundance between the NR group and the R group showed that

the proportion of Exhausted CD8T cell subsets in the NR group was

significantly higher than that in the R group, while Vein/Capillary Vein

accounted for a very small proportion in both groups (Figure 7d).

Then, AddModuleScore was used to score each cell. We not only

showed the distribution of signature score with the UMAP, but also

combined with the boxplot results. It was found that the score of the

NR group was significantly higher than that of the R group (Figures 7e,

f). In addition, we also found that the signature positive ratio varies

among cell types, Proliferating_HCC cell subgroup is the highest

(92.2%) and the Pro-inflammatory_Monocyte cell subgroup is the

lowest (30.4%, Figure 7g). Heat map results showed that there were
FIGURE 6

Investigation of the correlation between risk score and the immune microenvironment of TCGA-LIHC. (a, b) Differences in infiltration levels of 22
immune cell types between nucleotide metabolism subclusters and between risk groups. (c) Correlation of risk scores with various immune cells as
revealed by six different algorithms. (d) Differences in tumor microenvironment scores between different risk groups as revealed by the ESTIMATE
algorithm. (e) Differences in IPS scores predicting effectiveness of PD-L1 or CTLA-4 inhibitor treatments between different risk groups. IPS score of
each TCGA-LIHC sample was acquired from the TCIA (https://tcia.at/home) In the figure, “*”, “**”, and “***” indicate p < 0.05, 0.01, and 0.001
respectively, while NS denotes no significant difference.
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significant differences in the distribution of model gene scores between

the NR group and the R group (Figure 7h). Finally, we divided all cells

into high-low groups based on the median score and used GSEA to

assess the difference pathways between the two groups. It was found

that the high-score group was up-regulated in Parkinson disease,

Huntington disease, Pathways of neurodegeneration-multiple

diseases, etc. Down-regulated in Chemokine signaling pathway,

PI3K-Akt signaling pathway, NOD-like receptor signaling pathway

and other pathways (Figure 7i).
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3.6 Correlation analysis of single gene
METTL1 and immune landscape

We analyzed the single gene METTL1 at the pan-cancer level to

assess its predictive power and biological significance in multiple

cancers. We first calculated the correlation coefficients between

METTL1 and 5 types of immunoregulatory factors (receptors,

MHC, immunostimulator, immunoinhibitor, chemokine) in 33

types of cancer. It was found that most of the immunomodulators
FIGURE 7

Single-cell analysis of risk score in immunochemotherapy treated scRNA-seq cohort. (a–c) UMAP visualization the public liver cancer scRNA-seq
cohort treated with immunochemotherapy. (d) Differences in the abundance of cell types across different groups. (e) Distribution of the signature
scores between groups. The signature score was calculated by the AddModuleScore() function implemented in the Seurat package based on the
genes derived from the model from the machine-learning pipeline. (f) The signature scores of each patient between two different groups. (g) The
positive ratio of the signature across each cell type. (h) The differences in the abundance of signature genes between different groups in all patients.
(i) GSEA reveals significantly altered pathways in cells with high signature scores compared to those with low scores.
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in LIHC were strongly correlated with METTL1 (Figure 8a). Then,

we conducted a multi-cancer analysis on the correlation between

the four immune checkpoints CD274 (PD-L1), CTLA-4, LAG-3,

and PDCD1 (PD-1) and METTL1, and LIHC also showed a strong

correlation with them (Figure 8b). By using ssGSEA to

quantitatively score the infiltration levels of 28 tumor-associated

immune cells, we also explored the correlation between 33 cancers

and them (Figure 8c). These results all reveal the immunological

relevance of METTL1 at the pan-cancer level.

Next, our research focuses on exploring the relationship between

METTL1 and different immune characteristics in the context of

LIHC. First, we divided the TCGA-LIHC dataset into high and low

groups based on the expression level of METTL1. By observing the

heat map, it can be found that the expression of immune modulator

molecules is significantly different between the two groups

(Figure 9a). Then, we evaluated the gene enrichment degree at each
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stage of the anti-cancer immunity cycle in the high and low

expression groups, and found that the low expression group was

significantly higher than the high expression group at any stage

(p<0.05, Figure 9b). We also used heat maps to show the expression

difference of related effector in 5 tumor-infiltrating immune cells

(CD8_T_cell, Dendritic_cell, Macrophage, NK_cell, Th1_cell)

between the two groups. It was found that the low expression

group was relatively generally lower than the high expression group

(Figure 9c). Finally, we analyzed the correlation between METTL1

and 24 immunosuppressive molecules (Figure 9d).

Given the role of METTL1 across multiple analyses, we sought to

validate its expression in vitro using cell lines. By RT-qPCR, we found

that METTL1 mRNA was significantly upregulated in hepatocellular

carcinoma cells compared to normal liver cells (p < 0.001, Figure 10).

Notably, our pan-cancer analysis revealed a significant positive

correlation between METTL1 expression and the levels of immune
FIGURE 8

Influence of METTL1 on immune landscapes in pan-cancer. (a) Association of METTL1 with various immunoregulators (including receptors, MHC
molecules, immunostimulators, and chemokines). (b) The associations between METTL1 and four immune checkpoints: CD274 (PD-L1), CTLA-4,
LAG-3, and PDCD1 (PD-1), with dots representing various cancer types. (c) Relationship of METTL1 with infiltration levels of 28 tumor-associated
immune cells, as analyzed by the ssGSEA method. The correlation strength is depicted by color intensity. Statistically significant correlations,
determined through Pearson correlation analysis, are marked with asterisks. *P < 0.05; **P < 0.01.
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checkpoints such as PD-L1 (CD274) and CTLA-4 in HCC. In the

TCGA-LIHC cohort, patients with high METTL1 expression also

exhibited elevated expression of these inhibitory molecules,

suggesting that METTL1 may drive immune evasion by

upregulating immune checkpoints. These findings indicate that

METTL1-mediated modulation of checkpoint expression plays a

critical role in shaping the tumor immune microenvironment.
4 Discussion

HCC remains a formidable clinical challenge, with low survival

rates and limited efficacy of current treatments such as immune
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checkpoint inhibitors. Although the risk factors for HCC have been

well documented, these persistent clinical challenges underscore

the urgent need for novel therapeutic targets. Given the critical role

of nucleotide metabolism in both tumor progression and immune

modulation, our study focused on nucleotide metabolism-related

genes as a foundation for constructing a prognostic model. Our

study addresses a significant knowledge gap by demonstrating that

reprogramming of nucleotide metabolism—driven by METTL1

overexpression—not only supports tumor growth but also plays a

pivotal role in HCC immune evasion. While previous research has

primarily focused on general metabolic dysregulation in HCC, the

specific mechanisms linking nucleotide metabolism to immune

checkpoint regulation have remained unclear. Our data indicate
FIGURE 9

Impact of METTL1 on the TME in TCGA-LIHC. (a) Expression differences of immunoregulators (as identified in Figure 8a) between the high- and low-
METTL1 expression groups in TCGA-LIHC. (b) Variations in the stages of the cancer immunity cycle for high versus low METTL1 expression groups.
(c) Association of METTL1 with the expression of effector genes of five types of tumor-infiltrating immune cells: CD8+ T cells, DCs, macrophages,
NK cells, and Th1 cells, determined by the six TME decoding algorithms. (d) Expression differences in effector genes of these immune cells between
the high- and low- METTL1 groups. Asterisks denote the significance levels as determined by the Mann-Whitney U test. ns, not significant; *P < 0.05;
**P < 0.01; ***P < 0.001; ****P < 0.0001.
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that METTL1 upregulates key immune inhibitory molecules,

such as PD-L1 and CTLA-4, thereby contributing to an

immunosuppressive microenvironment and facilitating immune

escape. These findings highlight the previously unexplored role of

METTL1 in coordinating metabolic and immune regulatory

networks and underscore its potential as a novel therapeutic

target to reverse immune suppression in HCC.

Our molecular typing revealed two distinct HCC subgroups (C1

and C2), with C1 displaying lower overall metabolic activity, older

patient age, and more advanced disease—a pattern that underscores

the link between altered metabolism and worse clinical outcomes.

This subgroup also showed downregulated pathways related to

ribosome synthesis, cell proliferation, and immune response,

while pathways involved in lipid and amino acid metabolism

were upregulated, highlighting the complex interplay between

metabolic adaptations and tumor behavior. By leveraging

WGCNA, we identified key gene modules closely tied to

nucleotide metabolism and prognosis, which aligns with growing

evidence that dysregulated metabolic pathways can drive aggressive
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phenotypes in HCC. The successful application of multiple machine

learning algorithms to derive a robust prognostic signature—

validated across four independent cohorts—further indicates the

clinical relevance of our approach. These findings not only

emphasize the value of combining transcriptomic clustering with

network analysis but also suggest that defining tumor subtypes by

metabolic and immunological features may enhance risk

stratification and inform targeted therapeutic strategies in HCC.

We analyzed and compared the diversity of expression profiles

between risk groups. By analyzing Sankey’s chart, we found that the

low-risk group was mainly distributed in C2 and survival samples,

while the high-risk group was mainly distributed in C1 and had a

worse prognosis, which was consistent with the results of the previous

study. Subsequently, we performed differential expression analysis

and found that RAD54L, MYBL2, CDC20 and other genes were

significantly overexpressed in the high-risk group. Among them,

RAD54L is a member of the SWI2/SNF2 chromatin remodeling

protein family (18, 19), which is involved in promoting the

development of various tumor types (20). MYBL2 (alias B-Myb) is

a transcription factor in the MYB family of transcription factors that

is a physiological regulator of cell cycle progression, cell survival, and

cell differentiation (21). MYBL2 is also overexpressed in many cancer

entities and associated with poor prognosis (22). Cell Division cycle

protein 20 (Cdc20) is a member of the cyclin family (23),

overexpressed in various cancer stem cells and malignant tumors

such as hepatocellular carcinoma (24), may affect cell growth and

tumorigenesis when its function is abnormal (25, 26). The high-risk

group had lower activity in classical cancer-related pathways and

higher expression levels of model genes. In the high-risk group, TP53

had the highest mutation frequency, and in the low-risk group,

CTNNB2 and TTN had the highest mutation frequency, both of

which were dominated by missense mutations. Risk scores were

positively associated with most of the 14 classical cancer-related

pathways, with the strongest positive correlation with Hypoxia.

Then, our immune microenvironment analysis suggests that

high-risk tumors harbor greater infiltration of immunosuppressive

cell subsets (e.g., Tregs, exhausted CD8^+ T cells), potentially

explaining their poorer outcomes and reduced responsiveness to

immunotherapies. Single-cell profiling provides further insight by

demonstrating that non-responder samples exhibit elevated

signature scores associated with aggressive tumor phenotypes, as

well as enrichment of pathways implicated in immunosuppression

and diminished immune recognition. These observations

underscore a critical interplay between the tumor’s intrinsic

molecular alterations and its extrinsic immune landscape—both

of which converge to foster an environment conducive to immune

escape. Consequently, our findings highlight the need for

therapeutic strategies that not only target oncogenic drivers but

also address the complex immunosuppressive mechanisms at play

in high-risk HCC.

Finally, we analyzed the effects of METTL1 on the immune

landscape. Methyltransferase-like protein-1 (METTL1) is a

component of the m7G tRNA methyltransferase complex (27).
FIGURE 10

RT-qPCR showed that METTL1 was highly expressed in
hepatocellular carcinoma cells. In the figure, ***, **** denote
statistical significance levels indicating p < 0.001 and p <
0.0001, respectively.
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The expression level of METTL1 is significantly up-regulated in

HCC and negatively correlated with the survival rate of HCC

patients. Mettl1 can also promote the development and

progression of HCC by mediating m7G tRNA modification (28).

Therefore, METTL1 and m7G modifications can be used as

biomarkers or potential intervention targets to participate in

improving early diagnosis and treatment of tumors (29). In

addition, the METTL1-TGF-b2-PMN-MDSC axis may help

restore anti-tumor immunity and prevent HCC recurrence after

radiofrequency (RFA) treatment (30). Pan-cancer analyses

highlight METTL1’s immunomodulatory impact, especially in

HCC, where it correlates with checkpoint molecules (e.g.,

PDCD1, CTLA4) and immunoregulatory factors—potentially

fostering immune escape. In vitro assays confirm METTL1

upregulation in hepatocellular carcinoma cells, underscoring its

oncogenic and immunosuppressive roles. These observations, in

line with broader evidence linking m7G modifications to tumor

progression, suggest that METTL1 may serve as both a prognostic

marker and a therapeutic target. Inhibiting METTL1 activity or

detecting METTL1-related RNAs in peripheral blood could offer

promising strategies to limit tumor growth and enhance

immunotherapy efficacy in HCC.

In addition to driving nucleotide metabolism reprogramming,

our study shows that METTL1 significantly influences the tumor

immune microenvironment by regulating key immune checkpoints,

such as PD-L1 and CTLA-4. The observed positive correlation

between METTL1 and these checkpoints suggests a mechanism by

which METTL1 contributes to immune evasion in HCC. By

upregulating inhibitory checkpoint molecules, METTL1 may

diminish the activation and infiltration of cytotoxic T cells,

thereby facilitating tumor progression and resistance to

immunotherapy. This dual role not only reinforces the prognostic

value of METTL1 but also supports its potential as a therapeutic

target. Targeting METTL1 could simultaneously disrupt aberrant

metabolic pathways and reverse immune suppression, paving the

way for more effective combination therapies in HCC.

Recent studies have not only highlighted the oncogenic role of

METTL1 in hepatocellular carcinoma (HCC) but have also drawn

attention to other components of the m7G-modifying complex. For

instance, WDR4—the obligate binding partner of METTL1—has

been reported to be overexpressed in HCC and contributes to tumor

progression through its role in m7G tRNA methylation (31).

Although both METTL1 and WDR4 are essential for catalyzing

m7G modifications, emerging evidence suggests that their

individual contributions might differ. Our multi-omics analysis

reveals that METTL1 overexpression not only reprograms

nucleotide metabolism but also significantly remodels the tumor

immune microenvironment via upregulation of key immune

checkpoints such as PD-L1 and CTLA-4. This dual functionality

underscores a potentially more central or distinct role of METTL1

compared to its partner enzymes. In contrast, while studies on

WDR4 predominantly focus on its role in promoting tumor cell

proliferation and protein translation efficiency, the present study

provides new insights into how aberrant m7G modification—
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mediated primarily by METTL1—can drive immune evasion.

Such differences highlight the necessity to further dissect the

individual and collaborative roles of m7G-modifying enzymes in

HCC, which may ultimately aid in the development of targeted

therapeutic strategies aimed at disrupting these epitranscriptomic

regulatory networks.

Building on comprehensive multi-omics analyses similar to

those used to delineate NUP62’s role in cancer progression and

immune regulation (32), our findings underscore the translational

potential of METTL1 as a therapeutic target in HCC. Beyond its

prognostic significance, our findings underscore the translational

potential of METTL1 as a therapeutic target. Future studies should

investigate METTL1 inhibitors in preclinical HCC models, both as

monotherapy and in combination with immune checkpoint

blockade (e.g., anti-PD-1/PD-L1 or anti-CTLA-4 antibodies). In

vitro experiments could assess whether METTL1 inhibition reduces

immune checkpoint expression and enhances T cell activation,

while in vivo studies could evaluate the effects on tumor growth

and immune cell infiltration. Such combination strategies may

synergistically disrupt aberrant nucleotide metabolism and reverse

immune suppression, ultimately improving therapeutic outcomes

in HCC.

From a translational perspective, inhibiting METTL1 could

hold therapeutic promise, as it may sensitize tumors to

immunotherapies by reducing immune checkpoint expression

and reversing immunosuppression. Recent integrative studies,

including disulfidptosis‐based risk assessments in glioma and

analyses of the biophysical properties of cancer cells, underscore

that metabolic regulators critically influence both the tumor

microenvironment and immune evasion mechanisms (33). In

light of these findings, future studies should investigate METTL1

inhibitors—alone and in combination with immune checkpoint

blockade (e.g., anti-PD-1/PD-L1 or anti-CTLA-4 antibodies)—in

preclinical HCC models. In addition, complementary strategies that

harness the unique electrical, optical, and magnetic characteristics

of cancer cells have been shown to improve targeted drug delivery

and may further potentiate the effects of METTL1 inhibition (34).

Such combinations may prove synergistic, given that metabolic

reprogramming and immune checkpoint pathways often converge

to promote tumor growth. Moreover, emerging evidence on

targeting the immune privilege of tumor-initiating cells suggests

that disrupting these protective niches can enhance the overall

efficacy of immunotherapies (35). Our study highlights the potential

for detecting METTL1 or related biomarkers in peripheral blood,

which could enable non-invasive monitoring of treatment

responses or early recurrence. This aligns with recent findings

that circulat ing biomarkers reflect ing metabol ic and

immunological alterations provide dynamic insights into tumor

behavior and therapeutic responsiveness (34).

In summary, our findings not only confirm the significant

influence of METTL1 overexpression on HCC progression but

also provide detailed mechanistic insights into how it orchestrates

both metabolic and immune dysregulation. By placing these

observations within the broader context of m7G modifications
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and immuno-oncology, we offer a foundation for future research

directed at reversing METTL1-mediated immune suppression and

improving therapeutic efficacy in HCC. This integrated view

emphasizes the importance of targeting epitranscriptomic

regulators in the quest for effective, personalized treatment

strategies against this formidable disease.
5 Conclusion

In this study, we reveal for the first time that METTL1 is a key

driver of nucleotide metabolism reprogramming in HCC. Our multi-

omics analyses demonstrate that METTL1 overexpression is not only

associated with enhanced nucleotide synthesis but also correlates with

significant changes in the immune microenvironment, including

altered immune cell infiltration and checkpoint expression. These

findings suggest that METTL1 may contribute to immune evasion,

providing a dual mechanism that supports tumor progression.

Compared to previous studies that have focused on general

metabolic alterations, our work highlights the innovative concept

that targeting METTL1 could simultaneously disrupt tumor

metabolism and reverse immunosuppression. This novel insight

lays the groundwork for future therapeutic strategies aimed at

METTL1 inhibition to restore anti-tumor immunity and improve

patient outcomes. To clarify the link between METTL1-mediated

nucleotide metabolism and the HCC immune microenvironment, it

is essential to establish that METTL1-driven RNA modifications

directly modulate immune responses, elucidate how METTL1

regulates key checkpoints such as PD-L1 and CTLA-4, assess

whether targeting METTL1 and its associated pathways can reverse

immune evasion and enhance immunotherapy efficacy, and

determine how changes in nucleotide metabolism affect the

recruitment and function of immune cell subsets. Addressing these

points will deepen our understanding of HCC pathogenesis and

support the development of novel, personalized therapeutic strategies

based on METTL1 inhibition.
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