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Glioblastoma multiforme (GBM) is a common primary malignant brain tumor in

adults, characterized by a high rate of recurrence and mortality. The median overall

survival is less than 2 years with the current standard therapy. As immunotherapy has

begun to show promising results in solid tumors such as non-small cell lung cancer

and melanoma in recent years, immnunotherapy for patients with glioblastoma is

also in full swing, which is mainly consisted of immune checkpoint inhibitors, cancer

vaccines, chimeric antigen receptor T-cell and oncolytic viral therapy. However, the

application of immunotherapy in glioblastoma is severely hampered by cognitive

impairment of intracerebral lymphatic system, the existence of blood-brain barrier,

highly immunosuppressive tumor microenvironment and GBM’s intrinsic features,

including low tumor mutation burden and high heterogeneity. This review

systematically evaluates recently published clinical trial outcomes of GBM

immunotherapy, critically analyses both the progress and limitations of these trials,

thoroughly examines current barriers to effective immunotherapy, and highlights

promising preclinical studies that may guide future therapeutic development.
KEYWORDS
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1 Introduction

Glioblastoma represents the most prevalent primary malignant brain tumor in adults

(1), comprising 50.1% of all primary malignant central nervous system (CNS) neoplasms

(2). With an overall incidence rate of approximately 3.22 cases per 100,000 individuals, its

occurrence demonstrates both age-dependent progression and male predominance (3).

GBM has consistently been characterized by its rapid disease progression, elevated

mortality rates, unfavorable clinical outcomes, and frequent tumor recurrence (4). The

2021 World Health Organization (WHO) classification of CNS tumors categorizes

glioblastoma as a grade IV, IDH wild-type adult diffuse glioma, reinforcing its

recognition as an exceptionally aggressive malignancy with dismal prognosis (5).

Currently, the standard treatment for newly diagnosed glioblastoma (ndGBM) involves

maximal safe surgical resection followed by concurrent chemoradiotherapy (CCRT), with

subsequent adjuvant temozolomide (TMZ) and tumor treating fields (TTF). However, no
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consensus treatment exists for recurrent GBM (rGBM) (3).

Alternative options include DNA damage response (DDR)

inhibitors and targeted molecular therapies. Despite these

treatments, the median overall survival (mOS) remains limited to

approximately 20.9 months, with nearly universal tumor

recurrence (6).

The high recurrence rate stems from multiple factors: the

infiltrative growth pattern of GBM prevents complete surgical

removal (7); the blood-brain barrier restricts delivery of large

molecules and poorly lipid-soluble drugs (8) and the prevalent

emergence of resistance to radiotherapy develops through various

mechanisms, including the presence of quiescent glioma stem cells

(GSCs), protective peritumoral brain (PTB) tissue (9) and intact

DNA repair systems in O6-methylguanine-DNA methyltransferase

(MGMT) unmethylated gliomas (10). The low tumor mutation

burden and high degree of tumor heterogeneity present significant

challenges for targeted molecular therapies. Furthermore, the

profoundly immunosuppressive tumor microenvironment (TME)

contributes to diminished T-cell infiltration and function through

multiple mechanisms, including upregulation of inhibitory immune

checkpoints (11), HIF-1a-mediated lactate accumulation (12, 13)

and elevated TGF-b expression (14), collectively rendering

GBM an immunologically "cold" tumor. These limitations

underscore the critical need for novel therapeutic approaches,

with immunotherapy emerging as one of the most promising

strategies for GBM patients.

The concept of immunotherapy dates back to 1890 when Dr.

William Coley pioneered the use of bacterial injections for treating

inoperable malignancies. However, its application in glioblastoma faced

considerable delays owing to the prevailing belief in the brain's

"immune-privileged" status (15, 16). This scientific paradigm

remained unchallenged until the 20th century when the discovery of

the brain's dural lymphatic system fundamentally altered our

understanding of CNS immunity (17). Moreover, clinical

observations of immune-mediated neurological pathology in patients

with autoimmune inflammatory diseases (18) and neurodevelopmental

disorders (19, 20) provided definitive evidence for the bidirectional

communication between central nervous system immunity and

peripheral immune function. These seminal findings revolutionized

neuroimmunological concepts and established the scientific foundation

for developing immunotherapies against glioblastoma.

Immunotherapy for glioblastoma has evolved to encompass

both established and emerging modalities. The classical approaches,

including immune checkpoint inhibitors and cancer vaccines,

function indirectly by stimulating the host immune system to

identify and destroy tumor cells (21). Recent biotechnological

advances have introduced more direct therapeutic strategies such

as T cell therapies and oncolytic viruses. Currently, multiple

immunotherapies for GBM have advanced to Phase II/III clinical

trials, which can be systematically classified into four categories

according to their mechanisms: immune checkpoint inhibitors,

cancer vaccines, chimeric antigen receptor T-cell (CAR-T), and

oncolytic viral therapy.

This review offers a thorough evaluation of recent clinical

progress across these four principal immunotherapeutic strategies
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for glioblastoma. We perform a critical assessment of existing

limitations in immunotherapy development and provide

insightful perspectives on future therapeutic directions for

GBM management.
2 Immune checkpoint inhibitors

For decades, it has been well-established that tumor cells evade

anti-tumor immune responses by overexpressing inhibitory immune

checkpoints (e.g., PD-1, PD-L1). These checkpoints interact with

their respective ligands on T lymphocytes, effectively suppressing T-

cell activation and enabling immune escape (22). To counteract this

immunosuppressive mechanism, several immune checkpoint

inhibitors targeting PD-1, PD-L1, CTLA-4 and other ones have

been developed and implemented in clinical practice (Table 1),

such as Nivolumab, Pembrolizumab, and Cemiplimab (23–26).
2.1 Nivolumab

Nivolumab, a common PD-1 immune checkpoint inhibitor,

exerts its antitumor effect by binding to PD-L1 on tumor cells,

thereby blocking the PD-1-mediated tyrosine phosphorylation

signal that inhibits T-cell activation (27).

CheckMate 143 demonstrated that nivolumab monotherapy

failed to show a statistically significant overall survival benefit

compared to bevacizumab (Bev) in the overall rGBM population

(28). Nevertheless, subgroup analysis revealed a potential survival

advantage for nivolumab in patients with MGMT methylation.

For ndGBM patients, neither nivolizumab combined with

standard of care (SOC) in MGMT-methylated cases (29), nor

nivolizumab combined with radiotherapy alone in MGMT-

unmethylated cases (30) demonstrated significant improvement in

median overall survival compared to SOC, which was defined as

maximal safe resection followed by CCRT and adjuvant TMZ

according to 2016 WHO Classification of Tumors of the Central

Nervous System (31).

This limited efficacy may be attributed to chemotherapy or RT

induced T-cell depletion (32) and suppression of T cell function as a

consequence of suppressive immune microenvironment and low

immunogenicity of GBM. Supporting evidence comes from a phase

II clinical study conducted by Schalper et al (32), where

immunohistochemical analysis revealed that while nivolumab

treatment increased intratumoral immune cell infiltration likely

mediated by elevated chemokine levels, it failed to significantly

enhance either T-cell cytotoxic activity or proliferative capacity.

To maximize the clinical benefit of nivolumab, a multifaceted

optimization strategy is required. First, comprehensive

pharmacodynamic studies are needed to validate the effects of

intravenous nivolumab on tumor-infiltrating T-cell activity in

vivo. Second, treatment combinations should be carefully

considered with chemoradiotherapy. Third, precision patient

selection through refined enrollment criteria is crucial, as

evidenced by differential treatment responses between nivolumab
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and bevacizumab in patient subgroups stratified by PD-L1

expression levels (28). Notably, nivolumab demonstrates

particular efficacy in the B7-H4-high glioma subgroup - a

population intrinsically characterized by profoundly depleted

tumor-infiltrating lymphocytes (TILs) (33).
2.2 Pembrolizumab

Originally developed for unresectable or metastatic melanoma

(34), the PD-1 antagonist pembrolizumab has shown modest activity

in recurrent glioblastoma, with phase II randomized controlled trials

reporting a median overall survival of 10.3 months for monotherapy

(35) and 11.5 months when combined with radiotherapy (36).

However, combination strategies with bevacizumab—including both

Pem+Bev and Pem+RT+Bev regimens—paradoxically compromised

survival outcomes (35, 36). This observed reduction in therapeutic

efficacy may stem from increased treatment-related adverse events

due to Bev-associated toxicity (35, 37, 38) and Bev-mediated
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exacerbation of tumor hypoxia, which may further potentiate the

immunosuppressive tumor microenvironment (39, 40).

Surprisingly, neoadjuvant pembrolizumab has demonstrated

efficacy in recurrent glioblastoma, with a phase II trial showing

prolonged survival through preoperative tumor reduction (41). This

promising outcome has prompted an ongoing phase IV

confirmatory study (NCT05235737, completion May 2026).

Further enhancing this approach, a separate phase II

randomized controlled trial (RCT) revealed that laser interstitial

thermal therapy (LITT) synergizes with Pem, significantly

improving median survival (42) via blood-brain barrier disruption

and pro-apoptotic effects (43). Building on these findings, an active

phase II trial is currently evaluating a multimodal regimen

combining tumor-treating fields, Pem and LITT (NCT06558214).

For newly diagnosed glioblastoma, phase II RCT data indicate a

median survival of 10.1 months with pembrolizumab plus SOC

(NCT03018288), though this may attribute to the limited 26-month

follow-up. More promisingly, Pem combined with maintenance

TMZ and tumor-treating fields after SOC demonstrated
TABLE 1 Summary of Immune checkpoint inhibitors clinical trials in glioblastoma.

Author Study Design Invention Control NCT NO Number of
patients

Conditions Lessons learned (inter-
vention vs. control)

Reardon et al. (28) III RCT NIVO BEV NCT02017717 369 rGBM mOS 9.8 vs. 10.0 months; mPFS
1.5 vs. 3.5 months

Lim† et al. (29) III RCT NIVO,SOC SOC NCT02667587 716 ndGBM
MGMT
methylated

mOS 28.9 VS 32.1 months; mPFS
10.6 VS 10.3 months

Omuro et al. (30) III RCT NIVO,RT SOC NCT02617589 560 ndGBM
MGMT
unmethylated

mOS 13.4 vs. 14.9 months; mPFS
6.0 vs. 6.2 months; 24-month OS
rates 10.3% vs. 21.2%

Nayak et al. (33) II RCT BEV,PEM PEM NCT02337491 80 rGBM mOS 8.8 vs. 10.3 months; mPFS
4.1 vs. 1.43 months

Iwamoto et al. (36) II RCT BEV,PEM,RT PEM,RT NCT03661723 60 rGBM mOS 7.6 vs. 11.5 months; mPFS
4.14 months vs. 4.9months

Groot et al. (41) II Single arm Neoadjuvant
PEM

NA NCT02337686 15 rGBM mOS 20.3months;
mPFS 4.5months

Campian et al. (42) II RCT LITT, PEM PEM NCT02311582 34 rGBM mOS 11.4 vs. 5.2months; mPFS
10.5 vs. 2.1 months

II RCT HSPPC-96,
PEM,SOC

PLACEBO,
PEM,SOC;
PEM,SOC

NCT03018288 32 ndGBM mOS 14.4 vs. 14.1 vs. 10.1months;
mPFS 13.7 vs. 8 vs. 10.3months

Tran et al. (44) II Single Arm PEM,
TTF,SOC

Historical
Control

NCT03405792 26 ndGBM mOS 24.8 versus 14.7 months

Sloan et al. (47) I Single Arm IPI,
NIVO,SOC

NA NCT02311920 32 ndGBM mOS 20.7 months; mPFS
16.1 months

Lassman et al. (48) II RCT NIVO,
IPI, RT

SOC NCT04396860 159 ndGBM
MGMT
unmethylated

mOS around 13 months vs.
around 13 months; mPFS 7.7 vs.
8.5 months

Omuro et al. (49) I RCT NIVO,IPI NIVO NCT02017717 30 rGBM mOS: 7.3 vs. 10.4 months; mPFS:
2.1 vs. 1.9 months
RCT, randomized controlled trial; TMZ, temozolomide; NIVO, Nivolumab; BEV, bevacizumab; rGBM, recurrent glioblastoma; ndGBM, newly diagnosed glioblastoma; mOS, median overall
survival; mPFS, median progression-free survival; SOC, Standard of Care, including surgical resection, concurrent chemoradiotherapy, adjuvant temozolomide for ndGBM; PEM,
pembrolizumab; RT, radiotherapy; LITT, laser interstitial thermal therapy; TTF, tumor treating fields; IPI, ipilimumab. All cited literature consists of peer-reviewed publications or
registered clinical trials from the ClinicalTrials.gov database.
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significantly improved median survival (25.2 months) versus

historical controls (44). These results have propelled an ongoing

phase III trial evaluating this triple combination (NCT06556563),

with completion anticipated by April 2029.
2.3 Ipilimumab

CTLA-4 is a negative co-stimulatory molecule expressed on

activated T cells. Due to its high homology with the extracellular

domain of the T cell co-stimulatory molecule CD28, and its higher

affinity for CD80/CD86, CTLA-4 often inhibits T cell activation by

competitively binding to CD80/CD86 (45). Additionally, it can

reduce the ex-pression of CD80/CD86 on the surface of antigen-

presenting cells through trans-endocytosis (46). Ipilimumab, the

most clinically established CTLA-4 inhibitor, counteracts these

immunosuppressive effects.

For newly diagnosed GBM, a phase I trial demonstrated promising

mOS of 20.7 months with ipilimumab, nivolumab on the basis of SOC,

though requiring phase II validation (47). In MGMT-unmethylated

ndGBM, the combination of ipilimumab, nivolumab and RT showed

comparable mOS but inferior median progression-free survival (mPFS)

versus SOC at 13.7-month follow-up (48).

In recurrent GBM, combination of ipilimumab and nivolumab

yielded modest mOS of 7.3 months (49), showing no significant

advantage over nivolumab monotherapy, warranting cautious

evaluation of this combinatorial approach (Nivo, Ipi).

In summary, the limited survival benefit of immune checkpoint

inhibitor monotherapy primarily stems from the profoundly

immunosuppressive tumor microenvironment, low tumor mutational

burden and inherent immunogenicity of GBM which consequently
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restrict both quantity and functionality of tumor-infiltrating T cells.

Remarkably, the aforementioned TTF and LITT modalities may offer a

safer alternative to conventional chemoradiation by promoting tumor

apoptosis and tumor-associated antigen (TAA) release, though their

precise mechanisms of action require further investigation.

Beyond classical targets, novel immune checkpoints have also

entered the phase I / II clinical trial stage,including TIM-3

checkpoint inhibitors (NCT03961971), LAG-3 checkpoint

inhibitors relatlimab (NCT02658981 and NCT03493932), TIGIT

checkpoint inhibitors ( NCT04656535 ), CD137 checkpoint

inhibitors ( NCT02658981) and IDO checkpoint inhibitors (

NCT04047706, NCT02052648).
3 Tumor vaccines

Tumor vaccines for glioblastoma can be broadly classified into

four main categories: cellular vaccines, protein/synthetic peptide

vaccines, nucleic acid vaccines, and viral vector vaccines (Table 2).

These therapeutic approaches utilize various forms of tumor-specific

antigens (TSAs), TAAs or antigen-encoding genes, which are either

administered directly or delivered through artificial carriers such as

dendritic cells or viral vectors. Following administration, these

vaccines aim to fully activate the patient's anti-tumor immune

responses, thereby inhibiting tumor growth and progression.
3.1 DC vaccine

Dendritic cells (DCs), as the body's primary antigen-presenting

cells, play a crucial role in antitumor immunity by capturing
TABLE 2 Summary of tumor vaccine clinical trials in glioblastoma.

Author Study
design

Invention Control NCT NO Number
of patients

Conditions Lessons learned (interven-
tion vs. control)

Liau et al. (57) III
Single Arm

DCVaxL
SOC(ndGBM)

ECP NCT00045968 232; 64 ndGBM; rGBM mOS 19.3 vs.16.5 months; mOS 13.2
vs. 7.8 months

Weller et al. (66) III RCT CDX-110,SOC KLH,SOC NCT01480479 745 ndGBM mOS:17.4 vs. 17.4months; mPFS: 7.1
vs. 5.6 months

Reardon et al. (67) II RCT CDX-
110, BEV

BEV NCT01498328 73 rGBM 6-month PFS 28% vs.16%; OS
(HR=0.53,95%Cl,0.32-0.88)

Migliorini et al. (69) I/II
Single Arm

IMA950,SOC NA NCT01920191 16 ndGBM mOS 19 months

Bloch et al. (71) II
Single Arm

HSPPC-
96,SOC

NA NCT00905060 46 ndGBM mOS 23.8 months; mPFS 18 months

Bloch et al. (72) II
Single Arm

HSPPC-96 NA NCT00293423 41 rGBM mOS 42.6 weeks; mPFS 19.1 weeks

Bloch et al. (73) I/II RCT HSPPC-
96,BEV

BEV NCT01814813 90 rGBM mOS 7.5 VS 10.7 months

Ahluwalia et al. (76) II
Single Arm

SurVaxM,SOC NA NCT02455557 63 ndGBM mOS 25.9 months
RCT, randomized controlled trial; TMZ, temozolomide; BEV, bevacizumab; rGBM, recurrent glioblastoma; ndGBM, newly diagnosed glioblastoma; mOS, median overall survival; mPFS, median
progression-free survival; SOC, Standard of Care, including surgical resection, concurrent chemoradiotherapy, adjuvant temozolomide for ndGBM; ECP, external control population; KLH,
Keyhole Limpet Hemocyanin. All cited literature consists of peer-reviewed publications or registered clinical trials from the ClinicalTrials.gov database.
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antigens through phagocytosis, pinocytosis, or receptor-mediated

endocytosis, processing them, and presenting antigenic peptides via

MHC class I and II pathways to activate CD8+ and CD4+ T cells,

respectively (50–52).

In glioblastoma immunotherapy, several DC vaccine platforms

have been developed, including DCVax-L (loaded with tumor

lysates) (53), GSC-DCV (pulsed with glioma stem cell antigens)

(54), ICT-107 (loaded with synthetic peptides targeting glioma stem

cell-associated antigens) (55), and CMV-DC (electroporated with

CMV pp65 mRNA) (56). While all four approaches begin by

isolating and differentiating patient-derived monocytes into

immature DCs, they differ in their antigen-loading strategies.

DCVax-L has demonstrated significant clinical benefits in

glioblastoma treatment, with phase III trial data showing mOS of

19.3 months for ndGBM patients overall, 30.2 months for MGMT-

methylated ndGBM patients, and 13.2 months for rGBM patients

(53, 57). The vaccine's personalized manufacturing approach,

involving co-culture with patient-derived tumor lysates, enables

broad targeting of tumor antigens and effectively addresses GBM's

spatial heterogeneity. Although these results showed marked

improvement over external controls, the original randomized

controlled trial design was complicated by a late-stage crossover,

necessitating external control comparisons for analysis. Current

investigations include an ongoing phase III randomized trial

evaluating DCVax-L combined with radiotherapy specifically in

MGMT-methylated glioblastoma patients to further validate these

promising findings (NCT03548571).

Additionally, clinical trial data demonstrate that the efficacy of

glioma stem cell-targeted DC vaccines is strongly influenced by

molecular biomarkers: the phase II single-center RCT of GSC-DCV

revealed superior survival benefits in patients with IDH1 wild-type,

TERT mutation, and low B7-H4 expression profiles (54), while the

phase II multicenter trial of ICT-107 showed significantly improved

median progression-free survival in newly diagnosed GBM patients,

particularly those with HLA- A1 methylated tumors (55).
3.2 Peptide vaccine

Peptide vaccines are the most classic form of cancer vaccines.

They consist of TSAs or TAAs that are typically 8 to 30 amino acids

in length. These vaccines stimulate an adaptive immune response

tar-geting the specific antigen to exert anti-tumor effects (58, 59),

including CDX-110,HSPPC-96,SurVaxM and so on.

3.2.1 CDX-110
EGFRvIII, the most common EGFR mutation in glioblastoma

with 25-30% prevalence (60), drives tumorigenesis through

constitutive activation (61) and promotes radioresistance by

enhancing DNA repair capacity (62).

While the EGFRvIII-targeted peptide vaccine rindopepimut

(CDX-110) showed promising survival benefits in three phase II

trials for ndGBM patients when combined with or without adjuvant

TMZ on the basis of CCRT (63–65), these results were not

replicated in a subsequent multicenter phase III RCT, potentially
Frontiers in Immunology 05
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clinical trial (66).

Interestingly, in recurrent GBM, rindopepimut combined with

bevacizumab demonstrated improved 6-month PFS and OS versus Bev

alone (67), suggesting TMZ may compromise vaccine efficacy while

Bev's modulation of the immunosuppressive microenvironment (68)

could be synergistic.

Anyway, CDX-110, as a single-target peptide vaccine, ultimately

demonstrates limited clinical efficacy due to the intrinsic

heterogeneity of glioblastoma tumors. This aligns with emerging

data on multi-target vaccines like IMA950 (targeting 11 TAAs),

which achieved 19-month median survival in ndGBM (69),

highlighting the therapeutic advantage of broad antigen targeting

over single-epitope approaches.

3.2.2 HSPPC-96
HSPPC-96, a heat shock protein-based vaccine, enhances

dendritic cell (DC)-mediated uptake and presentation of tumor

antigens by binding to both tumor-derived peptides and CD91 on

DCs (70).

In ndGBM, a phase II single-arm trial reported a median survival

of 23.8 months with HSPPC-96 following SOC (71). However, a

subsequent phase II RCT found no significant survival benefit when

combining HSPPC-96 with Pem after SOC (NCT03018288). For

rGBM, phase II trials indicate that HSPPC-96—either alone or with

bevacizumab—fails to substantially improve long-term survival

compared to Bev alone (72, 73). This limited efficacy may stem

from GBM’s immunosuppressive microenvironment, which impairs

T-cell function, and its inherently low tumor mutational burden.

3.2.3 SurVaxM
Integrin, an anti-apoptotic protein highly expressed on glioma

stem cells (GSCs), critically regulates GSCs self-renewal,

proliferation, migration, and invasion (9, 74, 75). The survivin-

targeting vaccine SurVaxM recently completed a phase II trial in

ndGBM patients, demonstrating a median survival of 25.9 months

when combined with SOC (76). A phase II RCT (NCT05163080) is

now evaluating this regimen.

In summary, GBM's temporal and spatial heterogeneity poses a

fundamental challenge for tumor vaccines. Nonetheless, the DCaxL

vaccine offers a promising strategy to address spatial heterogeneity.

Further exploration of its safety and preparation protocols will be

essential if considering its long-term cyclical administration to

overcome temporal heterogeneity.
4 CAR-T

T cells are central to adaptive anti-tumor immunity, but tumors

often evade detection by downregulating MHC expression,

suppressing T cell activation (77, 78). Therefore, we engineered

chimeric antigen receptors (CARs) on autologous or allogeneic T

cells to enable MHC-independent tumor recognition (79, 80). Upon

reinfusion into patients, these genetically modified T cells achieve

dual therapeutic effects-precise tumor-targeted cytotoxicity and
frontiersin.org
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synergistic restoration of tumor-suppressed host immunity (81).

For glioblastoma, CAR-T therapies targeting IL13Ra2, EGFRvIII,
and HER2 remain in early-phase (I/II) trials (Table 3).
4.1 IL13Ra2

IL13Ra2 expressed in over 50% of GBM patients (82, 83), which

has emerged as one of the most promising CAR-T targets for GBM,

promotes tumor progression by inhibiting the STAT6 signaling

pathway (84). Clinical development has progressed through

three generations.

First-generation autologous IL13Ra2 CAR-T achieved 11-

month OS in rGBM patients (n=3) via intratumoral delivery (85).

However, the clinical significance of these findings remains limited

by the small cohort size.

The second-generation IL-13Ra2 CAR-T builds upon the

first-generation construct by incorporating the BBz costimulatory

domain and employing a novel dual intratumoral and ventricular

delivery approaches combined with the Tn/mem production

platform, which enhances undifferentiated memory T-cell

populations with favorable marker profiles (increased memory

markers, decreased senescence markers. Clinical results

demonstrated a median overall survival of 10.2 months in rGBM

patients with Tn/mem platform, outperforming Tcm comparator
Frontiers in Immunology 06
groups (86), effectively verifying the feasibility of the Tn/mem

production platform for CAR-T preparation in vivo trials.

Although the mOS of second-generation IL-13Ra2 CAR-T cells

remained comparable to first-generation therapy from a survival

standpoint, imaging assessments revealed more significant

benefits.Following 10 weeks of ventricular infusion, one of the

patients achieved complete resolution of all detectable intracranial

and spinal lesions on both PET and MRI, although disease

recurrence occurred at four distinct new locations (87). These

observations suggest that the unique tumor-reducing capability of

this combined infusion approach in multifocal GBM patients may

have important implications for designing future clinical trials.

To address limitations of autologous CAR-T therapy including

prolonged manufacturing time and restricted eligibility due to poor

T-cell quality, an allogeneic IL-13Ra2 CAR-T product has

completed phase I testing (88). The therapy demonstrated a

favorable safety profile with no grade ≥3 adverse events or graft-

versus-host disease observed, though efficacy evaluation requires

further clinical investigation.
4.2 EGFRvIII

While EGFRvIII-targeted approaches are well-established in

GBM treatment (pioneered by rindopepimut), EGFRvIII CAR-T
TABLE 3 Summary of CAR-T cell clinical trials in high grade glioma.

Author Study
Design

Target Control NCT NO Number
of
patients

Conditions Lessons learned (intervention
vs. control)

Brown et al. (85) I
Single
Arm

IL-13Ra2 NA NCT00730613 3 rGBM OS 11 months

Brown et al. (86) I
Single
Arm

IL-13Ra2 NA NCT02208362 65 recurrent grade
III/IV glioma

mOS 7.7 months(rGBM); mOS 10.2 months(Tn/
mem rGBM)

Brown et al. (88) I
Single
Arm

IL-13Ra2 NA NCT01082926 6 rGBM no grade 3 or above adverse effects

Rourke et al. (89) I
Single
Arm

EGFRvIII NA NCT02209376 10 rGBM mOS 8 months

Goff et al. (90) I
Single
Arm

EGFRvIII NA NCT01454596 14 rGBM mOS 6.9 months; mPFS 1.3 months.

Choi et al. (92) I
Single
Arm

EGFRvIII
WT-EGFR

NA NCT05660369 3 rGBM transient tumor regression response in 2 patients;
sustained tumor regression response in 1 patient

Bagley et al. (167) I
Single
Arm

EGFR
IL-13Ra2

NA NCT05168423 6 rGBM significant reduction in tumor volume in
most patients

Ahmed et al. (96) I
Single
Arm

HER2 NA NCT01109095 17 rGBM mOS 11.1 months, 1 PR, 7 SD within 29 months
rGBM, recurrent glioblastoma; mOS, median overall survival; mPFS, median progression-free survival; PR, partial response; SD, Stable Disease. All cited literature consists of peer-reviewed
publications or registered clinical trials from the ClinicalTrials.gov database.
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therapy represents an alternative modality. Phase I trials of

intravenously administered EGFRvIII-CAR-T demonstrated

limited efficacy in rGBM, with monotherapy achieving median

overall survival of 8 months (89). While in another phase I

single-arm trial evaluating intravenous infusion of EGFRvIII-

CAR-T combined with IL-2, rGBM patients demonstrated not

only a limited median survival of just 6.9 months, but also

experienced dose-limiting toxicity (90). Most notably, one patient

developed pulmonary edema and succumbed to the condition

despite resuscitation attempts approximately 4 hours following

infusion of 6×10¹° cells.

The observed toxicity profile primarily stems from intravenous

CAR-T administration inducing pulmonary vascular toxicity, while

the limited clinical efficacy relates to EGFRvIII's special biological

behavior whereby the targeted variant co-amplifies wild-type EGFR

through paracrine signaling (91) - a mechanistic explanation for

both the development of treatment resistance and the frequent

detection of wild-type EGFR overexpression in recurrent tumors

following EGFRvIII-CAR-T therapy (60, 90).

To address these challenges, Bryan D. Choi's team developed

CARv3-TEAM-E T-cells, a dual-targeting approach against both

EGFRvIII and wild-type EGFR, delivered via ventricular infusion to

circumvent vascular toxicity (92). Initial clinical results demonstrated

a manageable safety profile with promising efficacy, including durable

tumor regression persisting >150 days after single infusion. However,

the preliminary nature of these findings constrained by small sample

size and trial design limitations (Single Arm). Thus, larger-scale

studies are required to comprehensively evaluate overall and

progression-free survival outcomes.
4.3 HER2

The HER2 proto-oncogene (17q21) encodes ErbB2, a key

EGFR-family tyrosine kinase receptor that is overexpressed in

80% of GBM cases (93). HER2/ErbB2 overexpression drives

gliomagenesis through ErbB2 heterodimerization-induced

tyrosine autophosphorylation and constitutive activation of

proliferative signaling pathways, ultimately promoting

uncontrolled cellular proliferation and malignant transformation

in glioblastoma (94, 95).

Results from a phase I single-arm trial demonstrated that

intravenous HER2-CAR VSTs in rGBM patients achieved a

median overall survival of 11.1 months, suggesting potential

clinical benefit (96); However, this finding requires validation in

larger phase II/III trials.

The therapeutic efficacy of CAR-T cells in GBM remains

constrained by late-adaptive resistance mechanisms arising from

tumor heterogeneity and the correlation between CAR-T

persistence and clinical response continues to be debated. Insights

can be drawn from the NY-ESO-1 CAR-T clinical trial for synovial

sarcoma and melanoma: the correlation between patients' objective

clinical responses and CAR-T persistence was only validated short-

term (≤28 days) (97), with stronger association observed for peak

peripheral blood CAR-T cell counts (98).
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5 Oncolytic viral therapy

Oncolytic viruses (OVs) are genetically modified, weakly

pathogenic viruses that selectively infect and lyse tumor cells

while inducing immunogenic cell death (ICD) in both cancer and

stromal cells (99, 100). Their therapeutic potential is mediated

through the release of TAAs, damage-associated molecular

patterns (DAMPs) from lysed cells, OV-derived pathogen-

associated molecular patterns (PAMPs), which collectively

mobilize potent antitumor immunity (101–103).

Several engineered viral platforms have been evaluated in

clinical trials for glioblastoma, including oncolytic herpes simplex

virus, oncolytic adenovirus, poliovirus, retrovirus, Newcastle

disease virus (NDV)-based vectors and so on (Table 4).
5.1 Oncolytic herpes simplex virus

Herpes simplex viruses (HSV) are neurotropic, double-stranded

DNA viruses with large genomes (~150 kb) (104). Key oncolytic

variants include HSV1716, HSV-G207, and G47D.
HSV1716, a first-generation oncolytic HSV, achieves tumor-

selective replication through deletion of the RL1 gene (encoding

ICP34.5), restricting viral propagation to actively dividing cells and

thereby enhancing safety (105, 106). However, due to rapid tumor

recurrence observed in Phase I trials following intracavitary infusion

(107), HSV-G207 rapidly supersededHSV1716 in clinical development.

HSV-G207, a second-generation oncolytic herpes virus derived

from HSV1716 through lacZ insertion-mediated inactivation of the

ICP6 gene (UL39), exhibits restricted replication in normal cells by

inhibiting late viral protein synthesis (108, 109). In a Phase I clinical

trial for recurrent glioblastoma (rGBM),stereotactically guided

intratumoral injection of HSV-G207 combined with a single 5 Gy

radiotherapy fraction yielded a median overall survival of 7.5

months (110). The suboptimal therapeutic outcome likely reflects

protocol limitations including use of a subtherapeutic radiation

dose (5 Gy) and minimal therapeutic exposure (single viral injection

plus single radiotherapy session), which collectively may have been

insufficient to achieve adequate tumor cell destruction or elicit a

robust antitumor immune response.

G47D, the third-generation oncolytic HSV-1, is engineered

from the second-generation backbone by additionally inhibiting

expression of the a47 gene in the G207 genome. This modification

prevents downregulation of MHC class I molecules mediated

through binding of the transporter associated with antigen

presentation (TAP) in host cells (111, 112). Concurrently, it

partially restores the function of the deleted g34.5 gene,

enhancing viral replication capability in tumor cells (113).

In the earliest phase I/II single-arm clinical trial conducted by

Tomoki Todo's team, stereotactically guided intratumoral injection

of G47D in 13 rGBM patients yielded a median survival of 7.3

months (114). However, subsequent analysis accounting for

treatment parameters,including limited administration frequency

(only 2 intratumoral infusions) and dose (3 patients received low-

dose virus), revealed significantly improved outcomes in the latest
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1582296
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhou et al. 10.3389/fimmu.2025.1582296
phase II trial. The optimized protocol demonstrated a median

survival of 20.2 months and 1-year survival rate of 84.2% in

patients with rGBM or residual GBM (115).
5.2 Oncolytic adenovirus

Adenoviruses are non-enveloped, double-stranded DNA viruses

that have been geneticallymodified for tumor-selective replication (116).

Among the clinically evaluated oncolytic adenovirus platforms for

glioblastoma treatment are DNX-2401, CRAd-S-pk7, and Onyx-015.

DNX-2401 in particular incorporates two key genetic

modifications: a 24-base pair deletion in the E1A gene that restricts

viral replication to cancer cells with aberrant retinoblastoma (Rb)

pathway activity and insertion of an RGD-4C peptide motif in the

fiber protein's HI loop to enhance tumor cell targeting through

integrin binding (117, 118).

Phase I clinical trial results demonstrate that stereotactic

intratumoral administration of DNX-2401 in combination with

intravenous pembrolizumab yielded a median overall survival of 12.5

months in patients with rGBM (119), which represents a clinically

meaningful improvement over historical monotherapy controls,

suggesting synergistic therapeutic benefits from the combined viral

immunotherapy and immune checkpoint inhibition approach.
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CRAd-S-pk7 represents an innovative oncolytic adenovirus

platform that utilizes neural stem cells (NSCs) as delivery vectors to

penetrate the blood-brain barrier, while its tumor-specific survivin

promoter restricts viral replication to survivin-overexpressing

glioma cells. Phase I clinical trial data demonstrated promising

efficacy in ndGBM, with the overall cohort achieving a median

overall survival of 18.4 months in the treatment of the combination

of intracavitary infusion of CRAd-S-pk7 and SOC, representing a

3.8-month improvement over SOC monotherapy, while the non-

MGMT methylated subgroup showed particularly significant

benefit with 18.0-month median survival (120).
5.3 PVSRIPO

PVSRIPO is an engineered oncolytic virus generated by

replacing the poliovirus internal ribosomal entry site (IRES) with

that of human rhinovirus type 2. This modification attenuates

neurovirulence while preserving the natural CD155 tropism of

poliovirus, enabling selective targeting of CD155-overexpressing

tumor cells (121). Phase II clinical trial results demonstrated that

convection-enhanced intratumoral delivery of PVSRIPO in

recurrent glioblastoma (rGBM) patients yielded a median overall

survival of 12.5 months - a significant improvement over historical
TABLE 4 Summary of oncolytic virus clinical trials in high grade glioma.

Author Study
Design

Invention Control NCT NO Number
of patients

Conditions Lessons learned
(intervention
vs. control)

Markert et al. (110) I
Single
Arm

G207 RT NA NCT00157703 9 rGBM mOS 7.5 months

Todo et al. (114) I/II
Single
Arm

G47D NA UMIN000002661 13 rGBM mOS 7.3 months # ;1-year
survival rate 38.5%

Todoet al. (115) II
Single
Arm

G47D NA UMIN000015995 19 resGBM,rGBM mOS 20.2 months 1-year
survival rate 84.2%

Nassiri et al. (119) I/II
Single
Arm

DNX-2401 NA NCT02798406 49 rGBM mOS 12.5months;12-month
overall survival rate 52.7%;

Fares et al. (120) I
Single
Arm

CRAd-S-pk7,SOC NA NCT03072134 12 11ndGBM,1AA mOS 18.4 months;
mPFS 9.05months

Chiocca et al. (127) I
Single
Arm

Ad–RTS–hIL-
12 DTX

ECP NCT02026271 31 rGBM mOS 12.7 months

Umemura et al. (124) I
Single
Arm

Ad-hCMV-TK,Ad-
hCMV-Flt3L,SOC

NA NCT01811992 18 14GBM,13GS,1AE mOS 21.3 months

Desjardins et al. (176) I
Single
Arm

PVSRIPO ECP NCT01491893 61 recurrent grade
IV glioma

mOS 12.5 vs. 11.3months
rGBM, recurrent glioblastoma; ndGBM, newly diagnosed glioblastoma; resGBM, residual glioblastoma; AA, anaplastic astrocytoma; GS, gliosarcoma; AE, anaplastic ependymoma; DTX,
docetaxel; RT, radiotherapy; mOS, median overall survival; mPFS, median progression-free survival; SOC, Standard of Care, including surgical resection, concurrent chemoradiotherapy,
adjuvant temozolomide for ndGBM; ECP, external control population; #, mOS is calculated from last administration, others without annotation are all calculated from randomization by default.
All cited literature consists of peer-reviewed publications or registered clinical trial from the ClinicalTrials.gov database.
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controls (120). Based on these promising outcomes, an ongoing

phase II trial is currently evaluating PVSRIPO in combination with

pembrolizumab (NCT04479241).
5.4 Viral vectors

Viral vectors are engineered viral systems composed of modified

structural elements from parent viruses (e.g. adenovirus, retrovirus)

(122, 123) and therapeutic transgenes, such as immunomodulatory

cytokines (IL-12, Flt3L), pro-apoptotic factors (Fas-L) and suicide

genes (HSV-thymidine kinase) (124, 125), which are designed to

safely deliver into target cells while maintaining efficient transduction

capabilities and minimized pathogenicity.

IL-12 is a potent cytokine that enhances T-cell and natural killer

(NK) cell activation/proliferation while exhibiting anti-angiogenic

effects (126). The adenoviral vector Ad-RTS-hIL-12 carries an IL-12

expression cassette, enabling pharmacologically inducible IL-12

upregulation upon oral administration of veledimex (VDX).

Phase I single-arm trial data demonstrated that intracavitary Ad-

RTS-hIL-12 administration combined with oral veledimex (VDX)

achieved a median overall survival of 12.7 months in patients with

recurrent high-grade glioma (127).

The HSV-tk gene encodes thymidine kinase, which converts

prodrugs (e.g., valacyclovir) into DNA synthesis-terminating

metabolites (128). Flt3L stimulates dendritic cell development by

binding Flt3 receptors on hematopoietic progenitors (129). In a

Phase I trial for primary high-grade glioma, intracavitary delivery of

adenoviral vectors (Ad-hCMV-TK + Ad-hCMV-Flt3L) combined

with oral valacyclovir and SOC achieved a median overall survival

of 21.3 months, warranting further validation (124).

In conclusion, as previously described, three delivery approaches

are commonly utilized in oncolytic virus administration, including

post-operative intracavitary infusion, stereotactically guided

intratumoral injection for non-resectable lesions, and convection-

enhanced delivery (CED) to achieve wider intraparenchymal

distribution. The impact of pre-existing antiviral immunity remains a

subject of active investigation,while low serum neutralizing antibody

titers may theoretically permit enhanced viral spread due to reduced

neutralization (130), they could alternatively indicate compromised

host immune function that might limit therapeutic efficacy (130, 131).

Besides, Radiographic assessment of treatment response presents

unique challenges, as conventional criteria (e.g., RANO) may not

fully capture virus-specific phenomena. For instance, G47D-treated
tumors frequently demonstrate characteristic "exploded crater"

morphology on MRI (114). These distinct imaging signatures

underscore the need for revised response criteria specific to

viral immunotherapies.
6 Challenges and countermeasures of
GBM immunotherapy

Clinical trials of immunotherapies for glioblastomas are currently

in full swing, but according to the above statement, most of the
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immunotherapies tend to be efficacious in early trials or single-arm

studies, with few trials being able to demonstrate significant efficacy

in phase III RCTs as they all face 4 main problems mentioned below-

immunosuppressive tumor microenvironment, GBM intrinsic

properties, drug infusion disorder and cognitive impairment of the

lymphatic drainage pathways in the brain (17) (Figure 1).
6.1 immunosuppressive tumor
microenvironment

The immunosuppressive TME comprises four key interrelated

components: profound hypoxia, aberrantly expressed membrane

surface molecules, immunosuppressive soluble factors and

infiltrating immunocytes with regulatory functions.

6.1.1 membrane surface molecules
Similar to other malignancies, glioblastoma (GBM) achieves

immune escape through multiple pathways, comprising elevated

expression of immune checkpoint ligands (e.g., PD-L1, Fas-L),

reduced major histocompatibility complex (MHC) presentation

and diminished co-stimulatory molecule expression (132–134).

Beyond conventional immune checkpoint inhibitors, emerging

strategies show promise: CTLA4-negative CAR-T cells have

exhibited enhanced proliferative capacity and antitumor activity

in leukemia patients, suggesting potential applicability to GBM

(135). Checkpoint inhibitors combined with LITT/TTF has shown

improved efficacy (42, 44) with more immunotherapy combinations

mentioned below.

6.1.2 Hypoxia
Hypoxic tumor microenvironment triggers AMPK activation in

cancer cells, which stabilizes HIF-1a and subsequently induces the

transcriptional upregulation of key metabolic regulators including

glucose transporters (GLUT1, GLUT3 and GLUT4), glycolytic

enzymes (HK2 and PFKFB2), and serine biosynthesis pathway

(SSP) enzymes. These HIF-1a-mediated metabolic reprogramming

events collectively enhance glycolytic flux and glucose-derived de

novo serine biosynthesis, thereby promoting tumor cell proliferation

(136–138). Paradoxically, this metabolic shift generates an

immunosuppressive milieu through HIF-1a-mediated lactate

accumulation, which impairs NK and T cell function (139).

Preclinical studies demonstrate that metformin-pretreated CAR-T

cells exhibit enhanced tumor infiltration and significantly prolong

survival in glioma-bearing mouse models (140).Engineered hypoxia-

tolerant CAR-T cells demonstrate potent antitumor activity with

minimal toxicity in ovarian cancer models (141) and CRISPR/Cas9-

mediated AMPKa1 knockout in lung cancer cells has been shown to

generate stable cell lines with markedly reduced proliferation rates

(142), both of which suggest potential translational relevance

for GBM.

6.1.3 Immunosuppressive soluble factors
Gliomas employ effectively shield themselves from complement-

mediated destruction by expressing membrane-bound complement
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regulators like CD46, CD55, and CD59 (143). Simultaneously, their

secretion of potent immunosuppressive cytokines such as IL-10 and

TGF-b potently inhibits various immune populations including CD4

+ T cells, NK cells, and dendritic cells leading to suppression of both

antigen-specific and innate immune functions in patients (144, 145).

Recent preclinical advances highlight TGF-b inhibition as a

particularly promising therapeutic avenue. When combined with
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radiotherapy, pharmacological TGF-b antagonists have been shown

to reduce tumor invasiveness and reverse mesenchymal transition

in GBMmice models, significantly extending survival (146). Equally

encouraging, TGFBR2-knockout T cells demonstrate markedly

enhanced tumor-killing capacity in both melanoma and lung

adenocarcinoma models (147), providing valuable insights for its

application in GBM treatment in the future.
FIGURE 1

Challenges and countermeasures of glioblastoma immunotherapy. This figure provides a detailed illustration of the challenges in immunotherapy
and corresponding countermeasures. GBM, glioblastoma multiforme; CAR-T, chimeric antigen receptor T-cell; DC, dendritic cell; NK, natural killer
cell; TAM, tumor-associated macrophage; GSC, glioma stem cell; VEGF, vascular endothelial growth factor; SDF-1, stromal cell-derived factor-1;
POSTN, periostin; IDO, indoleamine 2,3-dioxygenase; MMP9, matrix metalloproteinase-9; IL, interleukin; GSC-DCV glioma stem cell-derived
dendritic cell vaccine; iNOS, inducible nitric oxide synthase. Detailed challenges: (A) Cognitive impairment of intracranial lymphatic drainage
pathways; (B) Drug delivery obstacles due to the existence of blood-brain barrier; (C) Hypoxia.The hypoxic microenvironment upregulates
intratumoral AMPK activity and mediates HIF-1a activation, thereby promoting glycolysis and glucose-derived de novo serine biosynthesis to
facilitate tumor proliferation; (D) Membrane surface molecules. GBM cells evade immune surveillance by overexpressing inhibitory immune
checkpoint ligands (e.g., PD-L1, Fas-L) and downregulating MHC expression; (E) Immunosuppressive soluble cytokines. Glioma cells express
membrane-bound regulatory proteins (e.g., CD46, CD55, CD59) and secrete cytokines (e.g., IL-10, TGF-b) to suppress host immunity; (F) Infiltrating
immune cells- GSCs recruit and polarize TAMs toward the M2 phenotype via secretion of POSTN and TGF-b. TAMs enhance tumor invasion by
producing MMP9 to degrade the extracellular matrix, inhibit T-cell function via IDO1 expression, and promote angiogenesis by inducing VEGF
secretion through the JAK-STAT pathway. Monocytic MDSCs suppress T-cell proliferation via iNOS expression; (G) Low tumor mutation burden; (H).
Intertumoral heterogeneity; (I) Intratumoral heterogeneity. Detailed countermeasures: Approaches including convection-enhanced delivery,
intraventricular and intratumoral infusion, LITT, and neural stem cell-based delivery to overcome the blood-brain barrier; DCaxL and multi-targeted
CAR-T to address tumor heterogeneity; radiotherapy, chemotherapy, and combined use of oncolytic viruses to tackle low tumor mutational burden;
and the combination of immune checkpoint inhibitors with TTF and LITT to counteract T-cell suppression have been preliminarily validated in
clinical trials (marked with green ticks). Meanwhile, methods including intranasal exosome delivery, AMPK kinase-preconditioned T cells, CXCR4
antagonists, and RGD peptides have shown promising results in preclinical GBM mouse studies (marked with pink stars). Additionally, strategies like
mesenchymal stem cell-based drug delivery, low-oxygen-demand CAR-T, gene therapy targeting AMPKa1 knockout in tumor cells, CTLA4-negative
CAR-T cells, F4/80-targeted CAR-T, and folate receptor-targeted CAR-T have demonstrated efficacy in preclinical studies of other cancers (e.g.,
ovarian cancer, lung cancer), offering valuable insights for the future development of GBM immunotherapy. The figure is created in BioRender.com.
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6.1.4 Infiltrating immunocytes with regulatory
functions

By secreting periostin, GSCs recruit Tumor-Associated

Macrophages (TAMs) into the tumor mass, where periostin-

integrin avb3 binding initiates their pro-tumoral activation (148).

Once recruited, these TAMs undergo functional reprogramming

through sustained exposure to GSC-derived factors (TGF-b, IL-4,
IL-10), adopting an immunosuppressive phenotype that actively

supports tumor progression (149). The activated TAMs then

facilitate tumor invasion through MMP9-mediated extracellular

matrix degradation (150). Concurrently, they establish an

immunosuppressive niche via IDO1-driven tryptophan metabolism,

which inhibits effector T-cell function (151, 152). Furthermore,

TAMs coordinate angiogenic processes through dual mechanisms:

activating the IL-6/JAK-STAT/VEGF axis and secreting SDF-1 to

recruit CXCR4+ endothelial progenitor cells (153, 154).

As is validated in preclinical trials, the CXCR4 antagonist

plerixafor combined with anti-PD-1 (pembrolizumab)

significantly improved survival of GBM mice (155); Treatment

with integrin-targeting RGD peptides significantly suppressed

POSTN-dependent TAM infiltration, resulting in reduction of

tumor burden (148); Genetic silencing of POSTN in GSC-derived

GBM models significantly prolonged overall survival (148); Both

F4/80-targeted and folate receptor-directed CAR-T cells
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demonstrated significant tumor growth delay in ovarian cancer

models (156, 157), which may be potentially applicable to GBM.

Clinically, combining CAR-T therapy with IDO/arginase

inhibitors enhanced interferon production in solid tumors like

colon cancer by blocking bone marrow-derived MDSC migration

to tumor sites - a critical mechanism that prevents iNOS-mediated

arginine depletion and subsequent impairment of CD3-TCR

synthesis and T-cell proliferation (158, 159), which could be

relevant for GBM therapy.
6.2 GBM intrinsic properties

The inherently low tumor mutational burden in glioblastoma

creates a dual therapeutic challenge: it provides insufficient immune

activation to overcome immune escape (160) while simultaneously

restricting the pool of targetable neoantigens for immunotherapy

development. Emerging strategies to enhance tumor immunogenicity

include leveraging radiation-induced hypermutation (161, 162) or

employing oncolytic viruses to stimulate TAAs release (163). Early

clinical validation of these approaches is already emerging, with

combination regimens such as DNX-2401 plus pembrolizumab

(119) and Ad-RTS-hIL-12 with nivolumab (127) demonstrating

preliminary efficacy in GBM patients.
TABLE 5 Summary of promising drugs of immunotherapy for newly diagnosed patients.

Medication Classification Status Stage Design
Type

NCT n mOS 95%Cl

Studies with Unlimited MGMT Methylation Status

RT,TMZ(SOC) Standard ndGBM III RCT NA 287 14.6 (13.2,16.8)

TTF,SOC Standard ndGBM III RCT NCT00916409 466 20.9 (19.3,22.7)

SurVaxM,SOC Vaccine ndGBM II Single Arm NCT02455557 63 25.9 (22.5,29)

PEM,TTF,SOC ICI ndGBM II Single Arm NCT03405792 26 24.8 NA

Ad-hCMV-TK,Ad-hCMV-
Flt3L,SOC

Virus primary high-
grade glioma

I Single Arm NCT01811992 18 21.3 (11.1,26.1)

DCVax-L,SOC Vaccine ndGBM III Single Arm NCT00045968 232 19.3 (17.5,21.3)

IMA950,SOC Vaccine ndGBM I/II Single Arm NCT01920191 16 19 (17.25,27.87)

CRAd-S-pk7, SOC Virus ndGBM I Single Arm NCT03072134 12 18.4 (15.7, NA)

Studies in MGMT-Methylated Patients

SOC Standard ndGBM III RCT NCT01149109 63 31.4 (27.7,47.1)

LOM,SOC Standard ndGBM III RCT NCT01149109 66 48.1 (32.6,NA)

DCVax-L, SOC Vaccine ndGBM III Single Arm NCT00045968 90 30.2 (23.7,33.9)

SurVaxM, SOC Vaccine ndGBM II Single Arm NCT02455557 33 41.4 (32.1,49.4)

Studies in MGMT-Methylated Patients

SurVaxM, SOC Vaccine ndGBM II Single Arm NCT02455557 28 16.5 (13.4,19.3)

CRAd-S-pk7, SOC Virus ndGBM I Single Arm NCT03072134 9 18 (13.67,NA)
f

RCT, randomized controlled trial; TMZ, temozolomide; ndGBM, newly diagnosed glioblastoma; mOS, median overall survival; SOC, Standard of Care, including surgical resection, concurrent
chemoradiotherapy, adjuvant temozolomide for ndGBM; RT, radiotherapy; TTF, tumor treating fields; IPI, ipilimumab; PEM, pembrolizumab; LOM, lomustine; ICI, immune checkpoint
inhibitors. All cited literature consists of peer-reviewed publications or registered clinical trials from the ClinicalTrials.gov database.
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Glioblastoma exhibits profound intratumoral and intertumoral

heterogeneity, manifested through multiple dimensions. Molecular

analyses reveal significant differences between the tumor core (TC)

and peripheral brain tissue (PTB) regions (164). This variability is

further compounded by treatment-induced antigen downregulation

and phenotypic transformation in recurrent GBM (165).

While molecular profiling initially classified GBM into three major

subgroups (TCGA-PN, TCGA-CL, and TCGA-MES), most tumors

demonstrate dynamic co-existence of these subtypes in varying

proportions over time, underscoring the extensive spatial and

temporal heterogeneity (3). Furthermore, GSCs serve as key drivers

in establishing and maintaining this heterogeneous landscape (166).

Therapeutically, while multi-targeted approaches such as CART-

EGFR-IL13Ra2 cells have achieved measurable tumor reduction in

clinical trials (167), and DC vaccines combined with anti-PD-1 therapy

(nivolumab) show survival benefits in rGBM (NCT02529072) (168),

these strategies face inherent limitations due to tumor plasticity.

Ultimately, targeting the fundamental mechanisms governing GSC

plasticity may be required to achieve durable therapeutic responses.
6.3 Drug infusion disorder

While the blood-tumor barrier (BTB) represents a modified

version of the blood-brain barrier (BBB) with altered integrity in

tumor-affected regions (169, 170), neuroimaging studies reveal
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critical spatial heterogeneity in its disruption. MRI analyses

demonstrate that in both glioblastoma (GBM) and medulloblastoma

patients, BBB breakdown primarily localizes to the tumor core, while

peritumoral areas often retain partial or even complete barrier

functionality (171, 172). This persisting barrier function in infiltrative

tumor regions necessitates targeted strategies to overcome residual

drug delivery obstacles.

Emerging preclinical evidence highlights the promise of

intranasal delivery platforms for treating central nervous system

pathologies. In glioma models, curcumin-encapsulated exosomes

administered intranasally significantly enhanced tumor cell

apoptosis and improved survival in GL26-bearing mice (173),

while engineered microglial exosomes expressing anti-LAG3

antibodies synergized with laser irradiation to boost glioblastoma

responses to immune checkpoint inhibitors without developing

resistance (174). In addition, mesenchymal stem cell (MSC)-based

drug delivery systems have demonstrated efficacy in modulating

neuroinflammatory processes in Alzheimer's disease models (175),

suggesting their potential utility in transporting anti-tumor drugs.
7 Discussion

Glioblastoma (GBM) remains the most aggressive primary brain

tumor despite multimodal therapeutic approaches including

radiotherapy, TMZ chemotherapy, DNA damage response (DDR)
TABLE 6 Summary of promising drugs of immunotherapy for recurrent patients.

Medication Classification Status Stage Design
Type

NCT n mOS 95%Cl

Studies with Unlimited MGMT Methylation Status

TMZ Standard rGBM II RCT NCT00941460 53 10.6 (8.1,11.6)

BEV Standard rGBM II RCT NCT00345163 85 9.2 (8.2, 10.7)

LOM Standard rGBM III RCT NCT01290939 149 8.6 (7.6,10.4)

LOM+BEV Standard rGBM III RCT NCT01290939 288 9.1 (8.1-10.1)

PEM(Neoadjavant) ICI rGBM II Single Arm NCT02337686 15 20.3 (8.64,28.45)

G47D Virus resGBM, rGBM II Single Arm UMIN000015995 19 20.2 (16.8,23.6)

NIVO ICI rGBM III RCT NCT02017717 31 14.7 (8.9,17.2)

DCVax-L Vaccine rGBM III Single Arm NCT00045968 64 13.2 (9.7,16.8)

Ad–RTS–hIL-
12,DTX

Virus rGBM I Single Arm NCT02026271 31 12.7 NA

DNX-2401,PEM Virus rGBM I Single Arm NCT02798406 49 12.5 (10.7,13.5)

PVSRIPO Virus recurrent grade
IV glioma

I Single Arm NCT01491893 61 12.5 (9.9-15.2)

PEM,LITT ICI rGBM II RCT NCT02337686 28 11.4 NA

HER2-CAR VSTs CAR-T rGBM I Single Arm NCT01082926 17 11.1 (4.1,27.2)

IL-13Ra2 CAR-T CAR-T rGBM I Single Arm NCT02208362 14 10.2 (7.7,NA)
RCT, randomized controlled trial; TMZ, temozolomide; BEV, bevacizumab; NIVO, nivolumab; DTX, docetaxel; LITT, laser interstitial thermal therapy; ndGBM, newly diagnosed glioblastoma;
mOS, median overall survival; SOC, Standard of Care, including surgical resection, concurrent chemoradiotherapy, adjuvant temozolomide for ndGBM; PEM, pembrolizumab; LOM, lomustine;
ICI, immune checkpoint inhibitors. All cited literature consists of peer-reviewed publications or registered clinical trials from the ClinicalTrials.gov database.
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inhibitors, and targeted molecular therapies. When it comes to

immunotherapy, we must acknowledge the fact that while numerous

previous immunotherapeutic agents have demonstrated remarkable

survival benefits in early-phase clinical trials and single-arm studies,

very few have shown efficacy in Phase III randomized controlled trials.

Nevertheless, through optimization of drug design (such as

continuously advanced oncolytic viruses and upgraded CAR-T cells),

appropriate implementation of combination strategies and innovative

treatment paradigms ( such as the appearance of neoadjuvant therapy)

continue to make immunotherapy a promising approach for GBM

patients, especially recurrent ones (Tables 5, 6).

Notably, as diagnostic criteria evolution has introduced

prognostic complexities: the 2021 WHO classification now defines

GBM specifically as IDH-wildtype (IDHwt) tumors (5), earlier

clinical trials, however, included IDH-mutant cases, potentially

yielding more optimistic survival outcomes than those expected

in trials conducted under current diagnostic standards. This

historical discrepancy underscores the importance of molecular

stratification in interpreting therapeutic results across different

eras of GBM research. Furthermore, since tumor-treating fields

were only formally incorporated into the SOC for glioblastoma in

the 2021 WHO Classification of Central Nervous System Tumors

(5), the control arms across cited in clinical trials consistently

employed conventional SOC regimens consisting of concurrent

chemoradiotherapy followed by adjuvant TMZ therapy.

In summary, the effectiveness of immunotherapy in

glioblastoma is limited by several key factors, including the

tumor's low mutational burden, its highly heterogeneous nature,

the strongly immunosuppressive microenvironment, drug delivery

obstacles, and the brain's unique lymphatic anatomy.

To counteract the hypoxic tumor microenvironment, potential

approaches include using gene therapy to knock down AMPKa1 in

tumor cells or pretreating T cells with AMPK kinase activators,

developing CAR-T cells with low oxygen requirements. For GBM’s

escape immunity by downregulating TGFb receptors while

overexpressing TGFb, solutions involve creating TGFb receptor-

negative T cells or administering TGFb antagonists. The recruitment

of tumor-associated macrophages by POSTN might be blocked using

integrin-inhibiting RGD peptides, while CAR-T cells targeting F4/80

and folate receptors could directly eliminate TAMs.

To improve drug delivery, potential strategies include intranasal

administration, convection-enhanced delivery, direct tumor or

ventricular infusion, and laser interstitial thermal therapy (LITT).

Alternative approaches using neural stem cells or nanoparticles

(including exosomes) may help drugs cross the blood-brain barrier.

Addressing glioblastoma's fundamental characteristics requires

more than just increasing mutational load through radiotherapy or

oncolytic viruses. The core challenge lies in overcoming the tumor's

subclonal diversity and poor immunogenicity, which are critical for

generating effective anti-tumor immune responses.

Beyond the inherent biological and technical hurdles in treating

glioblastoma (GBM), the clinical implementation of immunotherapies

faces critical logistical and financial barriers that demand urgent
Frontiers in Immunology 13
attention. Logistically, the cold-chain dependence and time-sensitive

nature of many immunotherapeutic agents (e.g., CAR-T cells) pose

significant supply-chain challenges. Potential solutions include

accelerating the development of universal CAR-T products to reduce

manufacturing delays and advancing lyophilized formulations (e.g.,

BioNTech's room-temperature-stable RNA vaccine technology) to

minimize cold storage requirements.

Financially, the prohibitive costs of GBM immunotherapy

remain a major obstacle, driven by both the expensive personalized

production of immunotherapies (e.g., tumor-specific peptide

vaccines) and limited insurance coverage for most emerging

treatments. To address affordability, broader adoption of risk-

sharing agreements (e.g., the UK NHS's "pay-for-performance"

model) and global funding initiatives (e.g., WHO's immunotherapy

accessibility programs) could help alleviate the economic burden on

patients and healthcare systems.
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