
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Yongfu Shao,
Ningbo University, China

REVIEWED BY

Donglin Zhang,
Ludwig Maximilian University of Munich,
Germany

*CORRESPONDENCE

Xiao Qiao

jshaqiaoxiao@163.com

Qiqi Wang

qiqiwang0113@yeah.net

RECEIVED 24 February 2025
ACCEPTED 17 April 2025

PUBLISHED 15 May 2025

CITATION

Pan D, Li X, Qiao X and Wang Q (2025)
Immunosuppressive tumor microenvironment
in pancreatic cancer: mechanisms
and therapeutic targets.
Front. Immunol. 16:1582305.
doi: 10.3389/fimmu.2025.1582305

COPYRIGHT

© 2025 Pan, Li, Qiao and Wang. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Mini Review

PUBLISHED 15 May 2025

DOI 10.3389/fimmu.2025.1582305
Immunosuppressive tumor
microenvironment in pancreatic
cancer: mechanisms and
therapeutic targets
Da Pan1,2, Xinyue Li3, Xiao Qiao4* and Qiqi Wang1,2*

1Department of Gastroenterology, Wenzhou Central Hospital, Wenzhou, China, 2Department of
Gastroenterology, The Dingli Clinical College of Wenzhou Medical University, Wenzhou, China, 3First
College for Clinical Medicine, Xuzhou Medical University, Jiangsu, Xuzhou, China, 4Department of
Gastroenterology, The Affiliated Huaian Hospital of Xuzhou Medical University, Huaian, China
Pancreatic cancer is projected to become the second leading cause of cancer

−related death by 2030. Conventional interventions including surgery,

radiotherapy, and chemotherapy provide only modest survival benefits,

underscoring an urgent need for more effective therapies. Although

immunotherapy has revolutionized the management of several solid tumors,

its clinical benefit in pancreatic cancer has so far been disappointing. Mounting

evidence indicates that a highly immunosuppressive tumor microenvironment

(TME), dominated by tumor−associated macrophages (TAMs), myeloid−derived

suppressor cells (MDSCs), and regulatory T cells (Tregs), drives immune evasion,

tumor progression, metastasis, and chemoresistance through complex cytokine

and chemokine networks. This review summarizes current knowledge of these

immunosuppressive mechanisms and provides emerging strategies aimed at re

−educating or depleting these cellular constituents to enhance the efficacy of

immunotherapy in pancreatic cancer.
KEYWORDS

pancreatic cancer, tumor microenvironment, regulatory T cells, immune suppression,
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1 Introduction

Pancreatic cancer is a highly malignant digestive system tumor with subtle and non-

specific clinical symptoms, making early diagnosis difficult. By 2030, it is expected to

become the second leading cause of cancer-related deaths globally (1). Traditional

treatments like surgery, radiation, and chemotherapy are limited in efficacy (2, 3),

contributing to poor prognosis (4, 5). Immunotherapy has shown promise in treating

various cancers, but clinical trials for pancreatic cancer have not met expectations. One key

challenge is the immunosuppressive tumor microenvironment (TME), which plays a

critical role in the tumor’s initiation, development, and prognosis. The TME of

pancreatic cancer is characterized by immune cell infiltration (6, 7), primarily of
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immunosuppressive cells such as pancreatic stellate cells, regulatory

T cells (Tregs), myeloid-derived suppressor cells (MDSCs) (8), and

tumor-associated macrophages (TAMs) (9). These cells secrete

immunosuppressive molecules that inhibit the function of anti-

tumor immune cells, promote immune evasion, and enhance tumor

progression and metastasis (1, 10, 11). This review summarizes the

mechanisms of the immunosuppressive components in the

pancreatic cancer TME, aiming to provide insights into

its immunotherapy.
2 The role of immune cells in the
pancreatic cancer TME

Pancreatic cancer evades immunity via MHC I downregulation,

inhibiting CD8+ T cell activation (12–14). Tumor-specific

neoantigens may fail to trigger immune responses due to the

TME’s immunosuppressive effects (15, 16). Additionally, TGF-b
and IDO secreted by cancer cells further impair immune function

(17, 18), with Tregs, MDSCs, and TAMs contributing to immune

suppression in early stages (19–21).
2.1 The role of TAMs in pancreatic cancer

2.1.1 TAMs promote tumor inflammation and
immune evasion

TAMs secrete cytokines and chemokines, such as CCL18, which

upregulates VCAM-1 in pancreatic cancer via the CCL18/

PITPNM3/NF-kB/VCAM-1 pathway, promoting tumor

progression (22). They also release IL-10, IL-12, and CCL13,

mediating Th2 responses and suppressing T-cell immunity (23).

In mouse models, TAM-produced IL-6 and TNF drive

inflammation, while IL-6/STAT3 inhibition reduces inflammatory

cell infiltration (24). TAMs activate TLR-6/TLR-2 via Versican,

expressing inflammation-related genes (25). CTCF promotes

pancreatic cancer progression through FLG-AS1-mediated

epigenetic mechanisms and macrophage polarization (26). TAMs

facilitate immune evasion by secreting IL-10, inducing T cell

apoptosis via CD120a/b (27, 28), altering tumor cell phenotypes,

and overexpressing B7-H3 via EGFR/MAPK, inhibiting CD8+ T

cells (29). Arginase I expression depletes L-arginine, suppressing T

cell receptors (30), while the hypoxic, low-glucose TME polarizes

macrophages to M2-like phenotypes, further impairing T cell

function (31).
2.1.2 TAMs promote tumor metastasis and
chemoresistance

Tumor-associated macrophages (TAMs) play multifaceted roles

in tumor progression through diverse molecular mechanisms. These

immune cells facilitate epithelial-mesenchymal transition (EMT)

and enhance metastatic potential via TLR4/IL-10 signaling, while

simultaneously inducing matrix metalloproteinases (MMP-2/9)

through MIP-3a to promote pancreatic ductal adenocarcinoma
Frontiers in Immunology 02
(PDAC) invasion (32, 33). Under hypoxic conditions,

TAMs activate the PI3Kg/PTEN pathway and upregulate HIF-1/

2a, leading to increased production of pro-angiogenic factors

(VEGF, TNF-a, IL-1b) and metastasis-promoting mediators (34–

36). TAMs produce EGF and VEGF-A, aiding tumor cell

circulation entry. b-catenin-driven TAMs enhance metastasis via

OSM/STAT3/LOXL2 (37). The TYROBP-mediated M2

polarization further exacerbates these pro-tumoral effects (38).

TAMs express HIF-1a, upregulating VEGF, TNF-a, IL-1b, IL-8,
PDGF, bFGF, thymidine phosphorylase, and MMPs, promoting

angiogenesis (39). VEGF-A recruits VEGFR2+ macrophages,

forming TAMs (40). In PDAC, hypoxia increases HIF-1/2 in

TAMs, upregulating TGF-b and NRF2 to induce VEGF-A (41).

Vasohibin-1 is regulated by TGF-b/BMP signaling between TAMs

and tumor cells (42). Notably, TAMs significantly contribute to

therapeutic resistance in PDAC through multiple pathways: (1)

promoting dense stromal formation and IGF/IGF1R activation

(43); (2) enhancing EMT-mediated drug evasion (44); (3) driving

gemcitabine resistance via TGF-b1/Gfi-1 signaling, which can be

attenuated by simvastatin (45); and (4) fostering immunotherapy

resistance through CREB3L1-mediated TAM reprogramming

within the tumor microenvironment (46).
2.2 The role of tumor-associated
neutrophils in pancreatic cancer

2.2.1 TANs regulate tumor immunity in pancreatic
cancer

TANs regulate immune responses in PDAC through

chemokines and cytokines (47), impairing CD8+ T cell infiltration

and function. Nectin2+ and OLR1+ TAN phenotypes are associated

with T-cell exhaustion. ER stress regulates TAN protumor activities

(48). IL-17-induced neutrophil extracellular traps (NETs)

contribute to resistance to immune checkpoint inhibitors (ICIs).

CXCR2 and its ligands, such as CXCL5, are crucial for TAN

recruitment in pancreatic cancer (49). Immunotargeting

neutrophils can restore anti-tumor immunity in pancreatic

cancer, improving therapeutic outcomes by addressing immune

evasion mechanisms.

2.2.2 TANs regulate pancreatic cancer
proliferation and metastasis

TANs in the TME can polarize into N1 and N2 phenotypes.

Interferon-b promotes N1 polarization, enhancing anti-tumor

immunity, while TGF-b and G-CSF induce N2 polarization,

supporting tumor growth (50–52). In pancreatic cancer, TANs

secrete a proliferation-inducing ligand (APRIL) (53), which was

indicated to plays a role in promoting the progression of pancreatic

cancer (54). The interaction of TIMP1 with its receptor CD63

activates the ERK pathway, enhancing NETs formation and tumor

proliferation (55). PADI4, a key enzyme driving NET formation,

accelerates pancreatic cancer growth. In PADI4 knockout mice,

tumor growth is slower, and deoxyribonuclease treatment reduces

cancer growth by inhibiting NETs (56).
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TME fibrosis and collagen deposition facilitate metastasis, with

discoidin domain receptor 1 (DDR1) signaling via NF-kB inducing

CXCL5 production, recruiting TANs, and enhancing NET

formation (57, 58). NETs trap cancer cells, shield them from

immune attack, and induce EMT via PADI4 and elastase

translocation, promoting metastasis (59). NETs also enhance liver

metastasis by recruiting CAFs and hematopoietic stem cells (60).

Consistent with this, dense TAN−derived NET lattices have been

visualized within hepatic sinusoids before overt metastatic seeding;

these structures trap circulating pancreatic cancer cells, facilitate

their extravasation, and attract immunosuppressive macrophages,

thereby functionally linking NET formation to both immune

suppression and metastatic colonization (61, 62). TANs secrete

CCL5, promoting cancer cell migration and CD8+ T-cell

dysfunction via Nectin2 upregulation (48). Angiogenesis is critical

for tumor progression. CXCL5/CXCR2 blockade inhibits tumor

growth and angiogenesis via activation of the protein kinase B

(Akt), extracellular signal-regulated kinase (ERK) pathways.

CXCL8 and CXCL12 synergistically enhance endothelial cell

migration and proliferation, with MMP-2 activation further

promoting angiogenesis (63). Targeting angiogenesis-related

factors is a promising research direction.

2.2.3 TANs influence chemoresistance in
pancreatic cancer

TANs contribute to chemoresistance, with growth arrest-

specific protein 6 (Gas6) from neutrophils promoting cancer cell

regeneration via the Gas6/AXL pathway (64). G-CSF enhances

neutrophil recruitment and resistance to anti-VEGF therapy,

while MEK inhibition reduces G-CSF production and synergizes

with anti-VEGF drugs (65). N2 TANs interfere with antigen-

presenting cell (APC) maturation, leading to resistance in CD40-

targeted therapies (66). Targeting TANs may improve

chemotherapy efficacy in pancreatic cancer. IL-17 induced NETs,

which play a key role in the resistance to ICIs in pancreatic

cancer (67).
2.3 Tumor-infiltrating lymphocytes in
pancreatic cancer

TILs, including CD4+ Th cells, CD8+ CTLs, and Tregs, are

pivotal in the TME. High CD8+ CTL infiltration correlates with

improved survival, as these cells induce tumor cell apoptosis via

MHC I-dependent perforin, granzyme, TNF, and IFN-g release (68,
69), though IL-18 receptor signaling impedes their migration (70).

Conversely, Tregs suppress antitumor immunity; lipid synthesis

inhibition in Tregs enhances immune responses (71). Moncada

et al. (72) linked pancreatic cancer cell states to TME composition,

revealing clinical implications. Foxp3, a Treg regulator (73), drives

immunosuppression via TGF-b secretion, dendritic cell

suppression, and CD8+ T-cell inhibition (74–76). Treg levels rise

from precancerous lesions to adenocarcinoma, associating with
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metastasis and advanced staging (77). In tumors, Tregs co-

infiltrate with CD4+/CD8+ T cells but suppress CTL activity,

promoting immune evasion (78, 79). Tregs interact with (1)

CD20+ B cells (worse prognosis), (2) CD3+CD56+ NKT cells, and

(3) CD68+CD163+ macrophages, influencing immune polarization

(80). B regulatory cells (Bregs) are elevated in PDAC and linked to

progression (81). PDAC cells and Bregs mutually activate via IL-18,

with Bregs expressing PD-L1/IL-35 to suppress CD8+ T-cell

proliferation and IFN-g production (81–85). Dual IL-18/PD-L1

blockade reduces tumor growth in models, highlighting Breg-

cancer crosstalk as a therapeutic target (81).
2.4 MDSCs in pancreatic cancer

Myeloid-derived suppressor cells (MDSCs) represent a

heterogeneous population of immature myeloid cells that play a

critical role in tumor-mediated immune suppression. Although

scarcely present in normal pancreatic tissue, these cells

accumulate significantly in pathological conditions including

pancreatic intraepithelial neoplasia and chronic pancreatitis (86,

87). In advanced pancreatic cancer, tumor-derived factors and

inflammatory mediators promote MDSC recruitment and

activation, leading to their substantial expansion in the bone

marrow, peripheral circulation, and tumor microenvironment

(88–90). The immunosuppressive functions of MDSCs are

mediated through multiple interconnected mechanisms. These

cells generate reactive oxygen species (ROS) in response to

cytokines such as TGF-b, IL-10, and IL-6, creating an oxidative

environment that impairs immune cell function within the TME.

Furthermore, MDSCs express high levels of arginase and nitric

oxide synthase, which deplete essential amino acids and disrupt

critical signaling pathways including JAK3 and STAT5, ultimately

leading to T cell dysfunction and apoptosis. The production of

peroxynitrite by MDSCs causes nitration of T cell receptor (TCR)

and CD8 molecules, thereby compromising antigen recognition

capacity (91).

MDSCs also promote immune tolerance through indirect

mechanisms. Under IFN-g stimulation, they secrete IL-10 and

TGF-b to drive regulatory T cell (Treg) differentiation (92)

Additionally, MDSCs upregulate PD-L1 expression to directly

inhibit T cell activity while simultaneously reducing L-selectin

expression, which impairs T cell homing and activation (91).

Preclinical studies demonstrate that MDSC depletion in

pancreatic cancer models enhances T cell infiltration, suppresses

tumor progression, and improves survival outcomes, highlighting

these cells as promising therapeutic targets (88). Besides,

KRAS mutations occur in 90% of PDAC cases (93), driving

tumorigenesis and progression (94). These alterations shape

an immunosuppressive TME by expanding MDSCs and

depleting dendritic cells, undermining antitumor immunity (95).

Combining KRAS inhibition with I/O therapies may thus

overcome resistance.
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2.5 Inflammatory mediators in pancreatic
cancer

The TME is integral to tumorigenesis, development, and

metastasis, comprising cancer cells, stromal cells, cytokines, and

inflammatory mediators (96–98). Inflammation is closely linked to

cancer, with conditions like obesity and diabetes being risk factors

for PDAC, supported by the concept of “parainflammation” (99).

Tumor cells secrete chemokines to recruit inflammatory cells, as

demonstrated by Makoto Sano et al. (100), showing that the

CXCR2-CXCL5 axis accelerates invasion and migration in PDAC.

CXCR2-dependent regulation modulates the formation,

angiogenesis, and metastasis of pancreatic cancer, with CXCR2

also promoting immune evasion and cancer development through

autocrine effects, while recent experiments show that cell-

autonomous CXCL5 maintains tolerance loops and stromal

inflammation by inducing TNF derived from neutrophils in

cancer cells (101, 102). Cytokines such as TGF-b, IL-6, IL-10, and
Frontiers in Immunology 04
TNF-a play critical roles in tumor progression and metastasis.

TGF-b enhances invasion via EMT, IL-6 activates JAK2-STAT3 to

promote angiogenesis, and TNF-a induces metastasis by activating

fibroblasts and promoting VEGF production in PDAC

(99) (Figure 1).
2.6 Exosomes in pancreatic cancer

Exosomes secreted by both eukaryotic and prokaryotic cells

contain RNA, DNA, proteins, lipids, and sugars (103–105). In

pancreatic cancer, exosomes transfer signaling molecules that

promote tumor proliferation, differentiation, and metastasis (106).

For example, miR-3960 inhibits TFAP2A in exosomes,

counteracting their promotive effects (107). Exosomes, enriched

with miRNAs like miR-10b, miR-550, and miR-1246, serve as

biomarkers for early diagnosis (108). Exosomes also deliver

siRNA targeting oncogenes, like KrasG12D, more effectively than
FIGURE 1

The role of immunosuppressive cells in pancreatic cancer.
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liposomes (109). Exosomes, linked to tumor metastasis, are secreted

in the hypoxic microenvironment and enriched with miRNA-301a-

3p, phosphatases, and the angiotensin II/PI3Kg signaling pathway,

which induce HIF1-a or HIF2-a to stimulate M2 macrophage

polarization, thereby promoting tumor cell metastasis (34, 110).

Exosomes derived from hypoxic pancreatic neuroendocrine tumors

(PNETs) contain CEACAM5, which facilitates the polarization of

TAMs towards the M2 phenotype, thereby enhancing tumor

metastasis through the activation of MMP9 (111). Additionally,

hypoxic tumor-derived exosomal miR-4488 induces M2

polarization in macrophages, promoting liver metastasis of

pancreatic neuroendocrine tumors via the RTN3/FABP5 axis,

which drives fatty acid oxidation (112). Exosomes can also

influence metastasis and invasiveness via signaling pathways like

circ-PDE8A (113). Thus, exosomes have significant clinical value,

warranting further exploration in pancreatic and other cancers.
3 Therapies targeting immune
suppressive cells

3.1 Targeting TAMs in treatment

Tumor aggressiveness is influenced by TAM location and

quantity. Inhibiting the CCL2/CCR2 axis reduces TAMs TAM

recruitment, promotes M1 polarization, and suppresses M2

phenotypes (114, 115). Clinical evidence highlights carlumab

(anti-CCL2) for pancreatic cancer (116) and PF-04136309 (CCR2

antagonist) in preclinical/clinical settings (117, 118). CCR2 or CSF-

1R targeting augments chemotherapy, curbs metastasis, and

amplifies T-cell activity (119). Ultrasound-mediated CSF1/CSF1R

blockade depletes macrophages, showing therapeutic potential

(120). Clodronate liposomes deplete TAMs, increasing IFN-g+

CD8+ T-cell infi l tration in PDAC (121). Macrophage

repolarization (M2→M1) via LPS, IFN-g, TLR4 agonists, or

paclitaxel/Nab-paclitaxel enhances immunity (122–124). NF-kB
inhibition reprograms TAMs, potentially through IFN-g/CCL2,
improving anti-tumor responses (125). CD40 agonists with

gemcitabine remodel PDAC’s immune landscape, activating T

cells (126). Histamine-rich glycoproteins induce M1 polarization,

normalize vasculature, and restore CD8+ T-cell function via PI3Kg
inhibition (126, 127). IL-27, produced by activated macrophages,

activates JAK-STAT, shifting TAMs from M2 to M1, inhibiting

tumor growth, and enhancing gemcitabine efficacy (128). Natural

molecules like sphingosine (129) and Urolithin A (130) also

modulate M2 polarization in PDAC. Targeting PI3Kg inhibitors

offer new therapies, which enhances macrophage efferocytosis in

pancreatic cancer, supporting tumor control when combined with

radiotherapy (131). Besides, the phase Ib/II study NCT03767582,

which tests the dual CCR2/CCR5 antagonist BMS−813160 together

with nivolumab (± GVAX) in locally−advanced PDAC show

enhanced intratumoral CD8+CD137+ T-cells and manageable

toxicity, while preclinical data confirmed CCR2 blockade

synergizes with anti-PD-1 by increasing CD8+ T-cell infiltration

and reducing T-regs in PDAC (132).
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3.2 Targeting TANs in treatment

Current immune therapies targeting TANs focus on inhibiting

TAN recruitment via cytokine/chemokine axes. CXCR2 deficiency

reduces pancreatic cancer vascular density (101), while blocking

CXCR2-CXCL8 enhances PD-1 efficacy (133). Lorlatinib inhibits

G-CSF, reduces TAN recruitment, and boosts CD8+ T/NK cell

cytotoxicity (134). HMGB1 from NETs promotes malignancy,

despite thrombomodulin degrades HMGB1 (135). Neutralizing

IL-1b inhibits EGFR/ERK activation and EMT (136), while NET

targeting mitigates hypercoagulability and thrombosis (137).

Inhibiting specific TAN phenotypes: P2RX1-negative neutrophils

in liver metastases correlate with PD-L1 expression; their inhibition

activates CD8+ T cell anti-tumor immunity, suppressing pancreatic

cancer progression.
3.3 Adoptive TILs cell therapy

Since the 1980s, TILs adoptive cell therapy has evolved,

involving extraction, in vitro culture, and reinfusion into patients.

Rosenberg et al. (138) reported 34%-56% efficacy in melanoma,

while its potential in pancreatic cancer remains unexplored but

promising. Sakellariou-Thompson et al. (139) demonstrated that

CD8+ TILs from pancreatic cancer can grow with 4-1BB agonists,

supporting clinical feasibility. Targeting immunosuppressive cells,

such as CCR4+ Tregs in melanoma, shows promise, with CCR4

antibodies depleting Tregs in vivo and in vitro (140).

Mogamulizumab, an anti-CCR4 antibody, is in clinical trials.

Bacterial therapy, like Salmonella A1-R, enhances CD8+ TILs in

pancreatic cancer models, suggesting anti-tumor immunity

activation (141, 142). Chemotherapy combined with innate

immune agonists improves T cell priming for ICIs (143) (144–

146). TNFR2 blockade in PDAC targets Tregs, reducing

immunosuppression and T cell exhaustion (147). eIF4G1

overexpression in PDAC correlates with poor prognosis; its

inhibition reduces pro-tumor cytokines, promotes M2-TAM

polarization (148), and enhances CD8+ T cell recruitment (149–

151), offering a therapeutic strategy (152).
3.4 Anti-CTLA-4/PD-1 therapy

Anti-CTLA-4 and anti-PD-1 antibodies are ICIs that activate

CD8+ T cell responses. CTLA-4, identified as a T cell checkpoint

factor by KRUMMEL et al. (153), but ICIs show limited efficacy in

pancreatic cancer due to resistance (154). PD-1 treatment’s

effectiveness remains controversial, though PDL-1 overexpression

may predict response. Combined anti-PD-L1 and anti-CTLA-4

therapy showed promise in pancreatic neuroendocrine tumors

(154). Deng et al. (155) found glucocorticoid receptor (GR)

inhibition downregulates PD-L1 and upregulates MHC-I,

enhancing immune therapy sensitivity. Other immunosuppressive

pathways (TIM3, TIGIT, LAG3, VISTA, CD73) are highly

expressed in PDAC (156), suggesting potential therapeutic targets.
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Oncolytic virotherapy (OVs) using modified viruses (e.g.,

adenoviruses, herpes simplex viruses) combined with ICIs shows

promise, particularly in head and neck squamous cell carcinoma

(157). Hyperthermia, as a sensitizer, enhances immune activation

and, when combined with gemcitabine, reduces invasion and

metastasis in pancreatic cancer cells by promoting apoptosis via

reactive oxygen species (158).
3.5 Other immune suppressive cells
targeted therapies

Exosome-based dual delivery systems, such as iEXO-OXA,

enhance immune responses in orthotopic PDAC mice by

inducing immunogenic cell death (ICD) and reversing immune

suppression. These exosomes improve drug accumulation in

tumors while minimizing systemic distribution, promoting innate

and adaptive anti-PDAC immunity by enhancing ICD, dendritic

cell maturation, and cytotoxic T lymphocyte infiltration (159).

GVAX, a GM-CSF gene-transfected pancreatic tumor cell vaccine,

combined with low-dose cyclophosphamide, induces anti-tumor

immunity, including Treg depletion and tertiary lymphoid structure

formation, improving immune cell infiltration in the TME. The

combination with nivolumab and urelumab shows promising

efficacy in resectable pancreatic cancer (160–162).
4 Conclusion

Pancreatic cancer remains a formidable challenge due to its

immunosuppressive TME, which facilitates tumor progression,

metastasis, and resistance to conventional therapies. The intricate

interplay between immune cells, stromal components, and

inflammatory mediators creates a hostile environment that limits

the efficacy of current treatments. Immunosuppressive cells, as key

players in this process, promote immune evasion, angiogenesis,

and chemoresistance through diverse mechanisms, including

cytokine secretion, NET formation, and stromal remodeling.

Novel treatment approaches, including TAM/TAN-directed

interventions, adoptive transfer of tumor-infiltrating lymphocytes,

blockade of immune checkpoints, and engineered exosome

platforms, present viable solutions to circumvent these

limitations. However, the complexity of the TME necessitates a

multifaceted approach, combining these therapies with

conventional treatments to enhance anti-tumor immunity and

improve patient outcomes. Future research should focus on

elucidating the molecular mechanisms underlying immune
Frontiers in Immunology 06
suppression in pancreatic cancer and developing innovative,

targeted therapies to reprogram the TME and restore effective

immune surveillance.
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