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Editorial on the Research Topic

Nontuberculousmycobacterial pulmonary disease: immunopathogenesis
and immunological risk factors
Mycobacteria are comprised of Mycobacterium tuberculosis complex, Mycobacterium

leprae, and non-tuberculous mycobacteria (NTM). While NTM contain approximately 200

distinct species and subspecies, diseases in humans are predominantly caused by three

main groups: (i) Mycobacterium avium complex (which is comprised of several members,

with the most clinically relevant being M. avium subsp hominissuis, M. intracellulare

subsp intracellulare, and M. intracellulare subsp chimaera); (ii) Mycobacterium

abscessus group (which consists of three subspecies: abscessus, massiliense, and bolletii);

and (iii) Mycobacterium kansasii complex. NTM are ubiquitous in natural and built

environs, especially in fresh water, soil, and biofilms, making NTM infections

environmentally- acquired.

Upon encountering a patient with an NTM infection, four elements should be

determined: the specific NTM responsible, how the infection was contracted, the

location and extent of the infection, and the presence of any host risk factors. The last

two elements are interrelated because the degree of underlying host risk factors often

dictates the scope of the infection. Thus, it is useful to categorize the NTM infection into

one of four main types: (i) skin, soft tissue, and osteoarticular infections, which are typically

due to accidental trauma or medical procedures; (ii) isolated infection of the head and neck

lymph nodes (also known as cervical lymphadenitis or “scrofula”); (iii) isolated NTM lung

disease; (iv) disseminated or extrapulmonary visceral disease. Identifying or distinguishing

the latter two types helps dictate what investigative actions to embark upon to determine

the presence of any underlying host risk factors.

This Research Topic of Frontiers in Immunology, titled “Nontuberculous mycobacterial

pulmonary disease: immunopathogenesis and immunological risk factors,” is comprised of

five papers. Hicks et al. investigated the pathogenesis of NTM disease from the host’s
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1582489/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1582489/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1582489/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1582489/full
https://www.frontiersin.org/research-topics/55321
https://www.frontiersin.org/research-topics/55321
https://doi.org/10.3389/fimmu.2023.1078976
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1582489&domain=pdf&date_stamp=2025-03-21
mailto:chane@njhealth.org
https://doi.org/10.3389/fimmu.2025.1582489
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1582489
https://www.frontiersin.org/journals/immunology


Chan and Schmitz 10.3389/fimmu.2025.1582489
perspective. Yang et al. and Wang et al. examined specific

interactions of the host with NTM and M. tuberculosis,

respectively. Keefe et al. focused on how a specific NTM species is

able to thrive in the environment and infect host cells. Mediaas et al.

investigated a novel host-directed therapy against NTM.

Hicks et al. reported three infants with complete DiGeorge

anomaly (cDGA) – a genetic condition resulting in the complete

absence of the thymus resulting in severe T cell deficiency – all with

disseminated NTM infections. These cases are rare, likely due to the

highly infrequent intersection of two uncommon conditions (DGA

and NTM infection). The authors recommend that DGA should be

considered in the differential diagnoses of children with

disseminated NTM infections. Currently, mutations of genes that

encode for elements of the interferon-gamma (IFNg)–interleukin-
12 (IL-12) axis should be suspected in very young children with

disseminated NTM disease. In adults with disseminated NTM

infections, acquired immune disorders like AIDS, anti-IFNg
antibody syndrome, or use of immunosuppressive drugs are more

likely risk factors.

Various mouse strains have been used to explore host

susceptibility to NTM infections. However, most murine

infection models result in systemic NTM infection rather than

exhibit isolated NTM lung disease, the latter characterized by

bronchiolitis and bronchiectasis in humans. Yang et al. developed

a mouse model using intratracheal infection with M. abscessus

embedded in agar beads, which better simulates airway infection.

The infected mice developed granulomas, a common feature M.

abscessus infection in humans. Others have also employed a fibrin

plug model where M. abscessus is suspended in thrombin and

fibrinogen, trapping the bacteria in the airways as the plugs

coagulate (1). Models such as these intuitively more closely

replicate isolated NTM lung disease. Future studies could

investigate whether such inoculation methods also enhance NTM

biofilm formation in the airways, a barrier known to resist

penetration by immune cells and antibiotics.

The co-evolution of humans and mycobacteria has enabled

reciprocal adaptation in a mutual struggle for dominance. A

recurring example is that the same host factors or mycobacterial

components can be used by either side to gain an advantage,

analogous to a “tug o’ war” event. Wang et al. reviewed the role

of CD36, a cell surface scavenger receptor which mycobacteria have

hijacked for their own advantage. Although their focus was on M.

tuberculosis, similar mechanisms may also be involved in the

pathogenesis of NTM disease. They discussed that M. tuberculosis

engages CD36 leading to: (i) increased fatty acid uptake by host

cells, aiding bacillary persistence; (ii) monocyte differentiation into

macrophages with an immunosuppressive phenotype; and (iii)

enhanced uptake of surfactant lipids by macrophages, supporting

mycobacterial growth. Additionally, they highlighted studies

showing CD36 expression in various cell types that are involved

in granuloma formation, including macrophages, granulocytes,

lymphocytes, and fibroblasts. It was previously demonstrated that

the M. avium complex manipulates macrophage lipid metabolism,

leading to the formation of lipid-laden foamy macrophages that
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create a favorable environment for mycobacterial growth (2).

Recent studies using a mouse model demonstrated that CD36

expression is elevated on macrophages during M. avium infection

(3). In line with this, inhibiting CD36 has been shown to reduce the

growth of M. avium. Choi et al. (4) confirmed that blocking CD36

leads to decreased growth of M. avium, which aligns with earlier

research. These findings highlight the crucial role of CD36 in the

pathology of mycobacterial diseases as well as a potential

therapeutic target.

Bronchiectasis, a common feature of chronic NTM lung disease,

is characterized by repeated cycles of infection and inflammation.

Airway injury may be exacerbated by NTM-generated biofilms, a

complex matrix of extracellular polymeric substances – comprised

of DNA, proteins, polysaccharides, and lipids – released from live

and dead microbes (5–9). NTM lung cavity walls have also been

demonstrated to contain biofilms (10). This biofilm matrix provides

protection and nutrients for the microbes (11). Keefe et al. identified

gene products from M. abscessus in biofilms using a transposon

library of M. abscessus along with surface proteomic analysis. They

uncovered specific proteins related to the mycobacteria’s ability to

detach and establish new biofilms as well as attach to and infect

both epithelial cells and macrophages.

The primary treatment for NTM lung disease involves

antibiotics, airway clearance, and targeted therapies for

underlying conditions, e.g., anti-retroviral drugs for HIV

infection, modulators for defective cystic fibrosis transmembrane

conductance regulator, and alpha-1-antitrypsin (AAT) replacement

therapy for those with AAT deficiency. For those with disseminated

NTM disease, host-directed therapies may include IFNg
replacement therapy for subjects with defects in the IFNg-IL-12
axis, anti-B cell therapy for those with anti-IFNg autoantibodies,

and immune checkpoint inhibitors for individuals with severe T cell

immunosuppression (12, 13), though the lattermost is controversial

(13, 14). Adjunct therapies directed more specifically against the

mycobacteria include inhibitors of M. abscessus b-lactamase for

those on b-lactam antibiotics (15), efflux pump inhibitors (16), and

biofilm disrupters (8). Mediaas et al. found that metformin,

commonly used to treat diabetes mellitus, significantly reduced

M. avium burden in mice. One mechanism for this salubrious effect

was by enhancing the ability of macrophages to kill or control the

infection by activating the AMPK (5’ adenosine monophosphate-

activated protein kinase) pathway, increasing mitochondrial

reactive oxygen species and enhancing phagosome maturation

and acidification.

In summary, the five articles featured in this Research Topic

enhance our understanding of the pathogenesis of NTM infections.

This increase in knowledge is crucial since we are all likely exposed to

NTM and yet NTM infections occur in relatively few individuals. The

interplay between specific host susceptibility and NTM virulence

factors is likely critical in the development of NTM disease. Each of

these papers contributes to our collective understanding of this

relationship. Ongoing research into innovative strategies and

therapies, as highlighted by these five papers, is essential for

improving outcomes for patients with NTM disease.
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