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Background: Radiotherapy elicits immune activation, thereby synergistically

enhancing systemic tumor control when combined with immunotherapy.

Glutaminase (GLS), a key enzyme for glutamine metabolism, has been found to

regulate glutamine availability within tumor microenvironment (TME). However,

the precise mechanisms through which GLS modulates radiosensitivity and

irradiation-induced immune responses in lung adenocarcinoma (LUAD) and its

clinical value remain to be fully elucidated.

Methods:We employed bulk RNA-seq and single-cell transcriptomics to explore

the role of GLS expression in radiosensitivity and immune infiltration. The

bioinformatic results were validated by in vitro and in vivo experiments. Co-

culture assays and flow cytometry were used to validate the impact of GLS

expression on CD8+ T cell activation and cytotoxicity. Moreover, a GLS-DSBr

(double strand break repair) prognostic model was developed using machine

learning with data from 2,066 LUAD patients.

Results: In vitro and in vivo experiments demonstrated that GLS silence inhibited

DSB repair and promoted ferroptosis, therefore enhancing radiosensitivity.

Single-cell and spatial transcriptomics revealed the immunomodulatory effects

of GLS expression in the TME. Further, Co-culture assays and flow cytometry

experiments indicated that silencing GLS in LUAD cells potentiated the activation

and cytotoxicity of CD8+ T cells in the context of radiotherapy. The GLS-DSBr

model demonstrated robust predictive performance for overall survival, as well as

the efficacy of radiotherapy and immunotherapy in LUAD. The applicability of

GLS-DSBr model was further validated through pan-cancer analysis.

Conclusion: In the contexts of radiotherapy, GLS downregulation exerts dual

regulatory effects by modulating ferroptosis and remodeling the immune
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landscapes, particularly enhancing CD8+ T cell cytotoxicity. Our work suggests

that strategies preferentially targeting GLS in tumor cells may represent

promising and translatable therapeutic approaches to promote antitumor

efficacy of radiotherapy plus immune checkpoint blockade in LUAD patients.

Furthermore, the established GLS-DSBr model serves as a robust predictive tool

for prognosis and effects of radiotherapy and immunotherapy, which assists

personalized treatment optimization in LUAD.
KEYWORDS

glutamine metabolism, lung cancer, immunity, tumor microenvironment,
prognostic model
1 Introduction

Lung cancer represents the most prevalent and lethal

malignancy in China, with lung adenocarcinoma (LUAD)

constituting approximately 40% of all cases (1). Radiotherapy, a

cornerstone in lung cancer treatment, exerts dual therapeutic effects

through direct tumor cell eradication and systemic immune

activation (2, 3). However, the clinical efficacy of radiotherapy is

frequently compromised by intrinsic radioresistance, which may

result in treatment failure and subsequent tumor recurrence or

metastasis (2, 4). This resistance primarily stems from enhanced

DNA double-strand break (DSB) repair capacity, as DSBs represent

the predominant form of radiation-induced DNA damage that

ultimately leads to cancer cell death (5). Consequently,

elucidating the molecular mechanisms governing radiosensitivity

has become paramount for optimizing therapeutic outcomes.

The advent of immunotherapy has fundamentally transformed

the clinical paradigm for advanced non-small cell lung cancer

(NSCLC) treatment. In this new era, the strategic combination of

immune checkpoint inhibitors (ICIs) with other therapeutic

modalities, particularly radiotherapy, has emerged as a promising

approach to enhance systemic antitumor immunity (6). This

combination strategy, termed immunoradiotherapy (iRT),

capitalizes on radiotherapy ’s unique ability to convert

immunologically “cold” tumors into “hot” tumors, thereby

potentially augmenting ICI efficacy (7–9). While preclinical

studies have consistently demonstrated the immune-modulatory

effects of radiotherapy within the tumor microenvironment (TME),

translating these findings into consistent clinical benefits remains

challenging. The PACIFIC trial established durvalumab as a

standard consolidat ion therapy fol lowing concurrent

chemoradiotherapy (10, 11), yet the subsequent PACIFIC-2 trial

failed to demonstrate significant survival benefits with this

combination approach (12). These discordant outcomes

underscore the complex interplay between radiotherapy and

immunotherapy and highlight the critical need to identify novel

therapeutic targets that can enhance radiotherapy-induced immune

activation while overcoming immunosuppressive TME barriers.
02
Addressing these challenges represents a crucial frontier in

optimizing iRT efficacy and improving patient outcomes.

As the most abundant circulating amino acid, glutamine serves

as a crucial nutrient source for cancer cells, supporting fundamental

cellular processes including DNA repair and redox homeostasis (13,

14). Notably, recent studies have demonstrated that enhanced

glutamine metabolism not only promotes radioresistance through

maintaining cellular redox balance and facilitating DNA damage

repair but also contributes to immunosuppression within the TME

(15–17). These findings suggest that targeting glutamine metabolic

pathways may represent a promising therapeutic strategy to

enhance radiotherapy efficacy. Among the key regulators of

glutamine metabolism, glutaminase (GLS) has garnered particular

attention due to its pivotal role in catalyzing the conversion of

glutamine to glutamate, the rate-limiting step in glutamine

catabolism (18). Although several studies have explored the

metabolic roles of GLS in cancer progression and therapy (18,

19), the precise mechanisms through which GLS modulates

radiosensitivity in LUAD remains poorly understood. Moreover,

compelling evidence suggests that tumor cells exploit their

metabolic advantage to deplete extracellular glutamine, creating a

nutrient-deprived TME that compromises CD8+ T cell function and

antitumor immunity (20–23). This metabolic competition raises

intriguing questions about whether and how GLS-mediated

glutamine metabolism influences radiotherapy-induced immune

responses. Therefore, the complex interplay between GLS and

immune modulation in the contexts of radiotherapy warrants

thorough investigation.

Ferroptosis, an iron-dependent form of regulated cell death

driven by lipid peroxidation, has emerged as a promising avenue to

enhance radiotherapy efficacy through synergistic effects with

radiation-induced DNA damage (24–28). Emerging evidence

suggests that the glutamine metabolism exerts a critical influence

on ferroptosis by modulating cellular redox homeostasis, which

provides mechanistic insight for developing therapeutic strategies

targeting the ferroptosis-glutamine metabolism axis (29, 30). As a

key enzyme in glutamine catabolism, GLS may modulate ferroptosis

sensitivity, potentially influencing radiotherapy outcomes in LUAD.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1582587
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Jiang et al. 10.3389/fimmu.2025.1582587
However, the specific role of GLS in regulating radiation-induced

ferroptosis and its therapeutic implications remain unexplored,

warranting further investigation to develop novel strategies for

overcoming radioresistance.

This study comprehensively investigates the role of GLS in

regulating radiosensitivity and immune modulation in LUAD.

Through a multi-dimensional approach, we demonstrate that GLS

inhibition enhances radiosensitivity by promoting ferroptosis and

reprogramming the TME to potentiate anti-tumor immunity. We

further establish the GLS-DSBr (DSB repair) model as a robust

predictive tool for patient prognosis and treatment response,

particularly in predicting the efficacy of radiotherapy and

immunotherapy, validated across LUAD cohorts and pan-cancer

analyses. Notably, the pan-cancer analysis revealed significant

variations in the TME between high- and low-risk groups,

demonstrating the model’s generalizability. These findings not

only provide mechanistic insights into the metabolic regulation of

radioresistance but also offer a translational framework for

optimizing precision immunoradiotherapy. The potential

integration of GLS inhibition with other immune checkpoint

inhibitors, such as CTLA-4, may further enhance therapeutic

efficacy, representing a promising direction for future

combination strategies in LUAD treatment.
2 Materials and methods

The flow diagram for this study is presented in the Graphical

abstract (Supplementary Figure S1).
2.1 Data collection and processing

Data from RNA sequencing and related clinical details were

obtained from The Cancer Genome Atlas (TCGA) through the

UCSC XENA portal (https://xena.ucsc.edu/). Transcriptomic and

clinical data for the datasets GSE31210, GSE72094, GSE50081,

GSE37745, GSE68456, and GSE131907 were downloaded from the

Gene Expression Omnibus (GEO) repository. Immunotherapy-related

data were sourced from GSE135222, which includes LUAD patients

undergoing anti-PD-1/PD-L1 therapy (31). The analysis did not

include patients who had incomplete survival data. And a total of

2,066 eligible patients were retained. Single-cell RNA sequencing data,

encompassing 208,395 cells derived from LUAD, were obtained from

GSE131907 (32). Spatial transcriptomic data were sourced from

GSE189487 (33). The gene set for 18 types of programmed cell death

(PCD) was obtained from Hu et al. (34).
2.2 Quality control and annotation of
single-cell data

For the single-cell dataset, cells were excluded from further

analysis if their Unique Molecular Identifier (UMI) counts were

either below 200 or exceeded 10,000, or if more than 10% of their
Frontiers in Immunology 03
RNA expression was derived from mitochondrial genes, indicating

poor quality.

After quality control, logarithmic normalization was applied to

the remaining cells, and the top 2,000 highly variable genes (HVGs)

were selected using the Seurat package (v4.3.0.1). Principal

component analysis (PCA) was performed on the HVGs, followed

by the construction of a shared nearest neighbor (SNN) graph and

unified manifold approximation and projection (UMAP) using the

Louvain algorithm, with the first 30 principal components used for

clustering. Major cell type annotations for the single-cell data were

derived from Kim et al. (32). Further subpopulation classification of T

cells was conducted based on established cell markers (35).
2.3 The advanced analysis of single-cell
RNA sequencing

To assess the distribution of clusters, we computed the ratio of

observed to expected cell counts (Ro/e) for each cell type cluster

among various groups. A higher Ro/e value signifies a stronger

enrichment (36). The AUCell package was used to compute the

AUCell score for various signature genes in individual cells within

the clusters (37). To mitigate the impact of data sparsity, we applied

the MetaCell algorithm to group homogeneous cells into metacells

(38), thereby representing the overall structure of the single-cell

RNA sequencing (scRNA-seq) data. Cellchat was employed to

deduce, display, and examine communication between cell

clusters (39).
2.4 Functional analysis

An enrichment analysis was carried out using the outcomes of the

differential expression analysis using the ‘limma’ package. Gene set

enrichment analysis (GSEA) and gene set variation analysis (GSVA)

were conducted using the ‘clusterProfiler’ package (40), with gene sets

sourced from MsigDB (The Molecular Signatures Database) and GO

(Gene Ontology). METAFlux, an algorithm based on Metabolic Flux

Balance Analysis (FBA), characterizes metabolic pathways in a

nutrient-sensing context and predicts metabolic fluxes (41). We

employed METAFlux to assess the glutamine and glutamate

metabolic flu. To assess immune cell infiltration, multiple

algorithms were employed, including TIMER 2.0 (42) and

Cibersort (43). The ESTIMATE package was implemented to

calculate the ESTIMATE score, tumor purity, and stromal score (44).
2.5 Spatial transcriptome RNA sequencing
analysis

Spatial transcriptome data were normalized using SCTransform,

and SpatialFeaturePlot was employed to visualize the spatial expression

of genes. SpaCET was employed to assess the quantity of cancer cells,

determine the stromal and immune cell lineage scores, and assess the

cellular lineages and intercellular interactions within the TME (45).
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2.6 Construction of prognostic signature
by machine learning approaches.

First, we performed differential expression analysis on two

groups with different GLS expression levels in the TCGA_LUAD

dataset. The differentially expressed genes were intersected with the

DNA damage gene set (GO: 0006302). Subsequently, univariate

Cox analysis was conducted, and 76 genes associated with prognosis

were identified. Using these genes, we employed 10 algorithms and

trained 101 algorithmic combinations. These models were

developed using the leave-one-out cross-validation (LOOCV)

framework and trained on the TCGA-LUAD cohort. The models

were then validated on four independent datasets (GSE31210,

GSE72094, GSE50081, GSE37745). Harrell’s concordance index

(C-index) was calculated across all datasets for each model, and

the model with the top average C-index was selected as the

optimal model.
2.7 Genomic analysis

Genomic Copy number variation (CNV) and Single nucleotide

polymorphism (SNP) data were downloaded using the

TCGAbiolinks package. CNV data were processed and analyzed

using GISTIC2 (https://www.genepattern.org/), a tool designed for

identifying and visualizing significant copy number alterations

across samples. Visualization of the CNV results was performed

using the maftools package.
2.8 Cell culture and treatments

Human lung cancer cell lines A549, NCI-H23, HCC827, and

NCI-H226, as well as the mouse Lewis lung carcinoma (LLC) cell

line, were sourced from the Cell Resource Center of the Institute of

Basic Medical Sciences (CAMS, China). The human embryonic

kidney 293T cell line was acquired from the American Type Culture

Collection (ATCC). A549, NCI-H23, NCI-H226, and 293T cells

were cultured in DMEM (GIBCO, USA), while HCC827 and LLC

cells were grown in RPMI 1640 medium (GIBCO, USA). Cells were

preserved in a humidified incubator at 37°C with a CO2

concentration of 5% (Thermo Scientific, USA). Irradiation was

administered at the specified dose, and cells were cultured for the

indicated time prior to subsequent experiments.
2.9 Lentiviral vectors and lentivirus
packaging

Lentiviral vectors were constructed using the pLKO.1-PuroR

backbone plasmid to generate GLS knockdown constructs (TsingKe

Biotechnology, China). To produce lentiviruses, HEK293T cells

were simultaneously transfected with shRNA plasmids, along with

psPAX2 and pMD.2G packaging plasmids (Addgene, USA).
Frontiers in Immunology 04
Lentiviral supernatants were collected 48 hours post-transfection

and used to infect A549 and NCI-H23 tumor cells. Infected cells

were selected with puromycin (Solarbio, China) for 48 hours to

establish stable transfectants.
2.10 Glutamine level detection

Intracellular glutamine levels in lung cancer cells were

measured using a glutamine detection kit (BTK133, Bioswamp,

China). Cell lysates or standards were mixed with the working

solution and incubated at 37°C for 30 minutes. After measuring the

optical density (OD) at 450 nm, the glutamine concentration in the

samples was determined by referencing the OD values against the

standard curve.
2.11 Glutamate level detection

Intracellular glutamate levels in cells were measured using a

glutamate detection kit (BTK048, Bioswamp, China). The samples

or standards were mixed with the working solution and incubated at

37°C for 20 minutes. The OD was recorded at 450 nm, and

glutamate levels in the samples were calculated by matching the

OD readings to the standard curve.
2.12 Western blot

Cells were lysed in NETN buffer, followed by centrifugation to

collect the protein-containing supernatant. Protein samples were

mixed with loading buffer, boiled, separated by electrophoresis, and

transferred. The membranes were blocked and incubated with

primary and secondary antibodies. The primary antibodies

included anti-GLS (ab156876, Abcam), anti-g-H2AX (05-636,

Sigma), anti- Glutathione Peroxidase 4 (GPX4, ab125066,

Abcam), and anti-b-actin (81115-1-RR, Proteintech).
2.13 Colony formation assay

GLS-depleted A549 and NCI-H23 cells, along with their

corresponding NC cells, were seeded in 6-well plates and exposed

to IR at the indicated doses (2, 4, 6, and 8 Gy) for 10 to 14 days.

After fixing and staining, the colonies were counted and the

numbers were normalized based on plating efficiencies.
2.14 Immunofluorescence staining

GLS-depleted A549 and NCI-H23 cells, along with NC cells,

were seeded onto coverslips and incubated for 24 hours before being

treated with IR (1 Gy). Following treatment (1 or 8 hours with or

without IR), cells were fixed and permeabilized, followed by
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overnight incubation with primary antibodies against g-H2AX (05-

636, Sigma) at 4°C. Following washing, cells were treated with

secondary antibodies for an hour at room temperature, and DAPI

was used to counterstain the nuclei. After further washing with PBS,

cells were mounted with anti-fade solution on glass slides and

visualized using a fluorescence microscope. For foci counting, more

than 100 cells per group were analyzed to standardize the data.
2.15 Coculture assay and flow cytometry

GLS-depleted A549 cells and corresponding NC cells were

irradiated with 10 Gy and seeded into 24-well plates (8 × 10³

cells/well). Human peripheral blood mononuclear cells (PBMCs)

were activated with anti-CD3 (0.5 mg/mL, 300302, Biolegend), anti-

CD28 (2 mg/mL, 302902, Biolegend) antibodies, and human IL-2

(50 ng/mL, 42212, Peprotech), and then added to the A549 cells at

an effector-to-target ratio of 25:1. After 24 hours, PBMCs were

stained with CD45-FITC, CD3-PerCP, CD8-APC/Cy7, and CD69-

APC antibodies (Biolegend). After 3 days, PBMCs were stained with

CD45-FITC, CD3-PerCP, CD8-APC/Cy7, and GranzymeB-PE

antibodies (Biolegend). For flow cytometric analysis, cell samples

were subjected to surface marker staining by incubation with

fluorophore-conjugated antibodies for 30 minutes at 4°C.

Intracellular staining procedures involved the application of

fixation and permeabilization buffers (Tonbo Biosciences). Isotype

controls were conducted using matched nonspecific IgG. Following

two washes, the samples were acquired on a flow cytometer (BD

Biosciences). To quantify tumor cell apoptosis in the co-culture

system, GLS-depleted A549 cells and corresponding NC cells were

irradiated with 10 Gy and seeded into 96-well plates (4 × 104 cells/

well) after CFSE staining (1 mM, 565082, BD Biosciences). Activated

human PBMCs were added at an effector-to-target ratio of 6:1. After

12 hours, adherent tumor cells and supernatant were collected,

stained with Annexin V-APC (Biolegend) and Propidium Iodide

(Solarbio), and analyzed by flow cytometry. The flow cytometry

data were analyzed using FlowJo software version 10.
2.16 Cell counting kit-8 assay and lactate
dehydrogenase release assays

Cell viability was assessed using Cell counting kit-8 (CCK-8,

Dojindo, Shanghai, China). Cells were plated and subjected to

irradiation at 10 Gy. At specified time intervals, Fresh medium

with 10% CCK-8 reagent was used to replace the old medium, and

the cells were incubated at 37°C under 5% CO2 for 1 hour.

Subsequently, absorbance was measured at 450 nm. Lactate

dehydrogenase (LDH) release was quantified with an LDH assay

kit (Nanjing Jiancheng, China). Cells were seeded into 6-well plates

and exposed to IR. After treatment, the culture supernatants were

harvested, and cells were lysed with 1.5% Triton X-100. The lysates

and supernatants were then reacted with coenzyme I and 2,4-

dinitrophenylhydrazine for 15 minutes at 37°C. Absorbance

readings were taken at 440 nm to determine LDH activity.
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2.17 Lipid peroxidation measurements

To assess the extent of lipid peroxidation within cells, we

measured the level of intracellular lipid peroxidase (LPO) activity

using a commercial assay kit (Cayman, USA). Additionally, the

concentration of malondialdehyde (MDA), a secondary product of

lipid peroxidation, was quantified with an MDA assay kit (Nanjing

Jiancheng, China). In parallel, reactive oxygen species (ROS) levels

were evaluated as indicators of oxidative stress. Intracellular ROS

was detected using two fluorescent probes, DCFH-DA and

dihydroethidium (DHE; Beyotime, China).
2.18 GPX4 activity

To determine GPX4 enzymatic activity, cells were lysed and

mixed with a buffer composed of Tris (pH 7.5), EDTA, NaN3, and

Triton-X 100, ensuring the absence of oxidizing agents. The lysates

were then homogenized and supplemented with glutathione

reductase, NADPH, reduced glutathione (GSH), and H2O2. GPX4

activity was quantified by monitoring the decrease in NADPH

absorbance at 340 nm.
2.19 Tumor xenograft

For the establishment of subcutaneous xenograft models, 5 ×

106 specified cells were resuspended in a 100 mL mixture of Matrigel

(Corning, USA) and PBS and administered into the dorsal side of

male BALB/c nude mice (Hua Fukang Biological Technologies,

China). Once tumor volumes reached 60–120 mm³, mice were

randomly allocated into irradiated and non-irradiated groups. In

the IR group, localized tumors were subjected to daily irradiation at

2 Gy for one week. Tumor dimensions were assessed with calipers,

and volume was calculated using the formula 0.5 × length × width².

Following treatment, mice were euthanized at predetermined time

points, and tumor tissues were promptly harvested for further

Western blot and immunohistochemistry (IHC) analysis.
2.20 Hematoxylin & eosin and IHC staining

Tumor tissues were fixed, processed for paraffin embedding,

and sectioned into 4 mm slices. Hematoxylin & Eosin (H&E)

staining was conducted following standard protocols. For IHC,

antigen retrieval was performed. Sections were subsequently

incubated overnight at 4°C with primary antibodies against GPX4

(ab125066, Abcam), g-H2AX (05-636, Sigma) and Ki-67 (28074-1-

AP, Proteintech). On the following day, the sections were washed

and incubated with horseradish peroxidase (HRP)-conjugated

secondary antibodies. Nuclear counterstaining was performed

using hematoxylin. The extent of IHC-positive expression was

quantified as the proportion of the stained region compared to

the entire tissue area, calculated as (stained area/total area) × 100%,

using ImageJ software for analysis.
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2.21 Ethics statement

All animal experiments were performed in accordance with

relevant guidelines and regulations. The study protocol was

approved by the Animal Ethics Committee of Cancer Hospital of

Chinese Academy of Medical Sciences and Peking Union Medical

College. The studies involving humans were approved by the

Committee for the Ethics Review of Research Involving Human

Subjects of the Cancer Hospital of the Chinese Academy of Medical

Sciences. All experiments were conducted according to the

Declaration of Helsinki principles.
2.22 Statistical analysis

The statistical analyses were conducted using two-tailed

unpaired t-tests for comparisons between two groups, and one-

way ANOVA or two-way ANOVA for multiple comparisons, as

appropriate. R software was used to conduct all analyses (version

4.2.1). Pearson correlation analysis was employed to assess the

linear relationship between two variables. Survival time differences

were assessed using the log-rank test. Significance levels are denoted

by asterisks: ns for nonsignificant, * for p < 0.05, ** for p < 0.01, ***

for p < 0.001, and **** for p < 0.0001. A p-value of less than 0.05 was

set as the threshold for statistical significance.
3 Results

3.1 The radiosensitivity of LUAD is closely
associated with glutamine metabolism

Considering the impact of amino acid metabolism on

radiosensitivity, we conducted GSEA on amino acid metabolic

pathways in patients with varying radiosensitivity. The results

showed significant enrichment of the glutamine metabolism

pathway in the radioresistant group, suggesting that inhibiting

glutamine metabolism may enhance radiosensitivity (Figure 1A;

Supplementary Figure S2A). Subsequently, we assessed the

glutamine metabolic flux in radiotherapy patients using Metaflux

and performed Kaplan-Meier survival analysis, which

demonstrated that lower glutamine catabolism was associated

with improved survival (Figure 1B). We further analyzed the DSB

repair pathway in the radiosensitive and radioresistant groups using

GSEA, revealing significant enrichment of the DSB repair pathway

in the radioresistant population (Figure 1C). To investigate the

relationship between glutamine metabolism and DSB repair in

radiotherapy populations, we performed GSVA on relevant

pathways and conducted correlation analysis. The results revealed

a strong association between them (Figure 1D), observed not only in

the radiotherapy cohort (Supplementary Figure S2B). We also

examined the relationship between glutamine, glutamate

metabolic flux and DSB repair pathways. As shown in Figures 1E,

F, patients with more active glutamine catabolism had higher DSB

repair pathways scores, while those with more active glutamate
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biosynthesis exhibited lower DDR scores. In the radiotherapy

population, individuals with active glutamine metabolism are

significantly enriched in the DSB repair pathway (Supplementary

Figure S2C). To additionally substantiate these findings, GSEA

based differences in glutamine and glutamate metabolic flux

revealed DSB repair pathways were significantly enriched in

patients with more active glutamine catabolism and glutamate

biosynthesis (Figure 1G; Supplementary Figure S2D). We

analyzed a single-cell dataset to further investigate the

relationship between glutamine metabolism and DSB repair in

LUAD (Figure 1H) and extracted samples derived from lung

tissue (Supplementary Figure S3A). After scoring the tumor cells

for glutamine metabolic pathways and DSB repair, the analysis of

correlation indicated a notably positive correlation between the two

(Figure 1I). These findings demonstrate that inhibition of glutamine

catabolism represents a potential therapeutic strategy to

improve radiosensitivity.

Then, we investigated the changes in intracellular glutamine

and glutamate levels in five lung cancer cell lines before and after

exposure to IR. The results indicated that IR led to an increase in

intracellular glutamine levels, accompanied by a decrease in

glutamate levels (Figures 2A, B). Since GLS catalyzes the

conversion of glutamine to glutamate, it serves as a critical “node”

regulating both metabolites in opposing directions. In order to

further explore the influence of glutamine metabolism on

radiotherapy efficacy, we performed GLS knockdown in A549 and

NCI-H23 cells (Figure 2C). As expected, GLS silencing potentiated

the IR-induced glutamine accumulation and concurrent glutamate

reduction in LUAD cells (Figures 2D–G). To evaluate the effect of

GLS on radiosensitivity in LUAD cells, we assessed the impact of

GLS knockdown on colony formation and alteration of DNA

damage marker g-H2AX after IR. The colony formation assays

demonstrated that GLS knockdown significantly decreased the

surviving fraction of both A549 and NCI-H23 cells exposed to IR

(Figures 2H–K). Western blot of g-H2AX clearance following IR in

A549 and NCI-H23 cells revealed a significantly decelerated decline

in g-H2AX levels in GLS knockdown cells compared to control cells

over an 8-hour period (Figures 2L, M). Furthermore,

Immunofluorescence (IF) staining confirmed that g-H2AX foci in

control cells nearly disappeared by 8 hours post-IR, but the foci

remained detectable in GLS-knockdown cells at the same time point

(Figures 2N–Q). Collectively, these results suggested that GLS

knockdown effectively enhanced radiosensitivity of LUAD

cells. Targeting glutamine metabolism, particularly through

GLS inhibition, represents a potential strategy to enhance

radiosensitivity in lung cancer therapy.
3.2 The role of GLS in reshaping the TME in
LUAD

Since the pivotal role of TME in the response of therapies in

tumor, we evaluated immune cell infiltration in radiotherapy

patients and found that CD8+ T cells significantly impact survival

in patients (Figure 3A). Patients were classified into two groups
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FIGURE 1

The radiosensitivity of LUAD is closely linked to glutamine metabolism. (A) GSEA results of amino acid metabolism pathways in radioresistant and
radiosensitive patients. (B) The impact of glutamine metabolism on radiotherapy prognosis. (C) GSEA results of the DSB repair gene set in
radioresistant and radiosensitive patients. (D) The correlation of glutamine-metabolism related pathways and DSB repair related pathways in patients
with radiotherapy in GSE68456. Pathway1: glutamate metabolic process. Pathway2: glutamate biosynthetic process. Pathway3: glutamate catabolic
process. Pathway4: glutamine metabolic process. Pathway5: glutamine family amino acid metabolic process. Pathway6: glutamine family amino acid
catabolic process. Pathway 7: glutamine family amino acid biosynthetic process. Pathway8: regulation of glutamate metabolic process. (E) DSB
repair activity between the two groups with different glutamine catabolic flux. A negative glutamine metabolic flux indicates active catabolism, with
smaller values suggesting increased catabolic activity. (F) DSB repair activity between the two groups with different glutamate biosynthetic flux. A
positive glutamate biosynthetic flux indicates active biosynthesis, with higher values suggesting increased biosynthetic activity. (G) GSEA results of
the DSB repair related gene sets between varying glutamine catabolic flux in TCGA_LUAD. (H) Single-cell profile of GSE131907. (I) The correlation of
glutamine metabolism and DSB repair in tumor cells of GSE131907. Wilcox rank-sum test was used for panel (E, F). DSB, double strand break.
Significance levels are denoted by asterisks: *** for p < 0.001.
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FIGURE 2

Knockdown of glutaminase enhanced radiosensitivity in LUAD cells in vitro. (A, B) Quantitative analysis of intracellular glutamine (A) and glutamate
(B) levels in A549, NCI-H23, HCC827, LLC and NCI-H226 cells before and after irradiation. (C) Western blot confirming GLS knockdown efficiency in
stably transfected A549 and NCI-H23 cells. (D, E) Intracellular glutamine levels were measured in control and GLS-knockdown A549 and NCI-H23
cells with or without exposure to ionizing radiation (10 Gy). (F, G) Intracellular glutamate levels were measured in control and GLS-knockdown A549
and NCI-H23 cells with or without exposure to ionizing radiation (10 Gy). (H-K) Representative images of colony formation assays in control and
GLS-knockdown A549 and NCI-H23 cells exposed to various doses of ionizing radiation (H, I). Survival curves derived from colony formation are
presented in panel (J, K). Data are presented as mean ± SEM (n = 3). (L, M) Western blot analysis of g-H2AX protein levels in control and GLS-
knockdown A549 and NCI-H23 cells following ionizing radiation (10 Gy) at 1, 4, and 8 hours, compared to untreated (0 h) conditions. (N-Q) Control
and GLS-knockdown A549 and NCI-H23 cells were exposed to ionizing radiation (1 Gy), and g-H2AX foci formation was assessed at specified time
points. Representative images (N, O) and quantification of foci per nucleus (P, Q) are shown. Each group included counting over 100 cells. Scale bar,
10 mm. Data are presented as mean ± S.D. Data in panel (A, B, D-G) are presented as mean ± S.D (n = 3). Two-way ANOVA test was used for (A, B,
D-G, J, K, P, Q). IR, ionizing radiation; NC, negative control. Significance levels are denoted by asterisks: ns for nonsignificant, * for p < 0.05, ** for p
< 0.01, *** for p < 0.001, and **** for p < 0.0001.
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FIGURE 3

GLS is associated with the TME in LUAD. (A) The impact of CD8+ T cells on survival in the radiotherapy population in patients with radiotherapy in
GSE68456. (B) GSEA results of the immune-related gene sets in GLS-low and GLS-high patients in GSE68456. (C) The correlation between the
expression of GLS and T cell subpopulations. (D) Differences in immune cell distribution between GLS-high and GLS-low patients at the single-cell
level. (E) Distribution of glutamine metabolic activity across different cell subpopulations between GLS-high and GLS-low groups. (F) Differences in
glutamine metabolic activity across different T cell subpopulations between GLS-high and GLS-low groups. (G) Differences in the number and
strength of interactions between immune cells and malignant cells between GLS-high and GLS-low groups. (H) Differences in the information flow
of cellular interactions between the GLS-high and GLS-low groups. Wilcox rank-sum test was used for panel (D). GLS_L, GLS-low; GLS_H, GLS-high.
Significance levels are denoted by asterisks: ns for nonsignificant and **** for p < 0.0001.
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depending on GLS expression, and GSEA results revealed that

significant enrichment of the activation of immune responses in

the GLS-low groups, including T cell proliferation and cytotoxicity

(Figure 3B; Supplementary Figure S3B). The GLS expression and

glutamine metabolism in radiotherapy patients were closely

associated with immune cell infiltration (Supplementary Figures

S3C, D), particularly with various T cell subpopulations, both of

which exhibited an inverse correlation with CD8+ T cells

(Figure 3C; Supplementary Figures S3E–G). In single-cell dataset,

patients were categorized into two groups according to GLS

expression in tumor cells, and the Ro/e analysis revealed

significant differences in tumor cell infiltration between the

groups (Figure 3D). Consistent with bulk RNAseq data, patients

with lower GLS expression exhibited a significantly elevated

infiltration of CD8+ T cells (Figure 3D). Further analysis of

glutamine metabolism in these two groups showed that patients

with higher GLS expression in tumor cells exhibited significant

differences in glutamine metabolic activity in various immune cell

types (Figure 3E; Supplementary Figure S4A). Additionally, analysis

of T cell subpopulations indicated that in the high GLS group, the

glutamine metabolism of cytotoxic T cells was notably more active

(Figure 3F). Malignant cells in the high-GLS group also showed

much greater glutamine metabolism than those in the GLS-low

group (Supplementary Figure S4B). CellChat analysis further

revealed significant differences in the quantity and strength of

cell-cell communication between the high- and low- GLS groups

(Figure 3G; Supplementary Figure S4C). In the GLS-low group, the

interplay between cytotoxic T cells and malignant cells was stronger

compared to the high GLS group. Further analysis of intercellular

signaling pathways in the two patient groups revealed significant

differences, with pathways such as the type II interferon (IFN)

pathway and the tumor necrosis factor (TNF) pathway exhibiting

notably higher activation in the low GLS group than in the high GLS

group (Figure 3H). These findings suggested that the GLS-low

group exhibited a more potent cytotoxic effect of T cells on

tumor cells. To further investigate the interaction between

malignant cells with different GLS levels and effector T cells, we

analyzed two spatial transcriptomic samples from LUAD at the

same stage (Supplementary Figures S5A, B). The results indicated

that in samples with lower GLS expression in malignant cells, the

exclusion coefficient of co-localization between malignant cells and

effector T cells was lower, suggesting a greater likelihood of effector

T cell infiltration into the tumor (Supplementary Figures S5C, D).

In contrast, the exclusion coefficient with Tregs was higher,

indicating a reduced likelihood of Tregs infiltration, which in turn

was more favorable for effector T cells to exert their tumor-killing

functions (Supplementary Figure S5E). The coefficient for co-

localization between effector T cells and Tregs was negative in

GLS-low samples and positive in GLS-high samples, indicating an

inhibitory effect on effector T cells in GLS-high samples

(Supplementary Figures S5F–H).

Considering the critical role of CD8+ T cells in antitumor

immune responses following radiotherapy, we conducted a co-

culture assay using PBMCs to validate the impact of GLS on

CD8+ T cell activation and cytotoxicity. The GLS-knockdown
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A549 cells or control cells with or without IR were co-cultured

with human PBMCs. The results demonstrated that GLS

knockdown markedly raised the percentage of CD8+ T cells that

express the activation marker CD69 after 24 hours of co-culture

(Figures 4A, B). After 72 hours of stimulation, the percentage of

CD8+ T cells with Granzyme B expression, a crucial marker of

cytotoxic activity, was markedly higher in the GLS knockdown

group (Figures 4A, B). In addition, within the co-culture system,

A549-shGLS cells exhibited a significantly higher apoptosis rate

compared to control cells, further demonstrating that GLS

inhibition enhances the tumor-killing effect of immune cells

(Figures 4C, D). These findings suggest that downregulation of

GLS enhances the immune response against LUAD cells, primarily

by promoting the activation and cytotoxic function of CD8+ T cells

in the context of radiotherapy.
3.3 Knockdown of GLS promotes
ferroptosis, thereby increasing cellular
death following IR treatment

Radiotherapy induces tumor cell death through various

mechanisms. To investigate the impact of GLS knockdown on the

mode of death in irradiated cells, we first assessed cell viability and

their LDH release. As illustrated in Figures 5A–D, silencing GLS in

A549 and NCI-H23 cells following IR resulted in a reduction in cell

viability and a rise in LDH release. To explore the specific type of

cell death induced by GLS knockdown that sensitize tumors to

radiotherapy, we analyzed 18 types of PCD in relation to

radiotherapy outcomes and GLS expression. We intersected the

PCDs associated with radiotherapy response with those found to be

correlated with GLS expression in both the TCGA_LUAD and

GSE68456 datasets, identifying five types of PCD, including

apoptosis, ferroptosis, unprogrammed necrosis, and entosis

(Figure 5E). Next, we pretreated the cells with pharmacological

inhibitors targeting various cell death pathways. The results showed

that two distinct ferroptosis inhibitors, Fer-1 and Lip-1, effectively

rescued GLS-depleted A549 and NCI-H23 cells from IR-induced

cell death. In contrast, inhibitors of apoptosis (Z-VAD) and entosis

(C3 exoenzyme) had only a slight effect (Figures 5F, G).

Consistently, treatment with Fer-1 and Lip-1 significantly

alleviated LDH release from GLS-knockdown A549 and NCI-H23

cells post-irradiation (Figures 5H, I). Survival analysis suggests that

ferroptosis has a significant impact on the survival of patients

undergoing radiotherapy (Figure 5J). Ferroptosis varies greatly

between groups with high and low GLS expression (Figures 5K,

L). Single-cell data further reveal a significant negative correlation

between glutamine metabolism and ferroptosis in tumor cells

(Figure 5M). These results suggested that the reduced viability

observed in GLS-silenced LUAD cells following irradiation was

primarily attributable to ferroptosis.

To further investigate the contribution of ferroptosis in the

increased radiosensitivity of GLS-depleted LUAD cells, we assessed

several ferroptosis-related indicators. LPO, a hallmark of

ferroptosis, is primarily indicated by the accumulation of its final
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product, MDA. As shown in Figures 6A–D, the levels of both LPO

and MDA were significantly elevated in GLS-depleted LUAD cells.

Intracellular ROS, a major inducer of lipid peroxidation, were

quantified using the cytosolic ROS sensors DCFH-DA and DHE.

As expected, GLS silencing notably increased intracellular ROS

levels in A549 and NCI-H23 cells following irradiation (Figures 6E,

F; Supplementary Figure S6). Moreover, comparison between GLS-

high and GLS-low patients revealed significantly elevated GPX4

expression in malignant cells (Figure 6G). GPX4, a critical enzyme

that mitigates lipid peroxidation, is essential for regulating

ferroptosis (46, 47). Western blot and GPX4 activity assays

confirmed that GLS knockdown reduced both the expression and

activity of GPX4 in NSCLC cells (Figures 6H–K). In conclusion,

GLS knockdown enhances ferroptosis via downregulating GPX4,

thereby enhancing LUAD cell death upon IR treatment.
3.4 GLS-knockdown potentiates the
radiosensitivity of LUAD cells in vivo

To further confirm these findings in vivo, we subcutaneously

implanted control and GLS-knockdown A549 cells into BALB/c

nude mice to create xenograft tumors (Figure 7A). Consistent with

in vitro findings, GLS silencing significantly enhanced

radiosensitivity in LUAD subcutaneous xenograft models, as

evidenced by reductions in tumor volume and weight following

radiotherapy (Figures 7B–D). No notable variations in body weight
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were recorded among the experimental groups (Figure 7E).

Additionally, Western blot and IHC analysis of tumor tissues

revealed a marked reduction in GPX4 expression in the GLS-

knockdown group, suggesting an enhanced level of ferroptosis

(Figures 7F–H). IHC analysis demonstrated markedly reduced Ki-

67 expression and elevated g-H2AX levels in the GLS-knockdown

group following IR treatment, indicating an augmented anti-tumor

efficacy (Figures 7G, H). These results collectively demonstrate that

GLS depletion sensitizes LUAD cells to radiotherapy in vivo.
3.5 Establishment of the GLS-DSBr
prognostic model

Given the association between glutamine metabolism and DSB

repair with tumor malignancy, we explored their combined value in

predicting tumor prognosis. Using the TCGA_LUAD dataset as the

training cohort, along with four independent validation cohorts

(GSE31210, GSE72094, GSE50081, and GSE37745), we constructed

a prognostic model based on the intersection of differentially

expressed genes stratified by GLS expression and the DSB repair

gene set. First, univariate Cox regression was performed

(Supplementary Table S1), followed by machine learning

methods. Selection of the optimal model was guided by the

average C-index (Figure 8A; Supplementary Figures S7A, B).

GSVA analysis of Hallmark gene sets revealed that the low-risk

group exhibited significantly lower activity in key pathways,
FIGURE 4

GLS knockdown promotes CD8+ T cell-mediated tumor-killing. (A, B) Control and GLS-knockdown A549 cells, with or without exposure to 10 Gy
ionizing radiation, were co-cultured with human PBMCs. After 1 and 3 days respectively, the proportions of CD69+ and Granzyme B+ cells among CD8+

T cells were assessed by flow cytometry. Representative flow cytometry plots (A) and quantification of positive cell rates (B) are shown. (C, D) Control
and GLS-knockdown A549 cells, with or without exposure to 10 Gy ionizing radiation, were co-cultured with human PBMCs. After 12 h, apoptosis assay
with Annexin V-APC/PI staining of tumor cells was performed using flow cytometry. Representative images were shown in panel (C). Percent apoptotic
cells (Annexin V+) and early apoptotic cells (Annexin V+ PI-) were quantified in panel (D). All data are presented as mean ± S.D (n = 3). Two-way ANOVA
test was used for panel (B, D). IR, ionizing radiation; NC, negative control; Gran B, Granzyme B, PBMCs, peripheral blood mononuclear cells; PI,
Propidium Iodide. Significance levels are denoted by asterisks: * for p < 0.05, ** for p < 0.01, *** for p < 0.001, and **** for p < 0.0001.
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FIGURE 5

GLS depletion promotes irradiation-induced cell death via ferroptosis in LUAD cells. (A, B) The cell viability curves of control and GLS-knockdown A549
and NCI-H23 cells at 12 h, 24 h and 48 h after ionizing radiation (10 Gy). (C, D) The lactate dehydrogenase release levels from control and GLS-
knockdown A549 and NCI-H23 cells with or without exposure to ionizing radiation (10 Gy). (E) The types of PCD associated with prognosis in
radiotherapy patients and correlated with GLS in both GSE68456 and TCGA_LUAD. (F, G) GLS-knockdown A549 and NCI-H23 cells were pre-treated for
24 hours with inhibitors of ferroptosis (Fer-1, Lip-1), apoptosis (Z-VAD), or entosis (C3 exoenzyme) prior to exposure to IR (10 Gy). Cell viability was
subsequently assessed using the CCK-8 assay. (H, I) GLS-knockdown A549 and NCI-H23 cells were pre-treated for 24 hours with inhibitors of
ferroptosis (Fer-1, Lip-1) prior to exposure to IR (10 Gy). Lactate dehydrogenase release from cells was evaluated. (J) The impact of ferroptosis on the
outcomes of patients receiving radiotherapy. (K, L) Differences in ferroptosis between GLS-high and GLS-low groups in GSE68456 (K) and TCGA_LUAD
(L). (M) The correlation of glutamine metabolism and ferroptosis in tumor cells of LUAD patients. All data are presented as mean ± S.D (n = 3). Two-way
ANOVA test was used for (A-D); One-way ANOVA test was used for (F-I). Wilcox rank-sum test was used for (K, L). IR, ionizing radiation; NC, negative
control; Z-VAD, Benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone; Fer-1, Ferrostatin-1; Lip-1, Liproxstatin-1; C3, C3 Exoenzyme; LDH, Lactate
Dehydrogenase; PCD, programmed cell death. Significance levels are denoted by asterisks: * for p < 0.05, ** for p < 0.01, *** for p < 0.001, and **** for
p < 0.0001.
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including DNA repair and energy metabolism, compared to the

high-risk group (Figure 8B). According to the risk scores obtained

from the GLS-DSBr model, we plotted Kaplan-Meier curves. The

Log-rank test indicated statistically significant differences in

survival between the two groups across all datasets (Figure 8C;

Supplementary Figures S7C–F). In addition, the ROC curves

revealed that the GLS-DSBr model offers superior prognostic

predictive performance (Figure 8D; Supplementary Figures S7G–
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J). When applied to the GSE68456 dataset, the model effectively

differentiated patients with distinct prognosis (Figure 8E) and

presented robust predictive power for the radiotherapy

population, with AUC values of approximately 0.8 at 1, 2, and 3

years (Figure 8F).

At the genomic level, there were differences in CNVs between

the high- and low-risk groups. Specifically, the high-risk group

exhibited a stronger gain at 1q21.3 and a more pronounced loss at
FIGURE 6

Inhibition of GLS promotes ferroptosis in LUAD cells. (A-D) Relative lipid peroxidation levels (A, B) and quantification of malondialdehyde levels (C, D)
in control and GLS-knockdown A549 and NCI-H23 cells with or without exposure to ionizing radiation (10 Gy). (E, F) Intracellular ROS levels
detected by DCFH-DA fluorescent probe in control and GLS-knockdown A549 and NCI-H23 cells with or without exposure to ionizing radiation (10
Gy). (G) The expression of GPX4 in malignant cells of GLS-high and GLS-low patients at the single-cell level. (H, I) Western blot analysis of GPX4
protein levels in control and GLS-knockdown A549 and NCI-H23 cells with or without exposure to ionizing radiation (10 Gy). (J, K) Relative GPX4
activity in control and GLS-knockdown A549 and NCI-H23 cells with or without exposure to ionizing radiation (10 Gy). All data are presented as
mean ± S.D (n = 3). Wilcox rank-sum test was used for panel (G). Two-way ANOVA test was used for panel (A-F), (J, K). IR, ionizing radiation; NC,
negative control; LPO, lipid peroxidation; MDA, malondialdehyde; DHE, dihydroethidium; DCFH-DA, 2’,7’-Dichlorodihydrofluorescein Diacetate;
GPX4, glutathione peroxidase 4; ROS, reactive oxygen species. Significance levels are denoted by asterisks: * for p < 0.05, ** for p < 0.01, *** for p <
0.001, and **** for p < 0.0001.
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FIGURE 7

Inhibition of GLS sensitizes LUAD to radiotherapy in vivo. (A) Schematic diagram of the radiotherapy xenograft model. A549 cells stably expressing
shNC or shGLS were subcutaneously injected into nude mice. Once tumor volumes reached 60-120 mm³, mice bearing control or GLS-knockdown
tumors were randomized into irradiated and non-irradiated groups (n = 5). Mice in the irradiated group received 14 Gy radiation over one week (2
Gy/day). (B) Photographs of tumors in each group were taken on day 30. (C-E) Tumor growth curves (C), tumor weights (D), and body weight
changes of mice (E) in each group (n = 5). (F) Western blot analysis of GPX4 in resected tumor samples from each group. (G, H) Representative
images (G) and quantitative data (H) of IHC for GPX4, g-H2AX and Ki-67 in tumor samples from control and GLS-knockdown group with or without
radiotherapy (n = 5). Representative images of HE staining for tumors in each group are also shown in panel (G). Scale bar, 50 mm. All data are
presented as mean ± S.D. Two-way ANOVA test was used for panel (C-E); Two-tailed unpaired t test was used for panel (H). IR, ionizing radiation;
NC, negative control; CDX, cell-derived xenograft; GPX4, glutathione peroxidase 4; HE, hematoxylin and eosin; IHC, immunohistochemistry.
Significance levels are denoted by asterisks: ns for nonsignificant, * for p < 0.05, ** for p < 0.01 and *** for p < 0.001.
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9p21.3 compared to the low-risk group (Figures 8G, H). The overall

SNP mutation frequency was higher in the high-risk group, the top

10 genes with the highest incidence of SNPs, which showed obvious

differences between the groups in the TCGA-LUAD cohort

(Supplementary Figure S8A, B).
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In the GSE72094 dataset, high-risk patients showed a higher

proportion of KRAS and STK11 mutations (Figures 8I, J). Given the

association of STK11 with immunotherapy response in LUAD

patients, we performed risk assessment using the GSE135222

dataset. The results indicated that GLS-DSBr score was strongly
FIGURE 8

Construction and functional exploration of the GLS-DSBr Model. (A) C-index of 101 machine learning algorithm models in LUAD datasets. (B) The result
of Hallmark analysis in high- and low-risk groups. (C) Kaplan-Meier survival analysis based on GLS-DSBr score in TCGA_LUAD. (D) The ROC curve of
GLS-DSBr model in TCGA_LUAD. (E) Kaplan-Meier survival analysis based on GLS-DSBr score in GSE68456. (F) The ROC curve of GLS-DSBr model in
population with radiotherapy. (G, H) CNV characteristics in high- and low-risk groups. (I) Sankey diagram of STK11 and KRAS mutations in high- and
low-risk groups. (J) Risk scores between STK11 and KRAS wild-type and mutant populations. (K) The ROC curve of GLS-DSBr model in patients with
immunotherapy of GSE13522. Wilcox rank-sum test was used for panel (J). Significance levels are denoted by asterisks: *** for p < 0.001.
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correlated with survival in LUAD patients receiving anti-PD-1/PD-

L1 therapy, with excellent prognostic prediction ability (1-, 2-, and

3-year AUC values of 0.9, 0.78, and 0.89, respectively) (Figure 8K;

Supplementary Figure S7K).
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The correlation between model genes and GLS was shown in

Supplementary Figure S8C. EREG, exhibiting the strongest positive

correlation with GLS, is predominantly co-expressed with GLS in

epithelial cells (Figure 9A), while INSL4, showing the strongest
FIGURE 9

GLS-DSBr model is applicable across pan-cancer. (A) Co-expression of representative prognostic gene (EREG) with GLS. (B) Correlation between risk
score and DSB repair in tumor cells. (C) Correlation between risk score and glutamine metabolism in tumor cells. (D) Radar plot of log-rank test p-
values for the prognostic model across pan-cancer. -log2(0.05) = 4.32, -log2(0.01) = 6.64. (E) Differences in immune cell infiltration between RS-
high and RS-low patients in LUAD. (F) Differences in TME between high-risk and low-risk patients in pan-cancer. Wilcox rank-sum test was used for
panel (E, F). RS, risk score. Significance levels are denoted by asterisks: ns for nonsignificant, * for p < 0.05, ** for p < 0.01, *** for p < 0.001, and
**** for p < 0.0001.
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negative correlation, is mainly co-expressed with GLS in myeloid

cells (Supplementary Figure S8D). The GLS-DSBr score is positively

correlated with DSB repair in tumor cells (Figure 9B), consistent

with reports linking stronger DSB repair activity to higher tumor

malignancy. Additionally, the GLS-DSBr score correlates positively

with glutamine metabolism (Figure 9C), supporting the observation

that reduced glutamine metabolism in tumor cells increases their

susceptibility to cell death. Finally, a significant negative correlation

was observed between the GLS-DSBr score and ferroptosis

(Supplementary Figure S8E) in tumor cells. Collectively, the GLS-

DSBr model establishes a clinically actionable framework that

demonstrates robust prognostic accuracy and offers potential to

guide personalized therapeutic strategies in LUAD, particularly for

optimizing radiotherapy and immune checkpoint blockade efficacy.
3.6 The GLS-DSBr model is applicable
across pan-cancer and correlates with the
TME

Given that DSB repair and metabolic reprogramming are

essential characteristics of cancer, A correlation analysis was

carried out to examine the relationship between GLS expression

and immune cell infiltration across pan-cancer. The analysis

showed a notable association between GLS and the TME in the

majority of cancers (Supplementary Figure S9A). Therefore, we

examined the applicability of the GLS-DSBr model across pan-

cancer. The results demonstrated that the GLS-DSBr model is

applicable to nearly all cancer types (Figure 9D; Supplementary

Figure S9B).

Further TME analysis between the two groups exhibited

considerable disparities in the infiltration of immune cells

(Figure 9E; Supplementary Figure S10A). To evaluate the TME

landscape, we performed pan-cancer ESTIMATE analysis, which

revealed significant differences in immune infiltration and stromal

components between the two groups across most cancer types

(Figure 9F; Supplementary Figures S10B, C). These results

collectively suggest that the GLS-DSBr model not only holds

broad applicability across pan-cancer but also reflects distinct

immune and stromal features within the TME.
4 Discussion

In this study, we found that glutamine metabolism is closely

associated with DSB repair, and knocking down GLS increased

tumor sensitivity to radiotherapy. Further analysis revealed that

GLS knockdown not only promoted ferroptosis in tumor cells but

also enhanced the cytotoxicity of CD8+ T cells in TME. Our

findings underscored the pivotal role of GLS in shaping the

metabolic and immune landscapes of LUAD. Additionally, based

on GLS and DSB repair, we applied machine learning to build a

robust model for the prognosis and the efficacy of radiotherapy and

immunotherapy in LUAD, which was validated for its applicability

across pan-cancer.
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Metabolic reprogramming is a key feature of tumor,

significantly contributing to tumor progression and resistance to

therapy (48). Cancers mostly exhibit a strong affinity for glutamine,

and the metabolic dependence of tumor cells on glutamine has now

been recognized as a distinctive phenomenon referred to as

“glutamine addiction” (49). Our analysis suggests that glutamine

metabolic flux is a key determinant of radiotherapy outcomes in

LUAD. Unrepaired DSB are among the most detrimental forms of

cellular damage, often leading to cell death (50). Enhanced DSB

repair capacity is a major contributor to radioresistance (51, 52),

and our correlation analysis revealed a strong link between DSB

repair and glutamine metabolism.

IR induces cell death through various forms of PCD by damaging

cellular DNA. Different forms of PCD are closely associated with

tumorigenesis and therapeutic response (53). Our analysis of 18

forms of PCD revealed five types, including ferroptosis, which are

significantly correlated with the radiotherapy sensitivity of LUAD

and GLS. Glutathione (GSH), a major downstream product of

glutamine metabolism, plays a critical role in radiation-induced

ferroptosis (54, 55). Given the role of GSH in ferroptosis, we pre-

treated shGLS cells with ferroptosis inhibitors before radiotherapy

and found that the inhibitors largely prevented the increased

radiotherapy sensitivity caused by GLS knockdown. This suggested

that the enhanced cell death induced by GLS knockdown in

radiotherapy is primarily ferroptosis. Single-cell analysis further

indicated that glutamine metabolism in malignant cells is

negatively correlated with ferroptosis, and lower GLS in malignant

cells is accompanied by decreased GPX4. Experiments confirmed that

shGLS cells showed significant reduction in GPX4 expression after

radiotherapy. Previous studies have reported that tumor cells can

develop adaptive defenses against ferroptosis induced by radiation,

such as upregulating key inhibitory molecule like GPX4 (26). Our

results suggested that GLS knockdown reverses the defense by

downregulating GPX4, thereby enhancing radiosensitivity and

overcoming radioresistance.

Other than malignant cells, immune cells also depend on energy

to mount effective immune responses (56). However, nutrient

availability, including glutamine, is restricted due to competition

between various cell populations in TME (57). The activation of

memory CD8+ T cells to boost cytotoxicity and cytokine production

depends on glutamine (58). A deficiency in glutamine not only

impairs the activation of effector T cells but also increases the

infiltration of immunosuppressive Treg cells (59). GSEA analysis

suggests that low GLS is associated with enhanced immune

responses, particularly the cytotoxicity of T cells. The co-culture

assay with PBMC validated that GLS knockdown significantly

increased CD8+ T cell activation and cytotoxicity after IR.

Therefore, we hypothesize that tumor cells with low GLS

expression, due to reduced glutaminase activity, increase the

glutamine in the TME, thereby alleviating glutamine deficiency in

immune cells. Single-cell RNA sequencing revealed that low GLS

expression increased the cytotoxicity of CD8+ T cells against

malignant cells and decreased interaction of cytotoxic CD8+ T

cells and Treg. Spatial transcriptomics analysis indicated that in

patients with low GLS expression, the TME exhibits a higher
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abundance of effector T cell infiltration, while the infiltration of

Treg cells is less. Depriving glutamine hinders secretion of IFN-g by
activated T cells (22). Moreover, ferroptosis can act as an

immunogenic cell death pathway, releasing damage-associated

molecular patterns (DAMPs) and lipid peroxidation products that

further activate CD8+ T cells and enhance anti-tumor immunity

(60, 61). This dual effect of GLS knockdown—directly inducing

ferroptosis and indirectly modulating T cell activity—creates a

synergistic effect that enhances the overall anti-tumor immune

response. Supporting this hypothesis, we observed increased

activity of the IFN-g and TNF signaling pathways in samples with

low GLS expression in malignant cells. Therefore, we propose that

low GLS expression in malignant cells boosts effector T cell

activation via IFN-g and TNF signaling pathways, while reducing

the inhibitory signals typically mediated by Treg cells. This shift in

the TME enhances antitumor immunity by promoting T-cell

activity and weakening Treg suppression, improving the overall

immune response against the tumor.

Glutamine metabolism is closely associated with tumorigenesis,

treatment response, and prognosis (13). DSB repair capacity is a

classic hallmark of cancer and also closely linked to tumor

progression (62). Considering the link among GLS, radiotherapy

sensitivity, and DSB repair, we constructed a GLS_DSBr prognostic

model developed through machine learning, trained and validated

using data from 2066 patients. This model accurately predicted the

prognosis of LUAD patient, as well as their response to

radiotherapy and immunotherapy. In addition, we validated this

model’s applicability across multiple cancer types. It not only

showed excellent prognostic prediction performance in most

cancer types but also revealed notable variations in the TME exist

between low- and high-risk groups.

Although clinical trials of GLS inhibitors (e.g., NCT02861300,

NCT03428217) have demonstrated safety, their efficacy remains

heterogeneous and inconclusive. Further development of

combinatorial therapeutic strategies and optimization of

treatment regimens are imperative to realize clinical benefits in

the future. Our findings address this challenge by identifying

specific mechanisms (DSB repair suppression, ferroptosis

induction, and TME modulation) that synergize GLS inhibition

with radiotherapy and immunotherapy. Furthermore, the GLS-

DSBr model provides a biomarker-driven framework to stratify

patients likely to benefit from GLS-targeted therapies. Even so,

several limitations should be acknowledged. First, while we

demonstrate that GLS knockdown enhances radiosensitivity via

promoting ferroptosis and improving immune activation in pre-

clinical experiments, clinical validation of these findings in human

patients is necessary. Although our machine learning model

provides promising results, further validation in real-world

cohorts is essential to fully confirm its clinical utility.
5 Conclusion

In conclusion, our study demonstrated that GLS inhibition

suppresses glutamine catabolism, promoting ferroptosis in
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irradiated tumors, thus improving radiosensitivity. Moreover, the

TME with low GLS expression amplifies the cytotoxicity of effector

T cells against tumor cells, contributing to enhanced irradiation-

induced immune response. Additionally, we developed a robust

prognostic model, GLS-DSBr, capable of accurately predicting

prognosis and the efficacy of both radiotherapy and

immunotherapy in LUAD, with applicability across pan-cancer.

These findings provide valuable insights into the metabolic

regulation of cancer therapy, offering a promising strategy for

improving patient outcomes in precision medicine.
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