
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Junji Xing,
Houston Methodist Research Institute,
United States

REVIEWED BY

Chandrima Gain,
University of California, Los Angeles,
United States
Cuncai Guo,
Washington University in St. Louis,
United States

*CORRESPONDENCE

Krzysztof Piotr Michalak

kmichalak@amu.edu.pl

Amelia Zofia Michalak

92261@student.ump.edu.pl

Alicja Brenk-Krakowska

alicja.brenk-krakowska@amu.edu.pl

RECEIVED 25 February 2025
ACCEPTED 28 March 2025

PUBLISHED 17 April 2025

CITATION

Michalak KP, Michalak AZ and
Brenk-Krakowska A (2025) Acute
COVID-19 and LongCOVID
syndrome – molecular implications for
therapeutic strategies - review.
Front. Immunol. 16:1582783.
doi: 10.3389/fimmu.2025.1582783

COPYRIGHT

© 2025 Michalak, Michalak and
Brenk-Krakowska. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Review

PUBLISHED 17 April 2025

DOI 10.3389/fimmu.2025.1582783
Acute COVID-19 and
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Poznań, Poland
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has been

recognized not only for its acute effects but also for its ability to cause

LongCOVID Syndrome (LCS), a condition characterized by persistent symptoms

affecting multiple organ systems. This review examines the molecular and

immunological mechanisms underlying LCS, with a particular focus on

autophagy inhibition, chronic inflammation, oxidative, nitrosative and calcium

stress, viral persistence and autoimmunology. Potential pathophysiological

mechanisms involved in LCS include (1) autoimmune activation, (2) latent viral

persistence, where SARS-CoV-2 continues to influence host metabolism, (3)

reactivation of latent pathogens such as Epstein-Barr virus (EBV) or

cytomegalovirus (CMV), exacerbating immune and metabolic dysregulation, and

(4) possible persistent metabolic and inflammatory dysregulation, where the body

fails to restore post-infection homeostasis. The manipulation of cellular pathways

by SARS-CoV-2 proteins is a critical aspect of the virus’ ability to evade immune

clearance and establish long-term dysfunction. Viral proteins such as NSP13,

ORF3a and ORF8 have been shown to disrupt autophagy, thereby impairing viral

clearance and promoting immune evasion. In addition, mitochondrial dysfunction,

dysregulated calcium signaling, oxidative stress, chronic HIF-1a activation andNrf2

inhibition create a self-sustaining inflammatory feedback loop that contributes to

tissue damage and persistent symptoms. Therefore understanding the molecular

basis of LCS is critical for the development of effective therapeutic strategies.

Targeting autophagy and Nrf2 activation, glycolysis inhibition, and restoration

calcium homeostasis may provide novel strategies to mitigate the long-term

consequences of SARS-CoV-2 infection. Future research should focus on

personalized therapeutic interventions based on the dominant molecular

perturbations in individual patients.
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1 Introduction

Since its emergence in late 2019, Severe Acute Respiratory

Syndrome Coronavirus 2 (SARS-CoV-2) has posed an

unprecedented challenge to global health. While the acute phase

of Coronavirus Disease 2019 (COVID-19) is increasingly well

understood, growing attention has turned toward long-term

complications. LongCOVID Syndrome (LCS) affects millions of

patients worldwide and manifests as a constellation of multisystem

symptoms persisting months after viral clearance, with mechanisms

that remain elusive (1, 2).

Recent studies have highlighted the ability of SARS-CoV-2

proteins to interfere with key intracellular pathways, including

autophagy, mitochondrial dynamics, oxidative and nitrosative

stress responses, calcium signaling, and the regulation of

transcription factors such as HIF-1a and Nrf2 (3–11). These

perturbations are believed to contribute to both viral persistence

and immune dysregulation. However, no study to date has

thoroughly examined how viral proteins simultaneously affect

multiple cellular pathways, each controlled by its own feedback

mechanisms, and how the disruption of these systems may interact

to worsen or prolong disease. This lack of a systems-level

perspective limits our understanding of how SARS-CoV-2 causes

long-term cellular dysfunction.

This review aims to fill this gap by providing an integrative

analysis of how viral proteins reprogram intracellular signaling,

with particular focus on autophagy, Nrf2-mediated antioxidant

defenses, calcium signaling, and mitochondrial function. We

further examine how dysregulation of feedback mechanisms

between these pathways may lead to sustained cellular stress and

impaired resolution of inflammation. A better understanding of

these interdependencies could inform novel therapeutic strategies

for both acute and post-acute COVID-19.
2 LongCOVID syndrome

LongCOVID-19 Syndrome (LCS) is characterized by a variety

of health complications affecting multiple organ systems, including

the respiratory, cardiovascular, hematologic, genitourinary,

gastrointestinal, and neurologic systems (1, 2). The underlying

cause of these symptoms is thought to be the persistent activation

of the immune system (1, 12). Various definitions have been

proposed for LCS. Some authors propose to distinguish between

Post Acute COVID-19 (4-12 weeks after infection), Post COVID-19

(more than 12 weeks) and Long COVID-19 which includes both of

these terms (2). Another term used is Post-Acute Sequelae of SARS-

CoV-2 Infection (PASC). However, it should be noted that this

classification is somewhat artificial and has a negligible impact on

the current analysis.

Previous analyses of the LCS problem have focused on

describing the immunologic, molecular, and morphologic changes

in the organs or tissues that are damaged or dysregulated (1, 2). The

criteria for the diagnosis of LCS have also been discussed in the

context of different symptoms and affected organs (1, 2). The
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features of hyperinflammation, coagulation disorders, oxidative

stress and tissue-dependent damage are presented as major

endpoint features of LCS. However, little attention has been paid

to the initial pathobiochemical and molecular changes in cellular

metabolism that lead to the observed end-effects. Assuming a large

variety of different LCS types, the question arises as to what is the

reason for the prolonged duration of symptoms in patients after

SARS-CoV-2 infection and to what extent the molecular and

immunological changes observed during and after COVD-19 are

the reason for the symptoms of LCS.

Four main alternatives can be considered as the reason for LCS:
1. Induction of a type of autoimmunity [29,30]. The

autoantibodies, after binding to some receptors on the

surface of the cells, induce its metabolic reprogramming

causing regulatory dysfunctions.

2. COVID-19 infection induces other chronic pathogens that

were already present in the host cells (e.g. Epstein-Barr

virus, cytomegalovirus) (13, 14) to go to the “higher level”

of their body infiltration causing the magnification of their

earlier latent symptoms. The development of intracellular

infections can be attributed to intracellular metabolic or

immunological changes that facilitate pathogen

propagation. Autophagy inhibition induced by SARS-

CoV-2 proteins (15–18) appears to be a possible

facilitator of disease progression.

3. The SARS-CoV-2 virus remains in the cells after recovery,

it is not completely eliminated and enters the chronic active

state (19, 20). The patient’s symptoms are to a high degree

the direct metabolic consequences of the presence of the

virus in the host cells.

4. Nei ther SARS-CoV-2 nor other pathogens or

autoimmunity are present in the host cell as an activating

stimulus. The presence of SARS-CoV-2, other intracellular

pathogens and autoimmunity have been excluded as

initiating elements of LCS. The metabolic and

immunological alterations have been shown to be a

consequence of the pathological state (e.g. chronic

mitochondrial dysfunction, chronic microcirculatory

disturbances), and the organism is unable to leave this

state and return to a healthy states characterized by proper

activity of all metabolic pathways and transcription factors.

The only possible explanation for LCS is the inability of

host cells to exit the deregulated state.
It is important to note that the first three proposed causes of

LCS may overlap in individual patients, and the fourth cause can

only be considered after the first three have been ruled out.

Autoimmune disorders and the induction of other pathogens will

be discussed in a basic outline, as it is dedicated to a separate review.

However, a detailed analysis will focus on the impact of individual

viral proteins onmetabolism, assuming that LongCovid-19 syndrome

is generated by an active chronic viral infection and interference of

viral proteins with host metabolism, as is the case with other viruses

that enter a state of chronic active infection, such as EBV (21–26),

CMV (27), HCV (28, 29), HSV (30, 31). In this case, the key to Long
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Covid syndrome therapy is to understand the interaction of virus

proteins with the host’s metabolism in order to reverse the disorders

and restore the immune system’s ability to remove virus-laden cells or

restore the ability of host cells to clear the virus.
2.1 COVID-19 activates multiple
autoimmune diseases

Autoimmunity appears to be a important component of the

symptoms associated with LCS, as evidenced by the presence of

various autoantibodies in a significant proportion of patients with

both LCS and COVD-19 [29,30]. Numerous reports have indicated

the presence of various autoantibodies following infection with

SARS-CoV-2 (32). These autoantibodies associated with the SARS-

CoV-2 infection include autoantibodies against type I interferons,

lupus anticoagulant (LAC), antinuclear antibodies (ANA),

rheumatoid factor (RF), p- and c-antineutrophil cytoplasmic

antibodies (pANCA, cANCA), anticardiolipin antibodies (ACL),

anti-Ro52 antibodies and anti-phosphatidylserine antibodies (32).

Antiphospholipid antibodies were mainly represented by IgG ACL

(48%), followed by IgM ACL (21%), especially in COVID-19

positive patients (32). As reported by Zhou et al. (33),

autoantibodies were found to be directed against 12 different host

antigens. These immune molecular elements included antinuclear

antibodies (ANA), anti-SSA/Ro antibodies, anti-Scl-70 antibodies,

and anti-U1-RNP antibodies.

Vojdani et al. (34) demonstrated by ELISA that certain

monoclonal antibodies directed against the spike protein of

SARS-CoV-2 showed reactivity with several self-antigens,

including glutamate decarboxylase-65 (GAD-65), mitochondrial

proteins, phospholipids, and hepatocyte microsomes.

As reported by Chang et al. (35), multiple IgG autoantibodies

were found in hospitalized patients with confirmed cases of COVID-

19. Some of these autoantibodies have been shown to contribute to

the formation of proinflammatory immune complexes, primarily on

endothelial cell surfaces. This has the potential to lead to vascular

inflammation and thrombosis. For example, increased formation of

neutrophil extracellular traps (NETs) was found in patients with

COVID-19 who also had vasculitis (35). This phenomenon was

found to be associated with significant neutrophil activation and

production of proinflammatory NETs, which were observed to

contain nucleic acids, histones, and various inflammatory peptides

or proteins (35). Autoantibodies identified in this study included anti-

C1q antibodies, previously observed in systemic lupus erythematosus,

as well as anti-b2GP1, anti-bactericidal/permeability-increasing

protein (BPI), and anti-ACE-2 antibodies. In addition, 60-80% of

all hospitalized patients with confirmed COVID-19 expressed at least

one anti-centromere antibody (ACA), a finding also reported in other

autoimmune diseases, most commonly in CREST syndrome (35).

As also found byWang et al. (36), IgG isotypes from patients with

anti-GM-CSF, anti-CXCL-1 or anti-CXCL-7 autoantibodies have the

potential to block the signaling of these proteins. In addition,

increased antibody-dependent cellular phagocytosis was observed

in Raji B cells or Jurkat T cells due to the presence of anti-CD38 or
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anti-CD3e autoantibodies (36). Furthermore, the study established a

correlation between autoantigens such as NXPH-1, PCSK-1,

SLC2A10 and DCD and markers of COVID-19 severity, including

D-dimer, ferritin, C-reactive protein and lactate, which were observed

to increase in cases of severe COVID-19 (36). In addition, there have

been reports of an association between viral-induced autoimmunity

and COVID-19 based on the mechanism of molecular mimicry.

Certain proteins on the surface of SARS-CoV-2 have been shown to

be biochemically similar to those found in host cells (37, 38).

Therefore, it is plausible that some patients with COVD-19 may

manifest cross-reactive immunologic responses analogous to those

observed in other pathologic conditions, such as acute post-

streptococcal glomerulonephritis or rheumatic endocarditis.

The research on the existence of autoimmunity in LCS patients

is less numerous, but significant. According to Ampudia et al. (39),

there is persistent autoimmune activation and a proinflammatory

state in LCS. For example, the frequency of b2-glycoprotein-1 (b2-
GP1) IgM autoantibodies, classically described in antiphospholipid

syndrome, was higher in LCS patients compared to pre-pandemic

controls (39). The same study also found that 19 of 33 acute cases of

COVID-19 and 21 of 33 LCS patients expressed at least one

autoantibody. According to Ampudia et al., LCS patients have

higher levels of circulating naive B cells, which are a known

source of autoantibodies. Furthermore, patients with LCS had

very high levels of circulating proinflammatory cytokines such as

IFN-a, TNF-a, G-CSF, IL17A, IL-6, IL1-b, and IL-13, but also a

decrease in interferon-g-induced protein-10 (IP-10) (39). Persistent

dysregulation of IL-6 (one of the major proinflammatory cytokines

in COVID-19) was found to be associated with generalized fatigue,

sleep disturbance, depression, and anxiety and is one of the major

proinflammatory molecules associated with the development of

autoinflammatory responses and autoimmunity via pre-existing B

lymphocytes (39). The clinical presentation of LCS has been found

to be influenced by other molecular elements, including IL-1b,
TNF-a, IFN-g, IL-10, IL-2, C-reactive protein, MCP-1, serum

amyloid-A and metabolites of the kynurenine pathway (39).

In conclusion, the autoimmunity that develops during and after

SARS-CoV-2 infection is a significant problem that needs to be

analyzed independently for different types of autoantibodies.

Further research is needed to determine which antibodies are

“silent” (i.e., do not react with any proteins or receptors in host

cells) and which are active, i.e., react with some proteins and thereby

induce or inhibit specific molecular pathways. The issue of

autoimmunity in LCS requires dedicated research and analysis,

with a focus on the inhibition of persistent induced inflammation.

Treatment should aim to gradually reduce the levels of

inflammatory antibodies, thereby facilitating recovery.
2.2 Activation of other active chronic
infections

A recent reports describe that SARS-CoV-2-induced infection

may lead to reactivation of EBV (40–42). Other viruses that belong

to the Herpesvirus family: HHV-6 and HHV-7 were also shown to
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be reactivated in patients infected with SARS-CoV-2 (42). The effect

of reactivation of pathogens is in line with studies indicating that

the SARS-CoV-2 virus disrupts various immune functions,

including the blocking of autophagy in numerous molecular

mechanisms (16). Another mechanism observed for the SARS-

CoV-2 NSP15 protein is the inhibition of type 1 interferon

production (43). It has been observed that a virus with a mutated

NSP15 induced normal interferon production, while the wild type

induced a broad immune response including the induction of ER

stress and upregulation of over 2,800 genes, including networks

associated with activating the unfolded protein response and the

proinflammatory response associated with viral pathogenesis (43).

It indicates the important role of this viral protein in weakening

antiviral immunity.

It is important to acknowledge that the chronic active viremia is

not exclusive to the SARS-CoV-2. Various other viruses, including

Epstein-Barr virus (EBV) (21–26), cytomegalovirus (27), Ebola

virus (44), Zika virus (45), enteroviruses (46), Coxsackie (47–49)

and measles virus (50), have also been documented to enter the

active chronic state and induce various health complications. EBV,

a common virus in the general population, often progresses to active

chronic infection. Studies employing blood PCR in healthy

individuals by various authors suggest a population burden of 18-

30% (51–54) and up to 80% in the older adult population in Qatar

(55). Population analyses for CMV are similar. A study by Huifen Li

et al. (56) demonstrates that active chronic CMV infection can

persist for decades in older individuals and leads to a threefold

increase in blood levels of the pro-inflammatory IL-6. The study

further suggests that the virus occupies immune cells, including

monocytes, CD4 and CD8 lymphocytes. In a group of subjects aged

70-79 years, 46% had CMV DNA detected in monocytes. As in the

case with SARS-CoV-2, both viruses have been postulated to induce

autoimmunity and hypercoagulation (57–64) including

disseminated intravascular coagulation (DIC) (65–67).

EBV, CMV and Coxsackie B3 have also been reported to inhibit

autophagy (16, 68, 69), suggesting a potential for these two viruses

and SARS-CoV-2 to facilitate each other’s spread within the body.

Other viruses that chronically block autophagy may also contribute

to this process. Naendrup et al. (14) reported that in a cohort of 117

critically ill COVID-19 patients, EBV reactivation was detected in

16% and CMV in 9%. Reactivations were more frequent in patients

receiving corticosteroids (58% for EBV, 55% for CMV) (14). While

targeted treatment with ganciclovir improved survival in CMV

patients (83% vs. 0% without treatment), rituximab did not show

a significant effect on EBV outcomes. These findings suggest that

while viral reactivations are common in severe cases of COVID-19,

further study is necessary to determine their clinical impact and the

benefits of targeted treatment.
2.3 Sars-Cov-2 still persisted in the cells
despite negative tests

The mounting body of evidence indicates the presence of SARS-

CoV-2 RNA and protein in a broad spectrum of tissue types, collected
Frontiers in Immunology 04
weeks or months after the onset of acute SARS-CoV-2 infection. The

viral RNA or protein has been identified in the majority of organs and

tissues, including the liver, stomach, tonsils, gallbladder, and lungs (20,

70–74). The preponderance of evidence for the existence of a SARS-

CoV-2 reservoir in individuals with LCS stems from three sources:

tissue biopsy studies, studies of SARS-CoV-2 proteins in plasma and

studies using features of the adaptive immune response to infer the

presence of a SARS-CoV-2 reservoir in tissues.

One of the earliest reports concerning the prolonged positive

PCR tests at recovery patients was published by Lan et al. (19). Four

members of the hospital staff were prescribed antiviral treatment

(75 mg of oseltamivir taken orally every 12 hours) due to a positive

diagnosis of SARS-CoV-2 infection. Subsequently, two consecutive

negative RT-PCR test results were obtained. The time from the

onset of symptoms to recovery ranged from 12 to 32 days.

Thereafter, the subjects were instructed to adhere to a five-day

home quarantine protocol. Subsequent RT-PCR tests, conducted

between 5 and 18 days later using two distinct PCR kits, yielded

positive results, despite the absence of symptoms as determined by

clinical examination and chest CT findings.

Cheung et al. (20) detected nucleocapsid protein (NP) of SARS-

CoV-2 in various organs including the liver, colon, lymph nodes,

appendix, ileum, haemorrhoids and gallbladder, in five cancer

patients who had recovered from the disease. These patients had

tested negative for SARS-CoV-2 between 9 to 180 days prior.

Notably, viral antigen was detected in all tissues of two patients,

suggesting widespread multi-organ involvement from the viral

infection. It is noteworthy that in the colon, viral antigen was

detected exclusively in normal colonic crypts and polyps, while it

was absent from neoplastic tissues.

In separate study Tao et al. (75) demonstrated that

gastrointestinal (GI) symptoms were exhibited by a considerable

proportion of patients with COVID-19. Furthermore, the study

revealed that seven out of fifteen patients with confirmed cases of

SARS-CoV-2 RNA positivity in their stool samples exhibited

negative results in their respiratory samples and did not manifest

any gastrointestinal symptoms. In vitro transcriptional analysis

employing a SARS-CoV-2-infected cell model revealed that the 3’

end of the viral genome was significantly more covered compared to

the 5’ end, suggesting an indication of active viral replication and

infection (75). Furthermore, the presence of opportunistic

pathogens, including Collinsella aerofaciens, Collinsella anakaei,

Streptococcus infantis, and Morganella morganii, was observed in

higher concentrations in SARS-CoV-2-positive fecal samples (75).

Additionally, these samples exhibited an augmented capacity for

nucleotide biosynthesis and amino acid and carbohydrate

metabolism (glycolysis). However, the level of short-chain fatty

acid-producing bacteria was diminished (75). These findings

suggest a potential significant role for GI dysbiosis in SARS-CoV-

2 patients; however, the direction of causality remains uncertain, as

the study does not elucidate whether the dysbiosis is a consequence

or a cause of the infection.

In a separate study, Tejerina et al. (76) utilized RT-PCR to

detect SARS-CoV-2 in plasma, urine, and stool samples from

patients with LCS. The patients were examined 39 to 67 days
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after their initial diagnosis of COVD-19. The study’s participants

included 29 patients who had reported symptoms such as fatigue,

myalgia, dyspnea, inappropriate tachycardia, and low-grade fever

for more than 4 weeks after their initial diagnosis of COVD-19. The

disease manifested as mild in 55% of cases, while 13 patients (45%)

exhibited positive plasma RT-PCR results and 51% were positive in

at least one RT-PCR sample (plasma, urine, or stool). Notably, 18

patients (62%) were undergoing antiviral treatment using lopinavir/

ritonavir and hydroxychloroquine, which led to a substantial

improvement in their health status (76). The findings indicate a

pattern of persistent or recurrent/intermittent SARS-CoV-2 viremia

in approximately 50% of patients with non-specific symptoms,

which could be interpreted as LCS.

Further research on viral persistence in the human body can be

found in (77). The analyses presented herein demonstrate that the

probability of long-term viral persistence in the human body

subsequent to a diagnosis of COVD-19 infection is relatively

high, irrespective of the severity of the disease. Consequently, this

possibility should be addressed with caution during the analysis of

patients exhibiting LCS symptoms. A comprehensive review of the

literature reveals that persistent viral infection may be responsible

for approximately 50-70% of LCS patients.
3 Molecular basis for the LongCOVID
syndrome caused by SARS-CoV-2
persistence

To understand the mechanisms underlying the metabolic effects of

SARS-CoV-2 on host cell metabolism, it is imperative to elucidate the

mechanisms of inflammation regulation, which consist of feedbacks

between cytokines, oxidative stress, nitrosative stress, calcium stress,

reticuloendoplasmic (ER) stress, HIF-1a, autophagy, and Nrf2. These

feedbacks have been described by Michalak et al. (78). The disruption of

these feedback loops by SARS-CoV-2 is a critical factor in understanding

themechanisms by which it induces LCS syndrome. A particular focus is

placed on autophagy, as its disruption has been identified as a key factor

in the development of both acute hyperinflammatory and chronic active

COVID-19 (16, 18, 79–84) as well as many other diseases such as e.g.

autoimmune and neurodegenerative diseases (85–89). A diagram of the

couplings in inflammation control between the mentioned elements

based mainly on the review by Michalak et al. (78), is shown in Figure 1.

The analysis of the interaction of individual viral proteins on the

metabolism in the context of the above-mentioned feedbacks allows us

to understand the multifaceted mechanisms of the development of

LongCovid-19 syndrome, as well as the reason for the therapeutic

difficulties of this condition. This multiple coupling system will

therefore be briefly discussed.
3.1 Couplings between cytokines, NOX,
NO, Cai

2+ and HIF-1a

From the point of view of control theory, it is not easy to design

a system that, when exposed to a variety of pathogens, excites itself
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to levels high enough to fight the pathogen, but not so high as to

exceed the threshold of self-destruction. Evolution has programmed

a system in which cytokines, NOXs, HIF-1a and Cai
2+ form a

mutual positive feedback system. When induced by a pathogen,

they reinforce each other to fight the pathogen. On the other hand,

autophagy and Nrf2 are regulators of this spiral, turning on

mechanisms that inhibit this coupling spiral. HIF-1a and NO

have a dual effect, as their action reinforces the inflammatory

spiral in some conditions and inhibits it in others. When

analyzing the effect of SARS-CoV-2 proteins on metabolism, one

must keep this regulatory system in mind, since the activities of all

these elements are disrupted by the viral proteins. The total effect of

the virus on metabolism must take into account not only the sum of

the individual interactions but also the mutual feedbacks between

these elements, which amplifies the total effect.

The primary coupling is between cytokines and NADPH

oxidases, which produce H2O2. These couplings form the main

flywheel of inflammation in the fight against pathogens (see

Figure 2). NOX-derived ROS stimulate the transcription of pro-

inflammatory genes via factors such as NF-kB (90–92) or NFAT

(93). Conversely, priming of NOXs occurs in response to a variety

of cytokines such as TNF-a (94–96), IL-1b (97), IL-6 (98), IL-4

(99), IFN-g (100), IL-8 (101), IL-12 (102), IL-15 (103), IL-17 (104),
IL-23 (105), TGF-b (106–110). ROS also amplify inflammatory

signals by activating kinase pathways such as p38 MAPK or ERK1/

2, creating a complex network of interdependencies. Chronic

maintenance of such couplings can lead to uncontrolled chronic

inflammation and potential tissue damage. Figure 2 shows a

simplified diagram of these couplings and the mediating role of

transcription factors and kinase pathways.

Cai
2+ and HIF-1a are additional elements that drive the

inflammatory spiral (see Figure 1). ROS-induced increases in Cai
2

+ levels activate the NLRP3 inflammasome, leading to IL-1b
production and enhanced inflammation (111). In turn,

inflammatory cytokines increase Ca²+ influx into cells via MAPK,

PLC (phospholipase C), and NF-kB, establishing a positive

feedback loop. PLC produces IP3 and DAG. IP3 binds to IP3

receptors in the endoplasmic reticulum, resulting in the release of

Ca2+ ions from the ER into the cytoplasm (112), whereas DAG

activates transient receptor potential canonical (TRPC) channels,

resulting in the influx of Ca2+ ions from the extracellular

space (113).

HIF-1a activity depends on multiple feedbacks with ROS, NO,

cytokines and Ca2+. It has a dual function: it is protective for

mitochondria under hypoxic conditions and pro-inflammatory in

response to stressors. The protective effect is mainly due to

inhibition of PDH (pyruvate dehydrogenase) and pyruvate influx

into mitochondria, thereby reducing Krebs cycle turnover and

mito-ROS production (114). The positive feedback between HIF-

1a and succinate/fumarate acts as an amplifier of this relationship

(115) as succinate and fumarate contribute to the stabilization of

HIF-1a, while activation of HIF-1a leads to an increase in their

concentration in mitochondria by blocking PDH, activating

glycolysis (GLL), gluconeogenesis (GNG), and the glucose

transporter GLUT-1. ROS stabilize HIF-1a by inhibiting its
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degradation and increasing its stability (116, 117). Stabilization of

HIF-1a, in turn, induces NOX expression (118), which further

increases ROS production. In addition, ROS activate NF-kB, which
increases HIF-1a transcription (119). In turn, HIF-1a activates

inflammation mainly through NF-kB (120). Proinflammatory

cytokines such as TNF-a and IL-1b induce HIF-1a through

activation of the PI3K/Akt and NF-kB pathways (121–124). In

addition, HIF-1a modulates the expression of calcium channels

such as TRPC1 and STIM1, which increase Ca2+ influx into the

cytoplasm (125–128). The increase in Ca2+ can activate calmodulin-

dependent proteins that increase HIF-1a activity, closing the

positive feedback loop (129). In summary, HIF-1a exerts a

protective effect against mito-stress. However, under conditions of

chronic inflammation, its interactions with ROS, Cai
2+ and

cytokines promote the perpetuation of inflammation.
3.2 The role of kinase pathways

Kinase pathways, including MAPK (p38, ERK1/2, JNK), PI3K/

Akt, JAK/STAT, AMPK and cAMP/PKA, have been identified as
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central regulators of inflammation and autophagy processes. The

p38, ERK1/2, JNK and PI3K/Akt pathways are mainly

proinflammatory, while AMPK and cAMP/PKA are anti-

iflammatory. The JAK/STAT pathway is actually a series of

pathways depending on the type of STAT protein. Some STATs

are pro-inflammatory and some are anti-inflammatory. A diagram

of the action of individual signaling pathways and selected

metabolites on autophagy is shown in Figure 3. This diagram

shows the complexity of the autophagy regulation. Even a small

imbalance of this control can disrupt the process leading to cellular

pathology. It is worth noting that in the case of a severe

inflammation, NO changes its effect from pro-autophagic to anti-

autophagic, which can have an important impact on the final

balance of this process.

The p38 MAPK pathway is known to be activated by various

environmental stressors, including oxidative stress, hypoxia, UV or

ionizing radiation, and osmotic disturbances (130), Additionally,

the pathway is stimulated by inflammatory factors such as TNF-a
(131, 132), IL-1b (133, 134) and TGF-b (135, 136)) as well as by

pathogens including bacterial lipopolysaccharides (LPS) (137),

which activate toll-like receptors (TLR). In response, p38 induces
FIGURE 1

A diagram of the couplings that contribute to development of inflammation. The system of mainly positive couplings between inflammation
(cytokines), ROS, Cai

2+ and HIF-1a forms the core of inflammation induction. NO is partly positively and partly negatively coupled to the core
elements and contributes at low concentrations to the control of inflammation and at high concentrations to its amplification. Nrf2 and autophagy
create the system of mainly negative couplings that reduce and control inflammation, ROS production, Cai

2+ and HIF-1a. Green solid arrows -
activation, red dashed lines - inhibition.
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the expression of inflammatory genes (138–142) and promotes

autophagy (143) as a protective mechanism.

ERK1/2 controls cell proliferation and the production of

inflammatory cytokines (144–147). It is activated in response to

inflammatory stimuli such as IL-17A, IL-1b (134, 148), bacterial

LPS (149), or growth factors (e.g., VEGF, EGF) (150) Excessive

activation of this pathway can lead to pathological inflammatory

conditions, including psoriasis, rheumatoid arthritis, and Crohn’s

disease (151, 152). ERK1/2 can induce autophagy by activating the

Beclin-1 protein, although this effect is believed to occur at least

partially as a consequence of PI3K/Akt pathway inhibition (153,

154). Conversely, under conditions that favor cell growth and

proliferation, ERK1/2 may suppress autophagy by promoting

mTOR activity via the TSC2/Rheb/mTORC1 axis, a mechanism

that is particularly prominent in cancer (155) and is also implicated

in neurodegenerative disorders (156).

The JNK pathway, by activating the transcription factor AP-1,

increases the expression of pro-inflammatory mediators such as IL-
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6, IL-8, and TNF-a as well as chemokines that attract immune cells

to the site of inflammation (157–159). In macrophages and

neutrophils, JNK promotes the production of ROS, which

contribute to the destruction of pathogens (160). The JNK

pathway also plays a role in the resolution of inflammation by

promoting apoptosis in dysfunctional cells, thereby limiting

excessive inflammation (161), and by promoting autophagy which

reduces the debris-mediated inflammation (161, 162). Its chronic

activation has also been implicated in autoimmune diseases (163).

PI3K/Akt is a pathway that modulates pro- and anti-

inflammatory processes, with the capacity to promote the

production of pro-inflammatory cytokines (IL-6, IL-1b) (164–

169) while concomitantly reducing excessive inflammation by

inducing anti-inflammatory cytokines such as IL-10 (170–172)

Inhibition of FOXO by Akt leads to the inhibition of autophagy,

production of antioxidant enzyme and apoptosis, thereby

promoting a state of chronic inflammation (173, 174). The

hyperactivation of this pathway has been implicated in the
FIGURE 2

The diagram of positive couplings between NOX-derived ROS and inflammatory cytokines. The multiplicity of positive couplings forms the flywheel
of inflammatory induction. ROS induce NF-kB, NFAT and AP-1 to produce mainly proinflammatory cytokines and chemokines. Conversely, cytokines
induce NOXs to produce ROS mainly through p38, PI3K, PKC and ERK1/2 kinase pathways.
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development of various autoimmune diseases such as rheumatoid

arthritis, inflammatory bowel disease and asthma (175, 176).

In contrast to the previously mentioned pathways, AMPK and

cAMP/PKA function as a significant anti-inflammatory regulators

(177–181) by inhibiting the activation of NF-kB (a potent pro-

inflammatory transcription factor) (182, 183). PKA is also a potent

inflammation resolving factor being reduced in acute phase of

inflammation by increased PDE4 activity (breaking cAMP to

AMP) (184) and being active when the inflammation finishes

thus activating other resolving molecules (184, 185) and

activating phagosomes (186). Additionally, both pathways

enhance mitochondrial function and reduce levels of reactive

oxygen species (ROS) levels (187–191) and reduce oxidative stress

(187, 192).

AMPK promotes autophagy (193, 194) but influence of PKA

depends on the metabolic content (195). A deficiency in AMPK has

been associated with chronic inflammatory conditions including

obesity and type 2 diabetes (196, 197) and deficiency of PKA is
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associated with multiple diseases including neurodegeneration,

hypertension, type 2 diabetes, depression and anxiety (183,

198–201).

The equilibrium between the activities of the aforementioned

pathways is pivotal in the modulation of inflammation. From the

perspective of autophagy, certain pathways are stimulatory, while

others are inhibitory, depending on the metabolic context.

Consequently, an imbalance in the ratio of these pathways,

resulting in excessive inhibition of autophagy, may serve as a

significant catalyst for the transition of the regulatory system

toward a state of chronic or hyperinflammation.
3.3 Concentration dependent roles of NO

Nitric oxide (NO) produced by iNOS (inducible nitric oxide

synthase) exerts both pro- and anti-inflammatory effects, depending

on its concentration and metabolic context. Pro-inflammatory
FIGURE 3

A diagram showing the action of major signaling pathways (top row) and selected molecules (bottom row) on the induction of autophagy. The
proper balance between the pro- and anti-autophagic pathways is necessary to properly combat pathogens. Increased autophagy inhibition leads to
the chronicity of infections and is a hallmark of several autoimmune diseases. Green solid arrows - activation, red dashed lines - inhibition.
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cytokines such as IL-1, IL-6, IFN-g, TNF-a and pro-inflammatory

transcription factors: NF-kB (202), AP-1 (203), NFAT (204),

STAT1 (205), and HIF-1a (206) induce the expression of iNOS

and NO production (202). Subsequently, NO can then interact with

O2
-, to form toxic peroxynitrite (ONOO-). NO is known to have

anti-inflammatory properties, mainly through the mechanisms of

cyclic GMP (cGMP) (207–209) and S-nitrosylation of proteins

(210). This effect is also partly related to the inhibition of NF-kB
by cGMP (211). Another anti-inflammatory mechanism involves

the induction of apoptosis in activated macrophages leading to a

reduction in the inflammatory response (212, 213). Conversely, NO

has been shown to activate inflammation by activating MAPK

kinases (ERK, JNK, p38) through the induction of oxidative stress

(e.g., by peroxynitrite) (214). In addition, excess NO has been

demonstrated to exacerbate oxidative stress through nitrosylation

and subsequent inhibition of antioxidant enzymes including

superoxide dismutase (SOD), glutathione peroxidase (GPx) and

catalase (CAT) (215). Furthermore, NO can also nitrosylate specific

proteins within the endoplasmic reticulum, resulting in the

accumulation of misfolded proteins, ER stress and subsequent

NOX activation (216). The final NO regulatory effect appears to

be concentration dependent and should be analyzed with caution in

this context.
3.4 The regulatory role of autophagy and
Nrf2

The main mechanisms that control inflammatory process and

prevent self-destruction are autophagy and Nrf2. Autophagy

removes abnormal proteins that induce inflammation through

various mechanisms. These abnormal proteins include both viral

proteins and abnormally folded cellular proteins resulting from ER

stress. It is important to note that autophagy is a complex process

involving more than 100 different proteins, and the block or

inhibition of even one of these proteins by a pathogen protein

can contribute to the loss of cellular regulatory capacity for

autophagy. An imbalance in autophagy regulation can lead to its

inhibition contributing to chronic and severe inflammation (217–

219). This observation is significant when considered in the context

of the fact that many intracellular pathogens chronically inhibit

autophagy, thereby preventing their complete clearance from the

cell (220–225).

Regulation of autophagy is closely linked to cytokines, ROS,

NO, HIF-1a and Cai
2+. Cytokines and ROS activate autophagy via

pathways such as JNK (226), p38 (139, 227–230) and AMPK (231–

233). However, in the context of inflammation, there is a delicate

balance between the activatory and inhibitory influences of diverse

signaling pathways on the autophagy process. The ERK1/2 pathway

(234, 235) and NF-kB represent the primary inhibitory elements

(236, 237). NF-kB functions in a positive feedback loop with the

proautophagic p38 pathway (228–230, 238–240), thereby

establishing a balance in intensity of autophagy.

Intracellular Ca2+ works as autophagy activator. Elevated

calcium levels activate AMPK and inhibit mTOR, thereby
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promoting autophagy (241). In addition, Ca2+-activated

calcineurin activates lysosomal biogenesis by phosphorylating

TFEB (transcription factor EB).

HIF-1a also modulates autophagy in response to hypoxia by

activating autophagy genes. In general, HIF-1a activates the

autophagy (242, 243) and autophagy reduces the HIF-1a activity

by degrading this molecule (244). NO exerts a dual regulatory effect

on autophagy, functioning as both an activator and an inhibitor

depending on its concentration and the specific cellular context. At

physiological levels, NO promotes autophagy maintaining

homeostasis. Moderate levels of NO stimulate autophagy mainly

through the AMPK-mTOR pathway (245). In addition, NO

increases ROS production by activating pathways such as JNK,

which further enhances autophagic responses under conditions of

oxidative stress. However, in pathological conditions such as

chronic inflammation or excessive oxidative stress, excessive NO

has been shown to inhibit autophagy via S-nitrosylation of key

autophagic proteins such as ATG4, which impairs autophagosomal

membrane elongation (246). NO has also been observed to

nitrosylate JNK1 (blocking its autophagy-activating function)

(247) and IKKb, reducing AMPK phosphorylation while

activating mTORC1, leading to autophagy suppression (248, 249).

In summary, excess NO can significantly contribute to the

maintenance of chronic inflammation and the persistence of

chronic pathogens within the cell by both inhibiting autophagy

and reducing Nrf2-induced antioxidant response. Chronic

inflammation further exacerbates autophagy inhibition through

sustained activation of NF-kB, which suppresses AMPK and Nrf2

and activates mTOR.

Nrf2 is a key transcription factor responsible for protecting cells

from oxidative stress and regulating inflammatory processes. Its

activity relies on complex feedbacks with NF-kB, ROS, NO, Ca²⁺
and HIF-1a, making it central to the antioxidant and anti-

inflammatory system. Nrf2 is regulated by the protein Keap1,

which under healthy conditions binds Nrf2 and targets it for

degradation by proteasomes. Under conditions of oxidative stress,

reactive oxygen species (ROS) and nitrogen (NO) modify cysteine

residues in Keap1, leading to the release of Nrf2 and its

translocation to the nucleus (250–253). Nrf2 then activates genes

responsible for the production of antioxidant enzymes such as heme

oxygenase 1 (HO-1), glutathione S-transferase (GST) and NAD(P)

H:quinone oxidoreductase 1 (NQO1) which reduce ROS levels,

thereby restoring redox balance. However, at excessive levels of NO

and ONOO-, Nrf2-induced enzymes (e.g., HO-1, Mn-SOD,

catalase, peroxiredoxin II E, glutathione peroxidase-thioredoxin

reductase) are damaged or deactivated by nitrosylation, leading to

a breakdown of the antioxidant barrier and promoting severe or

chronic inflammation (250, 254–258).

Nrf2 also has an inhibitory effect on the cytokine system by

blocking the activation of NF-kB and both ROS reduction and HO-1

production mediate this effect (259, 260). Conversely, NF-kB inhibits

Nrf2 (261, 262), creating a specific double-negative regulatory system

that enhances either the oxidative-inflammatory or antioxidant state,

depending on which regulatory scale prevails. In chronic

inflammation, decreased Nrf2 and increased NF-kB activity are
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often observed, leading to a loss of balance between pro- and anti-

inflammatory mechanisms.

Intracellular calcium can activate various signaling pathways

such as ERK1/2 and p38, which can increase Nrf2 activity by

phosphorylating Nrf2 and increasing its stability (263, 264). Nrf2

also affects the regulation of Ca²⁺ in cells, reducing ER stress by

increasing the expression of glutathione peroxidase GPx8 in the ER

(265), reducing Cai
2+ by modulating calcium channels (e.g. TRPC,

RyR) (266) and increasing the activity of the calcium pump SERCA

(266). In summary, Nrf2 and Cai
2+ work in the classical negative

coupling, where Cai
2+ induces Nrf2 and Nrf2 reduces the calcium

and ER stress.

In conclusion, Nrf2 is a key regulator of redox balance and

inflammation whose function depends on dynamic interactions

with ROS, NO, HIF-1a and Ca²⁺. Disruption of Nrf2 activation

leads to an escalation of oxidative stress and inflammation.

Interventions aimed at stabilizing Nrf2 are therefore an important

therapeutic strategy in inflammatory and degenerative diseases.
4 Metabolic alterations generated by
SARS-CoV-2

The SARS-CoV-2 genome encodes 29 proteins: 16 non-

structural proteins (NSP1-16), 4 structural proteins: envelope

protein [E], membrane protein [M], spike protein [S] and

nucleocapsid protein [N], and 9 accessory proteins: ORF3a,

ORF3b, ORF6, ORF7a, ORF7b, ORF8, ORF9b, ORF9c, and

ORF10. A number of mechanisms have been described by which

the virus as a whole or its individual proteins reprogram the cell’s

metabolism to make it easier for itself to replicate and harder for the

host to fight off. The mechanisms largely involve interference with

and disruption of the feedback loops described above, leading to

hyperinflammation. Key effects include mitochondrial dysfunction,

inflammatory activation, inhibition of Nrf2, induction of calcium

stress, inhibition of autophagy and induction of HIF-1a. A

summary of all viral protein interactions with host cell

metabolism discussed in the following subsections is shown in

Figure 4. Assuming that a significant proportion of LCS patients

are those with active chronic viral presence in cells, the following

analysis which primarily considers the acute infection state may also

be useful in determining treatment strategies for LCS patients.
4.1 Upregulation of the angiotensin 1
receptor

The key feature of the S1 protein is its ability to bind to the

ACE2 (angiotensin converting enzyme) protein on the surface of

cells, allowing it to enter the interior. ACE2 cleaves angiotensin II

(ATII) into angiotensin (1-7), a hormone with opposite effects to

angiotensin II (267, 268). During severe COVID-19 infection,

ACE2 is blocked by the virus and the amount of this protein on
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the cell surface is reduced, leading to an increase in ATII and a

decrease in its antagonist, angiotensin (1-7) (268). Excess ATII is an

important factor in initiating a cascade of regulatory abnormalities

in the cell (268–271). It acts through the angiotensin receptors AT1,

AT2, AT3 and AT4, which are upregulated in COVID-19 (267).

AT receptors belong to the group of GPCRs (G-protein coupled

receptors). Two main signaling pathways are involved in GPCR

signaling: cAMP and phosphatidylinositol signaling (272).

Depending on the type of cell, different types of GPCR receptors

can be found on the surface of the cell, that trigger a specific

response inside the cell. Most GPCR receptors are capable of

activating more than one type of G protein, especially when the

receptor is over-activated. This can happen, for example, when the

concentration of ATII in the blood increases excessively. Activation

of the AT1 receptor causes, among other things, activation of

phospholipase C (PLC) and inhibition of adenylyl cyclase (AC)

and cAMP/PKA pathway (273) , which contr ibute to

hyperinflammation in the course of COVID-19 (274). Activation

of PLC leads to an increase in cytosolic Ca2+ concentration.

Another effect of AT1 receptor overstimulation is the activation

of NOX5, NF-kB, IL-6 and STAT3, which exacerbates oxidative

stress and causes overproduction of pro-inflammatory cytokines

(including IL-6, IL-1b and TNF-a) (268, 275–277).
Downregulation of PKA has several important effects on

cellular metabolism. It causes deregulation of mitochondria by

increasing electron leakage from cytochromes I and IV (188,

189). It also destabilizes the structure and decreases ATP

production in cytochrome V (ATP synthase) (190, 191) and

removes the regulatory inhibitory effect of high ATP levels on

cytochrome IV (189), which is the natural negative feedback that

decreases further ATP production and slows electron flow without

its leakage. All of these effects contribute to the decrease in the

mitochondrial membrane potential. It is also questionable whether

the increased concentration of succinate, as an effect of HIF-1a
induction, generates in such conditions the reverse flow of electrons

from cytochrome II to I, generating the strong electron leakage in

cytochrome I, as described in (188).

Next, the cAMP/PKA pathway causes relaxation of bronchial

smooth muscle cells (278), thus, inhibition of AC by excess ATII

promotes the contractile state of bronchial smooth muscle. Another

effect of the downregulation of the cAMP/PKA pathway is the

enhancement of inflammation and the increase of oxidative stress.

The anti-inflammatory mechanism is that the CREB-CBP complex

formed by CREB phosphorylation by PKA can result in the

dissociation of the NF-kB-CBP complex, which blocks the action

of NF-kB (183). PKA also inhibits the activation of the pro-

inflammatory ERK, AKT, STAT3 and NF-kB pathways through

phosphorylation and inhibition of the TNFR1 receptor (185), so

down-regulation of PKA activity increases the strength of the

coupling between inflammation and oxidative stress. As cAMP/

PKA pathway is the important factor initiating the resolution of

inflammation (185, 279), the slow recovery process after the disease

may also depend on its downregulation. It should be noted that the
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inhibition of this pathway occurs in the early stage of the disease, so,

it may be the important factor initiating and then sustaining the

inflammatory-oxidative cascade.
4.2 Upregulation of calcium stress by
SARS-CoV-2

There are several ways in which SARS-CoV-2 can increase

cytosolic calcium. As mentioned above, the first is stimulation of the

AT1 receptor by angiotensin II which further activates

phospholipase C and its activation leads to an increase in

cytosolic Ca2+ concentration. Increased Cai
2+ activates the

calmodulin pathway, which has a number of downstream effects,

one of which is the activation of the proinflammatory transcription

factor NFAT (274). The other important effect of Cai
2+ is the

activation of protein kinase C (PKC). Activation of PKC can lead

to many metabolic changes that are involved in the severity of

COVID-19. PKC contributes to the activation of NF-kB (280),
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which subsequently activates HIF-1a, inhibits Nrf2, and inhibits

autophagy. PKC may also contribute to the activation of

glycogenolysis and gluconeogenesis in the liver (281), which, in

conjunction with HIF-1a overactivation, leads to increased

glycolysis and increased succinate/fumarate concentration.

Another role of PKC is to mediate the stimulation of

proinflammatory cyclooxygenase-2 expression by viral spike

protein through both calcium-dependent (PKCa) and calcium-

independent mechanisms (PKCe, NF-kB, ERK, PI3K) (282).
4.3 Creating potassium/calcium channels
by ORF3a

One of the important capabilities of the viral ORF3a protein is

the ability to create ion channels that decrease the concentration of

Ki
+ and increase Cai

2+ in the cell (3). This is particularly dangerous

in the context of reduced energy production, as more energy

amount is required to maintain the ion gradients. Decreased Ki
+

FIGURE 4

The figure summarizes the effects of the SARS-CoV-2 virus or its individual proteins on key elements of the cell’s antiviral defense. The numerous
molecular mechanisms that contribute to the high pathogenicity of the virus, the generation of a hyperinflammatory state, and the propensity to
progress to a state of active chronic infection are presented. Details of the various interactions are described in the text of the article. Green solid
arrows - activation, red dashed lines - inhibition.
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concentration leads to decreased membrane potential, which can

activate voltage-dependent calcium channels (VDCCc) (283, 284),

which further increases Cai
2+, and one of the possible effects is the

activation of calcium-activated potassium channels (KCa), which

further decreases Ki
+ concentration (285). In the normal state, this

process attempts to increase the membrane potential and reduce

calcium influx, but in the pathological state, it drives cellular

pathology. The above mechanism is postulated to induce

apoptosis and necrosis (286, 287).
4.4 Reticuloendoplasmic stress caused by
ORF3a and M proteins

The other pathway of calcium homeostasis disruption presented

by Lee et al. (4) is the ability of SARS-CoV-2 ORF3a and M proteins

to disrupt the ER membrane and mitochondrial-associated

membrane (MAM) formation. This study demonstrated that

ORF3a and M proteins affect the proteomic landscape of the ER.

It was also shown that ORF3a-APEX2 constructs used for electron

microscopy imaging significantly increased the formation of cubic

membranes (CM), also known as convoluted membrane structures.

Notably, CM structures were also observed in coronavirus-infected

cells (288, 289). In the case of M protein, the ER was clearly

disrupted in M-expressing cells and appeared to curl into whorl

patterns (also referred to as aggresomes). Their results suggested

that the ORF3a and M proteins of SARS-CoV-2 may be major

contributors to the formation of ER-derived neoorganelles.

The interactome analysis for these two viral proteins also

showed that a large proportion of plasma membrane and

endoplasmic reticulum membrane proteins were present in both

the ORF3a and M interactomes. This suggests that the function of

the ER and especially the MAM is significantly disrupted by these

proteins. The disruption of the ER and induction of the unfolded

protein response (UPR) by SARS-CoV-2 has been described by

several authors (5, 6). The detailed mechanisms include depletion of

CaER
2+ concentration and increase in Cai

2+ (290, 291) and one of

the mechanisms generating it is a direct interaction between E-

protein and SERCA2b pump resulting in a decrease in SERCA-

mediated ER Ca2+ reloading (7). It has also been postulated that

ORF3a is capable of generating calcium channels that could reduce

the Ca2+ gradient across the ER membrane (292).
4.5 Loss of endothelial monolayer integrity
caused by Spike protein

Loss of the pulmonary endothelial barrier is one of the most

dangerous effects caused by SARS-CoV-2 and several pathways are

involved in this effect, most of which are related to S1 protein

activity. The first pathway is increased PKC activity which can

increase endothelial permeability (8). Even low levels of PKC

activation can reverse cell chirality through PI3K/AKT signaling

and alter the organization of junctional proteins between cells,

leading to significant changes in endothelial permeability that may
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promote increased inflammation and pulmonary edema (8). The

second pathway is the inhibition of adenylyl cyclase (AC) by ATII,

one of the effects of which is bronchoconstriction contributing to

hypoxia (278). In the experiment by Jana et al. (9), incubation of S1

protein with human pulmonary endothelial arterial cells resulted in

the disruption of endothelial barrier function, an increase in the

levels of numerous inflammatory molecules (VCAM-1, ICAM-1,

IL-1b, CCL5, CXCL10), an increase in mitochondrial reactive

oxygen species (ROS) and a slight increase in glycolytic reserve

capacity. The effect of S1 was enhanced by the hypoxia that occurs

during severe COVID-19 due to pulmonary hyperinflammation

and reduced blood oxygen saturation, as hypoxia increases the

ability of S1 to reduce ACE2 receptor levels.

S1 protein-mediated loss of endothelial monolayer integrity was

also observed experimentally by Buzhdygan et al. using an advanced

3D microfluidic human blood-brain barrier model (10). They also

found similar pro-inflammatory cytokine responses induced by

spike protein, which are thought to contribute to the loss of

membrane integrity (10). ICAM-1 and VCAM-1, key players in

immune cell transendothelial migration following inflammatory

challenge, were observed to be upregulated by S1 and associated

with reduced barrier integrity (9).
4.6 Neuraminidase activity of the spike
protein

One of the likely S1 activities is the enzymatic activity of

neuraminidase (NEU) (293). Zhang et al. (293) used advanced 3D

techniques to describe the similarity of S1-protein to the

neuraminidase from influenza A and B viruses. Neuraminidase is

the enzyme that cleaves sialic acid on the surface of leukocytes,

which is the key stimulus for neutrophil activation to activate

inflammation, cytokine storm, NOX-induced ROS production

and neutrophil extracellular traps (NETs) formation (293).

In severe systemic inflammatory responses such as sepsis and

COVID-19, neutrophils are central to organ damage. Hyperactivated

neutrophils infiltrate vital organs and release cytotoxic molecules

such as proteases, cytokines, ROS and NETs (294, 295). Although

inflammatory mediators are essential for fighting infection, they can

also damage the host cells (296).

Neuraminidase is one of the major activators of neutrophils, so

neuraminidase inhibitors can be treated as important factors in

inhibiting the inflammatory cascade. Formiga et al. (297)

demonstrated the role of neuraminidase-1 (NEU1) and matrix

metalloproteinase-9 (MMP-9) in triggering the hyperinflammatory

state in COVID-19 patients. Lipopolysaccharide (LPS) has been

shown to induce host membrane‐associated NEU activation in

murine or human macrophages and dendritic cells (298). Upon LPS

binding to toll-like receptor 4 (TLR4), matrix metalloproteinase 9

(MMP-9) induces NEU activity and contributes to the NF-kB-
induced response of macrophages, suggesting a role for these

enzymes in cell activation (298, 299). In another paper, Formiga

et al. (300) showed that in vitro treatment of whole blood with the viral

neuraminidase inhibitors oseltamivir or zanamivir, inhibited the
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activity of human neuraminidases as well as the exacerbated

neutrophil response. These drugs also reduced neutrophil activation

and increased survival in mice.

The neuraminidase inhibitor (NI) clinical trial presented byWu

et al. (301) showed that NI treatment reduced the mortality rate

(5.7% vs. 10.3%) and the critical illness conversion rate (14.1% vs.

19.7%) compared with the non-NI group. They also showed that

levels of N-acetylneuraminic acid and neuraminidase

(predominantly the NEU3 isoform) were elevated in COVID-19

subjects and recovered 1 month after infection, suggesting increased

desialylation in COVID-19 patients.
4.7 SARS-CoV-2 and mitochondria

Mitochondrial dysfunction, subsequent pathogenesis and

multi-organ failure have been associated with COVID-19

infection (302). Functional mitochondrial analysis of COVID-19

peripheral blood mononuclear cells (PBMCs) revealed

mitochondrial dysfunction, increased glycolysis and high

mitokine levels (303). The presence of the oxidative stress in

mitochondria in SARS-CoV-2 infected cells was confirmed by

increased carbonyl content in the mitochondrial fractions in

SARS-CoV-2-infected lung tissue lysates (304), suggesting that

SARS-CoV-2 infection induces an oxidative stress environment in

the lung cells in general, which also affects mitochondrial proteins.

A reduction in mitochondrial respiration was also observed, as

indicated by a loss of oxygen consumption rate (OCR) in isolated

mitochondria from SARS-CoV-2-infected hamster lungs.

Proteomic analysis also revealed specific deficits in the

mitochondrial ATP synthase (Atp5a1) within complex V and in

the ATP/ADP translocase (Slc25a4) (304). The other determinant

of mitochondrial oxidative stress was the increased staining for 4-

hydroxynonenal (4-HNE), a major end-product of lipid

peroxidation (304).

SARS-CoV-2 infection also causes a reduction in the

mitochondrial electron flow at several cytochrome complexes

indicating a general virus-induced impairment of mitochondrial

function. A lower basal OCR in the presence of pyruvate and malate

was observed, indicating impaired complex I activity in the SARS-

CoV-2-infected patients (304). In a complex V assay, a significant

decrease in the ATP synthesis was observed in the SARS-CoV-2-

infected lung mitochondria suggesting a possible impairment of the

complex V ATP synthesis function (304).

The other important parameter of mitochondrial energy

production is the mitochondrial membrane potential DYm. The

discussion of the energy production in mitochondria and the

relationships between DYm, Cai
2+ and Ki

+ concentrations,

opening of mitochondrial permeability transition pores (mPTPs),

and oxidative stress has been presented by Michalak et al. (305). In

short, intracellular calcium and ROS cause the opening of mPTPs,

which causes the efflux of protons from the intermembrane space

and the decrease of DYm. This leads to decreased energy

production which may contribute to decreased Cai
2+ removal
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from the cytoplasm and increased Cai
2+, as this process is highly

energy consuming.

Impaired complex I activity in the SARS-CoV-2 infected

patients (304) may play a protective role to some extent, as it

reduces the hydrogen entry into the ETC. However, electron leakage

can vary depending on the detailed metabolic context. PKA

inhibition caused by angiotensin II increases in electron leakage

(188). On the other hand, metformin, a weak complex I inhibitor,

reduces electron leakage in COVID-19 patients (306–311).

However, other metabolic properties of metformin may also be

involved in this protection (306, 307).
4.8 Disrupting the mitochondria by ORFs

ORF3a has an important disruptive effect on the mitochondrial

function. ORF3a-induced ROS production and cell death appears to

be a highly conserved activity (3, 312, 313), as these effects are

observed in both fission yeast and human A549 and 293 T cells (3).

However, the detailed molecular mechanisms of ORF3a-induced

ROS production are not fully understood. ORF3a-mediated

apoptosis has been described to be both mitochondria-dependent

(287) and independent (286, 314). Exemples of mito-dependent

proapoptotic effects include the activation of caspase-8, the increase

in caspase-9 levels and release of cytochrome c from the

mitochondrial membrane. Increased Bax oligomerization, Bid to

tBid conversion, higher p53 levels and increased p38 activity

mediate these effects (315–318).

Another study showed that ORF3a promotes mitochondrial

fission, which can lead to the destabilization of normal physiological

processes within the mitochondria. Increased fission is associated

with impaired mitochondrial function and altered energy

production (11). It has also been shown that ORF3a, ORF9b,

ORF9c and ORF10 induce significant mitochondrial and

metabolic reprogramming in A549 lung epithelial cells. While all

four ORFs caused mitochondrial fragmentation and altered

mitochondrial function, only ORF3a and ORF9c induced a

marked structural change in mitochondrial cristae (11). ORF9b,

ORF9c and ORF10 induced largely overlapping transcriptomes. In

contrast, ORF3a induced a distinct transcriptome, including the

downregulation of numerous genes for proteins with critical

mitochondrial functions and morphology (11). Notably, reduced

amino acid metabolism and increased metabolism of some lipids

was induced by ORF3a (11).
4.9 Inhibition of Nrf2 by SARS-CoV-2

The Nrf2-induced cellular antioxidant response is an important

element in the overall balance of the cellular antiviral response. In

viral infections, oxidative cellular damage may be associated with

inhibition of the Nrf2 pathway (319). The expression of Nrf2-

related antioxidant genes has been shown to be suppressed in

biopsies from COVID-19 patients (320). Rodrigues et al. (321)

showed reduced nuclear accumulation of Nrf2 and expression of
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Nrf2 targeted genes in endothelial cells exposed to COVID-19

serum. In addition, these cells showed increased expression of

Bach-1, a negative regulator of Nrf2 that competes with Nrf2 for

DNA binding. All events were prevented by tocilizumab, the IL-6

receptor blocker, suggesting that IL-6 is the major cytokine involved

in the inhibition of Nrf2-induced antioxidant defense (321).

However, more complex regulatory mechanisms may have led to

this effect as presented in Figure 1. Further research has shown that

the inhibition of Nrf2 is due, at least in part, to the activity of the

viral protein ORF3a. ORF3a promotes degradation of Nrf2 by

recruiting Keap1, thereby attenuating cellular resistance to

oxidative stress and facilitating ferroptotic cell death (322).

Downregulation of Nrf2 and its dependent genes by SARS-CoV-2

infection exacerbates pulmonary inflammation and disease and

therefore activation of Nrf2 appears to be an important element

of the therapeutic approach during both chronic and acute SARS-

CoV-2 infection (323, 324). In another study Shilei et al. showed

that the SARS-CoV-2 NSP14 protein interacts with the catalytic

domain of the NAD-dependent deacetylase sirtuin 1 (SIRT1) and

inhibits its ability to activate the Nrf2/HO-1 pathway (325).

In conclusion, Nrf2 is the major down-regulator of most of the

positive couplings that cause hyperinflammation and the inhibition

of Nrf2 by viral proteins may be an important factor that amplifies

the excessive oxidative stress and inflammatory couplings that cause

the severe course of the disease or sustain the chronic state. In

particular, reduced Nrf2 activity contributes to increased NF-kB
activity and thus to the inhibition of autophagy. A reduction in Nrf2

activity is therefore an important pathway leading to an excessive

positive feedback between cytokines, NOX, Cai
2+ and HIF-1a,

resulting in their excessive levels, leading to a cytokine storm and

a state of hyperinflammation. In the case of chronic active SARS-

CoV-2, it contributes to the chronic state of LCS.
4.10 Activation of HIF-1a

HIF-1a plays a important role in the progression of SARS-CoV-

2 infection by influencing metabolism, inflammatory responses, and

viral replication. The viral protein capable of activating HIF-1a is

ORF3a (313). Accumulation of HIF-1a results from both increased

expression and inhibited proteasomal degradation (326). The

primary cause of HIF-1a activation is hypoxia due to disruption

of the alveolar-capillary barrier, leading to pulmonary edema,

immune cell infiltration, and impaired gas exchange (9, 327). This

damage can be induced by the S1 subunit of the viral spike protein,

even in the absence of other viral components (9, 304). In addition,

activation of AT1 receptors increases intracellular calcium, leading

to bronchoconstriction and further hypoxia. The pathways involved

are inhibition of adenylyl cyclase (328) and activation of

phospholipase C, which increases Cai
2+ and then activates PKC.

HIF-1a drives glucose metabolism by promoting glycolysis and

gluconeogenesis and these processes are upregulated during SARS-

CoV-2 infection (307, 329–337). Glycolysis is enhanced by

upregulation of glucose transporters (GLUT-1) and activation of
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hexokinase, pyruvate kinase, lactate dehydrogenase and aldolase

(304, 338–341). Gluconeogenesis is increased by hepatocyte

infection, activation of enzymes such as PEPCK, and increased

levels of GP73 (335, 336). These processes contribute to

hyperglycemia and the accumulation of metabolites such as

lactate and succinate, which further enhance HIF-1a activation

and inflammation. It is worth noting that the natural inhibitor of

glycolysis is citrate, so citrate can be considered as a natural

support in the therapy of COVID-19 and other viruses that

increase glycolysis.

Stabilization of HIF-1a also promotes viral replication. Proteins

such as ORF3a enhance HIF-1a activity, leading to increased viral

replication and cytokine production. Excess lactate from glycolysis

inhibits mitochondrial antiviral signaling (MAVS), further

facilitating viral replication (331). This creates a feedback loop in

which HIF-1a enhances the effects of SARS-CoV-2 within the host.

Targeting HIF-1a has therapeutic potential, but general inhibition

should be avoided because HIF-1a has a the protective effect on

mitochondria by reducing mitochondrial electron leakage and

mito-stress (329). Instead, therapies should focus on specific

effects, such as glucose metabolism and inflammatory responses,

driven by HIF-1a activation.
4.11 Inhibition of autophagy by ORF3a,
NSP6, ORF7a, NSP15, M and E proteins

The final metabolic effect of SARS-CoV-2 discussed here is the

inhibition of autophagy (16). Recent studies have shown that

different SARS-CoV-2 proteins inhibit autophagy through

multiple pathways (16). NSP6 inhibits lysosomal acidification, the

formation of acidic autolysosomes, and the formation of the hybrid

pre-autophagosomal structure (HyPAS) - a precursor structure in

the autophagy pathway that integrates various components from

the ER, Golgi apparatus, and endosomes. Next, NSP6 supports

autophagosome formation but inhibits autophagosome maturation

(79–81). ORF3a inhibits the formation of acidic autolysosomes by

sequestration of the HOPS component VPS39. When VPS39 is

sequestered by ORF3a, the fusion process of the autophagosome

with the lysosome is disrupted. Next, ORF3a inhibits PI3K complex

II assembly by sequestrating its component UVRAG resulting in

impaired endosome maturation. Finally, ORF3a inhibits lysosomal

acidification and promotes lysosomal exocytosis, facilitating viral

release (18, 82, 83). ORF7a inhibits lysosomal acidification and the

formation of acidic autolysosomes (84). NSP15 inhibits autophagy

initiation (84), M protein inhibits autolysosome formation (18, 84)

and E protein inhibits autophagosome maturation and

autolysosome formation (84).

The other viral proteins that interfere with antiviral defense

through autophagy are ORF8 and NSP13. ORF8 promotes

autophagic degradation of MHC-I (342), leading to a reduction in

the amount of MHC-I on the surface of infected cells. As a result,

infected cells are no longer recognized by CD8⁺ T cells, which

impairs their elimination. NSP13 promotes autophagic degradation
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of TBK1 (343). TBK1 is a key activator of IRF3, which is required

for the expression of the type I antiviral interferons IFN-a and

IFN-b.
Interestingly, ORF3a of SARS-CoV-2, but not SARS-CoV has

the ability to block autophagy (18, 344). This is an important piece

of information that points to the critical role of autophagy

inhibition in exacerbating the severity of SARS-CoV-2 compared

to SARS-CoV infection.
4.12 Upregulating the inflammation

All of the discussed effects of SRAS-CoV-2 on host cell

metabolism generally contribute to increased levels of

inflammation. However, direct activating effects have also been

observed. Nie et al. (345) investigated SARS-CoV-2 genes and

found that ORF3a activates the proinflammatory NF-kB pathway

by interacting with IKK-b (beta subunit of the IkB kinase complex)

and NEMO (also known as IKK-g) and by enhancing the

interaction of IKK-b-NEMO, thereby positively regulating NF-kB
activity. Other viral proteins are also capable of activating

inflammation. ORF3a, ORF8b and E proteins have been reported

to enhance activation of the inflammasome, leading to increased

secretion of IL-1 and IL-18, and subsequent pathological changes

associated with inflammation. Similarly, the NSP9 and NSP10

proteins of SARS-CoV-2 induce overproduction of IL-6 and IL-8,

which are the major causes of the cytokine storm in COVID-19

patients (346).
4.13 Inhibition of Interferon production

Interferon I is one of the main lines of antiviral defense.

Activation of IFN-I production is a complex process regulated by

multiple signaling pathways that detect the presence of viral RNA or

DNA in cells. Interferon regulatory factors 3 and 7 (IRF3, IRF7) are

key transcription factors that regulate interferon production. The

main signaling pathways are RIG-I-like receptors (RLRs), Toll-like

receptors (TLRs) and stimulator of interferon gene (STING).

Among others NEMO (347, 348), MAVS (349, 350), and NLRP6

(351) modulate type I IFN production and inflammasome

activation (352–355), whereas TRIM18 and TRIM29 suppress

macrophage activation and IFN production (354, 356).

SARS-CoV-2 has several proteins which act on the type I IFN

pathway. The proteins NSP1 (357, 358), NSP3 (359), NSP5 (357),

NSP6 (357), NSP10 (360), NSP12 (359), NSP15 (43, 357, 358),

NSP16 (358, 361), ORF3b (362, 363), ORF6 (357), ORF7b (357),

ORF9b (364), ORF10 (357, 365) M (366) and N proteins (367), act

on the type I IFN pathway either by inhibiting transcription or by

acting on effector mechanisms. The inhibition of interferon

production and the delayed host response to the presence of the

virus in cells leads to significant molecular perturbations, as in the

case of NSP15, which causes the upregulation of over 2800 genes

including networks associated with the activation the unfolded
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protein response (UPR) and the proinflammatory response

associated with viral pathogenesis (43).

The above studies suggest a completely different role for viral

proteins during the incubation period of the disease, when the

immune response is inhibited, as opposed to the late phase of the

disease, when there is hyperactivation of the immune system and a

cytokine storm, as described in the earlier sections of this article. It

also suggests the need for different therapeutic targets during the

period of potential disease incubation and during the period of its

late, severe course. With regard to LongCOVID-19, it is necessary to

study to what extent in this phase it is necessary to stimulate the

production of interferons and activate inflammatory processes, and

to what extent it is necessary to inhibit them. It is not excluded that

the optimal therapeutic strategy might be the simultaneous

activation of interferon I production pathways, e.g. by blocking

TRIM18 or TRIM29 (354, 356), to improve the detection of virus-

infected cells and to inhibit the inflammatory response, e.g. by

inhibiting NF-kB, which may help to restore proper Nrf2 and

autophagy activity.
5 Summary

Analysis of the interaction of different viral proteins on cellular

metabolism generally indicates a synergistic effect in increasing

inflammation, oxidative stress, nitrosative stress, mitochondrial

stress and calcium stress in the cell which explains the tendency

of the virus to generate the hyperinflammatory state. Reciprocal

positive feedbacks between these elements enhance the pro-

inflammatory effect of the virus. In addition, inhibition of

autophagy and Nrf2 disrupts two important regulatory

mechanisms that prevent excessive inflammation and all of the

above stresses. The number of couplings disrupted by viral proteins

is so large that eradication of the infection is sometimes beyond the

capabilities of the regulatory system. Understanding, how these

couplings work, is essential for planning therapeutic strategies not

only for COVID-19 but also for many other infections, both acute

and chronic.

Analysis of the feedback loops shows that the regulatory system

is extremely complex. The multitude of positive feedback loops

suggests that treatment strategies with a single drug acting on a

single therapeutic pathway or transcription factor have little chance

of bringing the patient out of hyperinflammatory or chronic state,

as the remaining active positive feedback loops continue to drive

inflammation and oxidative stress, leading all the time, but only

slightly weaker, to the destruction of the system. Analyzing this

system, it can be expected that only the alleviation of at least some of

the positive feedbacks can bring about a rapid improvement in the

patient’s health. According to the author, a special attention should

be paid to the activation of autophagy and Nrf2. If autophagy is

blocked, the cell has no alternative way to get rid of viruses and

misfolded proteins. Its activation seems to be essential for

therapeutic success. Activation of Nrf2 also seems to be an

important element as it can lead to inhibition of NF-kB and
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reduction of inflammation, which is particularly important in a

state of hyperinflammation. Another underestimated therapeutic

approach, according to the author, is the inhibition of glycolysis, e.g.

with citric acid, a natural glycolysis inhibitor (368). This could be an

important natural element to protect mitochondria from electron

leakage, mito-stress, succinate accumulation and thus reduce HIF-

1a activation. Research is also needed into the use of drugs or herbs

that reduce calcium and reticuloendoplasmic stress, as these are

significantly involved in the development of hyperinflammation or

LCS. In particular, activation of the cAMP/PKA pathway, which is

blocked by ATII, is worth considering as a therapeutic target, as it is

likely to be an important element generating mitochondrial stress.

A more complex case is LCS caused by the development of

autoimmune processes as a result of COVID-19 infection. The

profile of metabolic abnormalities induced by different

autoantibodies can vary considerably from patient to patient. In

addition, conditions in which SARS-CoV-2 has induced chronic

active infection with other pathogens (e.g. EBV) may require the use

of appropriate diagnostic tests and individualized therapies

depending on the type of pathogen. For example, EBV and

cytomegalovirus are capable of causing coagulopathies, including

disseminated intravascular coagulation (DIC) (65–67). However, it

appears that the profile of metabolic disturbances in such cases will

be similar to that of COVID-19, as the process of pathogen

persistence is very often associated with the blockade of

autophagy by these pathogens (220–225), which further leads to

the induction of oxidative, nitrosative, Cai
2+ and ER stress. The

concomitant induction of NF-kB leads to the inhibition of Nrf2.

An important conclusion derived from the analysis of

interdependent feedback mechanisms is that influencing a single

component of the system inevitably triggers changes throughout the

entire network. This highlights the need to differentiate between the

direct effects of a particular influence and the indirect consequences

that propagate through other interconnected elements.

Looking ahead, future research should aim to mathematically

characterize each connection within the network graph by

formulating appropriate differential equations or functional

relationships. A representative dynamic model utilizing ordinary

differential equations, which captures the response of Nrf2, Keap1,

Srxn1, and GSH under oxidative stress, was proposed by Hiemstra

et al. (369). Once each interaction is quantitatively described, it will

become feasible to construct a comprehensive system of equations

capable of simulating the behavior of the network, both under

normal conditions and in response to disruptive agents such as viral

proteins or pharmacological interventions. This, in turn, would
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provide a foundation for optimizing therapeutic strategies through

mathematical modeling.

To achieve this level of system complexity, future collaboration

with experts in computational modeling and systems biology will be

essential. Their expertise in analyzing the self-regulatory dynamics

of multidimensional systems will be critical in developing accurate

models of metabolic regulation.
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envelope protein alters calcium signaling via serca interactions. bioRxiv. (2023) bioRxiv
2023.06.13.544745. doi: 10.1101/2023.06.13.544745

8. Fan J, Ray P, Lu YW, Kaur G, Schwarz JJ, Wan LQ. Cell chirality regulates
intercellular junctions and endothelial permeability. Sci Adv. (2018) 4:eaat2111.
doi: 10.1126/sciadv.aat2111

9. Jana S, Heaven MR, Alayash AI. Cell-free hemoglobin does not attenuate the
effects of sars-cov-2 spike protein S1 subunit in pulmonary endothelial cells. Int J Mol
Sci. (2021) 22(16):9041. doi: 10.3390/ijms22169041

10. Buzhdygan TP, DeOre BJ, Baldwin-Leclair A, Bullock TA, McGary HM, Khan
JA, et al. The sars-cov-2 spike protein alters barrier function in 2d static and 3d
microfluidic in-vitro models of the human blood–brain barrier. Neurobiol Dis. (2020)
146:105131. doi: 10.1016/j.nbd.2020.105131
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116. Korbecki J, Simińska D, Gas̨sowska-Dobrowolska M, Listos J, Gutowska I,
Chlubek D, et al. Chronic and cycling hypoxia: drivers of cancer chronic inflammation
through hif-1 and nf-Kb activation: A review of the molecular mechanisms. Int J Mol
Sci. (2021) 22(19):10701. doi: 10.3390/ijms221910701

117. Minisini M, Cricchi E, Brancolini C. Acetylation and phosphorylation in the
regulation of hypoxia-inducible factor activities: additional options to modulate
adaptations to changes in oxygen levels. Life (Basel). (2023) 14(1):20. doi: 10.3390/
life14010020
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et al. Epstein–barr virus encoded bcl2, bhrf1, downregulates autophagy by
noncanonical binding of becn1. Biochemistry. (2023) 62:2934–51. doi: 10.1021/
acs.biochem.3c00225

223. Nagdev PK, Agnivesh PK, Roy A, Sau S, Kalia NP. Exploring and exploiting the
host cell autophagy during mycobacterium tuberculosis infection. Eur J Clin Microbiol
Infect Dis. (2023) 42:1297–315. doi: 10.1007/s10096-023-04663-0

224. Shi Y, Wu Z, Zeng P, Song J, Guo J, Yang X, et al. Seneca valley virus 3c protease
blocks epha2-mediated mtor activation to facilitate viral replication. Microbial
Pathogenesis. (2024) 191:106673. doi: 10.1016/j.micpath.2024.106673

225. Chen B, Guo G, Wang G, Zhu Q, Wang L, Shi W, et al. Atg7/gaplinc/irf3 axis
plays a critical role in regulating pathogenesis of influenza a virus. PloS Pathog. (2024)
20:e1011958. doi: 10.1371/journal.ppat.1011958

226. Jia G, Cheng G, Gangahar DM, Agrawal DK. Insulin-like growth factor-1 and
tnf-A Regulate autophagy through C-jun N-terminal kinase and akt pathways in
human atherosclerotic vascular smooth cells. Immunol Cell Biol. (2006) 84:448–54.
doi: 10.1111/j.1440-1711.2006.01454.x

227. Cowan KJ, Storey KB. Mitogen-activated protein kinases: new signaling
pathways functioning in cellular responses to environmental stress. J Exp Biol.
(2003) 206:1107–15. doi: 10.1242/jeb.00220

228. Ashwell JD. The many paths to P38 mitogen-activated protein kinase activation
in the immune system. Nat Rev Immunol. (2006) 6:532–40. doi: 10.1038/nri1865

229. Cuenda A, Rousseau S. P38 map-kinases pathway regulation, function and role
in human diseases. Biochim Biophys Acta. (2007) 1773:1358–75. doi: 10.1016/
j.bbamcr.2007.03.010

230. Wuyts WA, Vanaudenaerde BM, Dupont LJ, Demedts MG, Verleden GM.
Involvement of P38 mapk, jnk, P42/P44 erk and nf-Kb in il-1b-induced chemokine
release in human airway smooth muscle cells. Respir Med. (2003) 97:811–7.
doi: 10.1016/S0954-6111(03)00036-2

231. Pu W, Chu X, Guo H, Huang G, Cui T, Huang B, et al. The activated atm/
ampk/mtor axis promotes autophagy in response to oxidative stress-mediated DNA
damage co-induced by molybdenum and cadmium in duck testes. Environ pollut.
(2023) 316:120574. doi: 10.1016/j.envpol.2022.120574

232. Li R, Luo X, Zhu Y, Zhao L, Li L, Peng Q, et al. Atm signals to ampk to promote
autophagy and positively regulate DNA damage in response to cadmium-induced ros
in mouse spermatocytes. Environ pollut. (2017) 231:1560–8. doi: 10.1016/
j.envpol.2017.09.044

233. Zhou K, Bellenguez C, Sutherland C, Hardie G, Palmer C, Donnelly P, et al. The
role of atm in response to metformin treatment and activation of ampk. Nat Genet.
(2012) 44:361–2. doi: 10.1038/ng.2234

234. Baregamian N, Song J, Bailey CE, Papaconstantinou J, Evers BM, Chung DH.
Tumor necrosis factor-A and apoptosis signal-regulating kinase 1 control reactive
oxygen species release, mitochondrial autophagy and C-jun N-terminal kinase/P38
phosphorylation during necrotizing enterocolitis. Oxid Med Cell Longevity. (2009)
2:893614. doi: 10.4161/oxim.2.5.9541

235. Sivaprasad U, Basu A. Inhibition of erk attenuates autophagy and potentiates
tumour necrosis factor-A-induced cell death in mcf-7 cells. J Cell Mol Med. (2008)
12:1265–71. doi: 10.1111/j.1582-4934.2008.00282.x

236. Yi W, Wen Y, Tan F, Liu X, Lan H, Ye H, et al. Impact of nf-Kb pathway on the
apoptosis-inflammation-autophagy crosstalk in human degenerative nucleus pulposus
cells. Aging (Albany NY). (2019) 11:7294–306. doi: 10.18632/aging.102266

237. Zhu BS, Xing CG, Lin F, Fan XQ, Zhao K, Qin ZH. Blocking nf-Kb nuclear
translocation leads to P53-related autophagy activation and cell apoptosis. World J
Gastroenterol. (2011) 17:478–87. doi: 10.3748/wjg.v17.i4.478

238. Shang YY, Yao M, Zhou ZW, Jian C, Li X, Hu RY, et al. Alisertib promotes
apoptosis and autophagy in melanoma through P38 mapk-mediated aurora a signaling.
Oncotarget. (2017) 8:107076–88. doi: 10.18632/oncotarget.22328
frontiersin.org

https://doi.org/10.1038/srep12012
https://doi.org/10.1038/ncb2152
https://doi.org/10.1038/ncb2152
https://doi.org/10.1038/onc.2016.70
https://doi.org/10.1073/pnas.0903316106
https://doi.org/10.1073/pnas.0903316106
https://doi.org/10.1152/ajpendo.00225.2016
https://doi.org/10.1172/JCI67227
https://doi.org/10.1016/j.neuroscience.2018.11.025
https://doi.org/10.1016/j.brainresbull.2017.04.006
https://doi.org/10.1016/j.biopha.2022.113030
https://doi.org/10.1016/j.biopha.2022.113030
https://doi.org/10.1016/j.cellsig.2024.111311
https://doi.org/10.1016/j.cellsig.2024.111311
https://doi.org/10.1016/j.lfs.2003.10.042
https://doi.org/10.1007/PL00000317
https://doi.org/10.1016/j.cardiores.2006.05.026
https://doi.org/10.1073/pnas.151239498
https://doi.org/10.1016/j.bcp.2006.06.038
https://doi.org/10.1016/j.bcp.2006.06.038
https://doi.org/10.4103/1673-5374.355748
https://doi.org/10.3389/fphar.2019.00229
https://doi.org/10.1371/journal.pone.0153015
https://doi.org/10.1016/j.abb.2014.08.002
https://doi.org/10.3390/ijms23052552
https://doi.org/10.1002/sita.200500071
https://doi.org/10.1189/jlb.1007701
https://doi.org/10.1016/S0014-5793(99)00372-5
https://doi.org/10.3109/10715762.2015.1118473
https://doi.org/10.1038/srep14812
https://doi.org/10.1016/j.jep.2024.118885
https://doi.org/10.1016/j.jep.2024.118885
https://doi.org/10.1016/j.clim.2017.01.007
https://doi.org/10.1177/1087057115617456
https://doi.org/10.1016/bs.ircmb.2024.01.004
https://doi.org/10.1128/jvi.01408-23
https://doi.org/10.1021/acs.biochem.3c00225
https://doi.org/10.1021/acs.biochem.3c00225
https://doi.org/10.1007/s10096-023-04663-0
https://doi.org/10.1016/j.micpath.2024.106673
https://doi.org/10.1371/journal.ppat.1011958
https://doi.org/10.1111/j.1440-1711.2006.01454.x
https://doi.org/10.1242/jeb.00220
https://doi.org/10.1038/nri1865
https://doi.org/10.1016/j.bbamcr.2007.03.010
https://doi.org/10.1016/j.bbamcr.2007.03.010
https://doi.org/10.1016/S0954-6111(03)00036-2
https://doi.org/10.1016/j.envpol.2022.120574
https://doi.org/10.1016/j.envpol.2017.09.044
https://doi.org/10.1016/j.envpol.2017.09.044
https://doi.org/10.1038/ng.2234
https://doi.org/10.4161/oxim.2.5.9541
https://doi.org/10.1111/j.1582-4934.2008.00282.x
https://doi.org/10.18632/aging.102266
https://doi.org/10.3748/wjg.v17.i4.478
https://doi.org/10.18632/oncotarget.22328
https://doi.org/10.3389/fimmu.2025.1582783
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Michalak et al. 10.3389/fimmu.2025.1582783
239. Liu J, Chang F, Li F, Fu H, Wang J, Zhang S, et al. Palmitate promotes
autophagy and apoptosis through ros-dependent jnk and P38 mapk. Biochem Biophys
Res Commun. (2015) 463:262–7. doi: 10.1016/j.bbrc.2015.05.042

240. Schulze-Osthoff K, Ferrari D, Riehemann K, Wesselborg S. Regulation of nf-Kb
activation by map kinase cascades. Immunobiology. (1997) 198:35–49. doi: 10.1016/
S0171-2985(97)80025-3

241. Saikia R, Joseph J. Ampk: A key regulator of energy stress and calcium-induced
autophagy. J Mol Med (Berl). (2021) 99:1539–51. doi: 10.1007/s00109-021-02125-8

242. Wu J, Lei Z, Yu J. Hypoxia induces autophagy in human vascular endothelial
cells in a hypoxia-inducible factor 1−Dependent manner. Mol Med Rep. (2015)
11:2677–82. doi: 10.3892/mmr.2014.3093

243. Liang R, Liu N, Cao J, Liu T, Sun P, Cai X, et al. Hif-1a/foxo1 axis regulated
autophagy is protective for B Cell survival under hypoxia in human islets. Biochim
Biophys Acta (BBA) - Mol Basis Dis. (2022) 1868:166356. doi: 10.1016/
j.bbadis.2022.166356

244. Hubbi ME, Hu H, Kshitiz, Ahmed I, Levchenko A, Semenza GL. Chaperone-
mediated autophagy targets hypoxia-inducible factor-1a (Hif-1a) for lysosomal
degradation. J Biol Chem. (2013) 288:10703–14. doi: 10.1074/jbc.M112.414771

245. Yang JY, Park MY, Park SY, Yoo HI, Kim MS, Kim JH, et al. Nitric oxide-
induced autophagy in mc3t3-E1 cells is associated with cytoprotection via ampk
activation. kjpp. (2015) 19:507–14. doi: 10.4196/kjpp.2015.19.6.507

246. Li Y, Zhang Y, Wang L, Wang P, Xue Y, Li X, et al. Autophagy impairment
mediated by S-nitrosation of atg4b leads to neurotoxicity in response to hyperglycemia.
Autophagy. (2017) 13:1145–60. doi: 10.1080/15548627.2017.1320467

247. Sarkar S, Korolchuk Viktor I, Renna M, Imarisio S, Fleming A, Williams A,
et al. Complex inhibitory effects of nitric oxide on autophagy. Mol Cell. (2011) 43:19–
32. doi: 10.1016/j.molcel.2011.04.029

248. Caviedes A, Maturana B, Corvalán K, Engler A, Gordillo F, Varas-Godoy M,
et al. Enos-dependent S-nitrosylation of the nf-Kb subunit P65 has neuroprotective
effects. Cell Death Dis. (2021) 12:4. doi: 10.1038/s41419-020-03338-4

249. Reynaert NL, Ckless K, Korn SH, Vos N, Guala AS, Wouters EFM, et al. Nitric
oxide represses inhibitory Kb kinase through S-nitrosylation. Proc Natl Acad Sci. (2004)
101:8945–50. doi: 10.1073/pnas.0400588101

250. Um H-C, Jang J-H, Kim D-H, Lee C, Surh Y-J. Nitric oxide activates nrf2
through S-nitrosylation of keap1 in pc12 cells. Nitric Oxide. (2011) 25:161–8.
doi: 10.1016/j.niox.2011.06.001

251. Mattart L, Calay D, Simon D, Roebroeck L, Caesens-Koenig L, Van Steenbrugge
M, et al. The peroxynitrite donor 3-morpholinosydnonimine activates nrf2 and the upr
leading to a cytoprotective response in endothelial cells. Cell Signalling. (2012) 24:199–
213. doi: 10.1016/j.cellsig.2011.09.002

252. Kim SG, Kim SO. Pkc downstream of pl3-kinase regulates peroxynitrite
formation for nrf2-mediated gsta2 induction. Arch Pharm Res. (2004) 27:757–62.
doi: 10.1007/bf02980145

253. Kang KW, Choi SH, Kim SG. Peroxynitrite activates nf-E2-related factor 2/
antioxidant response element through the pathway of phosphatidylinositol 3-kinase:
the role of nitric oxide synthase in rat glutathione S-transferase A2 induction. Nitric
Oxide. (2002) 7:244–53. doi: 10.1016/s1089-8603(02)00117-9

254. Kinobe R, Ji Y, Nakatsu K. Peroxynitrite-mediated inactivation of heme
oxygenases. BMC Pharmacol. (2004) 4:26. doi: 10.1186/1471-2210-4-26

255. Sivrikaya A, Kolayli S, Kucuk M, Aliyazicioglu R. In vitro effects of peroxynitrite
treatment on fish liver catalase activity. J Enzyme Inhibition Medicinal Chem. (2009)
24:432–6. doi: 10.1080/14756360802188313

256. MacMillan-Crow LA, Thompson JA. Tyrosine modifications and inactivation
of active site manganese superoxide dismutase mutant (Y34f) by peroxynitrite. Arch
Biochem Biophysics. (1999) 366:82–8. doi: 10.1006/abbi.1999.1202
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A20 Tumor necrosis factor alpha-induced protein 3
Frontiers in Immunol
ACE2 Angiotensin-converting enzyme 2
AKT1 RAC-alpha serine/threonine-protein kinase
AMPK AMP-activated protein kinase
AP-1 Activator protein 1
AT1 receptor Angiotensin II type 1 receptor
ATII Angiotensin II
ATF2 Activating Transcription Factor 2
Bach1 BTB and CNC Homology 1
Bcl2 B-cell lymphoma 2
Beclin-1 Bcl-2-interacting coiled-coil protein
Bid BH3-interacting domain death agonist
BNIP Bcl-2/adenovirus E1B 19-kDa-interacting protein
CAT Catalase
CaMKKb Calcium/calmodulin-dependent protein kinase kinase beta
cAMP Cyclic adenosine monophosphate
CCL5 C-C motif chemokine ligand 5 (RANTES)
cGMP Cyclic guanosine monophosphate
CMV Cytomegalovirus
CREB cAMP Response Element-Binding Protein
CXCL10 C-X-C motif chemokine ligand 10
DAG Diacylglycerol
DIC Disseminated Intravascular Coagulation
EBV Epstein-Barr Virus
EGF Epidermal growth factor
ER Endoplasmic reticulum
MAM mitochondrial-associated membrane
ERK1/2 Extracellular signal-regulated kinase 1/2
ETC Electron transport chain
FoxO1 Forkhead box O1
GAA glucogenic amino acids
GLN glutamine
GLT glutamate
GP73 Golgi protein 73
GPCR G protein-coupled receptor
GLUT-1 Glucose transporter 1
GPx Glutathione peroxidase
GSH Reduced glutathione
GSK3b Glycogen Synthase Kinase 3 Beta
HIF-1a Hypoxia-inducible factor 1-alpha
HMOX1 Heme oxygenase 1
HO-1 Heme oxygenase-1
HOPS Homotypic fusion and protein sorting complex
HSP heat shock protein
ICAM-1 Intercellular adhesion molecule 1
IFN Interferon
IL Interleukin
ogy 25
IRAK-4 Interleukin-1 Receptor-Associated Kinase 4
IRF3 Interferon Regulatory Factor 3
IKKb IkB kinase beta
IP3 Inositol 1,4,5-trisphosphate
IRE1 Inositol-Requiring Enzyme 1
IRF3 interferon regulatory factor 3
JAK/STAT Janus kinase/s ignal transducer and act ivator of

transcription pathway
JNK c-Jun N-terminal kinase
Keap1 Kelch-like ECH-associated protein 1
LC3 icrotubule-associated protein 1 light chain 3
LCS Long Covid-19 Syndrome
LPS Lipopolysaccharide
MAM mitochondrial-associated membrane
MAPK Mitogen-activated protein kinase
MHC-I Major histocompatibility complex class I
MMP-9 Matrix metalloproteinase-9
mPTP Mitochondrial permeability transition pore
mTOR Mechanistic target of rapamycin
NEMO NF-kB essential modulator
NET Neutrophil extracellular trap
NEU Neuraminidase
NFAT Nuclear Factor of Activated T-cells
NF-kB Nuclear factor kappa-light-chain-enhancer of activated B cells
NIX BNIP3L, BCL2/adenovirus E1B 19kDa-interacting protein 3-

like; NOX, NADPH oxidase
NO Nitric oxide
Nrf2 Nuclear factor erythroid 2-related factor 2
OCR Oxygen consumption rate
ONOO− Peroxynitrite
p38 p38 mitogen-activated protein kinase
p62 Sequestosome 1
Parkin Parkin RBR E3 ubiquitin-protein ligase
PDGF Platelet-Derived Growth Factor
PDH Pyruvate dehydrogenase
PEPCK Phosphoenolpyruvate Carboxykinase
PERK Protein kinase RNA-like ER kinase
PHD Prolyl hydroxylase domain-containing protein
PI3K Phosphoinositide 3-kinase
PINK1 PTEN-induced kinase 1; PKA, Protein kinase A
PKC Protein kinase C
PLC Phospholipase C
Rac1 Ras-related C3 botulinum toxin substrate 1
REDD1 Regulated in Development and DNA Damage responses

1 (DDIT4)
Rheb Ras homolog enriched in brain
ROS Reactive oxygen species
RyR Ryanodine receptor
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SERCA Sarco/endoplasmic reticulum Ca2+-ATPase
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SIRT NAD-dependent deacetylase Sirtuin
SKP S-phase kinase-associated protein 1
SNAP29 Synaptosomal-Associated Protein 29
Srxn1 Sulfiredoxin-1
SOD Superoxide dismutase
STAT Signal transducer and activator of transcription
TBK1 TANK-binding kinase 1
TFEB Transcription factor EB
TGF-b Transforming growth factor-beta
TLR Toll-like receptor
ogy 26
TNF-a Tumor necrosis factor-alpha
TRPC Transient receptor potential canonical channel
TSC2 Tuberous Sclerosis Complex 2
VCAM-1 Vascular cell adhesion molecule-1
VEGF Vascular endothelial growth factor
VPS39 Vacuolar Protein Sorting 39
ULK1 Unc-51 Like Autophagy Activating Kinase 1
UPR Unfolded protein response
UVRAG UV Radiation Resistance-Associated Gene
XBP1 X-box Binding Protein 1
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