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Renal cell carcinoma (RCC), particularly the clear-cell subtype (ccRCC), accounts 
for 75-85% of kidney cancers and exhibits distinct genetic and biological 
heterogeneity. While surgical resection remains the mainstay of treatment for 
localized ccRCC, the persistence of recurrence rates underscores the significant 
unmet need for effective adjuvant therapies. Recent advancements in 
immunotherapy and targeted therapies have revolutionized the management 
of RCC. Immune checkpoint inhibitors have significantly enhanced antitumor 
immune responses, whereas tyrosine kinase inhibitors (TKIs) and mammalian 
target of rapamycin (mTOR) inhibitors effectively disrupt angiogenesis and 
proliferation signaling pathways, respectively. However, non-clear cell RCC 
subtypes remain understudied due to their rarity and exclusion from major 
clinical trials. Consequently, this review primarily focuses on ccRCC, aiming to 
provide a comprehensive and up-to-date overview of the latest advancements in 
immunotherapy and targeted therapies. By synthesizing current evidence, this 
review seeks to elucidate the mechanisms of action, clinical efficacy, and 
limitations of these treatments, while also identifying gaps in knowledge and 
future research directions. Ultimately, the goal is to offer valuable insights for 
clinicians and researchers, facilitating the development of optimized, 
personalized treatment approaches to improve outcomes for ccRCC patients. 
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1 Introduction 

Renal cancer remains a common cancer globally, with an 
estimated 431,288 new cases in 2020 worldwide (1). Recent 
studies suggest that new favorable subsets of cancers of unknown 
primary (CUP), including renal cell carcinoma (RCC) CUP, have 
emerged. This newly recognized clinical entity is treated similarly to 
RCC and contributes to the currently increasing incidence of RCC 
(2).The preponderance of kidney cancers comprises RCC, 
predominantly clear-cell RCC (ccRCC) occupying 75-85% of 
instances, trailed by papillary, chromophobe, medullary, and 
collecting duct subtypes. These subgroups of RCCs differ from 
each other in genetics, biology, and behavior (3). Localized ccRCC is 
conventionally managed through surgical excision, encompassing 
both radical and partial nephrectomy approaches, aimed at 
achieving definitive cure (4). However, the recurrence rate of 
RCC at 5-years is significant, varying from 2.2% to 58.1% 
depending on risk factors such as tumor size, histology, and other 
clinical features (5). Therefore, the necessity for adjuvant and/or 
neoadjuvant therapies to mitigate recurrence risks and enhance 
survival outcomes underscores a crucial, as yet unfulfilled, clinical 
requirement. Apart from surgical interventions, a diverse array of 
therapeutic modalities has emerged recently to arrest tumor 
progression and hinder RCC metastases, embracing radiotherapy, 
chemotherapy, immunological therapies, as well as precision-
guided targeted therapies, among others (6). 

The profound comprehension of the immune system and 
cancer’s molecular underpinnings has spawned immunotherapy 
and targeted therapy, respectively, revolutionizing contemporary 
therapeutic strategies for renal cancer (7). These innovative 
approaches offer more treatment options and better outcomes for 
kidney cancer patients. 

Immunotherapy has significantly progressed, utilizing immune 
checkpoint inhibitors such as Programmed Cell Death Protein-1/ 
Programmed Death-Ligand 1(PD-1/PD-L1) and Cytotoxic T-
lymphocyte-associated protein 4(CTLA-4) antagonists, among 
others, to amplify the immune system’s capacity to counteract 
tumor growth (8). In addition, targeted therapies further 
complement this arsenal. For example, Sunitinib, a tyrosine 
kinase inhibitor (TKI), impedes tumor angiogenesis and 
expansion through Vascular Endothelial Growth Factor Receptor 
(VEGFR) disruption (9), while Everolimus and Temsirolimus, 
mammalian target of rapamycin (mTOR) inhibitors, hinder 
tumor growth and proliferation by modulating the mTOR 
signaling cascade (10–12). It should be noted that TKI 
monotherapy remains a suitable first-line option for patients 
ineligible for immunotherapy, as supported by the STAR trial. It 
also offers benefits as a second-line treatment. Although treatment 
breaks may be considered, caution is warranted, as these patients 
typically experience shorter progression-free survival compared to 
those receiving first-line TKI therapy (13). 

Given the heterogeneous histology and the rarity of each 
individual subtype within non-clear cell RCCs (nccRCCs), these 
tumors have traditionally been under represented in clinical trials, 
resulting in a lack of well-studied treatment options specifically 
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tailored to them (14). Consequently, this review primarily focuses 
on ccRCC, provides a comprehensive overview of the immunotherapy 
and targeted therapies for this specific subtype of kidney cancer. 
2 Immunotherapy in RCC 

2.1 Immunotherapy origins 

The origins of immunotherapy date back to the late 19th 
century, when William Coley discovered that bacterial infections 
(Coley’s toxins) helped treat cancer. The patient’s immune system is 
provoked by these toxins, facilitating its ability to assault and 
eradicate cancerous tumor cells (15, 16). The development of 
modern immunotherapy is based on in-depth research into T cell 
function  and  immune  checkpoint  molecule  (17).  And  
immunotherapy works by activating the patient’s own immune 
system to attack tumor cells, primarily involving cytokine therapy 
and immune checkpoint inhibitors(ICIs) (Figure 1). In addition, 
with the continuous deepening of research, adoptive cell therapies-
including non-gene-modified and gene-modified adoptive cell 
therapies- along with dendritic cells(DCs) and vaccines have 
gradually come into the spotlight. 

2.1.1 Cytokines 
Cytokine therapy, utilizing molecules like interleukin-2 (IL-2) 

and interferon-alpha (IFN-a), have surfaced as a validated 
therapeutic strategy for managing metastatic RCC (18–20). 
Historically, before the advent of targeted therapies, advanced 
RCC treatment heavily relied on cytokine immunotherapy using 
either interferon or IL-2 (21). Interferon, an early adopted protein, 
was administered for RCC treatment, potentiating the immune 
system’s efficacy in combating neoplastic diseases. Although some 
patients showed some tumor shrinkage after interferon treatment, 
the overall response rate was low (approximately 15-20%) and 
treatment was associated with severe side effects such as flu-like 
symptoms, fatigue, and depression (22). IL-2, a type of cytokine, 
stimulates T-lymphocytes and natural killer (NK) cells, enhancing 
their capacity to eliminate tumor cells. In RCC, select patients have 
responded favorably to high-dose IL-2 therapy, with some 
experiencing complete tumor regression (23). However, IL-2 
administration is plagued by significant toxicity, particularly 
severe vascular leak syndrome, thus impeding its broad clinical 
application (24). 

2.1.2 Immune checkpoint inhibitors 
Immune  checkpoint  inhib i tors  ( ICIs) ,  a  c lass  of  

immunotherapy drugs, block checkpoint protein signaling 
pathways to enhance anti-tumor immune responses by relieving 
immune suppression (25). Their primary function is to block 
inhibitory signals, thereby enabling immune cells to mount a 
more effective tumor-specific cytotoxic response and eliminate 
cancer cells. Recent advancements highlight the pivotal role of 
this therapy in the management of ccRCC, particularly in 
advanced stages (Table 1). 
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2.1.2.1 PD-1 inhibitors 
In 1992, T. Honjo identified PD-1, also designated as Cluster of 

Differentiation(CD)279. This transmembrane protein is encoded by 
the Programmed Cell Death 1 (PDCD1) gene (26). T. Honjo and J. 
Allison made groundbreaking discoveries regarding the role of PD
1 and CTLA-4 inhibition in cancer therapy, which earned them the 
2018 Nobel Prize in Physiology or Medicine (27). PD-1 is 
prominently expressed on tumor-directed T-cells (CD8+ cytotoxic 
T-cells and CD4+ T helper1 cells), NK cells, B-cells, monocytes, and 
DCs. Upon engagement with its ligands, PD-L1 or Programmed 
Death-Ligand 2(PD-L2), PD-1 activates tyrosine phosphatases 
(such as Src Homology 2 Domain-Containing Phosphatase-1/2), 
which dephosphorylate key signaling molecules downstream of the 
Frontiers in Immunology 03 
T-cell receptor (TCR), thus inhibiting TCR signaling pathways 
crucial for T-cell activation. This results in attenuated cell survival 
signals, impaired cytokine release, and contributes to T-cell 
exhaustion, reducing immune cell responsiveness and promoting 
immune evasion. Notably, PD-1 ligands are expressed on both 
immune cells and tumor cells, allowing tumors to suppress immune 
responses and evade immune detection (28–30). 

PD-1 inhibitors, a class of monoclonal antibodies, serve as 
immune checkpoint modulators by disrupting inhibitory signals 
mediated by PD-1 transmembrane proteins on effector immune 
cells. Currently, Pembrolizumab (Keytruda) and Nivolumab 
(Opdivo), two anti-PD-1 agents, are utilized in the treatment of 
ccRCC. Pembrolizumab, the first humanized IgG4 (S228P) 
FIGURE 1 

Immunotherapeutic strategies in renal cell carcinoma (RCC). Current immunotherapeutic approaches for RCC encompass three primary categories: 
(1) Cytokine therapy, involving interleukin-2 (IL-2) and interferon-alpha (IFN-a); (2) Immune checkpoint inhibitors (ICIs), including antibodies 
targeting coinhibitory receptors such as programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), cytotoxic T-lymphocyte
associated protein 4 (CTLA-4), lymphocyte-activation gene 3 (LAG-3), T-cell immunoglobulin and mucin domain-containing protein 3 (TIM-3), and T 
cell immunoreceptor with Ig and ITIM domains (TIGIT); (3) Adoptive cell therapies, including ex vivo-expanded cytokine-induced killer (CIK) cells, 
tumor-infiltrating lymphocytes (TILs), genetically engineered chimeric antigen receptor T-cells (CAR-Ts) and natural killer cells (CAR-NKs), as well as 
dendritic cells (DCs). These modalities collectively aim to enhance intrinsic antitumor immune responses through distinct mechanistic frameworks. 
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monoclonal antibody, received Food and Drug Administration 
(FDA) approval in 2021 for various cancer indications, including 
RCC. Nivolumab, another human IgG4 antibody, preceded 
Pembrolizumab in 2015 as the first FDA-approved checkpoint 
inhibitor for advanced RCC. Both drugs can elicit adverse effects, 
such as gastrointestinal distress, muscular discomfort, and fatigue, 
likely by perturbing physiological immune processes (31–33). 
Notably, in ccRCC patients, anti-PD-1 therapies exhibit 
constrained efficacy against central nervous system metastases 
due to limited blood-brain barrier permeation (34). To mitigate 
these limitations, research has intensified on combinatorial 
immunotherapy strategies. In 2018, the FDA endorsed a PD-1/ 
CTLA-4 (Ipilimumab) combination to enhance ccRCC treatment 
outcomes. Additionally, the potential  synergy  between  
Pembrolizumab and the anti-VEGF agent Pazopanib is still under 
investigation (25). 

2.1.2.2 CTLA-4 inhibitors 
CTLA-4 (CD152), a pivotal immune checkpoint, modulates 

antitumor immunity by inhibiting immune responses to cancer. 
Encoded by the CTLA-4 gene, it acts as a key regulator of immune 
tolerance. Its role was first discerned in 1987 and further elucidated 
in the 1990s (28). CTLA-4 is composed of 223 amino acids (35) and 
is upregulated in tumor-targeting T cells. Upon binding to CD80 
(B7-1) or CD86 (B7-2) on antigen-presenting cells or tumor cells, it 
functions as an inhibitory switch. This interaction triggers the 
phosphorylation of its cytoplasmic YVKM motif, which recruits 
Src Homology 2 Domain-Containing Phosphatase-2 and activates 
Serine/Threonine Protein Phosphatase 2A. This cascade suppresses 
TCR/CD28-mediated activation of the Phosphatidylinositol 3
kinase (PI3K)/Protein Kinase B (Akt) signaling pathway, thereby 
limiting TCR signaling that is essential for T-cell activation and 
cytokine production (27, 36). 

Ipi l imumab  (Yervoy)  i s  an  FDA-approved  human  
Immunoglobulin G1 kappa (IgG1k) monoclonal antibody that 
specifically targets CTLA-4. While CTLA-4 inhibitors can elicit 
adverse reactions such as exhaustion and gastrointestinal 
disturbances, blocking CTLA-4 in melanoma therapy has been 
associated with severe Immune-Related Adverse Events(AE), 
including autoimmune complications in visceral organs such as 
the colon, liver, and endocrine glands (28). To enhance efficacy in 
resistant patients, the FDA approved the combination of 
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Ipilimumab with Nivolumab as a first-line therapeutic regimen 
for advanced RCC in adults (37). This synergy arises from their 
complementary mechanisms of action: Anti-PD-1 therapy 
revitalizes exhausted effector T cells, thereby enhancing immune 
responses, while anti-CTLA-4 promotes antigen-specific T-cell 
activation and priming (38). 

2.1.2.3 Lymphocyte-Activation Gene 3 inhibitors 
Lymphocyte-Activation Gene 3 (LAG-3), also known as CD223, 

was first identified in 1990 by Triebel’s team. This 498-amino acid 
transmembrane protein, featuring four immunoglobulin (Ig) 
superfamily domains, is encoded by the LAG3 gene (39). It is 
expressed on T cells, NK cells, and B cells (40), binding to major 
histocompatibility complex II (MHC-II), liver and lymph node 
sinusoidal endothelial cell C-type lectin, and fibrinogen-like 
protein 1, all of which are found on antigen-presenting cells and 
tumor cells. Liver and lymph node sinusoidal endothelial cell C-type 
lectin, a C-lectin receptor on the cell surface, and MHC-II display the 
highest affinity for LAG-3 (27). Like other immune checkpoints, 
LAG-3 inhibits T cell proliferation, cytotoxicity, and homeostasis, 
hindering immune responses against tumor cells and foreign 
invaders (41–43). Elevated expression of LAG-3 alongside PD-1 is 
associated with a poor prognosis for patients with ccRCC (44). 

Relatlimab, a humanized IgG4 monoclonal antibody, 
specifically targets the LAG-3 protein and is currently undergoing 
Phase II clinical trials for ccRCC. Recent findings suggest that 
monotherapy with anti-LAG-3 or its combination with anti-PD-1 
shows promise for patients with LAG-3+ ccRCC who are refractory 
to anti-PD-1 therapy. Administered intravenously, Relatlimab may 
cause adverse reactions such as fatigue, rash, and arthralgia. 
Additionally, its combination with other immune checkpoint 
inhibitors, such as Nivolumab, is being investigated to improve 
therapeutic efficacy against RCC (44). 

2.1.2.4 T cell immunoglobulin and Mucin domain 3 
inhibitors 

T cell Immunoglobulin and Mucin domain 3 (TIM-3), also 
known as Hepatitis A Virus Cellular Receptor 2 (HAVCR2), is a 
transmembrane immune checkpoint receptor involved in tumor-

driven immune suppression. First identified by Kuchroo et al. in 
2002, the HAVCR2 gene encodes this protein (45), initially observed 
on CD4+ and CD8+ T cells. Subsequent studies confirmed its 
TABLE 1 Selected pivotal ICIs involved in RCC management. 

Target protein ICIs Clinical trial Phase Response rate Status 

PD-1 Nivolumab NCT01668784 3 ORR 25.9%, PFS 4.21 months Completed 

PD-1 Pembrolizumab NCT03142334 3 OS 72 months Active, not recruiting 

LAG-3 and PD-1 Nivolumab+ Relatlimab NCT02996110 2 ORR 30%, 
mDOR 32.57 weeks 

Completed 

PD-1 and CTLA-4 Nivolumab + Ipilimumab NCT02231749 3 ORR 41.6%, PFS 11.56 Active, not recruiting 

TIM-3 Sabatolimab NCT02608268 1/2 PFS 1.8 months, OS 
4.1 months 

Terminated 
 

ORR, Objective response rate; PFS, Progression-free survival; OS, Overall survival. 
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expression on T helper 17 cells (46), Regulatory T cells (47), and 
innate immune cells such as DCs, NK cells, and monocytes (48). 
Structurally, TIM-3 comprises a membrane-distal single variable Ig 
domain, a glycosylated mucin domain, and an intracellular stem 
(49). TIM-3 interacts with multiple ligands, including galectin-9, 
high mobility group box 1 protein, phosphatidylserine, and 
carcinoembryonic antigen-related cell adhesion molecule 1. 
Binding between TIM-3 and its ligands results in NK and T cell 
dysfunction, ultimately leading to immune suppression in cancer 
and viral infections (50, 51). TIM-3 has been implicated in several 
malignancies, such as RCC, melanoma, and gastric cancer (52). 
However, its precise role in ccRCC remains unclear (53). TIM-3 
blockade alone shows limited efficacy, necessitating its combination 
with other immune checkpoint inhibitors, such as anti-PD-1 
antibodies, to enhance therapeutic outcomes (54). 

In hematological malignancies, TIM-3 is found on CD8+ T cells 
in myelodysplastic syndrome, indicating its broader involvement 
beyond solid tumor immunity exhaustion (55). Sabatolimab, a 
pioneering immuno-myeloid agent targeting the TIM-3 
transmembrane protein, is a humanized monoclonal antibody 
(IgG4). It is currently undergoing clinical trials for treating 
immunogenic cancers (56, 57). 
 

2.1.2.5 T cell immunoreceptor with immunoglobulin and 
ITIM domains inhibitors 

T cell Immunoreceptor with Immunoglobulin and ITIM 
domains (TIGIT), also known  as  WUCAM or VSTM3, is a

transmembrane protein discovered in 2009. It belongs to the 
CD28 immunoglobulin superfamily and is encoded by the TIGIT 
gene. This 244-amino-acid protein (58) consists of an 
immunoglobulin domain, a transmembrane region, and an 
inhibitory cytoplasmic tail (59, 60). TIGIT is expressed on tumor-

reactive T cells, NK cells, DCs, and macrophages, where it impedes 
antitumor activation and immune functionality (52, 61, 62). TIGIT 
binds to ligands such as CD155, CD112, and CD113. Ligand 
engagement triggers the phosphorylation of intracellular domains, 
leading to the recruitment of protein Growth factor receptor-bound 
protein 2 and inhibition of immune active SH2 domain-containing 
inositol 5′-phosphatase 1, Phosphatidylinositol 3-kinase (PI3K), 
and Mitogen-Activated Protein Kinase (MAPK) pathways (52, 60, 
63). TIGIT expression varies across cancers and is generally low in 
RCC. However, tumor-infiltrating NK cells from metastatic lymph 
node patients exhibit elevated TIGIT expression, indicating a role in 
immune suppression (52). 

Tiragolumab, a human IgG4k monoclonal antibody targeting 
TIGIT, is currently under clinical evaluation (Phase II) for 
metastatic RCC. TIGIT has emerged as a promising therapeutic 
target for cancer immunomodulation, particularly when combined 
with PD-1 inhibitors. Preclinical studies have demonstrated that 
blocking both TIGIT and PD-1 significantly enhances tumor-

specific T cell proliferation, degranulation, and cytokine 
production (64).The adverse reactions to Tiragolumab are similar 
to those of other ICIs, including fatigue, chills, and nausea (59, 65). 
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2.1.3 Adoptive cell therapy 
2.1.3.1 Non-gene-modified cell therapies 
2.1.3.1.1 Cytokine-Induced Killer cells 

Cytokine-Induced Killer (CIK) cells are a heterogeneous 
population derived from peripheral or umbilical cord blood 
mononuclear precursors after stimulation with Interferon-gamma 
(IFN-g), anti-CD3 monoclonal antibodies, and IL-2. This cell subset 
includes CD3+CD56+ NK-like cells, CD3+CD56− T lymphocytes, 
and CD3−CD56+ NK cells (66). CIK cells exhibit robust preclinical 
anti-tumor activity independent of major histocompatibility 
complex (MHC) or T cell receptor (TCR) specificity (66, 67). 
They express a diverse TCR repertoire and NK-associated 
markers such as Natural  Killer Group  2 Member D, DNAX

Accessory Molecule-1, and Natural Killer Cell p30-Activating 
Receptor (67), with Natural Killer Group 2 Member D 
engagement playing a pivotal role in their cytotoxic response 
against neoplastic cells (68). 

In a prospective study comparing autologous CIK therapy to 
subcutaneous IL-2/Interferon-alpha (IFNa)-2a in 148 patients with 
metastatic ccRCC (69). CIK-treated patients demonstrated superior 
outcomes, including higher objective response rate (ORR) (53% vs. 
27%), improved 3-year progression-free survival (PFS) (18% vs. 
12%, p=0.031), and extended median overall survival (OS) (46 vs. 
19 months, p<0.001). Subsequently, a randomized study involving 
20 post-radical nephrectomy stage I/II patients contrasted 
autologous CIKs with investigator-selected treatments. Two weeks 
post-infusion, CIK-treated patients showed enhanced CD3+, 
CD3+CD8+, and CD3+CD56+ populations in peripheral blood 
(70). The CIK group also demonstrated significantly prolonged 
median PFS (32.2 vs. 21.6 months, p=0.032). In a separate study of 
29 metastatic RCC (mRCC) patients, CIK therapy achieved a 
modest ORR of 13.8%, with elevated circulating myeloid-derived 
suppressor cells (MDSCs) correlating with poor outcomes, 
emphasizing the role of the tumor microenvironment (TME) in 
disease prognosis (71). Other mRCC CIK trials documented low 
toxicity and CD3+CD56+ cell expansion in vivo, yet definitive 
clinical benefits were obscured by study limitations including 
small sample sizes and heterogeneity (72, 73). 

Incorporating DC vaccination to present tumor antigens, 
secrete cytokines, and engage in direct cell contact has shown 
promise in enhancing CIK activation and cytotoxicity (74). A 
retrospective study of 410 post-surgical mRCC patients revealed 
that DC-CIK therapy significantly outperformed IFNa, achieving a 
higher 3-year OS (96% vs. 83%, p<0.01) (75). Another randomized 
trial comparing autologous DC-CIK+IFNa vs. no adjuvant post-
RCC surgery showed reduced recurrence and metastasis rates 
(p<0.01) (76). Similar findings were observed in a study where 
DC-CIK therapy led to a marked decline in post-surgery relapse (p 
= 0.0418) and superior 3-year DFS rates (96.7% vs. 57.7%) 
compared to no adjuvant therapy (75). 

CIK cells are attractive therapeutic candidates due to their 
manufacturability and low toxicity. Future strategies focus on 
combining CIK cells with DC vaccines, TKIs, and ICIs to 
overcome the immunosuppressive TME and enhance therapeutic 
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efficacy. A global registry for CIK cells is envisioned to establish 
benchmarks for future research endeavors (77). 

2.1.3.1.2 Tumor infiltrating lymphocytes 
Tumor-infiltrating lymphocytes (TILs) represent a promising 

adoptive cell therapy, especially for immunogenic tumors like 
metastatic melanoma, where clinical studies report an ORR of 49
72% and complete response (CR) rates of 10-20%, with approximately 
40% achieving durable responses (78, 79). TILs are polyclonal T cells 
propagated ex vivo from patient tumor samples and re-infused after 
lymphodepleting chemotherapy, typically cyclophosphamide and 
fludarabine, to enhance in vivo expansion (78, 79). 

Although promising in melanoma, TILs therapies have shown 
limited success in RCC. An early phase 3 clinical trial comparing 
CD8+ TILs combined with IL2 versus IL2 monotherapy in post-
radical nephrectomy mRCC patients reported a modest ORR of 
9.9%, compared to 11.4% in the IL2-only group (80). The trial was 
prematurely terminated due to insufficient efficacy, possibly 
attributed to diminished TIL viability and functional defects 
resulting from prolonged ex vivo culturing. 

Recent advancements in TILs manufacturing, particularly the 
Rapid Expansion Protocol (REP) initially developed for melanoma, 
are being tested in mRCC. Despite successful TIL expansion using 
anti-CD3, high-dose IL-2, and irradiated allogeneic feeder cells, the 
products often exhibit functional defects, including poor 
cytotoxicity and reduced cytokine secretion (81). This may result 
from the limited T-cell recognition of tumor-specific antigens or 
manufacturing-induced quality decline (82). 

Single-cell RNA sequencing analysis of RCC-derived TILs 
before and after REP revealed preferential expansion of CD4+ T 
cells, reduced T-cell diversity, and stagnation of exhausted T-cell 
clones (83). Emerging methods, such as Dynabeads-based 
manufacturing, have demonstrated improved TIL expansion and 
functionality (84). Achieving polyclonal, tumor-specific T-cell

diversity and reactivity remains pivotal for advancing TIL 
therapies targeting RCC. 

2.1.3.2 Gene-modified adoptive cell therapies 
Chimeric Antigen Receptor T-Cells (CAR-Ts) and NK Cells 

(CAR-NKs). 
Chimeric Antigen Receptor T-Cells (CAR-Ts) are T 

lymphocytes genetically reprogrammed to recognize and kill 
tumor cells independently of HLA presentation. This contrasts 
with endogenous T cells, which require peptide-HLA complexes 
for activation. By circumventing HLA restriction, CAR-T cells offer 
broader applicability and can target a wide range of surface 
antigens. Structurally, CARs are modular receptors composed of 
an extracellular antigen-binding domain, a hinge/spacer, a 
transmembrane domain, and intracellular signaling motifs (85). 
The antigen-binding domain typically derives from a single-chain 
variable fragment of tumor-specific antibodies, though nanobodies 
and ligands have also shown efficacy (86, 87). 

The hinge and transmembrane domains, sourced from proteins 
like CD8 or CD28, modulate flexibility and anchoring. Intracellular 
domains usually consist of CD3z and one or more co-stimulatory 
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motifs, enabling potent T cell activation and cytokine secretion. 
Unlike natural T cells, CAR-Ts integrate signal 1 and signal 2 into a 
single receptor, facilitating autonomous tumor engagement (85). 

Five CAR generations have evolved since their 1987 inception 
(88). First-generation CARs included only CD3z and lacked 
persistence. Second- and third-generation CARs introduced co
stimulatory domains, improving cytotoxicity and expansion (89). 
More advanced fourth-generation CARs, known as T cell 
Redirected for Universal Cytokine Killing, are engineered to 
secrete immunostimulatory cytokines like IL-12, IL-15, or IL-18, 
thereby enhancing anti-tumor efficacy and modulating the tumor 
microenvironment (90). Fifth-generation CARs incorporate 
cytokine receptor signaling to promote persistence and mimic 
physiological T cell signaling (91). 

To enhance safety, “suicide switches” (e.g., inducible caspase-9) 
enable pharmacologic CAR-T ablation in AE (92). CAR-T 
production involves leukapheresis, gene modification (commonly 
via viral vectors), and expansion. While viral vectors ensure stable 
gene integration, they carry rare risks of insertional mutagenesis 
and secondary malignancies (93–95). Alternatives such as CRISPR/ 
Cas9, TALENs, and transposon systems offer non-viral solutions 
with enhanced safety profiles (96). 

While CAR-T cells have shown significant success in 
hematologic malignancies, their application in solid tumors like 
RCC faces unique challenges (97). Solid tumors are shielded by 
physical and immunosuppressive barriers (e.g., hypoxia, acidic pH, 
Tregs), limiting CAR-T infiltration and function. Tumor antigen 
heterogeneity and off-tumor toxicity (due to shared antigen 
expression with healthy tissues) further complicate treatment. 

Unlike T cells, NK cells naturally eliminate tumor cells without 
HLA recognition (98). Allogeneic NK cell therapies have been 
explored, though clinical outcomes have been modest thus far. 
Chimeric Antigen Receptor NK Cells (CAR-NK) are now under 
early-stage clinical evaluation (99). Their inherent lack of HLA 
restriction makes them attractive candidates for off-the-shelf 
manufacturing, though protocols for efficient expansion and gene 
modification still require optimization. Similarly, macrophages, 
which are often recruited into tumor tissues and play key roles in 
shaping the immune microenvironment, have emerged as novel 
platforms for CAR engineering (100, 101). 

In RCC, multiple tumor-associated antigens have been 
identified for CAR-targeting, including Carboxy-Anhydrase IX 
(CAIX), CD70, AXL receptor tyrosine kinase (AXL), Receptor 
tyrosine kinase-like orphan receptor 2 (ROR2), DnaJ heat shock 
protein family (Hsp40) member B8 (DNAJB8), Mucin 1, C
Mesenchymal-Epithelial Transition Factor (c-Met), and 
Epidermal Growth Factor Receptor (EGFR). CAR-Ts and CAR-
NKs therapies against these targets are under various stages of 
development, with some already in clinical trials (Table 2). 

2.1.3.2.1 CAIX 
CAIX is an enzyme frequently upregulated in hypoxic solid 

tumors, notably mRCC, making it an early target for CAR-T 
therapy in these malignancies (102). In a Phase I trial involving 
12 patients, first-generation autologous anti-CAIX CAR-T cells 
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were administered without lymphodepletion preconditioning. No 
clinical responses were observed, and significant toxicities, 
including liver enzyme disturbances, were reported (103). 

Subsequent research has focused on enhancing the efficacy and 
safety of anti-CAIX CAR-T therapies. A self-inactivating bi
cistronic  CAR-T  targeting  CAIX,  fused  with  a  CD28z 
endodomain and designed to locally release anti-PD-L1 
antibodies at RCC sites, demonstrated heightened antitumor 
efficacy and reduced T-cell exhaustion markers in a humanized 
mouse model of CAIX+PD-L1+RCC (104). This suggests that 
modulating the TME is pivotal in mRCC prognosis (105). 

To address antigenic heterogeneity, dual-targeting strategies 
have been explored. A dual-targeted fine-tuned immune-restoring 
CAR-T for ccRCC, aimed at both CAIX and CD70, and engineered 
to co-release immune checkpoint inhibitors, is currently under 
preclinical assessment (106). 

Combining anti-CAIX CAR-T products with TKIs like 
sunitinib has shown promise (107). Sunitinib is known to 
augment IFNg-producing T-cells while diminishing regulatory T 
cells and MDSCs (108, 109). In a humanized RCC mouse model, the 
combination of sunitinib and anti-CAIX CAR-Ts significantly 
reduced tumor load, outperforming either monotherapy (107). 

Regarding CAR-modified NK cells, third-generation anti-CAIX 
CAR-modified NK92 cells, combined with bortezomib, reduced 
tumor burden in immunocompromised RCC xenograft mice (110). 
Frontiers in Immunology 07 
Bortezomib is believed to augment NK-mediated antitumor 
responses (111). 

These findings underscore the potential of targeting CAIX in 
RCC using CAR-T and CAR-NK cell therapies, while highlighting 
the importance of addressing associated toxicities and the 
immunosuppressive tumor microenvironment. 

2.1.3.2.2 CD70 
CD70 is a transmembrane glycoprotein that interacts with 

CD27 receptors on T cells, promoting the generation of effector 
and memory T cells (112). Its expression is notable in activated T 
and B lymphocytes, as well as mature dendritic cells (113). 
Importantly, CD70 is prominently expressed in RCC, making it a 
compelling target for CAR-T therapy (114). 

The CTX130 Phase I multicenter trial evaluated an allogeneic 
CD70-targeting CAR-T therapy in 16 patients with relapsed or 
refractory ccRCC. Preclinical studies demonstrated favorable 
proliferation and cytotoxicity profiles, with complete regression of 
RCC xenograft tumors. In the clinical setting, patients received 
escalating doses of CTX130 without encountering dose-limiting 
toxicities. Disease control was achieved in 81.3% of patients, and 
one patient remained in a durable complete response at three years. 
The study also introduced CTX131, a next-generation CAR-T 
construct with synergistic potency enhancements, which 
demonstrated improved expansion and efficacy in preclinical 
TABLE 2 Selected pivotal CAR Therapy Clinical Trials for RCC. 

Target protein Description Clinical trial Phase Response rate Status 

CAR T therapy 

CD70 Allogeneic ALLO-316 NCT04696731 1 No study results Recruiting 

CD70 CTX130 NCT04438083 1 No study results Terminated 

CD70 CD70-targeting CAR-T cells NCT06010875 
NCT05468190 

1 No study results Recruiting 

CD70 CD70-targeted CAR-T NCT05420545 
NCT05420519 

1 No study results Recruiting 

CD70 CD70-targeted CAR-T NCT05795595 1 No study results Recruiting 

ROR2 Autologous CCT301-38 or CCT 301-59 T cells NCT03393936 1/2 No study results Terminated 

VEGFR2 Anti-VEGFR2 gene modified tumour white blood cells NCT01218867 1/2 No study results Terminated 

c-MET Autologous CAR-T/TCR-T cell immunotherapy NCT03638206 1/2 No study results Unknown 

CAIX CAIX-targeted CAR-T Cells NCT04969354 1 No study results Recruiting 

Mucin 1 cell surface 
associated C terminal 

P-MUC1C-ALLO1 allogeneic CAR-T cells NCT05239143 1 No study results Recruiting 

Human leukocyte 
antigen (HLA-G) 

Autologous HLA-G-Targeted CAR-T Cells IVS-3001 NCT05672459 1/2 No study results Recruiting 

CAR NK cell therapy 

CD70 CAR.70-engineered IL15-transduced Cord Blood-
derived NK Cells in Conjunction with 
Lymphodepleting Chemotherapy 

NCT05703854 1/2 No study results Recruiting 

CAR PBL therapy 

CD70 PBL Transduced with a CD70-Binding CAR NCT02830724 1/2 No study results Recruiting 
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models. These findings establish proof of concept for CD70
targeted allogeneic CAR-T therapies in ccRCC and other CD70
expressing malignancies (115). 

In contrast, the TRAVERSE study assessed ALLO316, an 
allogeneic Transcription Activator–Like Effector Nuclease gene-
edited anti-CD70 CAR-T product, in 17 patients with pretreated 
advanced or metastatic ccRCC. To mitigate the risk of graft-versus
host disease, the T-cell receptor alpha constant gene was deleted, 
and CD52 was ablated to enhance lymphodepletion using ALLO647 
(a humanized anti-CD52 antibody) in combination with 
fludarabine and cyclophosphamide. Cytokine Release Syndrome 
occurred in 65% of patients, including one case of grade 3 severity. 
The disease control rate reached 71%, peaking at 100% in CD70
positive subsets. 

Additionally, CRISPR/Cas9-edited CAT-248 CAR-NK cells 
have been developed to target CD70. These cells are engineered 
to prevent self-targeting by deleting endogenous CD70 and secrete 
interleukin-15 (IL-15) to enhance persistence. In preclinical studies, 
CAT-248 demonstrated efficacy in vitro and in xenograft RCC 
models, significantly reducing tumor burden by more than 99%. 

These findings underscore the potential of CD70-targeted CAR
T and CAR-NK therapies in treating CD70-expressing 
malignancies, particularly RCC. 

2.1.3.2.3 AXL & ROR2 
AXL, a member of the TAM family tyrosine kinase receptors, is 

frequently overexpressed in various solid tumors, including RCC 
(116), where it interacts with its high-affinity ligand growth arrest-
specific protein 6 to promote proliferation, survival, angiogenesis, 
and invasion (117). Similarly, ROR2, an orphan tyrosine kinase 
receptor critical during embryogenesis, exhibits limited expression 
in adult tissues but is aberrantly upregulated in RCC, where it 
contributes to enhanced tumor growth, migration, and invasiveness 
(118). Given their roles in tumor progression, both AXL and ROR2 
have emerged as promising targets for CAR-T therapies. A Phase I/ 
II clinical trial investigated the safety and efficacy of ROR2-targeted 
CAR-T (CCT301-59) and AXL-targeted CAR-T (CCT301-38) 
therapies in patients with refractory or relapsed metastatic RCC. 

2.1.3.2.4 DNAJB8 
DNAJB8, a cancer-testis antigen, has emerged as a potential 

therapeutic target due to its expression in cancer stem/initiating 
cells and implication in tumorigenicity in RCC and osteosarcoma. 
Recent developments in CAR-T cell therapy have focused on 
second-generation constructs utilizing the B10 binder (B10-CAR), 
specifically targeting Human Leukocyte Antigen(HLA)-A*24:02/ 
DNAJB8 peptide complexes on RCC cells (119). These engineered 
cells demonstrated robust antigen-specific and  HLA-mediated

activation, inducing IFN-g secretion in vitro when exposed to 
RCC cell lines and significantly reducing tumor burden in vivo. 

Although these findings highlight the therapeutic potential of 
targeting cancer stem-like cell antigens, further investigations are 
required to validate this approach and optimize its clinical efficacy. 
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2.1.3.2.5 Mucin 1 
Mucin 1, a transmembrane glycoprotein normally expressed on 

epithelial surfaces, plays a protective role in healthy tissues but 
frequently undergoes aberrant glycosylation and overexpression in 
various malignancies, including RCC (120). An allogeneic CAR-T 
therapy targeting the Mucin 1 C-terminal antigen utilizes Cas-
CLOVER gene editing to eliminate TCR and MHC-I expression, 
thereby mitigating the risk of graft-versus-host disease and immune 
rejection. This therapy is currently being evaluated in a Phase I 
clinical trial involving patients with advanced or metastatic 
epithelial tumors, including RCC. Further investigations are 
required to assess its efficacy and safety in this patient population. 

2.1.3.2.6 c-met 
c-Met, a receptor tyrosine kinase involved in tumor cell 

migration, proliferation, and invasion, is overexpressed in 
approximately 97% of papillary RCC cases while being largely 
absent in healthy renal tissue (121). A third-generation CAR-T 
cell therapy targeting c-Met, incorporating CD28, 4-1BB, and CD3z 
co-stimulatory domains, demonstrated antitumor efficacy in an 
orthotopic RCC mouse model, where tumor growth inhibition 
was observed in 60% of cases. Histological analysis confirmed the 
infiltration of CAR+ and CD8+ T cells into the tumor 
microenvironment. Furthermore, when combined with Axitinib, a 
tyrosine kinase inhibitor, the therapy produced a synergistic 
antitumor effect, warranting further investigation in clinical 
studies (121). 

2.1.3.2.7 EGFR 
EGFR Specific CAR-NK92 construct has been evaluated in 

combination with Cabozantinib, a tyrosine kinase inhibitor, 
demonstrating significant antigen-specific activation and enhanced 
antitumor efficacy in both in vitro and in vivo preclinical models 
(122). Cabozantinib potentiates CAR-NK92 activity by upregulating 
EGFR expression and downregulating PD-L1 on tumor cells, thereby 
improving immune cell infiltration and reducing immune 
suppression within the tumor microenvironment (122). This 
synergistic interaction highlights the potential of combining CAR
NK92 therapy with Cabozantinib for targeting EGFR-positive solid 
tumors, particularly in RCC. 

2.1.4 DCs 
DCs, as the most potent antigen-presenting cells, play a pivotal 

role in initiating T-cell activation by cross-presenting tumor 
antigens via MHC-I and MHC-II molecules, thereby inducing 
durable immunological memory against pathogens and tumors 
(123, 124). Harnessing DC-mediated antitumor responses has 
been a central focus of cell-based cancer immunotherapies, with 
strategies ranging from loading DCs with tumor lysates, proteins, 
and peptides to genetically engineered vectors encoding tumor-

specific neoantigens (125–129). Clinical studies have demonstrated 
the safety and partial efficacy of antigen-loaded DC vaccines, albeit 
with limited response rates (10-20% in most trials), highlighting the 
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need for improved therapeutic strategies (130–133). Significant 
barriers, including tumor-mediated immune suppression (e.g., via 
IL-10 and TGF-b), downregulation of antigen expression, 
regulatory T-cell dominance, and robust checkpoint pathways 
(e.g., PD-1/PD-L1), impede the full potential of DC-based 
therapies (134, 135). To overcome these challenges, researchers 
are exploring combinatorial approaches, such as integrating DC 
vaccines with immune checkpoint inhibitors, cytokine modulation 
(e.g., IL-12 and IFN-a), and neoantigen-specific targeting, aiming 
to achieve more sustained clinical outcomes and broader patient 
benefits (136). 

2.1.5 Vaccines 
Cancer vaccines represent a promising immunotherapeutic 

strategy designed to stimulate the immune system to recognize 
and eliminate malignant cells (137, 138). Unlike traditional 
prophylactic vaccines that prevent virus-associated cancers, 
therapeutic cancer vaccines aim to enhance anti-tumor immunity 
in patients with established malignancies (139, 140). These vaccines 
introduce tumor-associated antigens or neoantigens to activate 
DCs, which in turn prime cytotoxic T lymphocytes to mount a 
targeted immune response against tumor cells (141, 142). While 
initial attempts using autologous tumor cell vaccines did not 
demonstrate significant clinical efficacy in phase III trials (143, 
144), recent advances have focused on combining vaccines with 
ICIs to amplify immune responses. This synergistic approach aims 
to overcome tumor-induced immune suppression and improve 
therapeutic outcomes. 

One promising strategy is NeoVax, a personalized neoantigen 
vaccine derived from tumor DNA sequencing. By incorporating 
synthetic neoantigens alongside the toll-like receptor agonist 
polyinosinic-polycytidylic acid stabilized with poly-L-lysine and 
carboxymethylcellulose, NeoVax has been shown to elicit durable 
immune responses (145). A phase I study in high-risk melanoma 
patients demonstrated its ability to induce sustained T-cell 
immunity (146). Building on these findings, a phase I trial 
(NCT02950766) is currently evaluating the combination of 
NeoVax and ipilimumab in RCC. 

Despite encouraging preliminary results, challenges remain in 
fully harnessing the therapeutic potential of cancer vaccines for 
RCC. The immunosuppressive tumor microenvironment and 
tumor heterogeneity present significant hurdles to achieving 
sustained clinical benefit. While no RCC-specific vaccines have 
received regulatory approval, ongoing research is focused on 
improving vaccine formulations, identifying optimal target 
antigens, and integrating vaccines with existing treatment 
strategies to enhance efficacy. Continued clinical trials will be 
essential in defining the role of vaccine-based immunotherapy in 
RCC management. 

2.1.6 Summary of immunotherapy for RCC 
The landscape of RCC treatment has been transformed by 

immunotherapy, with ICIs, adoptive cell therapies, and cancer 
vaccines demonstrating significant clinical potential. By 
disrupting inhibitory pathways and enhancing immune activation, 
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these approaches have improved patient outcomes, particularly in 
advanced  RCC.  However,  despite  these  advancements,  
immunotherapy alone is often insufficient to achieve durable 
tumor control. Given the molecular complexity of RCC, targeted 
therapies remain essential, directly inhibiting oncogenic signaling 
pathways that drive tumor progression. The integration of 
immunotherapy with targeted agents represents a promising 
strategy, leveraging the strengths of both modalities to optimize 
treatment efficacy and overcome resistance mechanisms. 
3 Targeted therapy in RCC 

3.1 Targeted therapy origins 

The advent of targeted therapy emerged from breakthroughs in 
understanding cancer molecular mechanisms in the late 20th 
century. The approval of imatinib (Gleevec) in the late 1990s, the 
first successful TKI, revolutionized cancer treatment by 
dramatically improving outcomes for chronic myeloid leukemia 
through the specific inhibition of Breakpoint Cluster Region-
Abelson (147). This milestone spurred the development of 
targeted therapies across various cancers, including RCC. In 2005, 
the approval of sorafenib marked the introduction of targeted 
treatment for RCC, paving the way for multi-targeted TKIs (148). 
Currently, the targeted therapies for RCC mainly focus on key 
oncogenic drivers, as is shown in Figure 2. 

ccRCC, the most prevalent RCC subtype, frequently harbors 
mutations in the tumor suppressor gene von Hippel-Lindau (VHL). 
VHL loss leads to aberrant stabilization and overexpression of 
hypoxia-inducible factor 2 alpha (HIF2a), which dysregulates 
multiple tumorigenic pathways (149). HIF2a promotes 
angiogenesis by upregulating vascular endothelial growth factor 
(VEGF) and platelet-derived growth factor (PDGF), enhances cell 
proliferation via cyclin D1 and glucose metabolism through glucose 
transporter 1, and drives tumor invasion and metastasis via stromal 
cell-derived factor 1 and its receptor C-X-C motif chemokine 
receptor 4 (150). Additionally, HIF2a attenuates EGFR 
endocytosis ,  sustaining  EGFR-mediated  signaling  and  
contributing to tumor growth and progression (151, 152). 

In RCC, the mTOR pathway is frequently hyperactivated, often 
due to VHL mutations or dysregulated upstream signaling (9). This 
aberrant activation promotes downstream targets, including S6 
kinase and eukaryotic translation initiation factor 4E-binding 
protein 1, enhancing protein synthesis and cellular proliferation 
(10). The intricate interconnections between the VHL-HIF2a 
pathway and mTOR signaling underscore their collective role in 
RCC pathogenesis, offering multiple potential therapeutic targets. 
Consequently, therapeutic interventions targeting these pathways 
continue to be a focus of ongoing research and clinical trials 
(11, 12) (Table 3). 

3.1.1 HIF2a inhibition in ccRCC 
The VHL tumor suppressor gene, located on chromosome 3p, 

plays a central role in the pathogenesis of ccRCC. Inactivating 
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mutations in both alleles of VHL represent the most prevalent 
genetic alterations in ccRCC, observed in both sporadic and 
hereditary cases (153). VHL disease, an autosomal dominant 
hereditary cancer syndrome, stems from germline VHL 
mutations, conferring a 70% lifetime risk for RCC, along with 
increased susceptibility to tumors such as hemangioblastomas and 
paragangliomas (154). 

The VHL protein (pVHL) functions as a key component of the 
E3 ubiquitin ligase complex, which regulates the degradation of 
hypoxia-inducible factors (HIFs), including hypoxia-inducible 
factor 1 alpha (HIF1a), hypoxia-inducible factor 2 alpha 
(HIF2a), and hypoxia-inducible factor 3 alpha (HIF3a) (155). 
Among these, HIF2a has emerged as a critical driver of ccRCC 
progression (153). Under normoxic conditions, the pVHL/E3 
ubiquitin ligase complex targets HIF1a and HIF2a for 
proteasomal degradation (156). VHL inactivation leads to the 
accumulation of HIFa subunits, which dimerize with HIFb to 
form an active transcriptional complex. This complex induces the 
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expression of hypoxia-responsive genes such as VEGF, PDGF-b, 
and erythropoietin, contributing to ccRCC’s characteristic 
hypervascularity and paraneoplastic erythrocytosis (154). Clinical 
trials have been conducted to evaluate the efficacy and safety of 
enrolled HIF-2a inhibitors for RCC (Table 4). 

Initially considered an undruggable target due to the absence of 
a clear ligand-binding domain, HIF2a became a viable therapeutic 
target with the identification of a small binding site within its Per
Arnt-Sim B domain. This discovery led to the development of 
PT2385, the first HIF2a-specific inhibitor (157, 158). 

A Phase I dose-escalation trial involving 51 pretreated 
metastatic ccRCC patients demonstrated PT2385’s favorable 
safety profile, with anemia, peripheral edema, and fatigue as the 
most common adverse effects. Partial and complete responses were 
observed in 12% and 2% of patients, respectively, while 52% 
achieved disease stabilization (159). Pharmacokinetic and 
pharmacodynamic analyses identified 800 mg twice daily as the 
optimal dose for Phase II trials. Notably, PT2385 rapidly suppressed 
FIGURE 2 

Molecular targets and pathway modulations in renal cell carcinoma (RCC) therapy. Current targeted therapies for RCC focus on key oncogenic 
drivers: (1) Hypoxia-inducible factor 2a (HIF2a) inhibition in clear cell RCC (ccRCC) to disrupt hypoxia response signaling; (2) Growth factor signaling 
blockade targeting vascular endothelial growth factor (VEGF), platelet-derived growth factor (PDGF), and epidermal growth factor (EGF) pathways; 
(3) mTOR pathway modulation through inhibition of mechanistic target of rapamycin (mTOR); (4) Metabolic reprogramming interventions including 
Inhibition of glutaminase 1 (GLS1); (5) Receptor tyrosine kinase inhibition (e.g., AXL kinase blockade); and (6) Adenosine receptor antagonism to 
counteract immunosuppressive tumor microenvironments. These strategies collectively aim to interfere with tumor survival, proliferation, and 
microenvironmental adaptation. 
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HIF2a-mediated erythropoietin expression, confirming target 
engagement and biological activity (160). 

Despite these promising findings, PT2385 exhibited variable 
pharmacokinetics, prompting the development of Belzutifan (MK

6482, formerly PT2977), a second-generation HIF2a inhibitor with 
improved  pharmacokinetic  properties  (161).  Structural  
modifications, including the replacement of a geminal difluoro 
group with a cis-vicinal difluoro group, enhanced Belzutifan’s 
serum availability and binding affinity for HIF2a (162). 

The first-in-human Phase I/II study (NCT02974738) evaluated 
Belzutifan in patients with advanced ccRCC and other solid tumors. 
Belzutifan achieved an ORR of 24%, with 67% of patients 
experiencing tumor size reduction. The median PFS was 11.0 
months. Anemia was the most common adverse event, primarily 
managed with EPO replacement without necessitating dose 
reductions. Hypoxia occurred in 26% of patients but was 
generally manageable with supplemental oxygen. 

Further studies have demonstrated Belzutifan’s efficacy in VHL 
disease-associated RCC. A Phase II trial (NCT03401788) involving 
61 patients reported a 49% ORR and a 98% 12-month PFS. 
Belzutifan also showed efficacy in non-RCC manifestations, 
including pancreatic neuroendocrine tumors (77% ORR) and 
central nervous system hemangioblastomas (30% ORR) (163). 
Based on these findings, the FDA approved Belzutifan in August 
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2021 for VHL-associated RCC and other tumors not requiring 
immediate surgical intervention. 

Notably, a recent phase III trial showed that belzutifan 
significantly improved progression-free survival and objective 
response rates compared to everolimus in patients with advanced 
ccRCC previously treated with immune checkpoint inhibitors and 
antiangiogenic therapies (NCT04195750) (164). The ongoing 
LITESPARK-001 Phase I study has highlighted Belzutifan’s 
potential in treating metastatic ccRCC, achieving a 25% ORR over 
a median 3-year follow-up (165). Combination trials are underway, 
including Belzutifan with cabozantinib (NCT03634540) (166) and 
pembrolizumab (NCT05239728) (167), aiming to enhance 
therapeutic outcomes. 

RNA interference (RNAi)-based therapies targeting HIF2a are 
also emerging as promising strategies (168). ARO-HIF2, an RNAi 
therapy, demonstrated encouraging interim results in a Phase Ib 
trial (NCT04169711), with one partial response and stable disease 
in several patients (169). Several Phase II/III trials assessing HIF2a 
inhibitors, either solo or combined with ICIs, TKIs, and novel 
analogs, are ongoing. These findings underscore the potential of 
novel therapeutic approaches to overcome resistance mechanisms 
associated with HIF2a inhibition. 

The development of HIF2a inhibitors, particularly Belzutifan, 
marks a significant advancement in ccRCC therapy. Ongoing 
TABLE 3 Selected pivotal studies of targeted therapies approved as monotherapies for the treatment of RCC. 

Target protein Experimental arm Clinical trial Phase Response rate Status 

mTOR Temsirolimus NCT00065468 3 OS 10.9months Completed 

mTOR Everolimus NCT00410124 3 PFS 4.90months Completed 

VEGFR, PDGFR, c-Raf Sorafenib NCT00073307 3 OS 542 days Completed 

VEGFR, PDGFR, c-Kit, RET Sunitinib NCT00083889 3 PFS 48.3weeks Completed 

VEGFR, PDGFR, FGFR, c-Kit Pazopanib NCT00334282 3 OS 22.9months Completed 

VEGFR, PDGFR, c-Kit Axitinib NCT00678392 3 PFS 6.7months Completed 

VEGFR, c-Met, AXL Cabozantinib NCT01865747 3 OS 21.4months, PFS 7.4months Completed 

VEGFR, c-Met, AXL Cabozantinib NCT01835158 2 PFS 8.2months Completed 

mTOR Temsirolimus NCT00065468 3 OS 10.9months, PFS 5.5months Completed 
TABLE 4 Selected pivotal HIF-2a inhibitors Clinical Trials for RCC. 

Target Protein Experimental arm Clinical trial Phase Status 

HIF-2a Belzutifan (PT2385) NCT02293980 1 Active, not recruiting 

HIF-2a and PD-1 Belzutifan (PT2385) + nivolumab NCT02293980 1 Active, not recruiting 

HIF-2a Belzutifan (MK-6482) NCT02974738 1 Active, not recruiting 

HIF-2a Belzutifan (MK-6482) NCT03401788 2 Active, not recruiting 

HIF-2a Belzutifan (PT2385) NCT03108066 2 Completed 

HIF-2a and VEGFR, c-Met, AXL Belzutifan (PT2977, MK-6482) + cabozantinib NCT03634540 2 Active, not recruiting 

HIF-2a Belzutifan (MK-6482) NCT04195750 3 Active, not recruiting 

HIF-2a ARO-HIF2 NCT04169711 1 Completed 
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clinical trials and preclinical studies continue to explore 
combination strategies and novel therapeutic approaches. As 
understanding of resistance mechanisms and biomarker 
development evolves, HIF2a inhibition is poised to remain a 
cornerstone of targeted therapy for ccRCC. 

3.1.2 VEGF signaling pathway in RCC 
VEGF is a key driver of angiogenesis and is produced by various 

cell types, including tumor cells, stromal fibroblasts, inflammatory 
cells, and endothelial cells (160). VEGF exerts its pro-angiogenic 
effects primarily by binding to specific receptors on vascular 
endothelial cells: VEGFR-1, VEGFR-2, and VEGFR-3. Among 
these, VEGFR-2 is particularly critical for angiogenesis (170). 
Upon VEGF-A binding, VEGFR-2 undergoes dimerization and 
activates tyrosine kinases, triggering downstream signaling 
pathways such as PI3K/Akt and MAPK. This activation promotes 
endothelial cell survival, proliferation, and neovascularization (171). 

In the context of RCC, VEGF and its receptors are markedly 
upregulated, often in response to hypoxia-induced HIF activation 
within the tumor microenvironment. The loss of VHL protein, a 
hallmark of ccRCC, leads to constitutive stabilization of HIF, 
driving the overexpression of VEGF-A. This upregulated VEGF-A 
binds to VEGFR-2, accelerating angiogenesis and providing 
essential nutrients and oxygen to the tumor. Consequently, the 
VEGF-A/VEGFR-2 axis has emerged as a critical therapeutic target 
in RCC due to its profound role in stimulating angiogenesis (172). 

Moreover, VEGF contributes to immune evasion in RCC by 
inhibiting the maturation of DCs, impairing T-cell activation, and 
promoting the recruitment of immunosuppressive regulatory T cells. 
The interaction between VEGF and immune checkpoints, such as the 
PD-1/PD-L1 axis, further enhances tumor immune evasion. These 
insights have prompted the development of combination therapies 
targeting both angiogenesis and immune checkpoints (173). 

A variety of VEGF inhibitors, including monoclonal antibodies 
and TKIs, have been approved for the treatment of RCC. These 
agents disrupt VEGF-VEGFR interactions or inhibit receptor 
tyrosine kinase activity to block angiogenesis and tumor growth. 
Bevacizumab, a monoclonal antibody targeting VEGF-A, 
demonstrated improved PFS in phase II clinical trials, although 
long-term survival benefits remain limited (174). Among TKIs, 
sunitinib and pazopanib are well-established first-line therapies for 
mRCC, consistently reducing tumor progression in clinical studies 
(175). Another TKIs, sorafenib, initially developed as a B-Raf 
inhibitor, was later found to inhibit VEGFR2 (KDR) in ccRCC 
due to the pivotal role of pVHL loss. Cabozantinib and lenvatinib 
are primarily used as second-line treatments; cabozantinib inhibits 
VEGFRs as well as MET and AXL receptors (176), targeting 
resistance mechanisms, while lenvatinib concurrently blocks 
VEGFR and Fibroblast Growth Factor Receptor (FGFR) (177). 
Recent phase III trials have demonstrated the superiority of both 
drugs in PFS compared to everolimus in pre-treated patients. 
Additionally, tivozanib, a selective TKI targeting VEGFR1, 
VEGFR2,  and  VEGFR3,  has  demonstrated  significant  
improvements in median PFS compared to sorafenib in two 
pivotal phase III clinical trials, underscoring its potential as a 
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promising therapeutic option for advanced RCC (178, 179). 
Cabozantinib was found to be superior to sunitinib in the front
line setting (180) and was also superior to everolimus in patients 
previously treated with other TKIs that target VEGF (181, 182). 
Lenvatinib (in combination with everolimus) was also superior to 
everolimus alone in previously treated patients with RCC (183). It is 
important to note that although the perceived greater clinical 
benefit with cabozantinib or lenvatinib, compared with that of 
earlier TKIs, has been largely considered to be due to their 
targeting of resistance pathways to VEGF, the benefit may simply 
be due to more-potent inhibition of KDR (184). 

Complete responses to VEGF inhibitors are rare, with tumors 
often activating angiogenic escape pathways to restore perfusion 
(185). Recent TKIs such as cabozantinib and lenvatinib provide 
dual targeting capabilities to overcome resistance (186). 
Cabozantinib has shown superiority to sunitinib as a front-line 
treatment and to everolimus in pre-treated patients. Lenvatinib, 
combined with everolimus, demonstrated enhanced efficacy 
compared to everolimus monotherapy (187, 188). 

Attempts to target other angiogenic pathways, such as the 
angiopoietin-Tie axis and the Transforming Growth Factor-beta 
(TGFb)-Activin Receptor-Like Kinase 1 (ALK1)-endoglin pathway, 
have largely been unsuccessful (189, 190). For example, combining 
trebananib (a peptibody neutralizing Angiopoietin-1 and 
Angiopoietin-2) with sorafenib did not improve PFS compared to 
sorafenib alone (191). Similarly, the endoglin inhibitor carotuximab 
and the ALK1 inhibitor dalantercept failed to show superior efficacy 
when  combined  with  ax i t in ib  compared  to  ax i t in ib  
monotherapy (192). 

However, it should be noted that inhibition of multiple targets 
by TKIs can result in various AE, necessitating careful monitoring. 
Hematologic and hepatic toxicities are particularly significant, and 
VEGF receptor blockade is associated with hypertension and other 
cardiovascular complications. Additionally, pazopanib may induce 
side effects such as hair depigmentation, diarrhea, nausea, anorexia, 
vomiting, and, in rare cases, posterior reversible encephalopathy 
syndrome (193). 

3.1.3 PDGF signaling pathway in RCC 
PDGF comprises four isoforms: PDGF-A, PDGF-B, PDGF-C, 

and PDGF-D. These isoforms form functional dimers that bind to 
PDGF receptors (PDGFR), which have two subtypes: PDGFRa and 
PDGFRb (194). Upon ligand binding, these receptors dimerize and 
activate downstream signaling cascades, including the PI3K-AKT and 
Ras-MAPK pathways (195). This activation promotes processes such 
as tumor growth, angiogenesis, metastasis, and modulation of the 
tumor microenvironment in RCC. Therapeutic strategies targeting 
the PDGF-PDGFR axis have shown promise in inhibiting 
angiogenesis and cell proliferation, making it a potential avenue for 
RCC treatment (194). 

A key finding from recent studies is the role of VEGF165b, an 
inhibitory isoform of VEGF-A, in modulating PDGFRb 
phosphorylation. This interaction suppresses endothelial cell 
proliferation and migration, potentially contributing to resistance 
against antiangiogenic therapies. Evidence from clinical and 
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preclinical studies indicates that concurrent activation of PDGF-B/ 
PDGFRb and VEGF165b pathways may lead to complex vascular 
phenotypes and therapeutic resistance (196). 

A comprehensive study analyzed the immunohistochemical 
expression of PDGF-B, and its receptor PDGFRb in 1,423 
prospectively collected tumor samples from patients undergoing 
radical or partial nephrectomy at a tertiary referral center. Among 
the 1,091 patients (mean age: 54 years), the majority (88.7%) had 
ccRCC, followed by papillary (7.5%), chromophobe (2.8%), 
unclassified (0.4%), and other rare types (0.5%). The findings 
revealed that PDGFRb expression was highest in ccRCC, whereas 
PDGF-B expression were most prominent in papillary RCC. After 
adjusting for T stage and Fuhrman nuclear grade, multivariate logistic 
regression analysis demonstrated that PDGF-B (OR = 2.46, P = 0.019) 
expression were significantly higher in papillary RCC compared to 
clear cell type. These findings underscore the distinct biological 
characteristics and angiogenic profiles of RCC subtypes (197). 

Another study evaluated the prognostic significance of PDGF-BB 
expression and differentiated microvascular density in 100 patients 
with ccRCC using immunohistochemistry on tissue microarrays. The 
results indicated that higher-grade and more advanced-stage ccRCC 
tumors exhibited significantly lower PDGF-BB expression and 
differentiated MVD (P < 0.05). Interestingly, elevated PDGF-BB 
expression emerged as an independent prognostic factor for 
improved survival. Incorporating PDGF-BB expression into a 
clinicopathological model significantly enhanced the predictive 
accuracy for disease-free survival, increasing Harrell’s concordance 
index from 0.695 to 0.707. A strong positive correlation was observed 
between PDGF-BB expression and differentiated microvascular 
density (r = 0.634, P < 0.001), suggesting that PDGF-BB may play a 
role in vascular differentiation. These insights suggest that targeting 
PDGF-BB and its associated pathways may provide therapeutic 
benefits and enhance current anti-angiogenic strategies for RCC 
management (198). 

PDGF-C plays an essential role in developmental and 
physiological processes as well as in human diseases. A novel splice 
variant of PDGF-C, termed PDGF-Cb, encodes an N-terminally 
truncated protein lacking the signal peptide and Complement C1r/ 
C1s, Uegf, and Bmp1 domain. This variant is co-expressed with 
PDGF-C in normal tissues. PDGF-Cb is produced as a cytoplasmic 
protein with a similar intracellular localization to PDGF-C but is not 
secreted from cells. PDGF-Cb can form heterodimers (PDGF-CCb) 
with PDGF-C, retaining it within the cytoplasm and targeting it for 
degradation. In primary RCC tumors, expression of the full-length 
PDGF-C transcript was elevated, while PDGF-Cb expression remained 
unchanged. These findings suggest that deregulation of PDGF-C may 
contribute to RCC tumorigenesis and that PDGF-Cb acts as a 
dominant-negative molecule modulating PDGF-C secretion (199). 

A real-world analysis assessed the effectiveness and safety 
profile of sunitinib in 702 advanced or metastatic RCC (mRCC) 
patients  from  116  German  sites  (STAR-TOR  registry,  
NCT00700258). Between 2010 and 2020, sunitinib was 
administered as first-line (83.5%), second-line (11.7%), or third-
line (4.8%) therapy. Clear-cell RCC was the predominant subtype 
(81.6%). Drug-related AEs were reported in 66.3% of patients, with 
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gastrointestinal disorders being the most common (39.7%). Serious 
AEs occurred in 13.9% of patients. This study provides critical 
insights into the real-world outcomes and AE profile of sunitinib in 
a/mRCC patients (200). 

Ball et al. (2007) demonstrated that VEGF-A not only 
stimulates the expression of PDGFRa and PDGFRb but also 
binds directly to both receptor types. This interaction positions 
VEGF-A as a key regulator for recruiting both endothelial cells and 
perivascular smooth muscle cells, highlighting its multifaceted role 
in vascular development. The interplay between PDGFRb and 
VEGF pathways promotes endothelial cell migration and 
proliferation while facilitating the recruitment of perivascular 
cells, which are essential for stabilizing and maturing blood 
vessels (201). 

In conclusion, targeting the PDGF-B/PDGFRb axis in 
combination with VEGF inhibitors may offer a novel therapeutic 
approach for managing resistance to conventional anti-angiogenic 
therapies in RCC. Further studies are warranted to elucidate the 
precise mechanisms underlying these interactions and their 
clinical implications. 

3.1.4 Epidermal Growth Factor signaling pathway 
in RCC 

The Epidermal Growth Factor (EGF) signaling pathway plays a 
crucial role in the development and progression of RCC. Upon 
binding to the EGFR, EGF triggers receptor dimerization and 
autophosphorylation, leading to the activation of downstream 
pathways such as PI3K/Akt, Ras/Raf/MAPK/ERK Kinase (MEK)/ 
Extracellular Signal-Regulated Kinase (ERK), and Janus Kinase 
(JAK)/Signal Transducer and Activator of Transcription (STAT). 
These pathways regulate essential cellular processes, including 
proliferation, survival, angiogenesis, and metastasis (202). In 
RCC, particularly the clear-cell subtype, the loss of the VHL gene 
contributes to upregulated HIF2a activity, which enhances EGFR 
expression. This upregulation promotes tumor growth and survival, 
making the EGF/EGFR axis a potential therapeutic target (203). 

Despite the established role of EGFR-targeting agents in other 
cancers, such as non-small cell lung cancer and colorectal cancer, 
their efficacy in RCC has been limited. Early clinical trials using 
first-generation EGFR inhibitors, such as erlotinib and gefitinib, 
showed only modest efficacy in unselected RCC populations (203). 
This limited success can be attributed to the intrinsic molecular 
heterogeneity of RCC and compensatory activation of alternative 
pathways, notably EGF-driven angiogenesis. Efforts to overcome 
these limitations have led to the investigation of combination 
therapies targeting both EGF and VEGF pathways. 

A notable example involved a phase II trial exploring the 
combination of erlotinib and bevacizumab, a VEGF inhibitor, in 
patients with metastatic RCC. The combination demonstrated a 
modest improvement in progression-free survival compared to 
erlotinib monotherapy but was associated with significant 
toxicities, including skin rash and gastrointestinal disturbances 
(204). Another study evaluated gefitinib in combination with 
sorafenib, a VEGF-targeting TKI, in refractory RCC patients. 
Although the combination showed limited clinical benefit, it 
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underscored the importance of patient selection and the need for 
novel therapeutic strategies (205). 

Given the limited efficacy of EGFR inhibitors alone, recent 
studies have explored their combination with ICIs such as 
pembrolizumab. Preclinical models suggest that EGFR inhibition 
may enhance tumor immunogenicity, thereby improving responses 
to ICIs. Additionally, multi-kinase inhibitors like cabozantinib, 
which target VEGFR, MET, and AXL, have shown promise in 
overcoming resistance mechanisms associated with EGFR 
inhibition (206). The dual inhibition of angiogenesis and EGF 
signaling offers a promising approach to enhance antitumor 
efficacy by disrupting key survival pathways in RCC (207). 

The use of EGFR inhibitors is associated with various adverse 
effects. Dermatologic toxicities, particularly acneiform rash, are 
among the most common side effects and may require 
corticosteroid treatment. Gastrointestinal disturbances, such as 
diarrhea  and  mucositis ,  are  also  frequently  reported.  
Hepatotoxicity, characterized by elevated liver enzymes, may 
necessitate dose adjustments. In rare cases, interstitial lung disease 
has been observed, requiring immediate intervention. Despite these 
challenges, the integration of EGFR inhibitors with other targeted 
therapies holds promise for addressing the complex tumor 
microenvironment in RCC (208). 

Future research efforts are focused on identifying predictive 
biomarkers to guide patient selection and optimizing combination 
therapies to maximize therapeutic efficacy. The development of 
next-generation EGFR inhibitors with improved selectivity and 
safety profiles is also underway.  Understanding  the intricate

interplay between EGF signaling and other oncogenic pathways 
remains crucial for developing more effective and durable treatment 
options for RCC patients. 

3.1.5 mTOR signaling pathway in RCC 
The mammalian mTOR is an atypical serine/threonine protein 

kinase that plays a critical role within the PI3K/Akt/mTOR 
signaling cascade. Activation of this pathway drives the 
proliferation and invasiveness of renal cancer cells by 
phosphorylating key downstream targets such as ribosomal 
protein S6 kinase and eukaryotic translation initiation factor 4E
binding protein 1. These phosphorylation events facilitate protein 
synthesis and promote cell cycle progression, thereby enhancing the 
proliferative potential of renal cancer cells (209). 

Beyond its role in cell proliferation, mTOR signaling also 
regulates the epithelial-mesenchymal transition process, granting 
renal cancer cells enhanced invasive and migratory capacities. 
Additionally, mTOR signaling protects these cancer cells from 
apoptotic signals by inhibiting apoptosis-related proteins, thereby 
promoting their survival and sustained proliferation. Another 
crucial function of the mTOR pathway is the promotion of 
angiogenesis within renal cancer tissues through the upregulation 
of VEGF (210). This neovascularization provides cancer cells with 
essential nutrients and oxygen, contributing to tumor growth 
and dissemination. 

Given its central role in RCC pathogenesis, inhibiting mTOR 
activity has emerged as a promising therapeutic strategy. Currently, 
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two mTOR inhibitors, everolimus and temsirolimus, have been 
approved for the treatment of advanced RCC. Temsirolimus is 
approved as a first-line therapy, particularly for poor-risk patients, 
while everolimus is commonly  used as a second-line option

following the failure of VEGFR inhibitor-based treatments. In a 
pivotal phase III trial, everolimus demonstrated a trend toward 
improved recurrence-free survival compared to placebo; however, 
this benefit was accompanied by an increase in AE, including 
stomatitis, hypertriglyceridemia, and hyperglycemia (211). 

At the molecular level, some ccRCC tumors harbor mutations 
in genes encoding components of the mTOR pathway, further 
underscoring the importance of targeting this signaling cascade 
(212). mTOR functions within two distinct multiprotein complexes, 
mTORC1 and mTORC2 (213). Rapamycin analogs (‘rapalogs’) 
such as everolimus and temsirolimus selectively inhibit mTORC1, 
leading to reduced translation of mRNAs involved in cell survival, 
proliferation, and angiogenesis (214). Despite relatively low 
response rates, randomized controlled trials have demonstrated 
the superiority of everolimus and temsirolimus over interferon-a 
and placebo, respectively, leading to their regulatory approval for 
advanced RCC treatment (215, 216). 

However, the inhibition of mTORC1 has been associated with 
the unintended consequence of relieving negative feedback 
inhibition on mTORC2 (217). This can stabilize hypoxia
inducible factor 2 alpha (HIF2a), thereby enhancing PI3K and 
Akt-mediated cell survival and proliferation (218–220). Preclinical 
studies in ccRCC cell lines have suggested that novel agents capable 
of inhibiting both mTORC1 and mTORC2, as well as PI3K, may be 
more effective than rapalogs (221, 222). Unfortunately, clinical trials 
evaluating dual mTORC1/mTORC2 inhibitors (e.g., AZD2014 and 
sapanisertib) and mTOR/PI3K inhibitors (e.g., apitolisib and 
BEZ235) encountered significant challenges due to considerable 
on-target toxicity, such as hyperglycemia (223–225). These adverse 
effects often necessitated dose reductions, which may have 
compromised their therapeutic efficacy. 

Despite these setbacks, ongoing research continues to explore 
innovative approaches to improve the efficacy and safety of mTOR

targeted therapies in RCC. Combining mTOR inhibitors with other 
targeted agents or immune checkpoint inhibitors is being 
investigated to overcome resistance mechanisms and enhance 
therapeutic outcomes (210). Recent studies have further revealed 
that down-regulation of lactotransferrin, a critical protein involved 
in the innate immune system, promotes metastasis in RCC. 
Interestingly, this down-regulation has also been associated with 
increased sensitivity of RCC tumor cells to mTOR inhibitors, 
suggesting that lactotransferrin expression may serve as a 
predictive biomarker for therapeutic efficacy (226). Understanding 
the intricate interactions between mTOR signaling and other 
oncogenic pathways remains critical for the development of more 
effective and durable treatments for RCC. 

3.1.6 Glutaminase inhibition in RCC 
In RCC, particularly in cells deficient in the VHL tumor 

suppressor gene, there is a pronounced reliance on glutamine for 
metabolic processes. Glutamine serves as a critical substrate for 
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producing key molecules such as citrate and lipids through 
metabolic pathways that support cellular growth and survival. 
Inhibition of glutaminase 1 disrupts these pathways by reducing 
intracellular levels of aspartic acid, thereby inhibiting de novo 
pyrimidine synthesis, which impairs DNA synthesis and cellular 
proliferation. Moreover, glutaminase 1 inhibition leads to the 
accumulation of reactive oxygen species, inducing oxidative stress 
and triggering apoptosis in RCC cells (227). 

Telaglenastat (CB-839) is a first-in-class, selective, reversible, 
and orally active GLS1 inhibitor that has been investigated in 
several clinical trials for  its potential to enhance therapeutic 
outcomes in RCC. The ENTRATA trial, a randomized, double-
blind, phase II study, evaluated the combination of telaglenastat and 
everolimus (T + E) versus placebo plus everolimus (P + E) in 69 
patients with mRCC who had progressed after two or more prior 
systemic therapies. The trial showed a trend toward improved 
median PFS with T + E (3.8 months vs. 1.9 months, HR 0.64, p = 
0.079). However, grade ≥3 AE (AEs) were more frequent in the T + 
E group (80%) compared to the P + E group (60%). The most 
common AEs included anemia (17% vs. 17%), pneumonia (7% vs. 
4%), abdominal pain (7% vs. 0%), thrombocytopenia (7% vs. 0%), 
and fatigue (4% vs. 9%). Despite these toxicities, discontinuation 
due to AEs was similar between groups (28% vs. 30%) (228). 

The subsequent phase II CANTATA trial evaluated 
telaglenastat in combination with cabozantinib (T + C) versus 
placebo plus cabozantinib (P + C) in patients with advanced 
ccRCC who had progressed on prior first- or second-line 
therapies, including anti-angiogenic or ICI-based regimens. 
Among 444 randomized patients, no statistically significant 
difference in PFS was observed between the T + C and P + C 
groups (median PFS 9.2 months vs. 9.3 months, HR 0.94, p = 0.65). 
ORR were similar (31% vs. 28%, respectively), and OS data 
remained immature at the time of analysis. In a prespecified 
subgroup analysis, patients who had previously received ICI-
based therapy showed a trend toward PFS benefit with T + C 
(11.1 months vs. 9.2 months, HR 0.77) (229). 

AE were prevalent in both treatment arms, with grade 3–4 AEs 
occurring in 71% of patients on T + C and 79% in those on P + C. 
The most common grade 3–4 AEs included hypertension (17% vs. 
18%) and diarrhea (15% vs. 13%). These findings highlight the 
challenges of combining glutaminase inhibition with other targeted 
therapies in RCC and underscore the need for better patient 
selection and toxicity management strategies. 

While glutaminase inhibition holds promise as a therapeutic 
approach in RCC, the modest clinical outcomes observed in current 
trials suggest that further optimization is necessary. Potential 
strategies include the development of more potent glutaminase 1 
inhibitors, improved combination regimens, and the identification 
of predictive biomarkers to guide patient selection. 

3.1.7 AXL in RCC 
AXL is a receptor tyrosine kinase that plays a crucial role in 

immune regulation and tumor progression. Normally expressed in 
both immune and non-immune cells, AXL is upregulated in ccRCC 
and is associated with poor prognosis (230). Elevated AXL levels 
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contribute to immune evasion by increasing PD-L1 expression and 
promoting the clearance of tumor antigens, thereby limiting 
effective anti-tumor immune responses (230). Additionally, AXL 
activation is essential for the PI3K/AKT signaling pathway via 
VEGF, which may underlie resistance to anti-angiogenic 
therapies (185). 

Targeting AXL has emerged as a promising therapeutic 
approach in ccRCC. Batiraxcept, a recombinant fusion protein 
that inhibits AXL by binding to its activating ligand Growth 
Arrest-Specific 6, is currently being evaluated in a phase 1/2b 
study in combination with cabozantinib for patients with 
advanced ccRCC. Interim analysis showed an acceptable safety 
profile, with the most common AEs being decreased appetite, 
diarrhea, and fatigue. The ORR was 46%, and a baseline serum 
soluble AXL (sAXL)/Growth Arrest-Specific 6 ratio of 2.3 or greater 
was associated with a higher ORR of 67%, suggesting its potential as 
a predictive biomarker (231). 

3.1.8 Adenosine receptor inhibition 
Metabolic reprogramming within the TME is another critical 

mechanism contributing to immune evasion and resistance to ICIs 
(232). One key pathway involves the breakdown of extracellular 
Adenosine Triphosphate(ATP) into immunosuppressive adenosine 
(233). ATP, a metabolite released during pro-inflammatory stimuli, 
promotes immune responses by activating T cells and inducing 
cytokine production. However, regulatory mechanisms exist to 
protect tissues from excessive immune activation. This includes 
the enzymatic conversion of ATP to adenosine by ectonucleotidases 
CD39 and CD73 (234). 

In the TME, hypoxic conditions upregulate the expression of 
CD39 and CD73 (235), accelerating the breakdown of ATP into 
adenosine and leading to its accumulation. Adenosine exerts potent 
immunosuppressive effects by engaging the adenosine receptors 
A2A and A2B, which are expressed on various immune cell subsets 
(236). Hypoxia further increases the expression of A2A and A2B 
receptors, enhancing cell responsiveness to adenosine and 
promoting immune evasion (234). Compared to other solid 
tumors, RCC exhibits higher levels of A2AR and CD73 
expression, underscoring the relevance of this pathway in disease 
progression (237). 

Targeting the adenosine pathway has shown promise in clinical 
trials. Ciforadenant (formerly known as CPI-444), a small molecule 
A2AR antagonist, has been evaluated in a phase I clinical trial 
involving patients with advanced refractory RCC. The trial 
demonstrated clinical responses both as monotherapy and in 
combination with atezolizumab, an anti-PD-L1 antibody. 
Importantly, higher baseline levels of adenosine-induced genes in 
tumor biopsies were associated with tumor regression, suggesting 
their potential as predictive biomarkers for identifying patients who 
are likely to benefit from adenosine pathway inhibition (237). 

The combination of AXL and A2AR inhibition, alongside ICIs and 
anti-angiogenic therapies, holds promise for overcoming immune 
resistance and enhancing treatment outcomes in RCC. Continued 
research and clinical validation are needed to optimize therapeutic 
strategies and identify predictive biomarkers for patient selection. 
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3.1.9 Tryptophan catabolism pathway in RCC 
The tryptophan catabolism pathway plays a pivotal role in 

modulating immune responses within TME. Indoleamine 2,3
dioxygenase 1 (IDO1) is a key catabolic enzyme that degrades 
tryptophan, a critical amino acid for T-cell proliferation. The 
depletion of tryptophan in the TME promotes immunosuppression 
by activating regulatory T cells and MDSCs, fostering an immune-

tolerant environment that supports tumor progression (238). 
Inhibiting IDO1 has emerged as a promising therapeutic 

strategy to restore anti-tumor immunity. Epacadostat, a potent 
and selective IDO1 inhibitor, reduces tryptophan catabolism, 
thereby enhancing immune surveillance (239). By increasing the 
proliferation of effector T cells and NK cells while suppressing the 
expansion of Tregs, epacadostat reactivates anti-tumor immune 
responses. The combination of epacadostat with pembrolizumab, 
an anti-PD-1 immune checkpoint inhibitor, has been investigated 
in a phase I trial involving patients with advanced solid tumors, 
including RCC. Among 33 patients in the advanced RCC cohort, 
the ORR was 47% for those with zero-to-one prior treatments and 
37% for patients who had undergone two or more prior therapies. 
The most common treatment-related AE included fatigue, rash, 
arthralgia, and diarrhea (240). 

Building on these promising early-phase results, the combination 
of epacadostat and pembrolizumab is currently being evaluated as a 
first-line therapy in a phase III trial (NCT03260894) against the 
previous standard of care (sunitinib or pazopanib). This ongoing trial 
aims to establish whether dual IDO1 and PD-1 blockade can provide 
superior clinical outcomes in advanced RCC patients (241). 

Additionally, the RENAVIV randomized phase III trial 
(NCT03592472) is underway, comparing pazopanib plus 
abexinostat versus pazopanib plus placebo in first- or second-line 
settings for patients with advanced RCC. Abexinostat, a histone 
deacetylase inhibitor, is believed to exert synergistic effects by 
modulating immune responses and enhancing the efficacy of 
VEGF inhibitors such as pazopanib. The outcomes of this trial 
are expected to shed light on the potential benefits of combining 
metabolic and epigenetic modulation in RCC treatment. 

While targeting the tryptophan catabolism pathway offers a 
novel therapeutic avenue, further studies are required to optimize 
treatment regimens and identify predictive biomarkers for patient 
selection. Understanding the complex interactions between 
metabolic pathways and immune checkpoints is essential for the 
development of effective combination therapies in RCC. 
3.1.10 Exosome-based biomarkers in RCC 
In recent years, advances in medical diagnostic technology have 

significantly improved early detection rates and clinical outcomes in 
RCC. Exosomes, small extracellular vesicles with a unique bilayer 
membrane structure, have emerged as a promising non-invasive 
source of tumor biomarkers. This bilayer provides protection 
against external Ribonucleases and proteases, thereby preserving 
the integrity of enclosed messenger RNAs, microRNAs, and 
functional proteins, and enhancing the stability and sensitivity of 
these markers for disease diagnosis. Tumor-derived exosomes, 
particularly their miRNA cargo, have shown potential as 
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biomarkers in the serum and urine of RCC patients, offering 
valuable targets for early detection, disease monitoring, and 
therapeutic stratification (242). 
4 Integration of radiotherapy, 
chemotherapy, and immunotherapy/ 
targeted therapy in RCC 

RCC has traditionally been considered resistant to radiotherapy 
and chemotherapy. However, recent advances in immunotherapy 
and targeted therapy have led to renewed interest in combining 
these modalities to enhance treatment efficacy (243). And we 
summarized the pivotal studies of combination therapies with 
immunotherapies and targeted Therapies for the treatment of 
RCC in Table 5. Radiotherapy, while not conventionally used as a 
primary treatment  for RCC,  has been  shown to induce

immunogenic cell death, releasing tumor-associated antigens that 
promote dendritic cell activation and enhance T-cell priming. 
Additionally, radiotherapy can modulate the TME by increasing 
the expression of immune checkpoint molecules such as PD-L1, 
thereby sensitizing tumors to ICIs (244–246). Clinical studies, 
including the NIVES trial, have demonstrated that stereotactic 
body radiotherapy combined with nivolumab results in increased 
immune activation and durable responses in selected patients (247). 
Similarly, the RADVAX-RCC trial investigated stereotactic body 
radiotherapy in combination with dual checkpoint blockade using 
nivolumab and ipilimumab, showing enhanced T-cell activation 
and improved response rates. These findings suggest that 
radiotherapy may act as an immunomodulatory agent that 
enhances the efficacy of ICIs in RCC (248). 

Beyond its synergy with immunotherapy, radiotherapy has also 
been investigated in combination with targeted therapy, particularly 
VEGF-targeted TKIs (249–251). Preclinical and clinical studies have 
demonstrated that radiotherapy can disrupt tumor vasculature, leading 
to increased sensitivity to anti-angiogenic agents. For example, 
stereotactic body radiotherapy combined with sunitinib has been 
shown to improve local tumor control compared to sunitinib alone, 
while a combination of stereotactic body radiotherapy and axitinib 
demonstrated prolonged progression-free survival in advanced RCC 
patients (252). The ability of VEGF inhibitors to reduce tumor-

induced immunosuppression further suggests that their combination 
with radiotherapy may provide dual benefits of angiogenesis inhibition 
and enhanced immune priming (253). 

Although RCC has historically exhibited low sensitivity to 
conventional cytotoxic chemotherapy, emerging evidence suggests 
that specific subtypes, such as nccRCC and sarcomatoid RCC, may 
benefit from chemotherapy in combination with immunotherapy or 
targeted therapy (254). Chemotherapy-induced immunogenic 
effects, including increased antigen presentation and modulation 
of T-cell responses, may enhance the efficacy of ICIs (254). For 
example, albumin-bound paclitaxel (nab-paclitaxel) combined with 
PD-1 inhibitors has shown promising responses in sarcomatoid 
RCC (255). Additionally, gemcitabine combined with VEGF-TKIs 
has demonstrated potential in high-risk RCC patients by 
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simultaneously reducing tumor burden and enhancing the anti
angiogenic effects of VEGFR inhibition (256). These findings 
indicate that while chemotherapy remains a secondary option in 
RCC, its integration into combination treatment strategies may 
provide additional therapeutic benefits. 

Despite these promising advancements, challenges remain in 
optimizing the integration of radiotherapy and chemotherapy with 
immunotherapy and targeted therapy. One of the key challenges is 
determining the optimal sequencing and dosing of these treatments 
to maximize efficacy while minimizing toxicity. For instance, 
excessive immune activation following radiotherapy could lead to 
increased immune-related AE when combined with ICIs (257, 258). 
Additionally, the identification of biomarkers predictive of response 
to combination therapy remains a critical area of investigation. 
Advances in molecular profiling may help stratify patients who are 
most likely to benefit from these treatment combinations (259). 
Future research is also focusing on the incorporation of novel 
radiosensitizers, DNA damage repair inhibitors such as Poly(ADP
ribose) polymerase inhibitors, and other immunomodulatory agents 
to further enhance therapeutic outcomes. 

In  conclusion,  the  integration  of  radiotherapy  and  
chemotherapy with immunotherapy and targeted therapy 
represents a promising avenue for RCC treatment. While 
additional clinical trials are needed to refine these strategies, 
current evidence suggests that multi-modal approaches can 
improve survival outcomes and overcome resistance mechanisms 
in RCC. The continued exploration of synergistic combinations and 
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biomarker-driven patient selection will be critical in optimizing 
these treatment paradigms. 
5 Discussion 

The landscape of RCC treatment has evolved considerably, with 
immunotherapy and targeted therapy emerging as the two most 
effective approaches for advanced disease (260). While 
immunotherapy have demonstrated durable responses in a subset 
of patients, primary and acquired resistance mechanisms, such as 
immune exclusion, upregulation of alternative immune 
checkpoints, and metabolic adaptations, continue to limit their 
efficacy. Similarly, targeted  therapies, particularly VEGF and

mTOR inhibitors, disrupt tumor angiogenesis and key oncogenic 
pathways but often lead to adaptive resistance, necessitating 
combination strategies (261). 

Combination approaches have shown promise in overcoming 
these limitations, particularly the use of ICIs with VEGF-targeted 
TKIs. This dual strategy aims to normalize tumor vasculature, enhance 
immune infiltration, and reduce immunosuppressive factors within 
the tumor microenvironment. Clinical trials have validated the efficacy 
of combinations such as pembrolizumab plus axitinib and nivolumab 
plus cabozantinib, demonstrating improved PFS and OS compared to 
monotherapies. However, these regimens are associated with increased 
toxicity, raising the need for better patient stratification and 
biomarker-driven treatment selection (262, 263). 
TABLE 5 Selected pivotal studies of combination therapies with Immunotherapies and Targeted Therapies for the treatment of RCC. 

Target protein Experimental arm Clinical 
trial 

Phase Response 
rate 

Status 

VEGFA and interferon receptor Bevacizumab + IFN-a NCT00738530 3 OS 23.3months Completed 

VEGFR, FGFR and mTORC1 Lenvatinib + everolimus NCT01136733 1\2 PFS 14.6months, 
OS 25.5months 

Completed 

PD-1 and VEGFR, PDGFR, c-Kit Pembrolizumab + axitinib NCT02853331 3 PFS 15.1months, 
ORR 59.3% 

Active, 
not recruiting 

PD-L1 and VEGFR, PDGFR, c-Kit Avelumab + axitinib NCT02684006 3 PFS 13.8months, 
OS 43.2month 

Completed 

PD-L1 and VEGF Atezolizumab + bevacizumab NCT02420821 3 PFS 11.2months, 
OS 36.1months 

Completed 

IL-2 and PD-1 Bempegaldesleukin (NKTR-214) + nivolumab NCT03729245 3 OS 29month Terminated 

VEGFR, c-Met, AXL and PD-1 Cabozantinib + nivolumab NCT03141177 3 PFS 16.9months, 
ORR 55.7% 

Active, 
not recruiting 

VEGFR, c-Met, AXL and PD-1 and 
CTLA-4 

Cabozantinib + nivolumab + ipilimumab NCT03937219 3 No study result Active, 
not recruiting 

VEGFR, c-Met, AXL and PD-1 Cabozantinib + nivolumab NCT03793166 3 No study result Active, 
not recruiting 

VEGFR, FGFR and mTORC1 Lenvatinib + everolimus NCT02811861 3 PFS14.7months Active, 
not recruiting 

VEGFR, FGFR and PD-1 Lenvatinib + pembrolizumab NCT02811861 3 PFS 23.9months Active, 
not recruiting 

TIGIT and PD-1 and LAG-3 and 
VEGFR-1 

Tiragolumab + Tobolimab + Pembrolizumab 
+ Axitinib 

NCT05805501 2 No study results Active, 
not recruiting 
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Beyond ICIs and TKIs, adoptive cell therapies, including CAR
T and CAR-NK cells, are being explored in RCC. Despite promising 
preclinical evidence, challenges such as the immunosuppressive 
tumor microenvironment, antigen heterogeneity, and limited CAR 
persistence remain significant hurdles. Advances in gene-modified 
cell therapies and the development of novel tumor antigens may 
enhance the feasibility of these approaches. Additionally, other 
combination modalities, including radiotherapy, chemotherapy, 
and metabolic inhibitors, hold potential for reshaping the tumor 
microenvironment to enhance immune response. Radiotherapy, for 
instance, has been shown to induce immunogenic cell death, which 
may synergize with ICIs to improve therapeutic efficacy (264). 

Moving forward, the integration of multi-omic approaches, 
including genomics, transcriptomics, and single-cell sequencing, is 
critical for identifying predictive biomarkers and understanding 
resistance mechanisms. Precision medicine strategies will play a 
pivotal role in refining patient selection for specific combination 
therapies, optimizing treatment sequencing, and minimizing 
toxicity. Finally, we summarized the FDA-Approved pivotal 
Immunotherapies and Targeted Therapies for RCC in Table 6. 
6 Conclusion 

Immunotherapy and targeted therapy have significantly 
improved outcomes for RCC patients, yet resistance and toxicity 
remain key challenges. Emerging strategies, such as adoptive cell 
therapies and metabolic inhibitors, may further enhance treatment 
Frontiers in Immunology 18 
efficacy, but their clinical translation requires overcoming 
substantial biological and technical barriers. Future efforts should 
focus on identifying robust biomarkers, developing rational 
combination regimens, and optimizing treatment sequencing to 
maximize patient benefit. With ongoing advancements in immuno

oncology and precision medicine, a more personalized and durable 
approach to RCC treatment is on the horizon. 
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TABLE 6 FDA-Approved pivotal Immunotherapies and Targeted Therapies for RCC. 

Targeted therapy Approval year First-line/ 
Second-line 

Comparator Target 

Aldesleukin (IL-2) 1992 First-Line None IL-2 receptor 

Sunitinib 2006 First-Line Interferon PDGFRa/b, VEGFR1/2/3, KIT, 
FLT3, RET 

Temsirolimus 2007 First-Line Interferon mTOR 

Pazopanib 2009 First-Line Placebo VEGFR, PDGFR, KIT 

Pembrolizumab + Axitinib 2019 First-Line Sunitinib PD-1, VEGFR 

Avelumab + Axitinib 2019 First-Line Sunitinib PD-L1, VEGFR 

Nivolumab + Ipilimumab 2018 First-Line Sunitinib PD-1, CTLA-4 

Lenvatinib + Pembrolizumab 2021 First-Line Sunitinib VEGFR1-3, FGFR1-4, RET, KIT, PD-1 

Nivolumab + Cabozantinib 2021 First-Line Sunitinib PD-1, VEGFR, MET, AXL 

Sorafenib 2005 Second-Line Placebo KIT, PDGFR, RAF, VEGFR 

Everolimus 2009 Second-Line Placebo mTOR 

Axitinib 2012 Second-Line Sorafenib KIT, PDGFRb, VEGFR1/2/3 

Nivolumab 2015 Second-Line Everolimus PD-1 

Cabozantinib 2016 Second-Line Everolimus FLT3, MET, RET, VEGFR2 

Lenvatinib + Everolimus 2016 Second-Line Everolimus VEGFR2 

Belzutifan 2023 Second-Line Everolimus HIF-2a 
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RCC Renal cell carcinoma 
Frontiers in Immunol
ccRCC clear-cell renal cell carcinoma 
TKI/TKIs tyrosine kinase inhibitor/tyrosine kinase inhibitors 
mTOR mammalian target of rapamycin 
CUP cancers of unknown primary 
PD-1 Programmed Cell Death Protein-1 
PD-L1 Programmed Death-Ligand 1 
CTLA-4 Cytotoxic T-lymphocyte-associated protein 4 
VEGF/VEGFR Vascular Endothelial Growth Factor/Vascular Endothelial 

Growth Factor Receptor 
nccRCC/nccRCCs non-clear cell renal cell carcinoma/non-clear cell renal 

cell carcinomas 
ICIs immune checkpoint inhibitors 
DC/DCs dendritic cell/dendritic cells 
IL-2 Interleukin-2 
IFN-a Interferon-alpha 
NK cells natural killer cells 
CD Cluster of Differentiation 279 (或) 
PDCD1 Programmed Cell Death 1 (gene) 
TCR T-cell receptor 
FDA Food and Drug Administration 
PP2A Serine/Threonine Protein Phosphatase 2A 
PI3K Phosphatidylinositol 3-kinase 
Akt Protein kinase B 
IgG1k Immunoglobulin G1 kappa 
AE Adverse Events 
LAG-3 Lymphocyte-Activation Gene 3 
Ig immunoglobulin 
MHC-II major histocompatibility complex II 
TIM-3 T cell Immunoglobulin and Mucin domain 3 
HAVCR2 Hepatitis A Virus Cellular Receptor 2 
TIGIT T cell Immunoreceptor with Immunoglobulin and 

ITIM domains 
PI3K Phosphatidylinositol 3-kinase 
MAPK Mitogen-Activated Protein Kinase 
CIK cells Cytokine-Induced Killer cells 
IFN-g Interferon-gamma 
MHC major histocompatibility complex 
TCR T cell receptor 
IFNa Interferon-alpha 
ORR objective response rate 
PFS progression-free survival 
OS overall survival 
ogy 25 
mRCC metastatic RCC 
MDSCs myeloid-derived suppressor cells 
TME tumor microenvironment 
TILs Tumor-infiltrating lymphocytes 
CR complete response 
REP Rapid Expansion Protocol 
CAR-Ts Chimeric Antigen Receptor T-Cells 
CAR-NKs Chimeric Antigen Receptor NK Cells 
CAR chimeric antigen receptor 
CAIX Carboxy-anhydrase-IX 
AXL AXL receptor tyrosine kinase 
ROR2 Receptor tyrosine kinase-like orphan receptor 2 
DNAJB8 DnaJ heat shock protein family (Hsp40) member B8 
MUC1 Mucin 1, cell surface associated 
c-Met C-Mesenchymal-Epithelial Transition Factor 
EGF/EGFR Epidermal Growth Factor/Epidermal Growth Factor Receptor 
HLA Human Leukocyte Antigen 
VHL von Hippel-Lindau 
HIF2a hypoxia-inducible factor 2 alpha 
PDGF/PDGFR platelet-derived growth factor/platelet-derived growth 

factor receptors 
pVHL VHL protein 
HIFs hypoxia-inducible factors 
HIF1a hypoxia-inducible factor 1 alpha 
HIF2a hypoxia-inducible factor 2 alpha 
HIF3a hypoxia-inducible factor 3 alpha 
RNAi RNA interference 
FGFR Fibroblast Growth Factor Receptor 
TGFb Transforming Growth Factor-beta 
ALK1 Activin Receptor-Like Kinase 1 
aRCC advanced RCC 
MEK ERK Kinase 
ERK Extracellular Signal-Regulated Kinase 
JAK Janus Kinase 
STAT Signal Transducer and Activator of Transcription 
T telaglenastat 
E everolimus 
P placebo 
C cabozantinib 
ATP Adenosine Triphosphate 
IDO1 Indoleamine 2,3-dioxygenase 1. 
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