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Unveiling regulatory variants in
the blood transcriptome and
their association with immunity
traits in pigs
Teodor Jové-Juncà1, Daniel Crespo-Piazuelo1,2,
Carles Hernández-Banqué1, Olga González-Rodrı́guez1,
Lingzhao Fang3, Raquel Quintanilla1* and Maria Ballester1*

1Animal Breeding and Genetics Program, Institute of Agrifood Research and Technology (IRTA), Torre
Marimon, Caldes de Montbui, Spain, 2R&D Department, Cuarte S.L., Monzalbarba, Spain, 3Center for
Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
Genome wide association studies (GWAS) have been widely used to investigate

the association of genetic markers with complex traits in both humans and

livestock species. A particular trait of interest, when studying animal robustness

and general immunocompetence, is the transcriptomic profile of blood. To

identify genetic variants affecting gene expression in pig blood, we performed

expression GWAS (eGWAS) in 255 animals from a commercial Duroc population

between 8,499,177 imputed single nucleotide polymorphisms (SNPs) and the

expression levels of 14,642 genes obtained from RNA sequencing. Out of the

nearly 125 million associations tested, 23 million were found to be significant,

grouped in 9,930 expression quantitative trait loci (eQTLs) associated to the

expression levels of 6,051 genes. Over 36% of detected eQTLs mapped in close

proximity to the genomic location of their associated gene and were classified as

cis-eQTLs. Moreover, 430,694 variants were found to be associated with the

expression of 10 or more different genes and were annotated as transcriptional

hotspots. Among genes regulated by these hotspots, we identified genes that

encode transcription factors and co-factors regulating immune responses, such

as ARNT, or co-expressed genes related to immunity (CSF3R, JAK2, SOCS3,

STAT5B and UBE2D1) and associated with health traits, such as phagocytic

activity or haptoglobin concentration. In addition, several of the cis-regulating

variants for immunity candidate genes overlapped with previously described

immunity QTLs. Colocalization studies revealed putative common causal variants

between the proportion of memory and helper T cells and the candidate genes

CLEC12B, IGKV2D, KLRC1, KLRD1 and ZAP70. In conclusion, the associations

identified in this study enable the characterization of transcriptional regulators of

the pig blood transcriptome. Moreover, the colocalization between immunity

QTLs and eQTLs has revealed potential causative mutations regulating

immunocompetence in pigs. All these data and results contribute to shedding

light on the regulatory mechanisms of blood gene expression and porcine

immune regulation.
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Introduction

Genome-wide association studies (GWAS) have been widely

applied to study the association between genetic variants and a

multitude of phenotypes, including disease incidence in humans or

traits related to production performance and animal health in

livestock. However, GWAS results showed that the majority of

phenotype-associated variants are located in non-coding regions

(1), affecting uncharacterized regulatory elements and thus

potentially impacting gene expression (1–3). The study of gene

expression as an intermediate phenotype is expected to improve the

understanding of the relationship between genomic variation and

conventional phenotypes (4). Expression Genome Wide

Association Studies (eGWAS) are commonly used to find

associations between genomic variation and gene expression

levels. Genomic regions associated with gene expression are called

expression Quantitative Trait Loci (eQTL). If an eQTL is very close

to the genomic location of its associated gene, generally less than 1

Mb, it is classified as cis-eQTL. Otherwise, they are classified as

trans-eQTLs (5, 6). Furthermore, genetic variants associated with

the expression levels of multiple transcripts, known as

transcriptional hotspots, can potentially be key regulators of

biological pathways.

In pigs, a number of eGWAS have been carried out using gene-

expression microarrays data or a limited set of expressed genes and

low-density genotyping arrays (7–12). Nowadays, a combined

whole genome and RNA-sequencing (RNA-seq) approach allows

much more in-depth analyses (6, 13). Transcriptome datasets from

RNA-seq typically encompass about 13,000 genes, which, combined

with a vast amount of genotypic data, can result in the identification

of thousands of associations between genomic variants and the

transcriptome (5). Cis-eQTLs have been regularly prioritized over

trans-eQTLs due to their putative local effect, lower complexity, and

larger effect size (4, 5, 14, 15). Traditionally, causal variants affecting

gene expression have been searched in upstream regions from the

transcription start site (TSS) due to their potential role in promoters

or enhancers. However, the potential regulatory effects of cis-

regulatory variants located in the 3’UTR and trans-regulatory

elements should not be ruled out (6).

Recently, several studies have improved the understanding of

gene expression regulation mechanisms in livestock (6, 13, 16).

Initiatives like FarmGTEx (17) or FAANG (Functional Annotation

of Animal Genomes) (18) pursue further characterization of gene

regulation in farm animals. Peripheral blood transcriptome reflects

variations in immune capacity and represents a valuable source of

information for identifying biomarkers associated with immunity

traits. Characterizing the swine blood transcriptomic profile could

enhance our understanding of immune regulation. Furthermore,

the functional annotation of the porcine blood transcriptome could

facilitate the identification of regulatory markers useful in genomic

selection programs aimed at improving sustainability, productivity,

and animal health. The characterization of the porcine expression

profile could also hold implications for other species, given the pig’s

role as a model for studying human diseases and biology. Both
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species share similarities in physiology, immunity, genome (19, 20),

as well as in gene expression profiles (21–23).

In the present work, we aimed to characterize regulatory

elements in the pig blood transcriptome and study its association

with the expression levels of candidate genes related to

immunity traits.
Materials and methods

Ethics statement

All procedures involving living animals in this study were

performed in compliance with the Spanish Policy of Animal

Protection RD 53/2013 under the European Union Directive

2010/63/EU regulating the use of animals in experimentation. All

protocols performed were approved by the Ethical Committee of

the Institut de Recerca i Tecnologia Agroalimentàries (IRTA).
Animal material

A commercial Duroc population consisting of 255 healthy

piglets (129 females and 126 males) aged 60 ± 8 days was used.

Animals belonged to six commercial batches, each containing

between 37 and 46 animals. Two to four animals were selected

from each litter balancing sex when possible. Animals were raised in

the same farm and fed an ad libitum cereal-based commercial diet.

Blood parameters and in-situ physical assessments indicated that

the pigs in this study were physically healthy, showing no signs of

immunosuppression, subclinical infection, acute stress, or acute/

chronic inflammatory responses. Their immunocompetence was

within the expected 95% confidence interval (24–26).

Blood was collected via the external jugular vein into vacutainer

tubes with anticoagulants (Sangüesa S.A., Spain) and Tempus™

Blood RNA tubes (Thermo Fisher Scientific, Spain) to stabilize the

RNA. All samples were transported with ice blocks to the laboratory

and stored for further processing at -20°C (for DNA extraction) or

-80°C (for RNA extraction).
Genotyping and imputation

Genomic DNA was extracted from blood samples using

NucleoSpin Blood (Macherey-Nagel , Germany). DNA

concentration and purity were measured using a Nanodrop ND-

1000 spectrophotometer. Genotyping was performed with the GGP

Porcine HD Array (Illumina, San Diego, CA) using the Infinium

HD Assay Ultra protocol (Illumina). Plink v1.90b3.42 software (27)

was used to remove SNPs with a minor allele frequency below 5%

and SNPs with more than 10% missing genotypes. SNPs that did

not map to the porcine reference genome (Sscrofa11.1 assembly)

were also removed. A total of 42,641 SNPs remained for

further analysis.
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From this dataset, genotype imputation to sequence level was

performed using a multi-breed Pig Genomics Reference Panel

(PGRPv1) from PigGTEx (13), consisting of 1,602 whole genome

sequence samples covering over 100 pig breeds. A total of 42M

autosomal biallelic SNPs were imputed using Beagle v5.1 (28). After

filtering out variants for dosage R-squared below 0.8 and minor

allele frequency below 5%, a total of 8,499,177 SNPs remained for

further analysis.

Linkage disequilibrium (LD) analyses were performed with

Plink v1.90b3.42 to obtain the number of independent variants in

the study. A 0.5 Mb window was used with a cut-off value of r2 = 0.7

and a sidestep of 10 SNPs. A total of 118,571 independent

variants remained.
RNA sequencing and mapping

Whole-blood RNA was extracted using Tempus™ Spin RNA

Isolation Reagent Kit (Thermo Fisher Scientific, Spain). Total RNA

concentration was measured using Nanodrop ND-1000

spectrophotometer. Purity and integrity of RNA was measured

using Fragment Analyzer equipment (Agilent Technologies Inc.,

Santa Clara, CA). All samples had RNA integrity number (RIN)

values above 8. Libraries were prepared using the Stranded Total

RNA with Ribo-Zero Plus rRNA depletion (Illumina) which

removes rRNAs and globin RNAs.

RNA blood samples were sequenced with a depth of >55 M

paired end (PE) reads (2 x 150 bp) in an Illumina NovaSeq6000

platform at Centro Nacional de Anaĺisis Genoḿico (CNAG-CRG,

Barcelona, Spain). Quality of RNA sequence reads was assessed with

the FastQC software (29). RNA sequences were mapped against the

reference genome (Sscrofa11.1 assembly) and the Ensembl Genes

109 annotation database using STAR 2.75.3a software (30).

Quantification was performed using RSEM 1.3.0 software (31).

Counts were normalized using the EdgeR R package (32) with

the trimmed mean of M-values methodology and transformed to

counts per million (cpm) using log2 with the cpm function. To

avoid artefacts, raw counts with a value of 0 were defined as NA. To

filter lowly expressed transcripts, a filter similar to the one used by

Crespo-Piazuelo et al. (6) was applied. Only genes with cpm above

10/minimum library size in millions (i.e. cpm > 0.69) in more than

35% of the samples were retained. Normality was checked using

Shapiro-Wilk test to each expressed gene using a leave-one-out

approach. Outliers were removed using this methodology. A total of

14,642 genes remained after filtering.
Expression genome wide association
studies

eGWAS analyses were performed between the normalized

expression data and the 8,499,177 SNPs from the imputed data

with the fastGWA tool from GCTA 1.93.2 (33), using the following
Frontiers in Immunology 03
model to estimate the effect of each SNP on the expression level for

all expressed genes

Y = Xb + Zg + Slal + e

where Y is the vector containing the expression level for a

particular gene of all individuals of the analyzed population; b
stands for the vector of systematic effects sex and batch, being X the

incidence matrix; g corresponds to the vector of infinitesimal

genetic effects of each individual (and Z the incidence matrix),

with distribution g eN(0,Gs 2g), being G the genomic relationship

matrix calculated as described in Yang et al. (33) and s2g the

additive genetic variance; Sl is the vector of genotypes for the lth

SNP, coded as 0, 1, 2, and al the SNP allele substitution effect; and

finally e is the vector of residuals.
Multiple testing correction was performed using the Bonferroni

method (34). Due to the high linkage disequilibrium detected in the

study population, the number of independent tests had to be

calculated to avoid overcorrection. As such, the 118,571

independent SNPs were used to compute a significance threshold

of p adjust<0.05 (p-value<4.217x10-7).

Significantly associated variants were classified as cis- or trans-

in reference to their genomic location respective of the location of

their associated gene. Since a drop in LD score was observed at a

distance of 1 Mb between variants, SNPs within the 1Mb window

from their associated gene were considered to have a local effect on

gene expression and were classified as cis. Variants outside this

window were classified as trans-associated variants.

Functional predictions of the significant polymorphisms were

performed with the Variant Effect Predictor (VEP) tool (35) on the

Ensembl genes 109 annotation database. Significant variants were

mapped against the mammalian conserved regions identified by

Genomic Evolutionary Rate Profiling from multiple sequence

alignments of 103 different mammal species (36).
Expression quantitative trait loci

eQTL regions were defined by grouping consecutive

polymorphisms that were significantly associated with the same

gene and located less than 1 Mb apart from each other. To reduce

the number of false positives, only eQTLs with a minimum of 3

significantly associated polymorphisms were retained. Then, eQTL

regions were extended 0.5Mb on each side in order to take

surrounding genetic features in consideration during further

analyses. Gene positions were extracted with the Biomart tool (37)

from the Ensembl genes 109 database. Similarly to significant

variants, eQTL regions were annotated as cis-eQTL when

significant polymorphisms were located within less than 1Mb from

their associated gene, whereas the remaining significant regions were

considered as trans-eQTL. All genes whose expression was associated

with an eQTL were subjected to functional annotation through

pathway analysis using the ClueGO Cytoscape plugin (38), in order

to identify candidate genes involved in immune-related functions.
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Colocalization studies

In previous studies by Ballester et al. (25, 39) in the same Duroc

population, health-related phenotypes were measured from blood,

saliva and hair samples extracted at 60 ± 8 days of age. GWAS

analyses were performed between the 42,641 SNPs genotyped with

the GGP Porcine HD Array (Illumina, San Diego, CA) and 40

health-related traits including immunity traits (25, 39).

As a first approach to identify regulatory regions associated with

both immunity phenotypes and gene expression levels, health-

related QTLs located on autosomal chromosomes were

overlapped with cis-eQTLs. Among genes regulated by the

overlapping cis-eQTLs, candidate genes related to the QTL

phenotype were identified using Gene Ontology annotation.

The SNPs associated to both health traits and the expression

levels of candidate genes were proposed as putative regulators of

immunity. To further assess possible causal variants shared between

health QTLs and blood eQTLs, as well as to discriminate between

variants within the same cis-eQTLs, the coloc-R package version 5

(40) was used. This software uses Bayesian testing and needs to be

run between GWAS-like studies with the same variant panel.

Therefore, GWAS for the health-related phenotypes were

repeated using the imputed 8,499,177 SNPs panel developed in

this work. GWAS were performed using a similar model than the

one used for eGWAS:

Yp = Xb + Zg + Slal + e

Where Yp, was the vector of individual for any health-related

trait, and the rest of terms were as described above. The fixed effects

considered in b differed across traits according to those used by

Ballester et al. (25, 39).

We used the coloc.abf function for the region encompassing

both the QTL and eQTL studied. For each pair, four different

hypotheses were tested and contrasted with the null hypotheses H0

(no causal SNPs for gene expression nor for the trait), H1

considered causal SNPs only for gene expression, H2 considered

causal SNPs only for the health-related trait, H3 considered two

different causal SNPs for each trait, and H4 considered a common

causal regulator for both. Colocalization was considered to occur

when the posterior probability of H4 was greater than 0.95.

Coloc output reported the posterior probability of H4, i.e.

having a common regulator for both regions, as well as a list of

shared potential causal variants. VEP software was used to map

putative common causal variants. SNPs mapped inside regulatory

regions (e.g., enhancers and upstream variants) were selected as

potential candidates for gene expression regulation. A computer-

assisted identification of putative transcription factors binding sites

(TFBSs) disrupted by these variants was performed. A genomic

sequence of 100 bp surrounding each candidate variant was

extracted from Ensembl (pig reference genome Sscrofa11.1). Two

sequences for each variant, corresponding to the reference and

alternative alleles, were uploaded to the FIMO software from the

MEME suite (41) with default parameters, along with a list of motifs

corresponding to mammalian TFBSs obtained from the Jaspar

database (42). Alignments between TFBSs and sequences
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containing candidate regulatory mutations with a p-value inferior

to 0.001 were selected as significative. TFBSs of transcription factors

(TFs) related to immunity, according to Gene Ontology database,

were prioritized. The common causal variants affecting TFBSs were

selected as candidates for key regulators of immunity through the

regulation of gene expression.
Hotspot detection

Genetic variants associated with the expression of at least 10

genes were considered as genetic hotspots. Furthermore, the most

significantly associated genetic variants in at least 10 eQTL regions

were defined as top-hotspots (6). Genes with associated hotspots

were examined for transcription factors and cofactors using the

AnimalTFDB v4.0 (43). Pathways analysis was performed for genes

regulated by a single top-hotspot through network analyses with the

ClueGO Cytoscape plugin using KEGG pathways and gene

ontology databases (38, 44). Co-expression between each

regulator and its trans-associated genes was assessed using Partial

Correlation and Information Theory procedures with the PCIT R

package (45).
Results

Porcine blood transcriptome

The porcine blood transcriptome sequencing provided an

average of 161.5 million reads per sample, totaling over 35.5

billion reads across the entire dataset. Of these, 90.1% were

successfully mapped to the pig reference genome Sscrofa11.1.

Among these mapped reads, 91.2% were located within genic

regions, with 44.06% mapping to exons and 47.09% to introns.

After normalizing and filtering, we identified 14,642 annotated

genes as being expressed in blood. The majority of these, 12,461

genes (85.1%), were protein-coding genes, while 2,064 genes

(14.1%) were classified as long-non-coding RNAs (lncRNA).
Genomic variants associated with blood
transcriptome

Significant associations between the expression levels of 6,051

genes and 5,682,600 genetic variants were obtained in the eGWAS

(Table 1). Most of the associated variants were located within

intronic (59.2%) and intergenic (20.9%) regions. Only 1% of

associated variants involved coding regions, most of which were

synonymous variants (67.8%). Regions with a potentially strong

regulatory role, such as upstream or UTR, constituted 11.5% of the

associated variants (Figure 1).

Of the 6,051 genes associated with genetic polymorphisms,

4,964 were protein-coding, 1,033 were lncRNA, and the

remaining were identified as miRNA, snoRNA and other small

RNA molecules. The ANKRD50 gene had the greatest number of
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associations, with a total of 65,889 genetic variants located on Sus

scrofa chromosome (SSC) 8 showing a significant effect on

ANKRD50 expression levels (Figure 2A). Meanwhile, the

expression of ACBD5 gene exhibited the most significant

associations (p-value of 2.02x10-74) with the variants rs335102081,

rs345896251, rs338023300, rs697323536 and rs336561290, in

SSC10 (Figure 2B).

When examining individual variants, a total of 3,859,132

(67.9% of significant variants) were found to have at least one

association in cis (Table 1). Focusing on regulated genes, out of the

6,051 genes whose expression levels showed associations at genome

level, 3,952 had at least one cis-regulatory variant, while 2,099 had

exclusively trans-regulatory elements. On average, cis associations

showed lower p-values than trans associations.

Variants located in potential regulatory regions were considered

as candidates for regulatory elements. According to VEP prediction,

a total of 517,770 cis-associated variants were found in upstream

regions, while 77,350 variants were found in 3’UTR regions.

Moreover, 342,114 cis-regulatory variants mapped inside

regulatory regions. Overall, the percentages of predicted

consequences for cis-regulatory variants were similar to those

observed for all associated variants (Supplementary Figure 1).

Analysis of the positions of cis-associated variants relative to their

associated loci revealed an enrichment of associations near the TSS

and just beyond the start of the 3’UTR, compared to variants

located within the ORF itself (Figure 3).

Additionally, 41,781 variants associated with the expression of

4,125 genes mapped inside evolutionarily conserved mammalian

regions (GERP regions). The ANKRD50 gene, involved in endocytic
Frontiers in Immunology 05
recycling, showed the highest number of associated variants in

conserved regions, all inside a single eQTL.
Genomic regions associated with blood
transcriptome

Significant associations found within a distance of ±1 Mb of

each other were considered part of the same eQTL. This approach

led to the annotation of 14,243 different eQTLs. To ensure

robustness and minimize the influence of isolated signals, we

focused subsequent analyses on the 9,930 eQTL containing 3 or

more significant variants, as the presence of multiple significant

variants in close proximity is expected due to LD.

At eQTL level, 3,597 regions (36.2%) were identified as cis-

eQTLs, while 6,333 were classified as trans (Table 1), regulating

3,663 different genes. Cis-eQTLs comprised a larger number of

variants compared to trans-eQTLs, with an average of 5,579.52

SNPs per cis-eQTLs, whereas trans-eQTLs averaged 564.11 SNPs.

The genomic distribution of cis- and trans-eQTLs across the 18 Sus

Scrofa autosomes is shown in Figure 4. SSC6 exhibited the highest

number of both total and cis-eQTLs, while SSC12 showed the

highest proportion of cis-eQTLs among all autosomes.

To further characterize immune-related genes regulated by

eQTLs, we performed a functional annotation analysis of all

eQTL-regulated genes. This analysis identified 771 immune-

related genes, 482 of which were regulated in cis. The results of

the functional annotation are presented in Supplementary Table S1.
Transcriptional hotspots and top-hotspots

To identify key regulatory elements, genetic variants that were

significantly associated with the expression of at least 10 genes were

classified as transcriptional regulatory hotspots. A total of 430,694

hotspot variants were identified in our study (Table 1). The variant

with the highest number of associated genes was rs1107483072,

which regulated the expression of 127 genes. This variant is located

inside the sixth intron of the CAMTA1 gene, a transcription factor

related to several immunological pathways (46).

Hotspot distribution across the genome was not uniform. The

chromosomes with the highest number of hotspots were SSC6,
FIGURE 1

Pie chart presenting the consequences of genetic variants associated to blood gene expression levels (A) all associated variants; (B) variants in
coding regions.
TABLE 1 Summary of results from the blood expression genome wide
association study.

Genetic
feature

Total Cis Trans

Variants 5,682,600 3,859,132 4,063,000

eQTLs 9,930 3,597 6,333

Hotspots 430,694 344,328 86,366

Top-hotspots 145 42 103

Regulated genes* 6,051 3,952 5,466
*Before filtering by eQTL.
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FIGURE 3

Distribution of the distance between cis regulatory variants and their regulated gene ORF, in bp. Distances have been calculated as relative to the
transcription start site (TSS) or start of the 3’ untranslated regions (3’UTR), whichever closest. The number of regulatory variants located inside the
ORF between the TSS and start of 3’UTR has been plotted in orange.
FIGURE 2

Manhattan plots of eGWAS results for ANKRD50 (A), and ACBD5 (B) expression levels. The red threshold corresponds to an adjusted p-value of 0.05
after Bonferroni correction for multiple testing.
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SSC14 and SSC8, comprising 66,351, 64,393 and 61,022 hotspot

variants, respectively (Figure 5). While most of these variants

appeared functionally neutral, a subset of 422 was predicted to

have deleterious effects on the protein sequence, and an additional

363 variants were also predicted to be deleterious but with low

confidence. Among variants classified as hotspots, 344,328 (79.9%)

were found in cis with at least one of their associated genes.

The 2,093 genes associated with transcriptional hotspots

included a significant number of transcriptional regulators: 112

were annotated as transcription factors and 106 as transcription co-

factors. Of these, 68 transcription factors and 49 co-factors were

found to have cis-hotspot associations. Approximately half of the

hotspots associated in cis with a transcription factor or co-factor

(46.9% and 46.2%, respectively) mapped inside intronic regions.

Additionally, 13,462 hotspots in cis with transcription factors and

10,047 hotspots in cis with transcription co-factors mapped in

regulatory regions. When looking at 3’UTR regions, 2,251 cis-
Frontiers in Immunology 07
hotspots associated with transcription factors and 1,719 cis-

hotspots associated with transcription co-factors were

mapped inside.

Among the total hotspot variants identified, 144 were also the

most significantly associated polymorphisms in at least ten eQTLs.

These were considered transcriptional top-hotspots and are detailed

in Supplementary Table S2. All top hotspots grouped in seven

genomics regions that are described in Table 2. From them, 42

variants were found to be associated in cis with at least one

transcript in which they were the top association of the cis-eQTL.

Functional annotation of genes regulated by the same regulatory

top-hotspot highlighted biological processes regulated by the same

regulatory variants. Results from ClueGO pathway analyses and

PCIT co-expression analyses can be found in Supplementary

Table S3.

For instance, a top-hotspot was identified on SSC1 associated

with the expression of 23 genes. Co-expression analysis revealed
FIGURE 5

Bar plot depicting the distribution of cis- and trans-hotspots across autosomes. In green, hotspots annotated in cis to at least one of its associated
genes; in orange hotspots annotated in trans to all its associated genes. Chromosomes SSC10, SSC11 and SSC18, with less than 150 hotspots, were
not plotted due to the relative bar size.
FIGURE 4

Bar plot showing the number of cis- and trans-eQTLs across autosomes. In green, eQTLs annotated in cis- to their associated gene; in orange,
eQTLs annotated in trans- to their associated gene.
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strong correlations ranging from 0.56 to 0.95 between the

expression levels of these genes, except for the novel gene

ENSSSCG00000038679, which encodes a centrosomal protein. The

functional enrichment analysis revealed several genes related to

immune functions, including those involved in the T-cell apoptotic

process (ADA, and RAG1). Other genes such as RAG1 and RAG2,

both involved in activation of V(D)J recombination, were also

identified. The PCIT analysis reported significant and negative

correlations of the expression levels of most of these genes with

phagocytosis, whereas positive correlations were observed with

lymphocyte count (Figure 6A).

A total of 37 top-hotspots in high LD were located in SSC6, all

of them associated in cis to the expression levels of VAMP3 gene

and located in intron 6 of the transcription factor CAMTA1. After

VEP annotation, one of these top-hotspots, the rs3472545010, was

within an enhancer (ENSSSCR6_9324TC). Remarkably, these top-

hotspots were found to regulate genes associated with biological

processes and pathways related to immunity such as signaling by

CSF3 (G-CSF), regulation of interleukin 1, 8 and 10 production,

regulation of tumor necrosis factor production or interferon-

mediated signaling pathway among others (Supplementary Table

S4). Furthermore, VAMP3, together with MYD88, SBNO2, SPI1,

and UNC13, were found to be associated to the myeloid cell

activation involved in immune response biological process. Co-

expression analyses revealed strong correlations between the

expression levels of these genes putatively co-regulated by the

same top-hotspots (Figure 6B). Furthermore, significant

correlations were observed between the expression of genes

regulated by these hotspots and several health-related traits such

as plasma concentration of acute phase proteins (Haptoglobin and

CRP), phagocytic cells and phagocytic capacity of monocytes,

neutrophil count, and the neutrophil/lymphocyte ratio (Figure 6B).

Four top-hotspots in high LD located on SSC12 presented cis-

associations with eight genes: ATPAF2, DRC3, ENSSSCG00000055301

encoding a lncRNA, NATD1, NT5M, SREBF1, TOM1L2 and USP22.

Notably, one of these putatively regulated genes encodes the

transcription factor SREBF1 that plays a key role in steroid
Frontiers in Immunology 08
metabolism and lipid homeostasis. The only other cis-association

found for a top-hotspot was between the variant rs3474314913

located on SSC15 and the gene HECW2.
Potential causal regulatory variants for
immunity traits

The comparison of the blood transcriptome eQTL map with

QTLs of health-related traits reported a total of 294 eQTLs, 175 of

which were cis-eQTLs, colocalized with 15 hematological and

immunity QTLs. Results are shown in Table 3. The immunity

QTL with the highest number of colocalizations was the QTL at

SSC3 for the relative abundance of T-helper cells among PBMCs,

which had 45 overlapping eQTLs, and 17 of which were in cis. Next,

the QTL at SSC5 for memory T cell amongst PBMCs had 41

overlapping eQTLs, and 22 of them in cis. Other QTL of phenotypes

such as IgG serum or CRP concentration, white blood cells and

platelets counts, mean corpuscular volume (MCV) and mean

corpuscular hemoglobin (MCH) also colocalized eQTLs for blood

transcriptome. The gene ontology enrichment analysis of genes

regulated by these colocalized eQTLs revealed several candidate

genes (Table 3) associated with immune responses. Among them,

CD48 and SLAMF family receptors genes overlapped with CRP

concentration in serum, IGHG4 and IGHV3–73 with IgG plasma

levels and PIK3R3, PRDX1 and MPL with MCV and MCH. Several

members of the IGKV, RBPJ, and ZAP70 genes, were also identified

as candidate genes for the abundance of T-helper cells, while several

members of the CLEC and KLR gene families were for memory

T cells.

Colocalization studies revealed substantial evidence of common

causal regulators between health-related QTLs and the eQTLs

described in the present work; Table 4 shows results for tests

reporting posterior probabilities of having common causal

variants above 0.95, plus the candidates to be the key regulators.

The QTL for memory T cell showed common causal mutations with

three cis-eQTLs for CLEC12B (PP.H4 = 0.99), KLRD1 (PP.H4 =
TABLE 2 Top-hotspots detected during the analysis, grouped by linkage disequilibrium.

SSC
Start
(Mb)

End
(Mb)

n°
of

variants

n° of cis-
associated
variants

n° associ-
ated genes

n° top
associated

genes

n° cis-
associated

genes cis-associated genes

1 262.86 262.86 1 0 23 10 0 NA

11 24.22 24.22 1 0 11 11 0 NA

12 61.56 61.56 4 4 18 10 8
ATPAF2, DRC3, ENSSSCG00000055301,

NATD1, NT5M, SREBF1,
TOM1L2, USP22

15 100.94 100.94 1 1 20 10 1 HECW2

2 39.05 39.05 11 0 60 20 0 NA

6 68.24 68.32 37 37 154 53 1 VAMP3*

8 120.00 120.04 89 0 30 13 0 NA
SSC stands for Sus scrofa chromosome number. * Signifies that the gene was detected by homology with human.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1582982
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
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0.97) and KLRC1 (PP.H4 = 0.96) gene expression. The QTL for T-

helper cell percentage also presented putative common causal

variants with eQTL for several homologues to the IGKV2D gene

(PP.H4 from 0.96 to 0.99) and ZAP70 (PP.H4 = 0.96).

The 95% credible set of causal variants for the coloc studies was

extracted for further analysis. Variants located in regulatory regions

were selected as candidate regulators for these QTLs and eQTLs

(Table 4). Eleven variants were selected for the memory T-cells QTL

and CLEC12B , KLRD1 and KLRC1 eQTLs. An in-silico

characterization of potentially modified TFBSs by these variants

identified three of them as modifying immune-related TFBSs for

CEBPG, ELF1, ELF2 and ELF4, IRF2–4 and IRF7, and RORA,

among others (Supplementary Table S4). Nineteen variants were

identified as potentially shared causal variants among the QTL for

Helper T cells and the eQTLs for IGKV2D and ZAP70. A total of 46

in-silico predicted TFBSs for TFs associated with immune

processes, including CEBPG, CREB3, GATA2 and GATA6,

RORA, RORC, SOX13, and ZAN16, among others, were

identified as being modified by these variants (Supplementary

Table S4).
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Comparative blood transcriptome with
other transcriptomic analyses

Genes regulated by cis-eQTLs in the blood transcriptome were

compared with those identified in previous studies in different

porcine tissues. Crespo-Piazuelo et al. (6) analyzed the

transcriptome of duodenum, liver and muscle from 300 pigs of

Landrace, Large White and Duroc breeds. The duodenum

transcriptome presented the highest proportion (44.89%) of cis-

regulated genes overlapping with those identified as cis-regulated in

blood, followed by liver and muscle (36.40% and 33.97%,

respectively) (Figure 7A). When comparing results from all

tissues, a total of 253 cis-regulated genes overlapped in all four

tissues. Of these genes commonly regulated across tissues, 17 were

annotated as transcription factors, and 12 as transcription co-

factors, while the remaining genes had mostly housekeeping roles

(Supplementary Table S5). Focusing on hotspot variants, when

comparing hotspots in blood transcriptome with those obtained by

Crespo-Piazuelo et al. (6), a total of 3,197 variants were identified as

transcriptional regulatory hotspots across all four tissues
FIGURE 6

Heatmap of partial correlations from PCIT analysis between the expression levels of genes regulated by top-hotspots in SSC1 (A) and SSC6 (B), as
well as their correlations with immunity traits. Positive correlations are presented in red, negative ones in blue, and non-significant correlations
in grey.
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(Figure 7B). However, none of them was found to be in cis in all four

tissues simultaneously.

Additionally, results were compared with blood transcriptome

data from the FarmGTEx consortium (13). In this case, 1,821 cis-

regulated genes were shared between studies (Figure 7C). The

coincidences can be found in Supplementary Table S5.
Discussion

The present study focuses on the genetic regulation of the

porcine blood transcriptome, aiming to identify transcriptional

regulatory variants and disentangle their association with immune

capacity. RNA-seq data from 255 Duroc pigs were used to

investigate the association between 8M imputed polymorphisms

and expression levels of 14,642 genes in blood. A total of 23,645,971

significant associations, grouped into 9,930 eQTLs linked to the

expression levels of 6,051 genes, were reported.

Among these significant eQTLs, 36.2% were associated in cis

with the expression levels of 3,952 genes, which corresponded to

65.3% of regulated genes showing at least one cis-associated region.

This represents a proportion of cis-eQTL similar to that observed in

other studies (e.g. Crespo-Piazuelo et al., and Farhangi et al.) (6, 47).
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Moreover, cis-associated regions tend to be larger in both the

number of variants and significance level than trans-eQTL

regions, as was also observed by Dixon et al. (48) and Lim et al.

(49). The cis-regulatory variants were enriched in previously

mapped regulatory regions, in line with what had been reported

in previous studies (e.g. Dixon et al., Crespo-Piazuelo et al.) (6, 48).

Both promoters and 3’UTR regions were similarly enriched by cis-

regulatory elements, highlighting the importance of considering the

regulatory impact of 3’UTR regions (50).

It is worth highlighting those genes expressed in the blood

transcriptome showing the most relevant cis-associations with

genome. The most significant association (p-value= 2.02x10-74)

was found in cis between the expression levels of the ACBD5 gene

and an intergenic region upstream the gene. Currently, no enhancer

regions are annotated in this region. However, transcription factor

binding sites for GATA1, NFACTC2 and TBP were found inside,

which would indicate a possible regulatory role. The gene ACBD5 is

known to affect lipid metabolism through peroxisomal defects (51).

However, mutations in ACBD5 have been seen associated to

leukodystrophy and pexophagy, having a possible effect on

platelet formation and megakaryocyte differentiation (52, 53). The

NOX4 gene showed the second most significant eQTL (p-value=

2.98x10-73), being its expression levels associated with the intergenic
TABLE 3 Number of overlapping eQTLs to previously described immune associated regions.

Immunity Trait

Identified QTL Overlapping eQTL

Candidate genes
SSC

start
(Mb)

end
(Mb)

Number
of eQTL

Number of
cis-eQTL

Platelets count (n/mL) 16 21.98 23.22 12 7

CRP in serum (mg/ml) 4 90.54 90.8 25 18
CD48, SLAMF1/6/8/9, ATF6,

S100A13*, FCER1A

Granulocytes
phagocytosis FITC

12 8.57 8.62 15 14 CD300A*, ABCA5

Granulocytes phagocytosis (%) 5 69.13 70.23 18 6

Mean corpuscular
hemoglobin (pg)

6 164.85 165.85 27 19 PIK3R3, PRDX1, MPL

IgG in plasma (mg/ml) 4 8.38 8.87 7 3

IgG in plasma (mg/ml) 7 117.1 117.29 8 4 IGHG4*, IGHV3-73*

Leukocytes count (n/mL) 14 123.53 124.29 6 5

Lymphocytes count (n/mL) 17 52.47 52.51 6 4

Neutrophils count (n/mL) 13 69.03 71.96 31 20 MAGI1

Mean corpuscular volume (fL) 6 84.96 84.98 22 13 CASP9

Mean corpuscular volume (fL) 6 164.85 165.91 27 19 PIK3R3, PRDX1, MPL

T-helper cells (%PBMC) 8 20.52 20.58 4 4 RBPJ

T-helper cells (%PBMC) 3 55.6 58.34 45 17 IGKV@, ZAP70*

Memory T-helper cells
(%PBMC)

5 61.62 62.44 41 22 KLRD1, KLRC*, CLEC/4/7/12, PHC1

Total 294 175
SSC stands for Sus scrofa chromosome number.
*Detected by homology.
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SNPs rs328730607 and rs331477910, located upstream of the TSS of

the gene. NOX4 is involved with non-phagocytic cells reactive

oxygen species production (54). Thus, is considered a tumor-

suppressor gene whose overexpression has been described to

impact the efficiency of the transcription factor YY1, macrophage

infiltration, and inflammatory capacity (55, 56).

Despite the high incidence of cis-eQTL regulating the blood

transcriptome, 60.6% of genes putatively regulated at genetic level

presented at least one form of trans-regulation. The vast majority of

these trans-eQTLs were found to regulate multiple genes. In this

study, we focused on those variants associated to the expression of

ten or more transcripts. A total of 430,694 variants were detected as

transcriptional hotspots, 344,328 of them cis-regulating the

expression levels of at least one of their associated genes.

Remarkably, SSC6 was among the pig chromosomes with the

highest number of hotspots. Similarly, Crespo-Piazuelo et al. (6)

reported 102 hotspots located at 56.3-64.5 Mb on SSC6 that were

consistently associated to gene expression levels in duodenum,

muscle and liver pig tissues, and were predicted to have a

moderate or high impact on protein sequences. A total of 77

hotspots on SSC6 associated to blood transcriptome were shared

with these hotspots identified in all tissues, supporting the existence

of common regulatory elements.

Among the 2,093 genes regulated by the hotspots, 228 were

annotated as transcription factors (TF) and co-factors, including
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several immunity-related TF and co-factors. Among them, the

ARNT, a TF involved in the regulation of different biological

functions including innate and adaptative immune responses (57). In

our study, 2,013 cis-hotspots were associated to ARNT gene expression.

In addition, a missense variant (rs338823350) associated with the

expression of 10 genes was found on the coding region of the ARNT

gene. Other co-factors regulating immunity functions and with

missense hotspot variants were NLRP12, SIRT2 and KMT5C.

Special attentionmust be given to the identified top-hotspots, some

of which contained top cis-regulatory variants associated with at least

one transcript. Our results describe top-hotspots regulating co-

expressed genes related to immune functions and associated with

health traits, making them strong candidates for immunomodulation

in pigs. It is worth noting the 37 highly linked top-hotspots found in

intron 6 of the transcription factor CAMTA1. These 37 variants,

among which rs3472545010 was located within an enhancer,

regulated a total of 154 different genes, with a unique cis-hotspot for

VAPM3 gene. The gene VAMP3 is involved in vesicle membrane

adhesion across multiple cellular populations; a particular relevant

function of VAMP3 in blood relies in fibronectin reabsorption and

release in platelets via toll-like receptor signaling (58, 59). Among genes

regulated by the SSC6 top-hotspots,CSF3R, JAK2, SOCS3, STAT5B and

UBE2D1 are implicated in the signaling by the CSF3 pathway. CSF3,

also known as G-CSF, is a cytokine that regulates production of

neutrophils (60). Remarkably, these genes were highly co-expressed
TABLE 4 Colocalization analysis results.

Gene
eQTL
SSC

eQTL
start

eQTL
end

Trait
QTL
SSC

QTL
start

QTL
end

PP.H4
Candidate
variants

Candidate TFBSs
affected by candi-

date variants

CLEC12B 5 30.8 68.81

Memory
T cells
%PBMC

5 62 62

99.05 rs327287009,
rs321672514,
rs320481119,
rs1113891078,
rs1113630513,
rs332711503,
rs691734190,
rs324109474,
rs329194838,
rs324908876,
rs325546963

CEBPG, CREB3, ELF1,
ELF2, ELF4, FLI1, FOXP3,
GABPA, IRF2, IRF3, IRF4,

IRF7, IRF9, JUN,
RORA, ZBTB7A

KLRD1 5 61.4 62.8 97.84

ENSSSCG00000036743 5 61.4 64.47 96.81

ENSSSCG00000040986 3 39.8 70.93

T-helper
cells

% PBMC
3 56 58

98.61 rs340907534,
rs707038723,
rs329506333,
rs81498129,
rs330982811,
rs340972582,
rs320339342,
rs337569046,
rs340213966,
rs318655915,
rs334765227,
rs319237927,
rs323957461,
rs328915079,
rs324370375,
rs335067319,
rs332294508,
rs341361092,
rs345903117

BATF3, CEBPG, CREB3,
CREB3L4, EGR3, ELF4,
EOMES, ETS1, FOS,

FOXC1, FOXL1, FOXP1,
GATA2, GATA6, GLI3,
HIF1A, IRF3, IRF8, JUN,
KLF10, KLF13, KLF2,
KLF4, MEF2C, MITF,
MYB, MYC, NKX2-3,

NR1D1, PPARG, RARA,
RORA, RORC, RUNX3,

SOX13, SOX4, SP3, TBX21,
TCF3, TFE3, XBP1,

ZBTB7A, ZBTB7B, ZEB1,
ZNF16, ZNF675

ENSSSCG00000033114 3 20.4 75.98 97.85

ENSSSCG00000040009 3 51.4 58.52 97.84

ENSSSCG00000054922 3 29.1 73.51 97.77

ENSSSCG00000061405 3 54 67.63 96.57

ZAP70 3 54 67.63 95.52
SSC stands for Sus scrofa chromosome number, PP.H4 stands for the posterior probability of hypothesis 4.
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Jové-Juncà et al. 10.3389/fimmu.2025.1582982
between them and also showed significant correlations with neutrophil

counts and the neutrophil/lymphocyte ratio. Another top-hotspot,

composed exclusively by the intergenic variant rs326486411, showed

potential immunological implications. This variant was found trans-

associated with several immunity candidate genes such as ADA, CD1E,

IL20RB, RAG1 and RAG2. The RAG1 and RAG2 genes are well

characterized immunity markers, being involved in V(D)J

recombination (61). Curiously, the expression of several genes

regulated by this hotspot correlated negatively with phagocytosis-

related traits. Among the candidate genes for immunity mentioned,

only CD1E and IL20RB could be a priori tangentially related to

phagocytic capacity, given the CD1E regulatory functions of dendritic

cells (62), and in the case of IL20RB involvement pathogens

elimination (63). Due to the abundance of genes regulated by

rs326486411 and their relationship with immunity, its intergenic

location is a strong candidate for being a regulatory element in the

pig genome.

Additional candidate regulators of gene expression with the

potential to determine health traits were identified in the present

study. The overlapping and colocalization studies with previously

QTLs for health traits (25, 39) reported strong candidate genes such
Frontiers in Immunology 12
as CLEC12B, KLRD1 or ZAP70 which could influence the percentages

of T-helper and memory T-helper cells. Several of the putative causal

mutations identified by coloc were located in regulatory regions and

affected transcription factor binding sites. Genes sharing putative causal

variants with memory T cells were CLEC12B, KLRD1 and the

homologue of KLRC1, ENSSSCG00000036743, both members of the

killer cell lectin-like receptor family. Members of both gene families are

highly expressed in memory T cells and have been involved in the

activation (CLECs) and killing functions (KLRs) of memory T cells

(64). The variant rs1113630513, located in an enhancer region

(ENSSSCR5_BG8XW), was associated with the expression of all

three genes and memory T-cell percentage and was found to affect

binding sites for several members of the IRF transcription factor family.

Members of the IRF family have been reported to be involved in CD4-

positive or CD8-positive, alpha-beta T cell lineage commitment,

especially in Helper T cell commitment through interferon I (65).

For helper T cells, several members of the IGKV gene family and

ZAP70 shared putative common causal variants. The IGKV loci in pigs

contains several pseudogenes; however, the IGKV2 variants detected in

this study are the most active (66). ZAP70 is a known regulator of

adaptative immunity through T cell development (67). Five candidate
FIGURE 7

Venn diagrams depicting the overlap of results regarding porcine blood transcriptome with other studies. (A) Overlap between genes regulated by a
cis eQTL in blood and those in duodenum, muscle and liver from Crespo-Piazuelo et al. (6) and the present work. (B) Overlap between regulatory
hotspots for blood transcriptome and those for duodenum, muscle and liver from Crespo-Piazuelo et al. (6). (C) Overlap between genes regulated in
blood by a cis eQTL in the present study and the PigGTEx project (13).
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putative mutations (rs707038723, rs81498129, rs340972582,

rs337569046 and rs318655915), mapped inside enhancers, were

found to affect binding sites for RORA, which is known to be

involved in T-helper cell differentiation (68). The putative causal

mutations identified in this study could impact pig immunity

through the regulation of gene expression and could serve as target

candidates for enhancing cellular immune responses in pigs. Overall,

our results point towards regulators of pig immunity that could be used

as biomarkers. Further studies are needed to validate these results and

to assess the applicability of these markers in breeding programs.

Finally, the identified regulators of blood transcriptome showed

important coincidences with those reported by the FarmGTEx

consortium (13) across various experimental setups, reinforcing the

robustness of the transcriptomic analysis and highlighting important

putative regulators. Furthermore, the comparison of blood

transcriptome eQTLs with those observed in muscle, duodenum and

liver transcriptomes (6) revealed a high proportion of genes commonly

regulated across these tissues, as well as shared regulatory hotspots

variants. These results confirm the existence of common

transcriptional regulatory mechanisms across tissues, which has

already been postulated in previous studies (6, 69–71).

In conclusion, in the present study we have analyzed the blood

transcriptome of 255 commercial Duroc pigs, reporting more than 23

million associations between 5,682,600 variants and 6,051 genes. We

have characterized cis, trans and hotspot regulatory variants of the

blood transcriptome across the pig genome and annotated the most

notable ones associated with immunity. The annotation of the identified

cis-regulatory variants remarked the importance of considering 3’UTR

as regulatory regions. Additionally, we compared our results with

previous studies on blood and other pig tissue transcriptomes

identifying commonly regulatory variants. The colocalization studies

of eQTL with QTLs associated with health traits revealed a list of

potential causative mutations regulating immunocompetence in pigs.

All these data contribute to expand our knowledge of porcine gene

expression regulation and provide insights into the regulatory

mechanisms that shape immunity-related phenotypes.
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Segregation of regulatory polymorphisms with effects on the gluteus medius
transcriptome in a purebred pig population. PLoS One. (2012) 7. doi: 10.1371/
JOURNAL.PONE.0035583

9. Criado-Mesas L, Ballester M, Crespo-Piazuelo D, Castelló A, Fernández AI, Folch
JM. Identification of eQTLs associated with lipid metabolism in Longissimus dorsi
muscle of pigs with different genetic backgrounds. Sci Rep. (2020) 10. doi: 10.1038/
S41598-020-67015-4
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