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Glioma represents a highly lethal form of malignant tumour, with RNAmethylation

emerging as a critical regulator of its oncogenesis and progression. As a prevalent

post-translational modification, methylation influences various biological

functions, particularly RNA processing, by modulating splicing, transport, and

degradation of both mRNAs and noncoding RNAs. Key methylation types such

as N6-methyladenosine (m6A), N5-methylcytosine (m5C), N7-methylguanosine

(m7G), and N1-methyladenosine (m1A) are dynamically regulated by specific

enzymes known as writers, erasers, and readers. Dysregulation of these

modifications contributes to glioma pathophysiology, while offering potential

biomarkers for early detection and promising therapeutic targets. This review

explores the mechanistic roles of RNA methylation in glioma and highlights its

translational implications, aiming to advance molecular diagnostics and targeted

interventions in glioma treatment.
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GRAPHICAL ABSTRACT
1 Introduction

Glioma is the most common and lethal primary malignant

tumour (14.2% of all tumours and 50.1% of all malignant tumours)

of the central nervous system (CNS) (1). The annual incidence of

glioma is approximately 6 per 100,000 individuals, with a male-to-

female prevalence ratio of 1.6 (2). Gliomas are primarily categorized

into four distinct groups: adult diffuse gliomas, paediatric diffuse low-

grade gliomas, paediatric diffuse high-grade gliomas, and localized

astrocytoma (3). Despite substantial investments in glioma-associated

research, the underlying mechanisms governing glioma development

remain inadequately understood. However, in recent years, with

advancements in clinical and transcriptomic research, several

crucial mechanisms underlying glioma progression have been

elucidated, which have significantly contributed to the diagnosis

and treatment of glioma. Among these modifications, RNA

modification is a widespread and common posttranslational

modification that is significantly altered during the development

and progression of cancers, including glioma (4). Furthermore,

RNA methylation is the most common type of RNA modification

and widely occurs in various processes of the cell cycle. It plays an

important role in the regulation of gene expression and RNA stability,

thus affecting the occurrence and development of cancer cells (5).
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Methylation and its effects on RNA are collectively determined

by methyltransferases (writers), demethylases (erasers), and

RNA-binding proteins (readers). These methylation-associated

proteins can significantly alter the splicing, export, translation, and

decay of RNA (6). We briefly summarize the various types of

methylation-associated proteins and their biological effects (Figure 1).
1.1 m6A

In the process of RNA methylation, N6-methyladenosine

(m6A) modification has been the most frequently studied

modification (7). Importantly, RNA modifications, particularly

m6A modifications, have been shown to be essential for tumour

development (8). The m6A modification of RNA is located

primarily within the mRNA transcription start site and the 3′-
untranslated region (UTR) and commonly occurs in the conserved

RRACH (R, purine; H, nonguanine base; A, adenine; C, cytosine)

motif (9, 10). The effects of m6A modification on mRNAs include

splicing transcripts (11), epigenetic silencing (12), and stabilizing

the mRNA, the latter of which is the main effect (13, 14). In

addition, m6A modifications are present in other types of RNA

such as ribosomal RNA (rRNA), transfer RNA (tRNA), small
frontiersin.org
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nucleolar RNA (snoRNA), microRNA (miRNA), long noncoding

RNA (lncRNA), circular RNA (circRNA), and small nuclear RNA

(snRNA) (15, 16).

The m6A writer refers to the methyltransferase complex

(MTC). The MTC consists of two parts: the catalytic subunit

m6A-METTL complex (MAC) and the regulatory subunit m6A-

METTL-associated complex (MACOM). The methyltransferase-

like 3 (METTL3) and methyltransferase-like 14 (METTL14)

constitute the MAC, and the RNA-binding motif protein15/15B

(RBM15/RBM15B), Wilms’ tumour 1-associating protein (WTAP),

and VIR-like m6A methyltransferase associated (VIRMA) form the

core structure of the MACOM (17, 18). ZC3H13, a zinc-finger

protein, is integral to the regulation of RNA m6A methylation

within the nucleus and is recognized as a crucial component of the

m6A methylation complex (19). It promotes the nuclear

localization of WTAP, Virilizer, and Hakai, thereby ensuring

accurate m6A methylation of RNA by the MTC (19).

Additionally, ZC3H13 interacts with VIRMA, inducing a

conformational change in the latter (20).

The term m6A eraser refers to a demethylase. The fat mass and

obesity-associated protein (FTO) and the a-ketoglutarate-
dependent dioxygenase alkB homologue 5 (ALKBH5)

demethylate RNA m6A residues through their oxidative

demethylation activity (21, 22). FTO preferentially demethylates

N6,2’-O-dimethyladenosine (m6Am) rather than m6A and reduces

the stability of m6Am mRNAs (23). m6Am modification is a

terminal cap modification found in higher eukaryotic mRNAs

and ncRNAs, particularly snRNAs and viral RNAs, typically

occurring at the first or occasionally second nucleotide following
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the m7G cap (24). This modification is consistent with the fact that

FTO mainly catalyses snRNA methylation (23). ALKBH5, another

demethylase, significantly affects mRNA export, RNA metabolism,

and the assembly of mRNA processing factors within nuclear

speckles (22).

Through the specific recognition and binding of m6A residues,

m6A reader proteins are integral to a variety of biological processes,

including RNA splicing, export, translation, and decay (6). Different

families of readers recognize different m6A-modified RNAs, which

mediate different physiological functions (7). Notably, the RNA

methylation condition is determined by the relative weight of m6A

writer or eraser functions, but most of the final biological effects of

RNA methylation are determined by m6A readers. The m6A

readers include the YTH domain family (YTHDF), YTH domain-

containing family (YTHDC), insulin-like growth factor 2

mRNA-binding protein (IGF2BP), eukaryotic initiation factor 3

(EIF3), and heterogeneous nuclear ribonucleoprotein (hnRNP)

(25). Readers are classified into nuclear readers and cytoplasmic

readers based on their location. The nuclear readers include

YTHDC1, YTHDF2, YTHDF3, Fragile X mental retardation

protein (FMRP), and hnRNPA2/B1, which are responsible for the

splicing and exporting of mRNAs. The cytoplasmic readers include

YTHDF2, YTHDF3 (RNA decay), IGF2BP1, IGF2BP2, IGF2BP3,

FMRP (RNA stabilization), YTHDF1, YTHDF3, IGF2BP1,

IGF2BP2, IGF2BP3 (translation initiation), and EIF3 (translation

enhancement) (25). Notably, YTHDC2 stands out as the largest

m6A-binding protein within the YTH protein family and is

distinguished by its exclusive possession of ATP-dependent RNA

helicase activity (26).
FIGURE 1

The main types of RNA methylation modifications. RNA methylation encompasses several modifications, including m6A, m5C, m7G, and m1A. The
formulas demonstrate the dynamic and reversible processes of RNA methylation modifications and associated writers and erasers. Writers and
erasers highlighted in red are specifically involved in noncoding RNA modifications, while others highlighted in black are involved in mRNA
modifications. Different types of methylation modifications are recognized by distinct RNA readers, leading to various biological effects, including
RNA decay, stabilization, splicing, nuclear transport, translation initiation and enhancement.
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1.2 m5C

N5-methylcytosine (m5C) modification is another RNA

methylation process that specifically modifies the fifth carbon

atom of cytosine. It is found mainly in cytoplasmic and

mitochondrial mRNAs, enhancer RNAs, and several noncoding

RNAs. Notably, the distribution of m5C on mRNAs is also not

random. m5C modifications in mRNAs are enriched mainly in

nontranscriptional regions (27).

Like m6A, m5C is regulated by writer, eraser, and reader

proteins. The m5C writers include the DNA methyltransferase 2

(DNMT2) and NOL1/NOP2/SUN domain (NSUN) families, which

include 7 members (NSUN1-7) (28–31). Among these writers,

DNMT2 are responsible for DNA m5C methylation via the

catalysis of the covalent addition of methyl groups to the cytosine

ring (29). Only NSUN2 is involved in mRNA modification and was

identified by ALY/REF export factor (ALYREF) to mediate mRNA

nucleus export (32, 33). The TET family is the main eraser of DNA

m5C methylation and has three members: TET1, TET2, and TET3.

TET1 and TET2 are distributed mainly in the nucleus, whereas

TET3 is found in both the nucleus and the cytoplasm (34–36). The

m5C readers include Y box binding proteins 1 (YB-1) (37) and

ALYREF (38, 39). ALYREF is a subunit of the transcription-export

complex (TREX), which mediates mRNA nuclear export and binds

to its m5C sites in the 3’-UTR to prevent mRNA degradation (38,

39). Additionally, YB-1 stabilizes m5C-modified mRNAs and

promotes the development of a variety of cancers such as

digestive cancers, glioblastoma (37), and leukemia (40).
1.3 m7G

N7-methylguanosine (m7G) modification is another type of RNA

methylation (41, 42). The m7G modification of RNA is a widespread

posttranscriptional modification found in mRNAs, rRNAs, and tRNAs

(43, 44). Researchers have noted that m7G modification of mRNAs is

particularly abundant in the 5’UTR and in AG-rich contexts (44).

Currently identified m7G writers include RNA guanine-7

methyltransferase (RNMT) and its cofactor RNMT-activated small

protein (RAM), the methyltransferase 1-WD repeat-containing protein

4 (METTL1-WDR4) complex, the Williams-Beuren syndrome

chromosome region 22 (WBSCR22) and tRNA methyltransferase

activator subunit 112 (TRMT112) (45–48). Notably, these m7G

writers exhibit different catalytic activities towards various RNA

types. Specifically, RNMT/RAM is involved in mRNA methylation,

contributing to the cap homeostasis of the mRNA transcriptome (45).

TheMETTL1-WDR4 complex participates in the m7Gmodification of

tRNA and prevents its degradation (46). WBSCR22 and TRMT112 are

responsible for mediating m7G methylation in rRNA (47).
1.4 m1A

In addition, RNA modifications include N1-methyladenosine

(m1A) modifications (49). In general, the functional role of m1A
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lies in promoting the translation of methylated mRNAs (50). m1A

modification is dynamically regulated in mammalian RNAs.

Among the m1A methyltransferases, the nucleomethylin (NML)

and tRNA methyltransferase 10C (TRMT10C) methylate

mitochondrial ND5 mRNA, whereas TRMT6 and TRMT61A

methylate tRNA T-loop-like structures (51). TRMT61B

methylates human mitochondrial tRNAs (52). In conclusion,

NML, TRMT10C, TRMT6, TRMT61A, and TRMT61B are

identified as m1A writers.

ALKBH1 and ALKBH3 are responsible for demethylation.

ALKBH1 is a tRNA demethylase that mediates the demethylation

of N1-methyladenosine (m1A) in tRNAs, which results in

attenuated translation initiation and decreased usage of tRNAs in

protein synthesis (53). Reversible tRNA modifications can broadly

affect protein synthesis. However, the role of altered protein

synthesis in the development of glioma remains to be further

studied. ALKBH3 is the only known mRNA m1A demethylase.

One study revealed that Thr133 is mutated to the corresponding

residue, converting the selectivity of the ALKBH3 substrate from

m1A to m6A (49). However, the role of ALKBH3 in the

development of glioma has not yet been reported.

Similar to the m6A modification, YTHDF1, YTHDF2,

YTHDF3, and YTHDC1 are considered methylation readers.

However, the m6A reader YTHDC2 has no m1A binding activity

(54). A previous study revealed that removing ALKBH3 increases

the amount of m1A-modified mRNA. The endogenous transcripts

modified by m1A can recognize the reader YTHDF2, which

mediates its degradation (55). In addition, the comparison

between LGG and HGG revealed that high expression of NML,

TRMT6, TRMT10C, TRMT61B, ALKBH1, ALKBH3, YTHDF1,

YTHDF2, and YTHDF3 are risk factors for HGG, whereas

YTHDC1 is a protective factor (56).

In summary, RNA methylation involves a complex network in

which writers, erasers, and readers interact with and influence each

other, jointly regulating the cell developmental cycle and

physiological functions (Supplementary Table 1). Disruption of

any part of this network can trigger a series of downstream

effects, potentially promoting the occurrence and progression of

various tumours, including gliomas (37, 40). To gain a deeper

understanding of the role of RNA methylation in gliomas, we have

summarized the mechanisms of RNA methylation in the

pathogenesis of gliomas. Furthermore, tracking and monitoring

changes in methylation levels may aid in the early diagnosis of

gliomas, and drugs developed to target this process have shown

promise in the treatment of gliomas (4).
2 The milestones in RNA methylation
field

The RNA synthesized following DNA transcription undergoes

more than 170 posttranscriptional modifications (57). These

modified RNAs include mRNAs, rRNAs, and tRNAs, and the

modifications include mainly m6A, m5C, m7G, and m1A

methylation. The discovery of these RNA methylation processes
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has undergone a considerable exploration (Figure 2). In 1958, m5C

methylation was first discovered in RNA from Escherichia coli (58).

Shortly after that, m1A methylation was documented in the 1960s

(59). In 1971, researchers reported that tRNAmethylation levels are

significantly elevated in brain tumour tissues (60). This paved the

way for a new perspective and insight into the role of RNA

methylation in the mechanisms underlying glioblastoma

formation. In 1974, the dynamic reversible m6A modification of

mRNAs was first discovered (61). Shortly thereafter, the initial

function of m6A methylation was demonstrated, revealing a

connection between the presence of m6A and mRNA instability

(62). In 1975, the modifying effect of m7G on mRNA was reported

(63). In 1986, the concept of “RNA editing”, which helps

researchers better understand the molecular regulatory

mechanisms within cells, was first proposed. Additionally, the

discovery of the conversion of adenosine into inosine (A-to-I

editing) in 1989 further confirmed the importance of

posttranscriptional modifications. Since then, scientists have

realized that in addition to DNA, posttranscriptional

modifications play irreplaceable roles in determining biological

traits and disease processes (64, 65). A 2002 report revealed that

the m7G writers METTL1 and WDR4 were involved in tRNA m7G

methylation; this was the first report of an m7G writer (48). In 2011,

FTO was first reported as an m6A eraser that has demethylase

activity (21). In 2012, the advent of antibody-mediated capture and

massively parallel sequencing with the m6A-Seq technique led to

the analysis of RNA methylation at the transcriptome-wide level

(66). Moreover, based on the combination of m6A-specific

methylated RNA immunoprecipitation and next-generation

sequencing (MeRIP-Seq), researchers have reported that m6A

sites are enriched near stop codons and in 3’-untranslated regions

(3’UTRs) (67). In 2014, the METTL3-METTL14 complex was

shown to function as an essential m6A writer, possessing specific

methyltransferase activity for RNA m6A methylation (68).
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Since then, research on methylation writers has experienced a

remarkable surge, particularly in the investigation of m6A

methylation. A 2015 study revealed that m6A participates in the

modification of primary miRNAs, which are recognized by the

RNA-binding protein DGCR8 and trimmed into mature miRNA

(69). Researchers have begun to realize that the role of noncoding

RNA methylation in altering the biological functions of cells is as

important as that of mRNAs and cannot be disregarded. In 2021,

m7G modification was shown to participate in the modification of

tRNAs and increase the translation of cell cycle regulator mRNAs,

thus leading to oncogenic transformation. These findings

underscore the comparable significance of noncoding RNA

methylation and mRNA methylation in cancer development (70,

71). Those results also provide a new way to understand the

occurrence and progression of cancers. With the deepening

understanding of RNA methylation and the underlying

mechanisms of cancer initiation, research on RNA methylation

has increasingly transitioned from theoretical exploration to clinical

applications. Notably, several RNA methylation-based antitumour

drugs have exhibited promising therapeutic prospects. A 2022 study

reported that the therapeutic sensitivity to dasatinib can be

improved by blocking WEE2-AS1 expression (72). We anticipate

a proliferation of diagnostic biomarkers and therapeutic drugs

targeting RNA methylation alterations in the future. These

advances offer great prospects for extending the human lifespan.
3 The roles of RNA methylation in
glioma pathology

As research on RNA methylation has advanced, an increasing

number of oncogenic roles related to RNA methylation have been

elucidated (17). Notably, recent studies have revealed a close

association between RNA methylation and the onset and
FIGURE 2

The milestones in RNA methylation field. The first RNA methylation type m5C was discovered from bacteria in 1958. Since then, other RNA
methylation, including m1A, m6A, and m7G were progressively discovered. Along with the accumulation of knowledge on RNA modifications,
regulators related to m6A, m5C, m7G, and m1A have been discovered, further completing the RNA editing and splicing theories. This lays the
groundwork for further research into the mechanisms of methylation in disease development. The past six decades have witnessed significant
advancements in mapping RNA methylation through epi-transcriptomic technologies and tremendous progress from the discovery of RNA
methylation to its omics research. The future research direction for RNA methylation will focus more on its application in disease-oriented clinical
studies to better improve patient outcomes.
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progression of gliomas (14, 73, 74). Moreover, as investigations into

glioma treatment have advanced, RNAmethylation has been shown

to play a role in the emergence of drug resistance in gliomas (75).

Through a comprehensive review of the literature, we discovered

that RNA methylation constitutes a highly intricate regulatory

network (Table 1). Both excessive methylation and demethylation

disrupt the delicate balance of methylation within cells, thereby

triggering the onset and progression of gliomas. For a deeper

understanding of the role of this RNA methylation regulatory

network in gliomas, we summarize the mechanisms of RNA

methylation in the genesis, development, and drug resistance

of gliomas.
3.1 Role of RNA methylation in glioma
tumorigenesis

Glioma stem-like cells (GSCs) are crucial constituents within

glioma tissues, contributing to the heterogeneity of gliomas and

exerting a significant influence on glioma tumorigenesis,

recurrence, and drug resistance (76). RNA methylation can

significantly alter the biological behaviour of GSCs and thus

contribute to the tumorigenesis of glioma (Figure 3). One study

reported that METTL3, an m6A writer, methylates the SRY-box

transcription factor 2 (SOX2) mRNA, which is recognized by

human antigen R (HuR). Consequently, methylation increases

SOX2 expression (13). Interestingly, with the addition of four

developmental transcription factors (SOX2, OLIG2, SALL2, and

POU3F2), differentiated glioma cells can be induced to differentiate

into undifferentiated GSCs (77). Furthermore, METTL3 expression

is increased in undifferentiated GSCs and attenuated during

differentiation. These reports suggest that high METTL3

expression has a carcinogenic effect (77). Some bioinformatics

studies have also revealed that high expression of METTL3 in

glioma tissues can activate multiple oncogenic pathways and

upregulate the expression of oncogenic factors, including those in

the Notch pathway and NOTCH3, thereby promoting the onset of

gliomas (73). Interestingly, another m6A writer, METTL14,

together with METTL3, can inhibit ADAM19 mRNA and thus

inhibit the growth and self-renewal of GSCs. Additionally, the

expression of ADAM19 is increased after METTL14 knockdown,

which promotes the occurrence of glioma (78). Depletion of

METTL14 in the mouse embryonic nervous system also prolongs

radial glial cell cycle progression and extends cortical neurogenesis

to the postnatal stage (25). Intriguingly, the levels of m6A are

relatively low in mouse brain tissue during embryogenesis but

drastically increase in adulthood. A previous study demonstrated

that m6A modification is regulated in a tissue-specific manner and

is markedly increased throughout brain development (67). We

conclude that METTL14 collaborates with METTL3 to form

MTCs and that the role of the METTL14 subunit alone is more

concentrated during neurogenesis.

In addition to the oncogenic effect of MTC, several m6A erasers

also promote the occurrence of gliomas. For example, ALKBH5, an

m6A eraser, demethylates the FOXM1 premRNA that can also be
Frontiers in Immunology 06
read by HuR, which increases pre-mRNA stability and thus

enhances FOXM1 expression, leading to the formation of GSCs

(79). Another m6A eraser, FTO, has been shown to promote glioma

onset by targeting MYC mRNA. Mechanistically, FTO promotes

the expression of the miR155 and miR23a cluster, thereby

suppressing MXI1 expression. Eventually, FTO enhances

tumorigenesis in U87 glioma cells (80). Notably, the MYC

pathway is crucial for the onset of gliomas.

m6A methylation is commonly recognized as the primary

mRNA methylation process. However, the onset of gliomas also

involves various other types of RNA methylation-associated

proteins. Researchers have reported that the m7G writer RNMT

is involved in the B7-H6/c-myc axis. B7-H6 can activate the

oncogene Myc and the PI3K/AKT and ERK/MAPK signalling

pathways, leading to the proliferation of GSCs (81). Additionally,

as previously mentioned, YTHDF2 is a reader that commonly

promotes RNA degradation (25). Nevertheless, it is particularly

noteworthy that YTHDF2 in GSCs plays a role in stabilizing MYC

and VEGFA transcripts. IGFBP3 is a downstream factor of the

YTHDF2-MYC axis. Along with high expression of YTHDF2,

highly expressed IGFBP3 sustains GSC growth (82). In contrast,

YTHDC1 is a reader that inhibits RNA degradation. METTL3

methylates the SRSF mRNA start codon, which can recruit

YTHDC1 and inhibit nonsense-mediated mRNA decay (NMD).

Ultimately, SRSF protein expression increases, leading to greater

changes in alternative splicing events (ASEs), including BCL-X and

NCOR2 transcript variant changes, which account for the

antiapoptotic and GSC-generating effects, respectively. These

effects eventually lead to GBM tumour outgrowth and self-

renewal (83). In addition to altering ASEs, SRSFs themselves can

promote methylation. SRSF7 methylates target mRNAs by

recruiting MTC and is further recognized by IGF2BP2, thus

stabilizing target mRNA (84). Although methylation promotes the

variable splicing activity of SRSF, SRSF can in turn recruit MTC to

change the methylation level of mRNA.

In addition to mRNA methylation, noncoding RNA

methylation plays an important role in the oncogenesis of glioma.

The let-7 miRNA is capable of differentiating cells by repressing

stem cell programs. However, IGF2BP2, an m6A reader, binds to

let-7 miRNA, thereby sustaining glioma cells in an undifferentiated

state and maintaining GSCs, thus promoting the progression of

glioma (85). Furthermore, IGF2BP2 is associated with the oxidative

phosphorylation process. IGF2BP2 interacts with multiple mRNAs

encoding subunits of the mitochondrial respiratory chain complex,

thereby increasing the stability of components involved in oxidative

respiration and promoting efficient oxidative phosphorylation in

GSCs. Repression of oxidative phosphorylation leads to a decrease

in the activity of GSCs, impeding the formation of cancer cell

colonies (86). Interestingly, hypoxia promotes the expression of

IGF2BP2 in GSCs by inducing the expression of hypoxia-inducible

factor 1 alpha-antisense RNA 2 (HIF1A-AS2). Consequently, highly

expressed IGF2BP2 stabilizes HMGA1 mRNA and contributes to

the maintenance of GSCs (87). These findings indicate that RNA

methylation plays a crucial role in the biological activity of GSCs

through its impact on the oxidative phosphorylation chain. RNA
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TABLE 1 Mechanisms of RNA methylation-associated proteins in glioma development and progression.

Methylation Expression
Phenotypes

Clinical
implications

Refs

d
Promoting GSC maintenance,

dedifferentiation,
and aggressiveness

Tumour
promoter

(13)

Reducing sensitivity to gamma
irradiation, promoting

radio resistance

Tumour
promoter

(13)

Tumour growth
Tumour
promoter

(13)

Promoting the malignant
progression of gliomas

Tumour
promoter

(14)

Promoting the malignant
progression of gliomas

Tumour
promoter

(74)

, GBM tumour growth
and progression

Tumour
promoter

(83)

Promoting the VM process of
GBM, reducing sensitivity to

anti-angiogenic drugs

Tumour
promoter

(122)

g
s

Promoting the malignant
progression of gliomas

Tumour
promoter

(108)

R1
Tumour growth

Tumour
promoter

(94)

on
Promoting the TMZ resistance

of glioma
Tumour
promoter

(134, 135)

Inhibiting GSCs growth and
self-renewal

Tumour
suppressor

(78)

Repressed the
malignant proliferation

Tumour
suppressor

(144)

Inhibiting apoptosis, promoting
glioma development

Tumour
suppressor

(145)

Inhibiting GSCs growth and
self-renewal

Tumour
suppressor

(78)

Tumour invasiveness
and migration

Tumour
promoter

(117)
(118)

(115)
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m6A

METTL3 Elevated SOX2 mRNA HuR
Enhancing SOX2 mRNA stability an

promoting its expression

METTL3 Elevated SOX2 mRNA HR pathway Enhancing DNA-damage repair

METTL3 Elevated RasV12 Enhancing astrocytes immortality

METTL3 Elevated MALAT1 mRNA HuR/NF-kB signalling
Stabilizing the MALAT1 mRNA an

promoting its expression

METTL3 Elevated UBXN1 mRNA YTHDF2/NF-kB signalling
Degrading the UBXN1 mRNA and

reducing its expression

METTL3 Elevated SRSF mRNA YTHDC1
Enhancing the SRSF mediated ASE

inhibiting NMD

METTL3 Elevated
BUD13 mRNA
CDK12 mRNA

Stabilizing the BUD13 and CDK12
mRNA, enhancing their expression

METTL3 Elevated LINREP lncRNA HuR
Stabilizing lncRNA LINREP, inhibit
PTBP1 degradation, impeding ASE

METTL3 Elevated ADAR1 mRNA YTHDF1
Stabilizing the ADAR1 mRNA, ADA

and promoting A-to-I editing

METTL3 Elevated
MGMT mRNA
ANPG mRNA

Stabilizing the MGMT and ANPG
mRNA and promoting their express

METTL3 Elevated ADAM19 mRNA Reducing the ADAM19 expression

METTL3 Elevated circDLC1 circRNA
circDLC1/miR-671-5p/

CTNNBIP1 axis
Enhancing circDLC1 expression

METTL3 Decreased HSP90 mRNA Enhancing the HSP90 expression

METTL14 Elevated ADAM19 mRNA Reducing the ADAM19 expression

WTAP Elevated mRNA CD97 Increasing the EGFR expression

WTAP Elevated mRNA Increasing the EGFR expression
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3H13-
x in Increasing TMZ resistance
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n
Enhancing microglial M2
polarization, promoting

GBM progression

Tumour
suppressor

(98)

g Increasing the glioma
tumour burden

Tumour
suppressor

(142)

R155
g the

Tumourgensis and
drug resistance

Tumour
promoter

(80)

A and
n

Proliferation and
tumourigenesis of GSCs

Tumour
promoter

(79)

ssion
Suppressing TIME immune

activation, promoting
tumour growth

Tumour
promoter

(96)

,
and
ate

Proliferation of glioma cells
Tumour
promoter

(97)

EMT and VM
Tumour
promoter

(123)

and
on

Increasing TMZ resistance
Tumour
promoter

(135)

nd
Promoting glioma cell
proliferation, increasing

TMZ resistance

Tumour
promoter

(137)

air
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and invasiveness
Tumour
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GSC growth

Tumour
promoter

(82)
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PI3K-AKT and extracellular
signal-related kinase pathways

ZC3H13 Decreased mRNA
Inhibiting localization of the ZC
WTAP-Virilizer-Hakai compl

the nucleus

ZC3H13 Decreased DUSP9 mRNA ERK pathway Reducing DUSP9 expressio

FTO Decreased pri-miR-10a hnRNPA2/B1
Inhibiting miR-10a, activati

oncogenic pathway

FTO Elevated MYC mRNA MYC signalling pathway
Enhancing the expression of m
and miR23a cluster, suppressin

MXI1 expression

ALKBH5 Elevated FOXM1 premRNA HuR
Stabilizing the FOXM1 pre-mRN

enhancing FOXM1 expressi

ALKBH5 Elevated ZDDHC3 mRNA YTHDF2 Increasing PD-L1 protein expr

ALKBH5 Elevated G6PD mRNA PPP

Stabilizing the G6PD mRN
promoting G6PD translation
activating the pentose phosp

pathway (PPP)

ALKBH5 Elevated mRNA

ALKBH5 Elevated NANOG mRNA
Stabilizing the NANOG mRNA
enhancing NANOG express

ALKBH5 Elevated SOX2 mRNA
Wnt5a/b-catenin
signalling pathway

Stabilizing the SOX2 mRNA
enhancing SOX2 expressio

ALKBH5 Elevated mRNA HR pathway Enhancing DNA-damage rep

YTHDF2 Elevated
MYC mRNA

VEGFA mRNA
YTHDF2-MYC axis

Stabilizing MYC and VEGF
transcripts, enhancing
IGFBP3 expression
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implications
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Increasing the expression of ATX
protein, converting the LPC into LPA

Promoting the migration and
proliferation of glioma cells

Tumour
promoter

(33)

CD47 Degrading b-catenin mRNA
Promoting TAM-based

phagocytosis and
glioma elimination

Tumour
suppressor

(171)

RBFOX2
Recruiting TET2, converting m5C to

5hmC degrading 5hmC caRNA

Promoting TAM-based
phagocytosis and
glioma elimination

Tumour
suppressor

(171)

Enhancing synthesis of oncoproteins Potential tumourigenic risk
Tumour
promoter

(156)

APK signalling pathway glioma growth and proliferation
Tumour
promoter

(110)

SPP1 and PTN
signalling pathways

Regulating TIMEs and ASEs
Tumour
promoter

(154)

B7-H6/c-myc Proliferation of GSCs
Tumour
promoter

(81)

3K/AKT/GSK3b pathways
Proliferation and growth of

glioma cells
Tumour
promoter

(119)

K-AKT, TGF-b, MTORC1,
TCH, and MYC pathways

Regulating cell cycle
Proliferation, migration, and

invasion of glioma cells
Tumour
promoter

(112)
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methylation is involved in stabilizing components of the oxidative

phosphorylation chain, thus stabilizing the metabolism of GSCs.

However, under hypoxic conditions, GSCs can compensate for the

detrimental effects of hypoxia by promoting high expression of

IGF2BP2. Other studies have demonstrated that the expression of

the lncRNA LINC00689 is upregulated in glioma, leading to

increased expression of IGF2BP1 via the inhibition of miR-526b-

3p. IGF2BP1 is an mRNA stabilizer for a series of oncogene-related

pathways such as the MAPK signalling pathway (88, 89). In

addition, some circRNAs are highly expressed in glioma, such as

circNEIL3 (90) and circHIPK3 (91), which increase IGF2BP3

expression. Similar to IGF2BP1, IGF2BP3 is a carcinogenic

protein that significantly promotes the progression of glioma.

Furthermore, hnRNPC, another m6A reader, is highly expressed

within the GBM microenvironment. This expression hinders the

tumour immune microenvironment (TIME) via the immune

checkpoint protein (ICP) network and activates the GALECTIN

signalling pathway. Consequently, it significantly facilitates the

stemness state in GBM cancer cells (92). Moreover, statistical

analysis revealed that the upregulated expression of YTHDC2 is a

risk factor for the occurrence of low-grade glioma (26). However,

the specific carcinogenic mechanism is still worthy of further

research in the future.

In conclusion, GSCs constitute integral components of glioma

tissue. During the initiation of GSCs, substantial alterations in the

methylation patterns of both mRNAs and noncoding RNAs occur.

Predominantly, there are variations in m6A methylation

accompanied by changes in m7G methylation levels. Ultimately,

these shifts in methylation patterns are closely linked with multiple

oncogenic pathways, significantly influencing the biological

functions of GSCs and thereby promoting the initiation of

gliomas (Figure 3).
3.2 Role of RNA methylation in glioma
malignant progression, proliferation,
invasiveness, and angiogenesis

In addition to contributing to the oncogenesis of glioma,

methylation of mRNAs leads to the activation of a series of pathways

that significantly contribute to the progression of malignant gliomas

(14, 93). To comprehensively understand the underlying mechanisms

of RNA methylation in the progression of gliomas, we have provided

an overview of the involvement of RNA methylation and its associated

proteins in various aspects of glioma progression, including

proliferation and growth, invasiveness, epithelial-mesenchymal

transition (EMT), and angiogenesis (Figure 4).

The changes in RNA m6A methylation levels represent a

primary mechanism underlying the formation of GSCs and the

onset of gliomas. Similarly, significant alterations in RNA

methylations also occur during glioma progression, with the role

of m6A methylation in promoting glioma progression being

extensively studied and mechanistically well understood.

METTL3, an m6A writer, methylates the mRNAs of MALAT1

and UBXN1, which are recognized by the m6A readers HuR and
Frontiers in Immunology 10
YTHDF2, respectively. Consequently, HuR stabilizes MALAT1

mRNA and promotes its expression, whereas YTHDF2 mediates

UBXN1 mRNA degradation and decreases its expression.

Consequently, both pathways activate NF-kB signalling and

promote the malignant progression of gliomas (14, 74).

Furthermore, NF-kB signalling can also be activated by the m6A

reader EIF3i, which can affect mRNA processing, translation, and

TCR signalling and is associated with the malignancy of glioma

(93). Thus, the NF-kB signalling pathway has emerged as a pivotal

pathway driving the malignant progression of gliomas.

In addition to its role in malignant progression, studies have

revealed that METTL3 increases astrocyte immortality by recruiting

RasV12, which accounts for the growth of glioma tumours (13).

Furthermore, METTL3 methylates and stabilizes the adenosine

deaminase acting on RNA (ADAR) mRNA, which encodes a

deaminase with mRNA binding activity. Consequently, increasingly

expressed ADAR1 binds to CDK2 mRNA and activates A-to-I

editing, which significantly promotes glioma growth (94).

Furthermore, the co-upregulation of METTL3 and ALKBH5

promotes the activation of the homologous recombination (HR)

pathway. This reduces the radiosensitivity of glioma tissues, but it

also significantly enhances their invasiveness (13, 95). The

demethylase ALKBH5 has also been reported to facilitate the

growth of gliomas. The downregulation of ALKBH5 expression

promotes the recognition and degradation of ZDHHC3 mRNA by

YTHDF2. Inhibition of ZDHHC3 mRNA expression can reduce the

expression of the PD-L1 protein, thereby activating tumour

immunity and disrupting the suppressive TIME, ultimately

inhibiting glioma growth (96). Additionally, ALKBH5 can also

impact the progression of gliomas by influencing the oxidative

phosphorylation chain. ALKBH5 demethylates the G6PD transcript

and enhances its mRNA stability, thereby promoting G6PD

translation and activating the pentose phosphate pathway (PPP),

consequently enhancing glioma cell proliferation (97). Interestingly,

the chaotic progression of malignant tumours leads to the formation

of localized hypoxic conditions within and around the tumour, which

leads to the release of miR-200c-3p from neurons to the surrounding

area and the activation of local neurons. Consequently, the expression

of ZC3H13 decreases in microglia and inhibits the methylation of

dual specificity phosphatase 9 (DUSP9) mRNA. Downregulation of

DUSP9 promotes ERK pathway activation, resulting inmicroglial M2

polarization, which promotes the progression of glioma (98).

Similarly, owing to the activation of the EGFR/SRC/ERK pathway,

YTHDF2, an m6A reader, is highly expressed. The highly expressed

YTHDF2 facilitates m6A-dependent mRNA decay of LXRa and

HIVEP2, which promotes GBM cell proliferation and invasion (99).

NSUN2 methylates the 3’-UTR of ATX mRNA, which increases the

expression of the ATX protein, converting lysophosphatidylcholine

(LPC) into lysophosphatidic acid (LPA). Consequently, this

alteration further promotes the migration and proliferation of

glioma cells (33). Moreover, it is important to highlight that

TRIM29 is a factor intricately linked to inflammation. It plays a

role in modulating endoplasmic reticulum (ER) stress, apoptosis,

reactive oxygen species (ROS) responses, and inflammasome

activation via the protein kinase RNA-like endoplasmic reticulum
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FIGURE 3

Schematic representation of RNA methylation alteration and its corresponding biological effects in tumourigenesis. Green icons represent writers
(METTL3, RNMT), red icons represent erasers (ALKBH5, FTO). They determine the methylation status of RNAs, which is recognized by specific
readers, leading to alterations in molecular expression levels and subsequent activation or inhibition of downstream pathways. The activities of
METTL3, RNMT, ALKBH5, and FTO significantly regulate the biological behavior of GSCs, inhibiting their apoptosis and facilitating their generation,
maintenance, proliferation, growth, and dedifferentiation, which ultimately contributes to tumour formation.
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Schematic representation of RNA methylation alteration and its corresponding biological effects in glioma progression. Green icons represent writers
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progression, which promotes the EMT, proliferation, and invasion of glioma cells. Alterations in other molecules, such as upregulation of MBNL1
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which contributes to the malignant progression of glioma.
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kinase (PERK) and other pathways (100, 101). In the context of

glioma initiation and progression, TRIM29 serves as a significant

immunosuppressive factor. Mechanistically, via degrading the

adaptor NEMO, TRIM29 inhibited interferon-regulatory factors

and NF-kB signaling, as it directly interacted with NEMO and

triggered its ubiquitination and breakdown (102–104). Throughout

glioma progression, the recruitment of YTHDF1 facilitates an

elevation in m6A-modified TRIM29 mRNA levels, subsequently

leading to the upregulation of tumor stem cell markers CD44 and

CD133 (105). The upregulation observed in gliomas facilitates tumor

growth and invasion via the activation of theWnt/b-catenin signaling
pathway (106, 107).

In addition to mRNAs, methylation-associated proteins can

also modify noncoding RNAs, thereby contributing to the

progression of gliomas. METTL3 is involved in the m6A

methylation of the lncRNA LINREP and maintains its stability by

recruiting HuR. Consequently, highly expressed LINREP confers

protection upon polypyrimidine tract-binding protein 1 (PTBP1)

against degradation, thereby significantly impeding ASEs and

promoting glioma progression (108). Previous studies have

demonstrated that the m6A reader EIF4A3 interacts with the

circASAP1 flanking sequence, leading to upregulation of its

expression. This upregulation subsequently activates the NRAS/

MEK1/ERK1–2 signalling pathway by sequestering miR-502–5p,

thereby promoting glioma cell proliferation (109). The function of

tRNA can also be affected by RNA methylation. The METTL1-

WDR4 complex participates in the m7G modification of tRNA and

prevents its degradation. Researchers have reported that aberrant

expression of METTL1 is associated with brain malformation and

multiple malignancies (46). Interestingly, METTL1 is highly

expressed in glioma and significantly promotes its growth and

proliferation via activation of the MAPK pathway (110). In

addition to METTL1, TRMT6 and TRMT61 can promote

malignant transformation and progression by sustaining tRNA

methylation in glioma (111). Bioinformatics screening revealed

that TRMT6 is highly expressed in high-grade gliomas and is

involved in regulating the cell cycle and the PI3K-AKT, TGF-b,
MTORC1, NOTCH, and MYC pathways to promote glioma

proliferation. The inhibition of TRMT6 significantly suppresses

the proliferation, migration, and invasion of glioma cells (112).

Within this cascade of pathways, the PI3K-AKT pathway can also

be activated by elevated IGF2BP2 in gliomas, thereby promoting

GBM cell proliferation, migration, invasion, and EMT (113). In fact,

the PI3K-AKT pathway plays a particularly crucial role in the

progression of gliomas, with various RNA methylations

promoting glioma progression by influencing this pathway. For

example, WTAP is a nuclear protein that regulates the activity of

epidermal growth factor receptor (EGFR) and has been reported to

be associated with cell proliferation and apoptosis (114). WTAP

activates the PI3K-AKT and extracellular signal-related kinase

pathways, thereby promoting glioma cell proliferation, migration,

and invasion (115). WTAP is highly expressed in glioma, and its

expression is closely correlated with glioma grade. Interestingly, the

gene encoding WTAP (WT1) is closely related to CD97. CD97 is

also a member of the EGFR family. Increased CD97 expression
Frontiers in Immunology 12
promotes cellular invasiveness and tumour migration (116–118).

WBSCR22 and TRMT112 are responsible for mediating m7G

methylation in rRNA (47). A recent study demonstrated that

WBSCR22 is upregulated in glioma and increases its growth and

proliferation via activation of the PI3K/AKT/GSK3b pathways

(119). The m6A writer hnRNPC promotes miR-21 expression in

T98G cells. Interestingly, the combination of miR-21 with

programmed cell death 4 (PDCD4) can inhibit PDCD4

expression, which inhibits apoptosis and promotes glioma

invasive activities via the promotion of AKT and p70S6K

pathway activation (120). Moreover, the expression of the long

noncoding RNA DDX11 antisense RNA 1 (DDX11-AS1) is

increased in gliomas. DDX11-AS1 interacts with hnRNPC and

thus activates the Wnt/b-catenin and AKT pathways, which

promote the EMT process in gliomas (121).

In general, the NF-kB signalling pathway plays a crucial role in

the malignant progression of gliomas, whereas the PI3K-AKT

pathway contributes to glioma proliferation and growth and

facilitates glioma invasiveness and migration (Figure 4).

In addition to participating in the proliferation and growth of

gliomas, METTL3 is involved in the formation of the glioma

vasculature. It stabilizes the mRNAs of BUD13 and CDK12,

thereby promoting MBNL1 phosphorylation and subsequently

facilitating the formation of glioma vasculogenic mimicry (VM)

(122). Notably, however, the downregulation of METTL3

expression and the upregulation of expression of the eraser

ALKBH5 can also promote VM (123). This paradoxical

phenomenon requires further investigation. The m5C writer

NSUN2 is also increased in glioblastoma endothelial cells, which

increases the stability of LINC00324 by m5C modification and

upregulates its expression. The highly expressed LINC00324 binds

with the AUH protein. Thus, the ability of the AUH protein to bind

to CBX3mRNA is reduced. LINC00324 thus increases the expression

of CBX3, which binds to the promoter region of VEGFR2 to promote

the expression of VEGFR2, promoting angiogenesis in glioma (124).

Similar to LINC00324, many noncoding RNAs, such as the small

nucleolar RNA SNORD17, are highly expressed in glioma tissues.

SNORD17 can promote the methylation of KAT6B mRNA, leading

to decreased KAT6B expression, which in turn promotes the

upregulation of VEGFR2 and VE-cadherin expression, thereby

facilitating VM in GBM (125).

Given that RNA methylation-associated proteins promote

glioma development, reversing this trend could inhibit glioma

progression. We found that EIF3b knockdown can inhibit the

proliferation of glioma U87 cells through cell cycle arrest in the

G0-G1 phase and promote apoptosis (126). Another report

demonstrated that hnRNPA2/B1 knockdown leads to inactivation

of the AKT and STAT3 signalling pathways, which ultimately

reduces the expression of B-cell lymphoma-2 (Bcl-2), cyclin D1,

and proliferating cell nuclear antigen (PCNA) (127). The

hnRNPA2B1 ablation exhibited a significant tumour-suppressive

effect on glioma cell proliferation, GSC self-renewal and

tumorigenesis (128). YB-1 is an m5C reader that affects the

expression of key proteins and the phosphorylation of key

pathways involved in the cell cycle, adhesion, and apoptosis in
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gliomas (129). It is highly expressed in glioma tissues. The

upregulated YB-1 protein binds to CCT4 mRNA to promote its

expression, which enhances the mLST8 folding process and

eventually activates the mTOR signalling pathway in glioma

(130). YB-1 is also highly expressed in glomeruloid microvascular

endothelial cells of brain tumours and microvessels in the

desmoplastic region around multiple solid tumours. Inhibition of

this high expression can decrease the vasogenic effect of growth

factors, thus inhibiting tumour growth (131).

In summary, significant alterations in the methylation of

mRNAs and noncoding RNAs occur during the malignant

progression of gliomas. The majority of alterations in mRNA

methylation directly contribute to glioma progression by

activating specific signalling pathways. For instance, the activation

of the NF-kB signalling pathway is implicated in the malignant

advancement of gliomas, while the PI3K-AKT pathway is known to

enhance glioma proliferation and growth, as well as facilitate

invasiveness and migration. Nevertheless, some of these pathways

exhibit correlational relationships, and the mechanisms leading to

glioma progression are multifaceted. For example, the m5C reader

influences the expression of key proteins and the phosphorylation

of critical pathways involved in the cell cycle, adhesion, and

apoptosis in gliomas (129). In conclusion, we have systematically

reviewed the complete signalling pathways currently reported to be

associated with RNA methylation and glioma progression. Among

these modifications, the most important is m6A modification.

Additionally, m7G, m5C, and m1A also exhibit varying degrees

of alteration. These alterations in methylation levels ultimately

activate downstream pathways that drive a sequence of malignant

progression events in gliomas. These processes include

proliferation, growth, invasion, EMT, and angiogenesis. m6A

modification changes across these progression stages and broadly

impacts the methylation levels of both mRNAs and noncoding

RNAs. Intriguingly, the m7G, m5C, and m1A modifications

influence the methylation status of noncoding RNAs. The effects

of m6A, m7G, m5C, and m1A methylation are intricately regulated

by a network involving writers, erasers, and readers, thereby

contributing to the evolution of glioma cell biological behaviours.
3.3 Role of RNA methylation in glioma drug
resistance

Drug resistance in gliomas is one of the primary reasons for

their high degree of malignancy, low survival rates, and propensity

for recurrence. Previous studies have revealed the critical role of

RNA methylation alterations in the development of drug resistance

in gliomas. Therefore, gaining a deeper understanding of the

mechanisms by which RNA methylation leads to glioma drug

resistance is imperative.

Temozolomide (TMZ) is the most common and fundamental

chemotherapeutic drug used to treat malignant gliomas (132, 133).

Research has revealed a close correlation between the methylation

levels of RNA and the emergence of resistance to TMZ. In 2008, it

was first concluded that MGMT promoter methylation is a
Frontiers in Immunology 13
recognized test indicator for predicting the efficacy of TMZ in the

treatment of glioma (75). Therefore, we examine the specific

mechanisms by which RNA methylation leads to resistance to

TMZ (Table 1).

m6A methylation is the most prevalent RNA modification

observed to be significantly altered in gliomas. Interestingly, the

m6A writer METTL3 stabilizes the mRNAs of MGMT and ANPG,

which are two molecules responsible for critical DNA repair

processes. Consequently, high METTL3 expression results in

increased resistance to TMZ in GSCs (134, 135). The findings of

these studies pave the way for the proposition of broadly reducing

methylation to increase glioblastoma TMZ sensitivity (134). In

addition to m6A writers, some erasers and readers can also

promote TMZ resistance in gliomas. For example, the m6A

reader EIF4 has been shown to increase glioma drug resistance.

EIF4A3 activates the NRAS/MEK1/ERK1–2 signalling pathway by

upregulating the expression of circASAP1, which significantly

promotes glioma reproduction and TMZ resistance (109).

Moreover, the m6A eraser FTO was reported to reduce the

efficacy of TMZ by targeting the MYC signalling pathway (80).

Additionally, elevated circ_0072083 inhibits the expression of miR-

1252-5p, resulting in increased ALKBH5 levels that contribute to

the demethylation of Nanog homeobox (NANOG) mRNA. This

increase in NANOG expression also results in increased TMZ

resistance in gliomas (136). Interestingly, ALKBH5 can also

enhance glioma resistance to TMZ by stimulating the expression

of SOX2, which coincides with the role of METTL3 in stabilizing

GSCs through the promotion of SOX2 expression. ALKBH5

demethylates SOX2 mRNA, consequently stabilizing it and

leading to SOX2 overexpression, which in turn activates the

Wnt5a/b-catenin signalling pathway. This not only promotes

glioma cell proliferation but also enhances TMZ resistance (137).

Moreover, the upregulation of SOX2 mediated by METTL3 and the

increased expression of ALKBH5 also enhance the radioresistance

of glioma. Both contribute to activation of the HR pathway, thereby

promoting DNA damage repair and radioresistance (95). In

summary, increased expression of ALKBH5 poses a significant

obstacle to glioma therapy. Further elucidating its pathogenic

mechanisms and investigating strategies to inhibit the effects of

ALKBH5 will be important research directions for the future.

ZC3H13, which acts as a stabilizer of the MTC, facilitates the

localization of the ZC3H13-WTAP-Virilizer-Hakai complex in the

nucleus, thereby maintaining normal RNA m6A methylation (19,

20). Researchers have revealed that the ZC3H13 mutation

(decrease) significantly disrupts the balance of intracellular

methylation, which increases the resistance of glioma to TMZ (138).

In addition to conferring TMZ resistance, RNA methylation-

related proteins also contribute to resistance against other targeted

drugs, thereby posing significant challenges in the treatment of

gliomas. For example, in the glioblastoma U87 cell line, YTHDF3

can suppress the expression of p21 by inhibiting the p21 signalling

pathway, thereby promoting resistance to a targeted drug,

osimertinib (139). Furthermore, hnRNPA1 binds methylated

cyclin D1 and c-myc internal ribosome entry site (IRES) mRNAs,

leading to elevated IRES activity and drug resistance protein
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synthesis, which is correlated with increased resistance of GBM to

mTOR inhibitors (140). In most reported cases, METTL3 promotes

the occurrence of gliomas. Studies have reported that high METTL3

expression in gliomas increases their resistance to antiangiogenic

drugs. The specific mechanism involves METTL3 stabilizing the

mRNAs of BUD13 and CDK12, leading to their overexpression,

which in turn promotes the phosphorylation of MBNL1 and

facilitates the VM process in gliomas (122).

In summary, METTL3-mediated m6A methylations represent

crucial factors contributing to drug resistance in gliomas. These

methylation alterations can induce resistance to the conventional

chemotherapy drug TMZ and interfere with other targeted

therapies. Therefore, given that the MGMT promoter methylation

level can be used to predict the curative effects of TMZ (75),

combining chemotherapy with drugs that target methylation

changes may represent a promising new therapeutic approach for

treating gliomas in the future.
3.4 RNA methylation-associated proteins
inhibit the progression of gliomas

In most cases, increased levels of RNA methylation and the

expression of associated proteins contribute to the deterioration of

gliomas, including their initiation, progression, and resistance to

drug therapy. Nevertheless, several studies have demonstrated that

certain methylation-related proteins can inhibit the progression of

gliomas and may serve as protective factors. These proteins, such as

FTO, are demethylases that reverse the high methylation levels

typically found in gliomas. Although FTO is upregulated in gliomas,

it may counteract abnormal methylation, serving as a compensatory

mechanism that reduces the malignancy of gliomas. However, some

methyltransferases also exhibit antiglioma effects. This might occur

because methyltransferases stabilize the disrupted methylation

network in glioma tissue or because methyltransferases can

recruit demethylases to maintain cellular methylation homeostasis.

Although reports suggest that FTO can promote the onset of

gliomas (80), notably, in most cases, the expression of FTO in

gliomas is significantly negatively correlated with tumour

malignancy. Therefore, FTO is generally considered a protective

factor against glioma progression. Furthermore, reports indicate

that FTO can inhibit glioma growth and invasion, making it a

potential suppressor of GBM (141). Mechanistically, FTO promotes

the nuclear translocation of FOXO3a, resulting in high expression

of FOXO3a downstream factors such as BIM, BNIP3, BCL-6, and

PUMA. This inhibits the hypoxia-induced capacity of glioma cells

to proliferate, migrate and invade (98, 141). Artificially blocking the

high expression of FTO via the application of miR-27a-3p could

significantly promote the progression of glioma (141). Similarly, the

downregulated expression of FTO enhances the m6A modification

of primary microRNA-10a (pri-miR-10a), which can be recognized

by the reader HNRNPA2/B1 and increase the glioma tumour

burden (142).

Although many studies have reported that METTL3 promotes

the occurrence and progression of gliomas (13, 14, 74, 77), METTL3
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also has inhibitory effects on glioma occurrence. Highly expressed

METTL3 reduces the mRNA level of a disintegrin and

metallopeptidase domain 19 (ADAM19). Consequently, it inhibits

the growth and self-renewal of GSCs. After METTL3 knockdown,

ADAM19 expression increases, which promotes the occurrence of

glioma (78). Moreover, silencing METTL3 also results in

downregulated expression of ADAR while increasing the

expression of apolipoprotein B mRNA-editing enzyme catalytic

subunit 3A (APOBEC). This alteration leads to a series of aberrant

ASEs, specifically, the A-to-I and C-to-U RNA editing events in

GSCs, and eventually activates oncogenic pathways associated with

the development of gliomas (143). In addition to mRNAs, METTL3

mediates the methylation of circRNAs, which methylates and

stabilizes circDLC1. This process enhances CTNNBIP1 expression

via competitive binding with miR-671-5p. Consequently, highly

expressed CTNNBIP1 significantly inhibits glioma cell proliferation

(144). Another study reported that METTL3 expression is

decreased in the U251 glioma cell line. Along with increased

expression of FTO, the m6A modification level significantly

decreases and consequently increases the expression of HSP90,

which interferes with the apoptotic system and promotes glioma

development (145).

In conclusion, the regulation of tumour progression by RNA

methylation constitutes a complex network in which both

excessively high and low levels of RNA methylation can

potentially promote the occurrence and progression of gliomas

(Table 1). Therefore, maintaining the homeostasis of RNA

methylation within cells is crucial for normal function and

provides a novel perspective for glioma therapies.
4 Potential diagnostic implications of
RNA methylation in GBM

A 2004 study reported that the DNA m5C modification can be

used as a predictive biomarker for the diagnosis and recurrence of

gliomas (146). Recently, a scoring system based on the level of

RNA m6A methylation was proposed. Patients with low m6A

methylation scores tend to exhibit normal T-cell functionality in

the tumour microenvironment in contrast to those with high

m6A methylation scores. Moreover, the former patients also

show better treatment responsiveness to chemotherapy drugs

such as bevacizumab and regorafenib (147). These findings shed

light on the broad prospects of utilizing RNA methylation for

diagnosing gliomas. An increasing number of studies have

reported that with the development of glioma, the RNA

methylation level changes significantly. Although the specific

molecular mechanisms of glioma carcinogenesis remain to be

further explored, alterations in RNA methylation during glioma

development can be detected manually, which makes it possible to

detect glioma earlier and better predict its prognosis. We

summarize the trends of alterations in RNA methylation-related

molecules in glioma tissues during the course of the disease, and

also summarize several possible biomarkers for glioma diagnosis

and prognosis (Table 2).
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TABLE 2 Prognostic value of RNA methylation-associated proteins in gliomas.

Methylation
types

Roles
in RNA

Modification

RNA
methylation
regulators

Expression in gliomas
Prognostic value

in gliomas
Refs

m6A

m6A Writers METTL3 Controversial

Mainly higher malignant grade and
poorer prognosis of IDH-wildtype
gliomas; Secondarily longer median

overall survival (OS) time

(13, 14, 123)

m6A Writers METTL14 Elevated Protective factor (78)

m6A Writers WTAP Elevated Poor prognosis (116)

m6A Writers KIAA1429 To be confirmed To be confirmed

m6A Writers RBM15/15B Elevated IDH-wildtype GBM (148, 149)

m6A Writers ZC3H13 Decreased Increasing TMZ resistance (138, 148)

m6A Erasers FTO Controversial
Lower expression implies higher

glioma grades and poorer
clinical outcomes

(80, 142, 148)

m6A Erasers ALKBH5 Elevated
Shorter median overall survival

(OS) time
(123)

m6A Readers YTHDF1 Elevated
Risk factors for HGG poor prognosis

and chemoresistance
(151, 152)

m6A Readers YTHDF2 Elevated Risk factors for HGG poor prognosis (74, 99)

m6A Readers YTHDF3 Elevated Risk factors for HGG (56)

m6A Readers YTHDC1 Elevated Protective factors for HGG (56)

m6A Readers YTHDC2 Elevated
Risk factors for LGG onset and

poor prognosis
(26)

m6A Readers IGF2BP1 Elevated Poor prognosis (88, 89)

m6A Readers IGF2BP2 Elevated TMZ resistance (113)

m6A Readers IGF2BP3 Elevated Poor prognosis (90, 91)

m6A Readers HNRNPC Elevated Better prognosis (150)

m6A Readers HNRNPA2B1 Elevated To be confirmed (148)

m6A Readers EIF3i Elevated
Independent prognostic factor for

poor prognosis of IDH-mutant LGG
(93)

m5C

m5C Writers NSUN2 Elevated
Independent biomarker for prognostic

evaluation in patients with LGG
(155)

m5C Writers NSUN5 Elevated
Protective factor but requires

further investigation
(171)

m5C Writers Other NSUN To be confirmed To be confirmed

m5C Erasers TET1 To be confirmed Protective factor (36)

m5C Erasers TET2 To be confirmed Protective factor (36)

m5C Erasers TET3 To be confirmed Protective factor (36)

m5C Readers YB-1 Elevated
Shorter median overall survival

(OS) time
(129)

m5C Readers ALYREF Elevated LGG poor prognosis (155, 158)

m7G

m7G Writers METTL1 Elevated Poor prognosis (110, 154)

m7G Writers WDR4 Elevated Poor prognosis (110, 154)

m7G Writers WBSCR22 Elevated Poor prognosis (119)

(Continued)
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4.1 RNA m6A methylation levels and
associated proteins serve as diagnostic and
prognostic biomarkers

METTL3 is one of the most important m6A writers of RNA.We

have reported that high METTL3 expression in GSC-rich GBM is

indicative of a poor prognosis (13). Moreover, METTL3 expression

is positively associated with a higher malignant grade and poorer

prognosis in IDH-wild-type gliomas but not in IDH-mutant

gliomas (14). As one of the substrates of METTL3, high

expression of SRSF7 also significantly promotes the progression

of glioma (84). However, completely contradictory results have

been reported, revealing that patients with relatively high

expression of METTL3 have prolonged disease-free survival

(123). Thus, the diagnostic value of METTL3 is debatable and

requires further investigation. WTAP, another important

component of the m6A writer, has increased expression in glioma

and can predict poor postoperative survival in glioma patients.

Thus, WTAP may serve as a good novel prognostic biomarker

(116). In addition to WTAP, the expression of METTL14, RBM15,

and its paralogue RBM15B is also increased in gliomas (148). It has

been reported that increased expression of RBM15 has prognostic

value in IDH-wildtype GBM (149). However, not all m6A writer

components are elevated during the development of glioma. The

expression of ZC3H13 is generally decreased in glioma tissues

(148), which increases the resistance of glioma to TMZ (138).

For m6A erasers, the expression of FTO is generally lower in

glioma tissues than in normal tissues (148). Decreased FTO

expression in clinical samples is correlated with higher glioma

grades and poorer clinical outcomes (142). Interestingly, in

contrast to FTO expression, increased ALKBH5 expression in

gliomas implies a poorer prognosis. Patients with higher

expression of ALKBH5 were reported to have a significantly

shorter median overall survival (OS) time (123). Furthermore,

depleting ALKBH5 expression is responsible for disrupting the

tumorigenesis process of gliomas (79). Thus, increased expression

of ALKBH5 and decreased expression of FTO can be used to predict

the poor prognosis of gliomas.

With respect to m6A readers, according to a Lasso-Cox

regression algorithm, glioma patients with high expression of
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HNRNPC had a good prognosis (150). These findings suggest

that high HNRNPC expression can be used to predict a better

prognosis in glioma patients. Nevertheless, the high expression of

most other m6A readers implies a poor prognosis in gliomas. For

example, the m6A reader YTHDF1 positively regulates GBM

proliferation, chemoresistance, and cancer stem cell-like

properties. Studies have confirmed that high expression of

YTHDF1 predicts a poor prognosis in glioma patients (151, 152).

In addition, another study demonstrated that YTHDF2 is

overexpressed in glioma, which promotes its malignant

progression both in vitro and in vivo (74). Clinically, YTHDF2

overexpression is also correlated with poor glioma patient prognosis

(99). K-M survival curve showed the prognostic significance of

YTHDC2 expression in the context of LGG, which is significantly

elevated in LGG (26). Other readers, such as IGF2BP3, can be

regulated by circRNAs, specifically circNEIL3 and circHIPK3. The

expression of circNEIL3 and circHIPK3 is upregulated in glioma

tissues, and this elevated expression level is closely linked to poor

patient prognosis (90, 91). Moreover, high expression of eIF3i could

be used as an independent prognostic factor for poor prognosis in

IDH-mutant LGG (93), which may be highly useful in the diagnosis

and treatment of glioma. In addition, the expression levels of

YTHDF3 and hnRNPA2/B1 are elevated in gliomas (148), but

they may not have as much independent clinical significance as

the highly expressed eIF3i in LGG.

In conclusion, among the currently known m6A readers,

although highly expressed HNRNPC is a protective factor for

glioma, high HNRNPC expression of other readers always

indicates a poor prognosis in glioma patients. Expression of some

of these readers can even serve as independent predictors of poor

prognosis in patients with gliomas.
4.2 Other RNA methylation levels and
associated proteins serve as diagnostic and
prognostic biomarkers

Similar to the m6A methylation scoring system in glioma

patients, which has been demonstrated to predict prognosis (147),

a glioma m5C signature has also been established for prognosis
TABLE 2 Continued

Methylation
types

Roles
in RNA

Modification

RNA
methylation
regulators

Expression in gliomas
Prognostic value

in gliomas
Refs

m7G Writers TRMT112 To be confirmed To be confirmed

m7G Writers RNMT Elevated Risk factor (81)

m7G Writers RAM Elevated Risk factor (81)

m1A

m1A Writers TRMT6 Elevated Poor prognosis (111, 112)

m1A Writers TRMT61 Elevated Poor prognosis (111, 112)

m1A Erasers ALKBH1 Elevated Risk factors for HGG (56)

m1A Erasers ALKBH3 Elevated Risk factors for HGG (56)
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prediction (153). Moreover, a predictive nomogram for the m7G

modification score has been developed, and the prognostic value of

detecting m7G modifications in gliomas has been explored (154).

Additionally, recent studies have indicated that m1A-associated

proteins can be used to assess the prognosis of gliomas. Collectively,

these findings highlight the diagnostic and prognostic significance

of m5C, m7G, and m1A methylation in gliomas.

The ability of the m5C writer to predict the prognosis of glioma

patients is mainly related to its ability to predict the prognosis of

LGG patients. The expression of NSUN2 was found to be

upregulated, and this upregulation of NSUN2 serves as an

independent biomarker for prognostic evaluation in patients with

LGG (155). NSUN5 specifically participates in the methylation

process of 28S rRNA, which promotes the synthesis of a series of

carcinogenic proteins and thus plays a crucial protumorigenic role.

Therefore, highly expressed NSUN5 can be utilized to predict the

prognosis of gliomas (156). Moreover, the upregulation of m5C

writers contributes to the high methylation of four lncRNAs,

including LINC00265, CIRBP-AS1, GDNF-AS1, and ZBTB20-

AS4. The m5C methylation level of these genes is associated with

LGG prognosis. Therefore, monitoring the m5C methylation levels

of these four RNAs can serve as a valuable prognostic tool for LGG,

with high expression indicating an unfavourable outcome (157).

The m5C reader includes YB-1 and ALYREF, both of which are

reported to have prognostic value. The overexpression of YB-1 has

been demonstrated to be positively associated with glioma

progression and inversely correlated with patient overall survival

(OS) (129). Thus, YB-1 can be considered a risk factor for poor

prognosis in glioma patients. Although the carcinogenic

mechanism of ALYREF is unclear, it has been reported that high

expression of ALYREF can be used to predict poor prognosis in

patients with LGG (155). Moreover, increased expression of

ALYREF has been reported in gliomas, which also verifies its

prognostic value (158).

A predictive nomogram for the m7G modification score has

been established that explores the prognostic value of detecting the

m7G modality in gliomas. In addition, an analysis of the TCGA and

GEO databases has revealed that transcriptomic alterations in genes

associated with m7G methylation regulators are linked to the

prognosis of gliomas (159). Mechanistically, excessive m7G

methylation is positively associated with activation of the SPP1

and PTN signalling pathways. This results in changes in the TIMEs

and ASEs, which are associated with the poor prognosis of gliomas

(154). Among the m7G writers, METTL1 and WBSCR22, both of

which are highly expressed in glioma tissues and promote their

proliferation and growth, are closely associated with the prognosis

of glioma patients (110, 119). Thus, increased expression of

METTL1 and WBSCR22 may be used to determine the prognosis

of glioma patients.

With respect to m1A methylation, inhibition of TRMT6

suppressed the proliferation, migration, and invasion of glioma

cells. The elevated expression of TRMT6 may serve as a powerful

and independent biomarker for poor prognosis in glioma (112).

Moreover, a concomitant increase in TRMT6/TRMT61 mRNA and

tRNAi (Met) expression with decreased expression of PKCamRNA
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was detected in highly aggressive glioblastoma as compared with

Grade 2/3 glioma (111). In conclusion, through the comparison of

LGG and HGG, increased m1A modification markedly affected

glioma prognosis. We conclude that the upregulation of TRMT6

and TRMT61 can be used to predict a poor prognosis. In addition,

other studies have demonstrated that the overexpression of NML

and TRMT10C can be considered risk factors for gliomas (56).

Generally, the RNAmethylation scoring system provides a good

research perspective and could serve as an auxiliary diagnostic tool

for gliomas in the future. In addition, monitoring alterations in the

expression levels of other RNA methylation-related proteins is

crucial for the diagnosis and prognostic assessment of gliomas.
5 From bench to bedside: potential
therapeutic implications of RNA
methylation in gliomas

To date, multiple potential therapeutic targets have been

identified based on RNA methylation (160). Generally, these

therapeutic targets focus on the m6A methylation of RNA.

Additionally, the modification of some noncoding RNAs has also

become an increasingly important direction in the study of glioma

therapy. We summarize the existing methods for treating gliomas

by altering RNA methylation (Table 3).
5.1 Targeting m6A

As one of the most significant m6A writers, METTL3 has great

potential for the development of drugs to treat gliomas. In the

majority of cases, METTL3 is known to promote glioma

development, and studies have reported that its overexpression

enhances the formation of VM in gliomas, thereby increasing

glioma resistance to treatment. Inhibiting the methylation of

METTL3 or knocking down its downstream upregulated factors,

such as BUD13 and CDK12 (122), can significantly suppress VM

occurrence. This may become a pivotal strategy for future glioma

therapies. It is worth noting that the upregulation of METTL3 and

various m6A methylation levels significantly promote glioma cell

resistance to TMZ. Nevertheless, an inspiring recent study revealed

that DAA-mediated methylation blockade can restore TMZ

sensitivity in GBM cells (134). These findings suggest that

reducing overall methylation levels may contribute to maintaining

methylation homeostasis within cells and provide novel insights

into potential therapeutic methods for GBM. One study revealed

that miR-29a inhibits mRNA expression of the Quaking gene

isoform 6 (QKI-6) by binding to its 3’-UTR, which inhibits the

expression of another m6A writer, WTAP. Consequently,

downregulated WTAP inhibits the PI3K-AKT and extracellular

signal-related kinase pathways, thereby inhibiting cell proliferation,

migration, and invasion but promoting apoptosis in GSCs. Thus,

miR-29a can be used as a potential therapeutic agent (115).

In addition to targeting m6A writers, studies have reported that

m6A erasers may serve as promising therapeutic targets for glioma.
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IDH mutations block cell differentiation and promote tumour

transformation, and the inhibition of mutant IDH (IDHi) can

reverse this effect. Thus, as the major metabolic product of IDH

mutants, R-2HG has been regarded as an oncometabolite (161–

164). However, R-2HG inhibits FTO in glioma, causing MYC/

CEBPA mRNA methylation, disrupting the stability of these

oncogene transcripts and inhibiting the activation of downstream

oncogene pathways. Thus, R-2HG has an antiglioma effect (165).

This explains why the IDH mutation is deemed a benign mutation

in gliomas and could be used to predict a better prognosis.

Meclofenamic acid (MA2) also inhibits the expression of FTO,

thus enhancing the ability of the chemotherapy drug TMZ to

suppress the proliferation of glioma cells (80). Therefore,

inhibiting FTO overexpression may be an effective method for

treating glioma. However, another study reported contradictory

results. Researchers have shown that application of the SPI1

inhibitor DB2313 increases FTO expression and decreases the

GBM tumour burden (142). Although FTO has broad prospects

as a therapeutic target for glioma, its specific efficacy still needs to be

validated in further clinical trials. Another eraser, ALKBH5, is also

highly expressed in gliomas. High expression of ALKBH5

significantly inhibits TME immune activation and promotes

glioma growth. IOX1 is a specific inhibitor of ALKBH5.
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Pharmacological inhibition of ALKBH5 enhances the therapeutic

efficacy of anti-PD-1 treatment in preclinical mouse models.

Therefore, the combination of anti-PD-1 and anti-ALKBH5 is a

promising therapeutic strategy for gliomas (96). Additionally, miR-

1252-5p also serves as an inhibitor of ALKBH5, suppressing

ALKBH5-mediated demethylation and thereby reducing NANOG

expression in gliomas. Consequently, glioma tissues are more

sensit ive to TMZ, result ing in improved therapeutic

outcomes (136).

There are many m6A readers that can be used as therapeutic

targets. For example, miR-526b-3p can suppress IGF2BP1, thereby

inhibiting the MAPK pathway and reducing the incidence of

gliomas (88). Similarly, miR-4500 also targets IGF2BP1 to inhibit

the development of gliomas (166). In addition to IGF2BP1,

inhibition of IGF2BP2 increases the sensitivity of glioma cells to

TMZ (113). Another study revealed that the lncRNA WEE2-AS1

can be methylated by m6A and recognized by IGF2BP3, which

activates the PI3K-AKT signalling pathway, leading to the

occurrence of glioma. They reported that blocking WEE2-AS1

expression improved the therapeutic sensitivity to dasatinib (72).

Moreover, the inhibition of hnRNPC can reduce the expression of

miRNA-21 in gliomas and promote the expression of PDCD4, thus

inhibiting metastasis (120). Similarly, hnRNPA2/B1 inhibition is
TABLE 3 RNA methylation-associated protein-targeted treatments in gliomas.

Molecule
(drugs)

Regulatory
roles

Targets
Target roles in

RNA Modification
Biological effects Refs

DAA Inhibitor METTL3 m6A writer Restoring TMZ sensitivity (134)

miR-29a Inhibitor WTAP m6A writer
Inhibiting cell proliferation, migration, and invasion but promoting

apoptosis in GSCs
(115)

R-2HG Inhibitor FTO m6A eraser
Disrupting the stability of oncogenic transcripts and inhibiting the

activation of downstream oncogenic pathways
(165)

MA2 Inhibitor FTO m6A eraser
Enhancing the effect of TMZ on suppressing proliferation of

glioma cells
(80)

DB2313 Promotor FTO m6A eraser Decreasing GBM tumour burden (142)

IOX1 Inhibitor ALKBH5 m6A eraser Enhancing the therapeutic efficacy of anti-PD-1 treatment (96)

miR-1252-5p Inhibitor ALKBH5 m6A eraser Enhancing the sensitivity of glioma tissues to TMZ (136)

miR-526b-3p Inhibitor IGF2BP1 m6A reader Reducing the incidence of gliomas (88)

miR-4500 Inhibitor IGF2BP1 m6A reader Inhibit the development of gliomas (166)

WEE2-AS1 Promotor IGF2BP3 m6A reader
Blocking WEE2-AS1 expression improved the therapeutic

sensitivity of dasatinib
(72)

circNEIL3/
circHIPK3

Promotor IGF2BP3 m6A reader
Decreasing the expression of circNEIL3 and circHIPK3 reduced

glioma occurrence
(90, 91)

Musashi-1 Promotor YTHDF1 m6A reader Decreasing Musashi-1 reduced GSCs (151)

Linsitinib Inhibitor
IGF1/IGF1R
YTHDF2-

expressing cells
m6A reader Inhibiting GSC viability, impairing glioblastoma growth (82)

miR-129-5p Inhibitor DNMT3A m5C writer Suppressing the proliferation of glioma cells (167)

YBX1-1/
YBX1-2

Inhibitor YB-1 m5C reader Slower tumour growth (130)

PKCa Inhibitor TRMT6/61 m1A writer Inhibiting malignant transformation and progression of gliomas (111)
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also expected to be a therapeutic target for gliomas (127). The IGF1/

IGF1R inhibitor linsitinib preferentially targets YTHDF2-

expressing cells, inhibiting GSC viability without affecting normal

neural stem cells (NSCs) or impairing glioblastoma growth in

vivo (82).

In addition to directly inhibiting m6A readers, artificially

reducing the upstream inducing factors of m6A readers can also

be used for the treatment of glioma. High expression levels of some

circRNAs, such as circNEIL3 and circHIPK3, promote the

occurrence of glioma by enhancing the high expression of

IGF2BP3 (90, 91). Artificially decreasing the expression of

circRNAs is a potential prognostic biomarker and therapeutic

target in glioma.

Currently, the application of RNA methylation in glioma

treatment focuses primarily on alterations in m6A methylation

levels. Most of these drugs are still in the preclinical development

stage. Therefore, further exploration of glioma treatment through

m6A methylation remains a primary research focus in the future.

Another promising direction involves expanding trials using other

forms of methylation for glioma treatment.
5.2 Targeting m5C

Although targeting m6A methylation remains the predominant

approach for RNA methylation in glioma therapy, emerging

research has identified RNA m5C methylation as a pivotal

therapeutic target for the treatment of gliomas. miR-129-5p can

inhibit DNMT3A, leading to significant cell cycle arrest, thereby

suppressing the proliferation of glioma cells (167). The RNA decoys

YBX1–1 and YBX1–2 specifically target YB-1, which prevents YB-1

from binding to the relevant mRNA and thus inhibits the activation

of downstream oncogenes, resulting in slower tumour growth and

better survival (130). Interestingly, highly expressed YB-1 can

increase the oncolytic activity of XVir-N-31, which is a YB-1-

dependent oncolytic adenovirus that has glioma-dissolving

activity. Additionally, irradiation therapy before XVir-N-31

infection increases the migration of YB-1 into the nucleus, which

significantly increases the oncolytic activity of XVir-N-31 (168).

The combination of multiple treatment modalities and methylation

therapy may become a hot research topic in the future. The role of

TET in glioma is focused mainly on the demethylation of DNA by

TET (169). TET converts the 5mC modification on DNA to 5hmC,

which can inhibit the development of gliomas. However, high

expression of SOX2 can inhibit the function of TET, thus

promoting the development of glioma (170). This finding is

consistent with the finding that highly expressed METTL3 in

glioma increases SOX2 expression, thus inhibiting differentiation

and promoting the generation of glioma (13). Therefore, efforts to

decrease the expression of SOX2 and increase the expression levels

of TET could be used to prevent the occurrence and progression of

gliomas. Recent research has revealed that NSUN5 can recruit

TET2, leading to conversion of the m5C modification to 5hmC

on the CTNNB1 caRNA, which is then recognized by the reader

RBFOX2, promoting caRNA degradation and immune system
Frontiers in Immunology 19
activation, increasing the phagocytosis of tumour-associated

macrophages (TAMs) and facilitating the elimination of gliomas.

Therefore, promoting NSUN5 expression has emerged as a novel

therapeutic target for gliomas (171). Additionally, NSUN5 can

facilitate the degradation of b-catenin mRNA, thereby enhancing

the phagocytosis of TAMs (171). However, caution should be

exercised in blindly increasing the expression levels of NSUN5, as

studies have also reported its potential to promote the synthesis of a

series of oncoproteins (156). The underlying reasons for this

contradictory phenomenon await further investigation.
5.3 Targeting m1A

The application of m1A methylation therapy for treating

gliomas is relatively rare. This suggests that the role of m1A in

gliomas warrants further investigation. Nonetheless, we observed

that TRMT6/61 promotes malignant transformation and

progression by sustaining tRNA methylation in glioma. This

process is inhibited by the protein kinase C PKCa (111). These

findings suggest that PKCa might be used as a new target for the

treatment of glioma.

In summary, the investigation of targeted RNA methylation

therapy for glioma remains largely at the preclinical stage. While

certain studies have exhibited the cytotoxic and inhibitory effects of

these therapeutic agents on glioma cells in vitro, without inducing

toxicity in normal cells, they usually lack comprehensive

pharmacokinetic analyses (82, 115). Nonetheless, the potential of

targeted RNA methylation therapy is substantial, particularly in

light of the extensive clinical application of TMZ chemotherapy for

gliomas characterized by high MGMT methylation, which

theoretically enhances its feasibility. Consequently, future research

exploring the combination of targeted RNA methylation therapy

with TMZ chemotherapy represents a promising avenue for

clinical investigation.
6 Conclusions and perspectives

In this review, we summarized the pathogenesis of glioma with

respect to the RNA modifications of m6A, m5C, m7G, and m1A.

Currently, there are more relevant studies on the role of RNA m6A

modifications in the occurrence and development of glioma,

whereas relatively few studies have investigated the roles of RNA

m5C, m7G, and m1A modifications in the occurrence and

development of glioma. We have summarized the changes in

RNA methylation levels during glioma development and the

associated downstream carcinogenic pathways. We note that most

RNA methylations are elevated when glioma occurs. Reversing this

alteration and maintaining cellular methylation homeostasis

present vast therapeutic prospects. Additionally, detection of this

alteration is helpful for predicting patient prognosis and detecting

glioma progression.

In recent years, an increasing number of studies have focused on

the mechanism of RNA methylation in the development of glioma.
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Excitingly, several advancements have beenmade. However, the effect

of RNA methylation on glioma remains unclear, particularly the

relationship between methylation content and the malignant grade of

glioma. Some studies have found that high levels of methylation, such

as METTL3-mediated m6A RNA methylation, can increase the

incidence of glioma (13). However, some studies have found that

high methylation levels can inhibit the progression of glioma, for

example, inhibiting the expression of FTO after IDH mutation,

resulting in increased methylation that degrades cancer-related

mRNAs (165). Some studies have found that increased expression

of hnRNPC is related to signalling pathways associated with the

malignant degeneration of glioma (92, 120, 121). However, in another

Lasso-Cox regression algorithm study, significantly increased

hnRNPC expression was associated with a longer OS (150). Some

studies have found that METTL3 stabilizes BUD13 and CDK12

mRNAs, subsequently leading to the phosphorylation of MBNL1,

and thereby promoting the formation of VM in glioma (122).

However, other studies have found that downregulation of

METTL3 expression and upregulation of the expression of the

eraser ALKBH5 can also promote VM (123). These opposing

phenomena require further investigation.

We conclude that these contrasting results are partly due to the

role of methylation readers. Some readers break down the

methylated RNA, whereas others stabilize it. Due to the selection

of various glioma models and the differing grades of glioma in the

study, the baseline levels of RNA methylation in cells vary, resulting

in divergent prognostic assessments regarding the detection of RNA

methylation. Furthermore, the incorporation of studies utilizing

diverse research and sequencing platforms introduces inherent

systematic biases. To thoroughly assess the mechanisms of RNA

methylation in glioma progression and its potential applications in

diagnosis and treatment, a future systematic review or meta-

analysis will be indispensable. According to the latest guidelines

for gliomas, the classification of gliomas at the molecular level is

becoming an increasingly accepted standard (3). Therefore, the

study of RNA methylation should be synchronized with the

molecular type of glioma. Specifically, the effects of RNA

methylation alterations on the occurrence and development of

glioma should be discussed according to its molecular type.

Our emphasis on the role of RNA methylation in gliomas is

primarily informed by three key considerations: 1. Glioma stem cells

(GSCs) play a pivotal role in therapeutic resistance and tumour

recurrence. Recent research indicates that m6A RNA methylation

exerts a dynamic regulatory effect on the equilibrium between self-

renewal and differentiation in GSCs (76, 77, 79, 81–83) (Figure 3).

This regulatory mechanism seems to be more pronounced in gliomas

compared to solid tumours that do not possess a clearly defined stem

cell hierarchy. 2. In the distinctively hypoxic microenvironment of

gliomas, there is an upregulation of m6A methyltransferases, such as

METTL3, which facilitates the adaptive translation of pro-survival

mRNAs, including targets of HIF-1a (39, 87). This dependency on

hypoxia-inducedmethylation is comparatively not obvious in cancers

characterized by more vascularized microenvironments. 3. The

existence of the blood-brain barrier presents a substantial obstacle

to the utilization of diagnostic biomarkers and targeted therapies for
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gliomas. Currently, TMZ chemotherapy constitutes the primary

clinical treatment for gliomas exhibiting high levels of MGMT

methylation. Nevertheless, treatment alternatives are notably

constrained for patients exhibiting resistance to TMZ. Considering

the documented benefits of targeting RNA methylation to surmount

drug resistance in gliomas (80, 109, 134–137)(Table 1), we posit that

exploring RNA methylation in gliomas offers considerable potential

for clinical application. Notably, the methylation level of RNA is

significantly altered not only in glioma but also in other diseases,

so this change may be used as a differential diagnostic marker (40).

RNA methylation also plays an important role in promoting

haematological tumours such as lymphoma and leukaemia and can

be used as a potential diagnostic and therapeutic target. Therefore, we

speculate that RNA methylation can be used as a novel biomarker in

the differential diagnosis of central nervous system glioma

and lymphoma.

In recent years, an increasing number of drugs have been

developed based on RNA methylation (72, 113, 115, 168), but

most are in the preclinical stage. However, glioma therapeutics

based on RNA methylation clearly have broad prospects. In

addition, recent research has found that miRNA-124-2, miRNA-

135a-2, and miRNA-29a are the most effective miRNAs across all

GBM subtypes with clinical relevance. High expression of all three

miRNAs in GSCs significantly decreases GSC proliferation in vitro

(172, 173). Given that 2012 and 2015 studies reported that m6A

methylation is involved in the modification of primary miRNAs,

which results in alterations from primary miRNAs to miRNAs (69,

120), we believe that studying the modification of noncoding RNAs

such as miRNAs might become a prospective research direction in

the future.
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