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Background: Breast cancer is the most common malignancy in women globally,

with significant heterogeneity affecting prognosis and treatment. RNA-binding

proteins play vital roles in tumor progression, yet their prognostic potential remains

unclear. This study introduces an Artificial Intelligence-Assisted RBP Signature (AIRS)

model to improve prognostic accuracy and guide personalized treatment.

Methods: Data from 14 BC cohorts (9,000+ patients) were analyzed using 108

machine learning model combinations. The AIRS model, built on three key RBP

genes (PGK1, MPHOSPH10, MAP2K6), stratified patients into high- and low-risk

groups. Genomic alterations, single-cell transcriptomics, tumor microenvironment

characteristics, and drug sensitivity were assessed to uncover AIRS-

associated mechanisms.

Results: The AIRS model demonstrated superior prognostic performance,

surpassing 106 established signatures. High AIRS scores correlated with

elevated tumor mutational burden, specific copy number alterations, and an

immune-suppressive TME. Single-cell analysis revealed functional heterogeneity

in epithelial cells, linking high AIRS scores to pathways like transcription factor

binding. Regulatory network analysis identified key transcription factors such as

MYC. Low AIRS scores predicted better responses to immune checkpoint

inhibitors, while drug sensitivity analysis highlighted panobinostat and paclitaxel

as potential therapies for high-risk patients.

Conclusions: The AIRS model offers a robust tool for BC prognosis and

treatment stratification, integrating genomic, transcriptomic, and single-cell

data. It provides actionable insights for personalized therapy, paving the way

for improved clinical outcomes. Future studies should validate findings across

diverse populations and expand functional analyses.
KEYWORDS

breast cancer, RNA-binding proteins, prognostic model, personal ized
treatment, immunotherapy
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2025.1583103/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1583103/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1583103/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1583103/full
https://www.frontiersin.org/articles/10.3389/fimmu.2025.1583103/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2025.1583103&domain=pdf&date_stamp=2025-04-16
mailto:Zhangxn@bbmu.edu.cn
mailto:wangtaoGPPH@gzu.edu.cn
https://doi.org/10.3389/fimmu.2025.1583103
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2025.1583103
https://www.frontiersin.org/journals/immunology


Zhao et al. 10.3389/fimmu.2025.1583103
Introduction

Breast cancer (BC) is the most common malignant tumor

among women worldwide. According to data released by the

International Agency for Research on Cancer (IARC) of the

World Health Organization, the number of new breast cancer

cases globally reached 2.26 million in 2020, surpassing lung

cancer to become the most prevalent cancer globally (1). The

primary treatment modalities for breast cancer include surgery,

radiotherapy, chemotherapy, endocrine therapy, and targeted

therapy. However, the significant heterogeneity of breast cancer

results in varied therapeutic responses and prognoses among

patients. For breast cancer patients, prognosis evaluation is crucial

for developing personalized treatment strategies. Consequently,

identifying novel biomarkers and therapeutic targets is critical for

advancing breast cancer diagnosis and treatment.

RNA-binding proteins (RBPs) play a pivotal role in regulating

gene expression. Current research suggests that RBPs may be

significantly involved in the development and progression of

breast cancer (2). Although the precise mechanisms remain

incompletely understood, studies have indicated that RBPs

influence key processes such as cell proliferation, apoptosis,

invasion, and metastasis in breast cancer (3). Additionally, RBPs

may contribute to drug resistance during chemotherapy. For

instance, RBPs can regulate the stability of mRNAs encoding

drug target proteins. In the case of paclitaxel treatment, certain

RBPs stabilize mRNAs related to tubulin, thereby reducing cancer

cell sensitivity to the drug and promoting resistance (4).

To comprehensively evaluate the clinical significance of RBPs in

breast cancer, this study established an Artificial Intelligence-Assisted

RBP Signature (AIRS) model. Through advanced machine learning

algorithms and multi-omics analysis, the study aims to elucidate the

role of RBPs in breast cancer progression, identify novel biomarkers

and therapeutic targets, and improve diagnostic and prognostic

assessments. Furthermore, the AIRS model is designed to enhance

risk stratification for breast cancer patients, providing a foundation

for personalized treatment approaches.
Methods

Data collection and cohort selection

This research incorporated 14 breast cancer cohorts sourced from

databases such as The Cancer Genome Atlas (TCGA), Gene Expression

Omnibus (GEO), Metabric, and TRANSBIG. Comprehensive survival

data provided by these cohorts were leveraged for in-depth analyses.

RBP were obtained from the ImmReg database (5).
Development and assessment of the RBP
signature

To construct a predictive model based on RBP for breast cancer, we

adopted a framework refined from earlier work, utilizing a
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combination of ten computational techniques (6). To construct the

AIRS model, we applied 10 commonly used machine learning

algorithms for survival analysis: Lasso, Ridge, Elastic Net, Stepwise

Cox, Random Survival Forest (RSF), Gradient Boosting Machine

(GBM), Survival Support Vector Machine (survival-SVM), CoxBoost,

Supervised Principal Components (SuperPC), and Partial Least

Squares Regression for Cox (plsRcox). Each algorithm was used

alone or in combination with others to form 108 model

configurations. These combinations were generated by pairing

algorithms either sequentially or through ensemble averaging. A total

of 108 configurations of these machine learning models were tested to

derive an artificial intelligence-based RBP signature (AIRS). Training

was conducted across multiple patient cohorts to optimize predictive

accuracy using the Concordance Index (C-index). Three RBP-

associated genes (PGK1, MPHOSPH10, and MAP2K6) were

identified through the Random Survival Forest (RSF) algorithm and

univariate Cox regression analyses. These genes formed the foundation

of the AIRS, which was adjusted for enhanced prognostic prediction.

Model performance was evaluated using the Concordance Index

(C-index), which measures the agreement between predicted and

actual survival outcomes. The C-index was computed using the

survcomp R package. Hyperparameters for each model were

optimized using 10-fold cross-validation within the training cohort.

The “survminer” R package’s surv_cutpoint function established the

optimal cutoff for stratifying patients into high- and low-risk groups.

The model’s robustness was validated across 14 independent breast

cancer cohorts, representing over 9,000 patients. Additionally, the AIRS

was benchmarked against 106 established breast cancer signatures,

demonstrating superior prognostic performance.
Genomic alteration analysis

Genetic variations between high- and low-risk AIRS groups were

examined in the TCGA-BRCA dataset, focusing onmutation levels and

Copy Number Alterations (CNA). Tumor Mutation Burden (TMB)

was derived from mutation data files, and genes with mutation

frequencies exceeding 5% were visualized using the maftools package.

Key mutational signatures (SBS3, SBS1, SBS12, and SBS11) were

emphasized. Additionally, amplified and deleted regions, including

critical genes within 3q26.32 and 5q21.3, were identified.
Single-Cell RNA sequencing analysis

Single-cell RNA sequencing (scRNA-seq) data from GEO

(GSE161529) were processed using Seurat (v4.0) (7). Genes lacking

expression were removed, retaining only those with detectable levels.

Data normalization employed the SCTransform function, with

dimensionality reduction achieved through Principal Component

Analysis (PCA) and Uniform Manifold Approximation and

Projection (UMAP). Clusters were identified using Seurat’s

FindNeighbors and FindClusters functions, and doublets were

eliminated using the DoubletFinder package (8). Cells passing quality

control thresholds (e.g., mitochondrial gene content < 15%, > 500
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expressed genes) were included, resulting in 51,637 cells. Cell type

annotation relied on known marker genes.
Inference of gene regulatory networks

The SCENIC approach was utilized to infer gene regulatory

networks (GRNs) from scRNA-seq data. Transcription factor (TF)-

target relationships were examined to define co-expression modules

and identify direct targets (6). Regulatory activity scores (RAS) were

computed for individual cells, and data were condensed into

metacells to enhance quality and computational efficiency (9).

Clustering analysis prioritized TFs with significant influence on

their targets, highlighting key nodes in the GRNs.
Tumor microenvironment and
immunotherapy analysis

Tumor microenvironment (TME) differences across AIRS-defined

groups were assessed using six immune infiltration algorithms

implemented via the IOBR package (10). Additionally, ESTIMATE and

TIDE scores provided insights into immunotherapy response potential

(11, 12). Immune checkpoint levels were evaluated as predictive markers

for patient response to immune checkpoint inhibitors (ICIs).
Identification of therapeutic agents

Potential therapies for high-risk AIRS patients were identified

using the Drug Repurposing Hub, where Spearman correlations

between AIRS scores and gene expression were computed. CTRP

and PRISM databases were utilized for drug sensitivity evaluation,

while the Connectivity Map (CMap) database highlighted agents

with the most therapeutic promise (CMap score < -60) (6).
Sample collection and
immunohistochemistry

Samples from 30 breast cancer patients were collected at

Guizhou Provincial People’s Hospital, with tumor tissues

confirmed by hematoxylin and eosin (HE) staining. Gene

expression for the seven core AIRS genes was measured using

qPCR to classify patients into risk groups based on the model.

Immunohistochemical analysis followed established protocols, with

results compared to previously published findings (13, 14).
Results

AI-assisted RBP signature for predictive
modeling in breast cancer

To comprehensively evaluate the clinical importance of RNA-

binding proteins (RBPs) in breast cancer (BC), a novel artificial
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intelligence-based RBP signature (AIRS) was created using 108

combinations of 10 machine learning algorithms. In the TCGA-

BRCA training cohort and eight validation cohorts, the average

concordance index (C-index) for each algorithm combination was

calculated to assess predictive accuracy (Figure 1A). Among these,

the random survival forest (RSF) algorithm, which achieved the

highest average C-index, was selected as the optimal predictive

model (Figure 1B).

To substantiate the prognostic relevance of the identified RBP

genes, univariate Cox regression analysis was conducted across all

nine cohorts (Figure 1C). This analysis assessed the correlation

between the expression of individual genes and patient survival,

pinpointing key predictive factors. Subsequently, an exhaustive

feature selection process evaluated all possible combinations of

genes, identifying the most predictive subset. This process

culminated in the selection of three pivotal RBP genes. Using the

expression levels of these genes, weighted by their regression

coefficients, an AIRS score was calculated for each patient

(Figure 1D). This rigorous approach ensured the model

incorporated the most significant and impactful genes, enhancing

both predictive precision and clinical applicability.

Based on the AIRS model, the survminer package was utilized to

classify patients into high- and low-risk groups by identifying an

optimal cut-off value. Kaplan-Meier survival analysis revealed

significantly higher mortality rates in the high-risk group within

the TCGA-BRCA training cohort, with similar trends observed in

the validation cohorts (Supplementary Figure S1A). The AIRS

model demonstrated robust performance, achieving time-

dependent area under the curve (AUC) values of 0.731, 0.715,

and 0.667 at 1, 3, and 5 years, respectively, in the training cohort.

Comparable results were observed across the validation cohorts,

underscoring the model’s reliability and potential clinical utility

(Supplementary Figure S1B).
Comprehensive evaluation of AIRS
predictive performance in breast cancer
cohorts

To further assess the predictive power of the AIRS model, its

efficacy was tested against 106 published prognostic features across

10 independent breast cancer cohorts. Univariate Cox regression

analysis demonstrated that AIRS was statistically significant in all

cohorts, underscoring its prognostic value (Figure 2A).

Additionally, a comparison of predictive accuracy between

AIRS and the 106 features, based on the C-index across the

10 cohorts, revealed the superior performance of AIRS,

highlighting its robustness and reliability in predicting breast

cancer outcomes (Figure 2B).

Subsequently, univariate and multivariate Cox regression

analyses were performed on key clinical and molecular variables,

including age, menopausal status, TNM stage, pathological stage,

ER, PR, HER2 expression, and the AIRS score. These analyses

aimed to establish whether the prognostic value of AIRS is

independent of other clinical and molecular factors. Even after
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FIGURE 1

AI-Assisted RBP Signature for Predictive Modeling in Breast Cancer. (A) C-index values for 108 combinations of machine learning algorithms
evaluated across nine cohorts. (B) RSF error rate calculated over 1,000 iterations. (C) Prognostic significance of key RBP genes across nine BC
datasets. (D) Identification of three final RBP genes through exhaustive search, with patient risk scores computed based on gene expression levels
and regression coefficients.
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adjusting for these variables, AIRS remained statistically significant

for overall survival (OS), confirming its role as an independent risk

factor in breast cancer prognosis (Supplementary Figure S2A).

A nomogram was developed by integrating AIRS, pathological

stage, and age to predict survival probabilities at one, three, and five

years for breast cancer patients (Supplementary Figure S2B). The

calibration curve demonstrated excellent agreement between

predicted and actual survival rates, confirming the model’s

accuracy (Supplementary Figure S2C). Notably, the AIRS chart

showed no significant difference between predicted and observed

values (P > 0.05), strongly validating its predictive capability

(Supplementary Figure S2D). Furthermore, the AIRS chart

outperformed extreme prediction scenarios, demonstrating

superior reliability (Supplementary Figure S2E). Compared with

other clinicopathological factors, the AIRS model exhibited a
Frontiers in Immunology 05
stronger correlation with patient prognosis, emphasizing its

clinical utility (Supplementary Figure S2F).
Genomic alterations and prognostic
implications of AIRS in breast cancer

Tumor mutational burden (TMB) analysis revealed that

patients with high AIRS scores exhibited significantly elevated

TMB, accompanied by diverse mutational signatures (Figures 3A,

C). Further investigation into ten key oncogenic signaling pathways

demonstrated distinct mutation patterns between high- and low-

AIRS groups. Specifically, classical tumor suppressor genes,

including TP53, CREBBP, FAT1/2/3/4, and RB1, were more

frequently mutated in the high-AIRS group. Conversely, proto-
FIGURE 2

Comprehensive Evaluation of AIRS Predictive Performance in Breast Cancer Cohorts. (A) Stability of AIRS compared to 106 previously published
models using univariate Cox regression analysis. (B) C-index comparisons of AIRS and 106 models across nine datasets, demonstrating AIRS’s
superior predictive ability.
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oncogenes such as PIK3CA/B, MLXIPL, and JAK2 were

predominantly mutated in the low-AIRS group (Figures 3A, B).

An analysis of copy number alterations (CNA) between the

groups revealed a significantly higher frequency of chromosomal

arm-level amplifications and deletions in patients with high AIRS

scores. Amplifications were primarily observed in regions such as

3q26.32, 6q21, 8q24.21, 10p15.1, and 20q13.2, while deletions were

enriched in regions including 5q11.2, 5q21.3, 10q26.3, 17q21.31,

and 19p13.3 (Figures 3A, D).

These genomic alterations suggest that patients with high AIRS

scores may have a poorer prognosis, driven by substantial gains of

oncogenes such as PVT1, MYC, CCDC26, and GSDMC, coupled

with concurrent losses of genes including GPBP1, RAB3C, DDX4,

and ITGA1 (Figure 3A). These findings underscore the molecular
Frontiers in Immunology 06
complexity and unfavorable prognosis associated with elevated

AIRS levels.
Single-cell transcriptome analysis reveals
AIRS-associated functional pathways and
cellular heterogeneity

To evaluate AIRS at the single-cell level, we performed

transcriptome analysis on 12 breast cancer (BC) patient samples,

encompassing both tumor and normal tissues (Supplementary

Figures S3A, B). This analysis identified 20 distinct cell clusters

classified into eight major cell types (Figures 4A, B). The quantity

and proportion of each cell type across all patients were
FIGURE 3

Genomic Alterations and Prognostic Implications of AIRS in Breast Cancer. (A) TMB, mutation characteristics, gene alterations, and copy number
variations associated with AIRS. (B) Mutation profiles across 10 oncogenic pathways in AIRS groups. (C) TMB differences between high and low AIRS
groups. (D) Copy number burden comparison between the two AIRS groups. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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summarized (Supplementary Figures S3C, D), and representative

markers for each cell type were characterized (Figure 4C,

Supplementary Figure S3E). Notably, mast cells, macrophages, B

cells, T cells, and epithelial cells were more abundant in tumor

tissues, while other cell types were predominantly found in normal

tissues (Figure 4D).

AIRS scores were then assigned to individual cells, revealing

significant heterogeneity in their distribution (Figure 4E). Focusing on

epithelial cells, cells were grouped based on their AIRS score peaks

(Figure 4F). Differential gene expression analysis, combined with Gene

Set Enrichment Analysis (GSEA), uncovered functional pathways

associated with AIRS. In epithelial cells, which often serve as tumor

progenitors, high AIRS scores were linked to pathways such as DNA-

binding transcription factor binding, ubiquitin-like protein ligase

binding, ribosome binding, unfolded protein binding, and protein

folding chaperones. Conversely, low AIRS scores were not significantly

associated with any of these pathways (Supplementary Figure S3G).

Further analysis using the copyKat algorithm revealed that

aneuploid epithelial cells exhibited higher AIRS scores compared

to diploid tumor cells, suggesting a potential link between

chromosomal instability and elevated AIRS levels (Figures 4G, H).

These findings highlight the role of AIRS in reflecting functional

and genomic characteristics at the single-cell level, particularly

within tumor epithelial cells.
Frontiers in Immunology 07
Construction of gene regulatory networks
for AIRS using SCENIC and transcription
factor analysis

To establish comprehensive gene regulatory networks associated

with AIRS, we applied the SCENIC pipeline, which integrates single-

cell RNA-seq data with cis-regulatory sequence information. This

approach transformed gene expression data into regulator activity

scores (RAS) for transcription factors (TFs) (Figures 5A, B).

Principal component analysis (PCA) with variance decomposition

was then employed to uncover distinct regulatory mechanisms

linked to AIRS and cellular architecture. PC1 identified TFs specific

to cell types, while PC2 highlighted TFs uniquely associated with AIRS

(Figures 5C, D). These analyses enabled us to pinpoint key regulators

essential for distinguishing cell types.

Subsequently, the activity of each regulator was evaluated across

different cell types, and regulator-specific scores (RSS) were

calculated using Jensen-Shannon divergence (Figure 5E).

Regulators with the highest RSS scores were selected for further

functional analysis. For epithelial cells, MESP1, MYB, and ASCL2

emerged as the most specific regulators, a finding visually confirmed

using UMAP plots (Figure 5F). Similar correlations between other

cell types and their respective regulators were also identified

(Supplementary Figure S4A).
FIGURE 4

Single-Cell Transcriptome Analysis Reveals AIRS-Associated Functional Pathways and Cellular Heterogeneity. (A) Distribution of 20 cell clusters.
(B) Identification of eight cell types based on marker genes. (C) Representative markers characterizing each cell type. (D) Proportions of eight cell
types across tumor and normal tissues. (E) Distribution of AIRS scores, highlighting significant differences across cells. (F) Cell grouping based on
epithelial cell AIRS score peaks. (G) CopyKat analysis comparing diploid and aneuploid cell distributions. (H) AIRS score comparisons between diploid
and aneuploid epithelial cells.
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FIGURE 5

Construction of Gene Regulatory Networks for AIRS Using SCENIC and Transcription Factor Analysis. (A) Cell type clustering via UMAP. (B) SCENIC
analysis transforming gene expression into transcription factor regulatory activity scores. (C) PCA-based decomposition identifying cell type-specific
TFs (PC1). (D) AIRS-associated transcription factors (PC2). (E) Regulon specificity scores for key transcription factors across cell types. (F) UMAP
visualization of epithelial cell-specific regulators. (G) Transcription factor network constructed using the Leiden algorithm. (H) Component-based
organization of transcription factors in AIRS. (I) GSEA pathway analysis highlighting AIRS-related changes in epithelial cells. (J) Pathway-specific
findings, including MYC target V1 activation and suppression of early estrogen response. (K) Identification of TFs associated with MYC target V1
activation. (L) Regulatory network diagram illustrating MYC target V1 relationships.
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Given the importance of transcription factor interactions in

coordinating gene expression, the Leiden algorithm was employed to

compare RAS scores and identify combinatorial patterns within AIRS-

related TFs. This analysis grouped TFs into nine distinct components

based on RAS similarity, with components A and B playing pivotal roles

in AIRS regulation (Figures 5G, H, Supplementary Figure S4B). Further

investigation into epithelial cell TFs driving AIRS-related transcriptional

changes revealed modifications in key signaling pathways via GSEA

(Figure 5I). For example, the MYC targets V1 pathway was activated in

epithelial cells with high AIRS expression, while the estrogen response

early pathway was suppressed (Figures 5I, J).

To elucidate the transcription factors influencing MYC targets

V1, a regulatory network diagram was constructed, illustrating the

interactions among these TFs and their roles in driving AIRS-

related transcriptional dynamics (Figures 5K, L). These findings

provide insights into the regulatory framework of AIRS and its

impact on transcriptional landscapes within specific cell types.
Cell-cell interaction dynamics and pathway
analysis in AIRS groups

To investigate cell-cell communication patterns associated with

AIRS, we performed CellChat analysis across eight distinct cell types.

By analyzing the quantity and intensity of intercellular interactions, we

observed a modest reduction in overall communication within the high

AIRS group compared to the low AIRS group (Figures 6A, B). A

comparative evaluation of 56 signaling pathways revealed differential

activity: pathways such as SELE, PAPs, SPP1, and THY1 were

predominantly active in the high AIRS group, whereas pathways like

CD45, ADGRE5, MK, LAMININ, and CALCRwere more active in the

low AIRS group (Figure 6C).

Analysis of interaction intensity, specifically incoming and outgoing

signals, revealed that epithelial cells in the high AIRS group exhibited

weaker incoming interactions. This observation prompted further

investigation into the relationship between specific signaling pathways

in epithelial cells and AIRS. Among these, pathways such as LAMININ

were identified as being closely linked to AIRS (Figures 6D, E).

To explore the functional dynamics of these pathways, we

focused on ligand-receptor interactions and visualized key

relationships using a circos diagram (Figure 6F). Notably, the

CCL8 ligand expressed by macrophages was found to interact

with the SDC1 receptor, highlighting a potentially significant

regulatory axis (Figure 6G). Further exploration of the ligand

action network demonstrated that ligands can engage in direct

binding or synergistic interactions with other ligands, thereby

regulating downstream transcription factors and exerting both

direct and indirect effects on target pathways (Figure 6H).
Immune microenvironment and
immunotherapy responses in AIRS groups

Given the pivotal role of the immune microenvironment in

tumor progression, immune infiltration in breast cancer (BC)
Frontiers in Immunology 09
patients was assessed using six different algorithms. The analysis

revealed reduced infiltration of CD8+ T cells and B cells in the

high AIRS group (Figure 7A). Furthermore, the expression of

immune checkpoint inhibitors (ICIs), including PD-1, TNFRSF4,

CD96, and members of the HLA family, was significantly

increased in the low AIRS group (Figure 7B). These findings

were corroborated by immunohistochemistry (IHC) experiments

on BC samples (Figure 7C).

Using the ESTIMATE algorithm, the low AIRS group showed

higher ESTIMATE, stromal, and immune scores, accompanied by

lower tumor purity (p < 0.05) (Figure 8A). To assess

immunotherapy response, various metrics such as TIDE,

dysfunction, and exclusion scores were compared between the

groups. Patients in the high AIRS group exhibited lower TIDE,

dysfunction, and exclusion scores, suggesting reduced

immunotherapy resistance (Figure 8B). Survival analysis showed

that patients with low AIRS and high TIDE had the best prognosis

(Figure 8C). Additionally, correlation analysis indicated higher

anti-tumor immune activity in the low AIRS group compared to

the high AIRS group (Figure 8D).

Despite the transformative impact of ICIs in cancer

immunotherapy, their effectiveness in solid tumors like BC

remains limited. The predictive value of AIRS levels for immune

checkpoint blockade therapy was evaluated in the IMvigor210

(anti-PD-L1) and GSE78220 (anti-PD-1) cohorts. Patients with

low AIRS scores demonstrated significant clinical benefits and

improved survival rates when treated with anti-PD-L1 therapy

(Figures 8E–H). Similar trends were observed for patients

receiving anti-PD-1 therapy, further highlighting the predictive

power of AIRS (Figures 8I–L).
Identification of potential therapeutic
drugs for breast cancer patients with high
AIRS

Chemotherapy remains a cornerstone in cancer treatment. To

explore potential therapeutic options for breast cancer (BC) patients

with high AIRS, data from multiple datasets were analyzed.

Spearman correlation analysis revealed that AIRS was positively

correlated with four key targets: PARS2, AHCY, GCLM, and

HPRT1, and negatively correlated with the CERES score. These

findings suggest that these targets could serve as potential treatment

options for patients with high AIRS (Figure 9A). Moreover, these

targets are involved in several critical drug pathways, emphasizing

their relevance as therapeutic targets for BC patients in this

subgroup (Figure 9B).

Four candidate compounds, paclitaxel, panobinostat, SB743921,

and ispinesib, were identified from the CTPR and PRISM datasets.

A comparison of the area under the curve (AUC) values for these

compounds between the high AIRS and low AIRS groups showed

significantly lower AUC values in the high AIRS group, indicating

higher sensitivity to these compounds (Figure 9C).

To identify the most promising therapeutic option, clinical

status, experimental evidence, mRNA expression levels, and
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CMap scores were assessed for each compound. Based on the CMap

score, panobinostat emerged as the most potential therapeutic drug

for patients with high AIRS (Figure 9D). These findings highlight

the utility of AIRS in guiding chemotherapy and targeted therapy

strategies for BC patients.
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Discussion

BC is the most frequently diagnosed malignant tumor among

women worldwide, with its incidence showing a continuous upward

trend over recent decades, posing a significant threat to women’s
FIGURE 6

Cell-Cell Interaction Dynamics and Pathway Analysis in AIRS Groups. (A) Quantity and intensity of cell-cell interactions in high and low AIRS groups.
(B) Interaction network visualization among cell types. (C) Differential signaling pathways between AIRS groups. (D) Analysis of incoming and
outgoing interaction intensities among cells. (E) Pathways specific to AIRS in epithelial cells. (F) Circos diagram depicting ligand-receptor
interactions. (G) Key ligand-receptor interactions, such as CCL8-SDC1. (H) Ligand network analysis showing regulatory effects on downstream
transcription factors.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1583103
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2025.1583103
FIGURE 7

Immune Microenvironment and Immunotherapy Responses in AIRS Groups. (A) Heatmap showing immune cell infiltration levels in high and low
AIRS groups, based on multiple algorithms. Increased infiltration is marked in red, while reduced infiltration is marked in blue. (B) Boxplots comparing
ICI gene expression between AIRS groups (*P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; ns, not significant). (C) Representative IHC validation
of marker expression.
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lives and health (15). Despite advancements in early diagnostic

techniques and comprehensive treatment strategies, many

patients still face challenges such as tumor recurrence,

metastasis, and poor prognosis. Thus, identifying precise and
Frontiers in Immunology 12
effective prognostic biomarkers and gaining deeper insights into

the molecular mechanisms of tumorigenesis and progression

are crucial for improving clinical outcomes in breast

cancer patients.
FIGURE 8

Immune Microenvironment and Immunotherapy Responses in AIRS Groups. (A) Immune-related scores (ESTIMATE, stromal, immune) and tumor
purity across AIRS groups. (B) TIDE, dysfunction, and exclusion scores comparing high and low AIRS groups. (C) Survival probability curves based on
AIRS and TIDE combinations. (D) Correlation analysis between AIRS and tumor immune cycle activity across ten pathways. (E, I) Violin plots showing
AIRS levels and responses to anti-PDL1 (E) and anti-PD1 (I) therapies. (F, J) Survival curves for low and high AIRS patients in the anti-PDL1 (F) and
anti-PD1 (J) cohorts. (G, K) AUC values evaluating AIRS predictive ability for TMB in anti-PDL1 (G) and anti-PD1 (K) cohorts. (H, L) Percentages of
clinical response outcomes (CR/PR, SD/PD) in anti-PDL1 (H) and anti-PD1 (L) cohorts. ****P < 0.0001.
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RBPs, which play essential roles in regulating gene expression,

have emerged as a research focus in breast cancer. Studies have

shown that RBPs are closely associated with tumorigenesis,

progression, invasion, and metastasis in breast cancer (16). By

binding to specific RNA sequences, RBPs influence the expression

of downstream genes and regulate tumor cell behaviors such as

proliferation, apoptosis, angiogenesis, and extracellular matrix

remodeling (17–20). Building on these findings, this study aimed

to construct a prognostic model based on RBPs and analyze its

clinical significance and underlying mechanisms. This effort seeks

to provide new avenues for the clinical management of

breast cancer.

This study presents a novel AIRS model, developed using 108

combinations of 10 machine learning algorithms, to predict breast

cancer prognosis. Among these, the RSF algorithm, with the highest

average C-index, was selected as the optimal method, ensuring

superior predictive accuracy. Through rigorous feature selection,

three pivotal RBP genes were identified and incorporated into the

AIRS score, which stratifies patients into high- and low-risk groups

with strong prognostic performance validated across nine

independent cohorts. While PGK1 is a well-characterized
Frontiers in Immunology 13
glycolytic enzyme with established links to tumor metabolism and

hypoxia responses (21), MPHOSPH10 and MAP2K6 have received

comparatively less attention in breast cancer. MPHOSPH10, a

nucleolar protein involved in rRNA processing, has recently been

implicated in cell cycle regulation and proliferation. Dysregulation

of nucleolar function is increasingly recognized in tumorigenesis.

MAP2K6, a key kinase in the p38 MAPK pathway, is associated

with stress and inflammatory signaling and has been linked to

immune evasion and tumor progression in several cancers,

including breast cancer (22). These findings support their

inclusion in the AIRS model and underscore their potential

relevance to tumor-immune interactions.

The AIRS model outperformed 106 established prognostic

features, demonstrating its robustness and reliability in predicting

patient outcomes. Furthermore, it was validated as an independent

prognostic factor through multivariate Cox regression analyses. A

nomogram integrating AIRS with age and pathological stage

accurately predicted survival probabilities at 1, 3, and 5 years,

further highlighting the model’s clinical utility. These findings

underscore the potential of AI-driven models to enhance the

accuracy and applicability of breast cancer prognosis, providing a
FIGURE 9

Identification of Potential Therapeutic Drugs for Breast Cancer Patients with High AIRS. (A) Spearman correlation shows positive (red) and negative
(blue) relationships with four potential therapeutic targets. (B) Network analysis linking therapeutic targets to associated drug pathways. (C) AUC
values for candidate compounds from CTRP and PRISM datasets, comparing high and low AIRS groups. (D) Comprehensive evaluation of clinical,
experimental, and computational evidence identifying panobinostat as a key therapeutic agent for high AIRS patients. **P < 0.01.
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transformative approach to personalized patient management. The

AIRS model offers significant advancements over traditional

prognostic models by addressing limitations associated with

clinical indicators such as TNM stage and hormone receptor

status. By incorporating multi-omics data, AIRS captures

molecular and genomic features that significantly improve

predictive precision.

The identification of RBPs as core components aligns with prior

studies highlighting their role in tumorigenesis, metastasis, and

drug resistance. For instance, RBPs regulate critical pathways such

as mRNA stability and translation, influencing cancer cell behavior.

Novel insights from this study include the association of AIRS

scores with specific genomic alterations, such as elevated TMB and

CNAs. These findings deepen our understanding of breast cancer

heterogeneity and provide evidence for AIRS as a comprehensive

prognostic tool.

Single-cell transcriptome analysis revealed functional

heterogeneity within epithelial cells, with high AIRS scores linked

to pathways involved in transcription factor binding, protein

folding, and ubiquitin-like protein ligase activity (23–26). These

pathways, essential for tumor progression, highlight the potential of

AIRS to capture cellular-level biological mechanisms. Regulatory

network analysis using SCENIC further elucidated the role of RBPs

in modulating transcriptional dynamics. Key transcription factors,

such as MYC and MESP1, emerged as critical regulators in AIRS-

associated pathways, influencing cellular processes such as

proliferation and differentiation (27–31). The association between

AIRS and MYC activation aligns with literature showing MYC’s

ability to regulate immune suppression and RBP expression. For

instance, MYC has been shown to upregulate PGK1 and other

metabolic genes that alter immune cell function (21, 32). While

direct experimental validation is pending, our SCENIC and

CellChat results support MYC-centered transcriptional regulation

as a potential driver of the AIRS phenotype. Future studies will

focus on experimental verification through gene perturbation

assays. By integrating single-cell and regulatory network analyses,

this study advances our understanding of RBP-mediated

mechanisms in breast cancer progression.

The AIRS model sheds light on the TME and its implications for

immunotherapy. High AIRS scores were associated with reduced

CD8+ T cell and B cell infiltration, reflecting an immune-

suppressive microenvironment. Conversely, low AIRS scores were

linked to higher expression of immune checkpoint inhibitors (e.g.,

PD-1, CD96), indicating greater sensitivity to immune checkpoint

blockade therapies. Data from the IMvigor210 and GSE78220

cohorts further validated AIRS as a predictive biomarker for

immunotherapy. Patients with low AIRS scores demonstrated

significant clinical benefits from anti-PD-1 and anti-PD-L1

therapies, underscoring the potential of AIRS to guide

personalized immunotherapy strategies. While IMvigor210 and

GSE78220 cohorts are from bladder cancer and melanoma,

respectively, they were used due to the scarcity of publicly

available breast cancer cohorts with transcriptomic and

immunotherapy response data. These datasets serve as initial

proof-of-concept for the predictive potential of the AIRS model
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in ICI-treated patients. We acknowledge this limitation and

emphasize the need for future validation in breast cancer-specific

cohorts receiving immune checkpoint blockade therapy.

AIRS also provides valuable insights into therapeutic decision-

making. High AIRS scores were positively correlated with key

targets such as PARS2, AHCY, and GCLM, suggesting potential

vulnerabilities in patients with poor prognosis. Drug sensitivity

analysis identified compounds like panobinostat and paclitaxel as

promising therapeutic options for high AIRS patients, with lower

AUC values indicating higher sensitivity. These findings

demonstrate the translational relevance of AIRS in tailoring

chemotherapy and targeted therapy strategies, paving the way for

more effective treatment regimens in breast cancer.

This study presents a novel and comprehensive AIRS model for

breast cancer prognosis, leveraging advanced machine learning

algorithms and multi-omics analyses. By systematically

integrating genomic, transcriptomic, and single-cell data, AIRS

not only demonstrated superior predictive performance compared

to 106 existing prognostic features but also revealed previously

uncharacterized molecular and cellular mechanisms underlying

breast cancer progression. The model’s ability to independently

predict outcomes across diverse cohorts, its identification of

actionable therapeutic targets, and its potential for guiding

immunotherapy underscore its translational relevance and clinical

utility. However, the study has certain limitations. The training and

validation cohorts were primarily derived from publicly available

datasets, which may limit the model’s applicability across

geographically and ethnically diverse populations. Future studies

should aim to validate the model in prospective datasets

representing a broader range of geographical and ethnic

backgrounds. Additionally, the relatively small sample size in the

single-cell analysis may not fully capture the heterogeneity and

complexity of breast cancer at the cellular level. Future studies

should expand the dataset to include broader patient populations

and conduct in-depth functional experiments to further elucidate

the molecular mechanisms of RBPs. Addressing these limitations

will enhance the generalizability and robustness of the AIRS model,

paving the way for its integration into clinical practice.
Conclusion

The AIRS model represents a robust and innovative prognostic

tool for breast cancer, advancing our understanding of tumor

biology and offering a framework for personalized treatment

strategies. By informing therapeutic decisions, including

immunotherapy and targeted drug selection, AIRS has the

potential to transform breast cancer management and improve

patient outcomes. In clinical practice, the AIRS model holds

promise for complementing existing prognostic systems such as

TNM staging by adding molecular-level precision. It can aid in

identifying high-risk patients who may benefit from aggressive

treatment or inclusion in clinical trials. Moreover, its potential to

predict immunotherapy response makes it a valuable tool for

guiding treatment decisions in the era of personalized oncology.
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