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The BCG vaccine has been used against tuberculosis (TB) for over a hundred 
years; however, it does not protect adults from pulmonary TB. To develop 
alternative vaccines against TB, we generated Mycobacterium tuberculosis 
H37Rv (Mtb)-derived vaccine strains by rationally deleting key virulent genes, 
resulting in single (SKO; DfbpA), double (DKO; DfbpA-DsapM), triple (TKO-D; 
DfbpA-DsapM-DdosR and TKO-Z; DfbpA-DsapM-Dzmp1), and quadruple (QKO; 
DfbpA-DsapM-Dzmp1-dosR) strains. To understand how macrophages, the host 
cells that defend against infection and process antigens for presentation to 
immune cells, respond to these vaccine strains, we performed transcriptomic 
analyses of mouse bone marrow-derived macrophages (BMDMs) infected with 
these strains. The transcriptomic data were compared with similar data obtained 
from macrophages infected with Mtb H37Rv and BCG. Our analyses revealed that 
genes associated with various immune and cell signaling pathways, such as NF-
kappa B signaling, TNF signaling, cytokine-cytokine receptor interaction, 
chemokine signaling, hematopoietic cell lineage, Toll-like receptor signaling, 
IL-17 signaling, Th1 and Th2 cell differentiation, Th17 cell differentiation, and T cell 
receptor signaling were differentially expressed in BMDMs infected with our 
vaccine strains. Enhanced expression of cytokines and chemokines, including 
proinflammatory cytokines such as TNF-a, IL-6, GM-CSF, and IL-1, which are 
essential for the immune response against Mtb infection, was also observed in 
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BMDMs infected with these strains. In particular, BMDMs infected with all vaccine 
strains exhibited a significant upregulation of genes associated with the IL-17 
pathway. These results may indicate that our vaccine strains could induce a 
protective immune response against TB. 
KEYWORDS 

Mtb-vaccines, BCG, mouse, macrophages, RNA-sequencing, transcripts, immune 
signaling, IL-17 
 

Introduction 

Tuberculosis (TB) is a deadly disease caused by an intracellular 
human pathogen, Mycobacterium tuberculosis (Mtb), which has 
coexisted with humans for approximately seventy thousand years 
(1, 2). According to the World Health Organization (WHO) report, 
nearly 10.8 million people were affected by TB, resulting in a 
mortality rate of 1.25 million in 2023 (3). Historically considered 
hereditary, TB was recognized as a contagious disease by Jean-
Antoine Villemin in 1865, and Robert Koch identified the causative 
bacterium, Mtb, in 1882 (4). Selman Waksman developed 
Streptomycin, the first effective TB drug, earning him the Nobel 
Prize in 1952 (5). Conversely, the BCG vaccine developed by Albert 
Calmette and Camille Guérin remains the only licensed vaccine 
against TB. Unfortunately, BCG has not been regarded as an 
effective vaccine against TB because of the emergence of various 
sub-strains that produce differing levels of protective efficacy (6). The 
rise of multidrug-resistant TB (MDR-TB) has complicated treatment 
strategies even further, necessitating confirmation of bacterial 
infection and testing for antibiotic resistance. Alarmingly, only two 
out of five MDR-TB cases received treatment in 2022 (7). 

In 2014, WHO launched the “End TB Strategy” (8) to

significantly reduce the TB burden by 2035, emphasizing the 
critical role of vaccines. Various vaccine types, including live 
attenuated vaccines (LAV), subunit vaccines, viral vectored 
vaccines, DNA vaccines, whole-cell killed/inactivated vaccines, 
and recombinant protein-adjuvant formulations, have been 
developed and studied for TB prevention (9). Among these, LAV 
stands out for its ability to induce long-lasting immune responses, 
with BCG serving as a prime example. The BCG vaccine differs 
from the Mtb strain due to the deletion of various Mtb-specific open 
reading frames (ORFs) clustered in 16 genomic regions of difference 
(RD1–RD16) (10, 11). Mtb has also been modified to enhance its 
vaccine efficacy, particularly by knocking out the secretory proteins 
or secretory systems of mycobacteria (12). 

As a first of its kind, we reported that the Mtb DfbpA strain 
protects mice against challenges similar to or better than BCG (13). 
Fibronectin-binding protein (FbpA; Rv3804c) is a secreted protein 
belonging to the Ag85 complex, which is highly conserved among 
species of the Mycobacterium tuberculosis complex. It has a 
mycolyltransferase enzyme function, catalyzing mycolic acid 
02 
transfer during cell wall biogenesis (14). Gene disruption studies 
in Mtb demonstrated that FbpA is one of the key components 
necessary for intracellular survival (15). To enhance the vaccine 
efficacy, we additionally deleted the sapM gene in the DfbpA strain 
to create a double knockout (DKO) (16). The sapM gene (Rv3310) 
encodes the secreted acid phosphatase SapM, initially identified in 
Mtb (17). It interferes with the phagosome maturation by 
dephosphorylating PI-3 phosphate (18). Our DKO vaccine strain 
induces strong protection through enhanced antigen processing 
and the autophagy mechanism (19). To further enhance our DKO 
vaccine, we carefully deleted two additional genes, specifically zmp1 
(Rv0198c) and  dosR (Rv3133c). Zmp1 is a ~75 kDa zinc 
metalloprotease secretory protein that plays a significant role in 
blocking phagosome maturation and impairing inflammasome 
activation, resulting in greater vaccine efficacy, (20, 21), whereas 
DosR is a dormancy survival regulator that collectively affects 
approximately fifty genes in the Mtb genome and is highly 
activated under microenvironmental conditions such as 
granulomas (22, 23). These new vaccine strains have shown 
increased immunogenicity (24), and efficacies against TB in 
animal models are being investigated. 

This study follows up on our prior observation that a double-
knockout (DKO) vaccine provides superior and longer-lasting 
protection compared to the BCG vaccine (19). In this study, we 
aimed to investigate the intricate molecular responses of 
macrophages to the Mtb-based live attenuated vaccines (LAVs) 
developed in our laboratory. Macrophages play a crucial role in 
defending against intracellular pathogens like Mtb and processing 
and presenting antigens to immune cells. An effective mycobacterial 
vaccine should induce key immune and cell signaling pathways that 
lead to effective antigen presentation and the subsequent pathogen 
clearance from the host. Thus, studying the molecular interactions 
between Mtb-derived vaccines and macrophages through RNA-seq 
analysis should provide important insights into vaccine efficacy. 
Although studies have documented genome-wide transcriptomic 
changes in human or mouse macrophages following Mtb infection 
(25–27), our study focuses on Mtb-derived vaccine strains for the 
first time. This approach has allowed us to identify the crucial 
immune and cell signaling pathways and profile the vital cytokines 
and chemokines for TB vaccines. Further, our findings underscore 
the importance of the IL-17 pathway regulated by LAV strains. 
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Materials and methods 

Mtb strains and culture conditions 

Wild-type and knockout Mtb strains were grown at 37°C in either 
Middlebrook 7H9 broth or 7H10 agar (BD Difco), both containing 
0.05% Tween 80 (TW), 0.2% glycerol, and OADC (10%) enrichment. 
All mutant Mtb strains used in this study are a derivative of H37Rv. 
We published the single knockout, SKO (DfbpA) and  double
knockout, DKO (DfbpA-DsapM) strains used in this study earlier 
(13, 16). Triple knockouts such as DTKO-D (DfbpA-DsapM-DdosR), 
DTKO-Z (DfbpA-DsapM-Dzmp1), and quadruple knockout, DQKO 
(DfbpA-DsapM-Dzmp1-dosR) strains were made on the DKO 
background, and their construction was briefly reported earlier (24) 
and will be published elsewhere (manuscript under preparation). 
Animals and ethics 

C57BL/6J mice aged 4–6 weeks were purchased from Jackson 
Laboratories, Bar Harbor, ME. The mice received were housed with 
unlimited access to water and mouse chow and permitted to move 
without restraints within their cages at the Laboratory Animal 
Resource Center, Texas Tech University Health Sciences Center 
El Paso. The Institutional Animal Care and Use Committee 
(IACUC) of the Texas Tech University Health Sciences Center El 
Paso approved an animal protocol for this study (Protocol #17003). 
Isolation of bone marrow-derived 
macrophages 

As described previously, BMDMs were extracted from wild-
type C57BL/6 mice (28). Briefly, the BMDMs were cultured from 
the femurs and tibias of mice in DMEM medium (DMEM, 10% fetal 
bovine serum, 10 ng/ml of M-CSF) and incubated at 37°C in 5% 
CO2 for 7 days, with the addition of new medium containing M

CSF every 2–3 days. 
Infection of BMDMs with Mtb strains 

Mtb wild-type H37Rv and all mycobacterial vaccine strains 
were cultured in 7H9 medium with appropriate antibiotics in roller 
bottles at 37°C for 5–7 days. Colony-forming units (CFUs) of the 
bacterial suspensions were determined and stored at -80°C until 
use. Before infection, bacteria were pelleted, washed with PBS, and 
dispersed using a 23G syringe to eliminate clumps. Mouse BMDMs 
(106 cells/well) seeded in 6-well tissue culture plates (Corning, USA) 
were infected at a multiplicity of infection (MOI) of 1:5 in DMEM 
for 4 h to allow phagocytosis. Afterward, cells were washed thrice 
with D-PBS (Corning, USA) to remove extracellular bacteria and 
replaced with fresh DMEM containing 10% fetal bovine serum for 
further incubation at 24 and 72 h. 
Frontiers in Immunology 03 
RNA sequencing and data analysis 

Mouse BMDMs (106/well) were infected with the respective 
mycobacterial strains as described above for different time points 
(24 h and 72 h). After respective time points, total RNA was extracted 
from the infected BMDMs using the EZ-10 DNAaway RNA Mini-

Preps Kit (Bio Basic, Canada) as described previously (28). RNA 
quantification was performed using Nanodrop (Thermo Scientific, 
USA). The quality of RNA was measured using TapeStation (Agilent 
Technologies 4200). The library preparation enriched for polyA RNA 
fraction was performed in house and RNA sequencing was 
performed at Novogene Corporation Inc. (Sacramento, CA, USA), 
as described elsewhere (29). Two biological replicates for each 
condition were performed. We employed web-based application 
Genialis to analyze RNA sequencing raw data using their “General 
RNA-Seq pipeline (featureCounts)” with default settings (Genialis, 
Inc., Boston, MA). RNA-Seq data were aligned using STAR aligner to 
the mouse transcriptome from Ensembl release version 109 with 
trimmed reads removing adapter sequences. Read counts were 
computed using featureCounts. Quality control metrics were 
determined, and the average quality per read was 36 (Phred score) 
(Supplementary files - Table S1,S2, S2). Principle component analysis 
(PCA) was generated within the Genialis RNA-seq pipeline 
visualization features. The differentially expressed genes (DEGs) 
were also computed using the Genialis built-in DESeq2 tool, 
defining the control samples of PBS or H37Rv and the case 
samples accordingly, and the filtering criteria for DEGs are FDR < 
0.05 with log2 fold change greater than 1 for upregulated DEGs and 
less than 1 for downregulated DEGs. DEGs were presented in 
heatmaps, volcano plots, and Venn diagrams, using pheatmap, 
ggplot2, and Venn packages, respectively, in the R program. For 
downstream analysis of KEGG pathway analysis and Gene Ontology 
(GO) analysis for biological processes (BP), we queried the 
bioinformatic Database for Annotation, Visualization, and 
Integrated Discovery (DAVID) with default settings and plotted the 
top 30 KEGG pathways or BP based on ascending p-value as dot plots 
using ggplot2 in R, as described previously (28, 29). 
cDNA synthesis and qRT-PCR 

The total RNA from infected BMDM was used to synthesize 
cDNA using the RevertAid First Strand cDNA Synthesis Kit 
(Thermo) according to the manufacturer’s protocol. Quantitative 
reverse transcriptase PCR (qRT-PCR) was performed using a 
LightCycler® 96 Instrument (Roche). PCR was performed using 
PowerTrack™ SYBR Green (Thermo Fisher Scientific) according 
to the manufacturer’s recommendations. Three biological replicates 
for each condition were performed. Primer details are given in the 
Supplementary files (Supplementary Table S3). The relative CT 
(DDCT) method was used to quantify gene expression as described 
elsewhere (19). The expression levels of target genes were normalized 
to the house keeping gene, actB (ß- actin) with the H37Rv group set 
as the reference value 1 for comparison with all vaccine groups. 
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Results 

Transcriptome analysis of mouse BMDMs 
infected with vaccine strains compared to 
uninfected cells 

To explore the variation in transcriptional signatures of mouse 
BMDMs infected with various Mtb vaccine strains, we conducted a 
genome-wide gene expression analysis using an RNA-sequencing 
platform (Figure 1). The performance of Principal Component 
Analysis (PCA) on the transcripts from mouse BMDMs clearly 
distinguished the infection groups from the PBS control at both 24 
and 72 h time points. At 24 h post-infection, groups of transcripts 
with H37Rv background knockouts clustered almost entirely 
together, distinctly separating from those associated with BCG. By 
72 h post-infection, almost all groups were distinctly separated, 
regardless of their H37Rv or BCG background (Supplementary 
Figure S1). 

For gene expression analysis, we considered fold change cut-off 
values of Log2 fold change >1.0 as upregulated and <-1.0 for 
downregulated genes (FDR < 0.05). Our transcriptome analysis 
identified more than 14,000 genes exhibiting expression among 
Mtb-infected mouse BMDMs compared to uninfected control 
(Supplementary Data 1, 2). The heat map displayed a gene 
expression profile, showing a high disparity among infected 
groups compared to the PBS group, regardless of the time point 
(Figures 2A, D). Different clusters in the heat map indicate distinct 
modes of regulation, with cluster 1 being predominantly 
upregulated and cluster 3 downregulated across all vaccine 
groups. Interestingly, cluster 2 remains unchanged in the H37Rv 
wild-type group; however, there is a significant difference in this 
Frontiers in Immunology 04
cluster among the vaccine groups. Notably, an additional change in 
cluster 2 of the vaccine groups is observed at the 72 h time point 
compared to 24 h. The Venn diagram illustrates both the unique 
and shared DEGs among the vaccine-infected groups. The total 
number of unique genes in the various vaccine-infected groups at 24 
and 72 h post-infection are as follows: H37Rv (59 and 58), BCG 
(1309 and 422), SKO (52 and 126), DKO (206 and 225), TKO-D 
(111 and 155), TKO-Z (44 and 15), and QKO (23 and 40) 
(Figures 2B, E). 

There are no significant percentage differences in differential 
gene expression between 24 and 72 h post-infection within the same 
group (Figures 2C, F). Compared to H37Rv background vaccine 
strains (~12.5-20.9%), BCG displays a higher percentage of DEGs at 
both time points (25.8 & 21.8%), while the H37Rv wildtype shows 
(14.4 & 12.4%) DEGs. Interestingly, the percentage of DEGs 
decreased successively as the gene deletion increased in vaccine 
strains such as SKO (18.7 &20.9%), DKO (18.8 &18.4%), TKO-D 
(19.8 &19.3%), TKO-Z (14.3 &12.5%), and QKO (13.2 &14.7%). 
Transcriptome analysis of mouse BMDMs 
infected with Mtb vaccine strains 
compared to H37Rv wild-type strain 

As we observed differential regulation of genes within the vaccine 
groups, we proceeded to determine the number of DEGs in these 
groups compared to the H37Rv background (Supplementary Data 3, 
4). All our vaccine strains originate from the H37Rv background, 
where genes are sequentially deleted to create mutant strains. Thus, 
we compared all our vaccine strains, including BCG, with H37Rv. 
Unlike the previous comparison with uninfected, where three distinct 
FIGURE 1 

Schematics showing RNA-Seq workflow and data analysis. Fresh BMDMs were isolated from the female wild-type C57BL/6J mice and infected with 
respective vaccine strains or left uninfected. Following a 4-hour phagocytosis period, the BMDMs were washed with D-PBS and cultured in fresh 
DMEM supplemented with 10% fetal bovine serum for an additional 24 and 72 hours. RNA was isolated and subjected to eukaryotic mRNA 
enrichment at each time point. Subsequently, cDNA libraries were prepared, followed by adapter ligation and amplification for Illumina sequencing. 
The RNA-Seq data were aligned to the mouse transcriptome, and differential gene expression (DEG) analysis was performed. The figure was 
generated using BioRender. 
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clusters were observed, here we observed two distinct clusters. While 
minimal changes are noted in both clusters among the vaccine 
groups, with the exception of BCG and DKO, clusters 1 and 2 
display a high number of upregulated and downregulated genes in the 
BCG group, along with only a few differentially regulated genes in the 
H37Rv background vaccine groups. Interestingly, certain alterations 
are observed in the H37Rv background vaccine groups in regions 
where the BCG group shows no changes. In contrast, the DKO group 
exhibits more drastic changes in gene expression in those regions 
(Figures 3A, D). The Venn diagram reveals a limited number of 
unique and shared genes among the vaccine groups. At 24 and 72 h 
post-infection, the number of unique genes in various vaccine-
infected groups is as follows: BCG (597 and 512), SKO (5 and 28), 
DKO (199 and 331), TKO-D (20 and 22), TKO-Z (8 and 8), and 
QKO (11 and 29). Notably, BCG and DKO exhibit numerous unique 
DEGs, indicating distinct genetic responses (Figures 3B, E). 
According to the Volcano plot analysis, the percentage of DEGs at 
24- and 72-h post-infection is as follows: BCG (5.4 &9.7%), SKO (1.1 
&5.3%), DKO (3.1 & 9%), TKO-D (1 &2.6%), TKO-Z (0.4 &0.8%), 
and QKO (0.4 &3.2%). Greater percentage differences in differential 
gene expression are observed between 24- and 72 h post-infection 
within the same group, except for TKO-D and TKO-Z. Additionally, 
compared to H37Rv background vaccine strains (~0.4-9%), BCG 
exhibits a higher percentage of DEGs at both time points (5.4 & 9.7%) 
(Figures 3C, F). 
Frontiers in Immunology 05 
KEGG pathway analysis of mouse BMDMs 
infected with Mtb vaccine strains versus 
uninfected cells 

KEGG pathway analysis was performed for all vaccine groups in 
comparison to the transcriptome of uninfected controls to identify 
pathways associated with mycobacterial infection. Several top 
enriched pathways were unique to the vaccine groups. Pathways 
such as graft-versus-host disease, allograft rejection, leishmaniasis, 
type I diabetes mellitus, TNF signaling, rheumatoid arthritis, 
inflammatory bowel disease, influenza A, NF-kappa B signaling, 
viral protein interaction with cytokines and cytokine receptors, 
Epstein-Barr virus infection, NOD-like receptor signaling, 
phagosome, cytokine-cytokine receptor interaction, Kaposi 
sarcoma-associated herpesvirus infection, measles, lipid and 
atherosclerosis, and COVID-19 were enriched with the 
upregulated DEGs of each condition across all vaccine groups 
(Supplementary Figures S2, S3). Conversely, pathways such as 
DNA replication, homologous recombination, cell cycle, Fanconi 
anemia, progesterone-mediated oocyte maturation, p53 signaling, 
oocyte meiosis, focal adhesion, cellular senescence, pathways in 
cancer, efferocytosis, ECM-receptor interaction, small cell lung 
cancer, motor proteins, PI3K-Akt signaling, Rap1 signaling, and 
MAPK signaling exhibited with downregulated DEGs across all 
vaccine groups (Supplementary Figures S4, S5). 
FIGURE 2 

Transcriptome profiling of mouse BMDMs infected with vaccine strains in comparison to control. (A, D), Heatmap of the differentially expressed 
genes at 24 h and 72 h; (B, E), Venn diagram of the differentially expressed genes showing the number of overlapping and unique genes among 
groups at 24 h and 72 h; (C, F), Volcano plot showing distribution of p values and log2 fold change of differentially expressed genes as green 
(downregulated), red (upregulated) and black (Not significant) at 24 h and 72 h with respective bar graphs in percentage. 
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KEGG pathway analysis of mouse BMDMs 
infected with mycobacterial vaccine strains 
compared to H37Rv 

To understand the roles of cellular pathways in the host’s 
response to mycobacterial infection, we performed a KEGG 
pathway enrichment analysis with the DEGs using Mtb H37Rv 
wild-type as the control. We identified multiple pathways that were 
uniquely and differentially dysregulated at both time points, with a 
similar pattern observed within the same groups across time points 
and between groups at each time point (Figures 4–7). Pathways 
including rheumatoid arthritis, viral protein interaction with 
cytokines and cytokine receptors, the IL-17 signaling pathway, 
hematopoietic cell lineage, and cytokine-cytokine receptor 
interaction were uniquely enriched with upregulated DEGs in all 
vaccine-infected macrophage groups compared to H37Rv 
(Figure 5). Notably, TKO-Z and QKO showed a delayed response 
in enriching those pathways in upregulated DEGs at 72 h. However, 
several pathways, such as the biosynthesis of unsaturated fatty acids, 
PPAR  signaling,  and  fatty  acid  metabolism,  exhibited  
overrepresentation in upregulatted DEGs (Figure 4) at  24 h. A

delayed IL-17 response at 72 h was also noted in TKO-Z and QKO 
when compared to other vaccine groups (Figure 5). 

Intriguingly, the pathways affected by downregulated DEGs 
varied across different vaccine groups. While BCG showed 
multiple pathways enriched in downregulated DEGs at both time 
points, our vaccine groups exhibited less pathways at 24 h (Figure 6) 
but pathways enriched increased in downregulated DEGs at 72 h 
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(Figure 7). Specifically, TKO-Z had a few pathways, including 
cardiac muscle contraction, oxidative phosphorylation, prion 
disease, Alzheimer’s disease, thyroid cancer, p53 signaling, and 
thyroid hormone synthesis overrepresented in downregulated 
DEGs (Figures 6, 7). Uniquely, the ferroptosis pathway, critical in 
mycobacterial infection, was enriched in both BCG and TKO-D 
downregulated DEGs at 72 h (Figure 7). Additionally, BCG, SKO, 
TKO-D, and QKO downregulated DEGs enriched the ECM-

receptor interaction and focal adhesion pathways at 72 h, 
potentially limiting molecule translocation across barriers. 
Pathways such as protein digestion and absorption and PI3K-Akt 
signaling were enriched at 72 h in  SKO,  TKO-D,  and QKO

downregulated DEGs (Figure 7). 
We also compared BCG with H37Rv, where pathways such as 

rheumatoid arthritis, viral protein interaction with cytokines and 
their receptors, IL-17 signaling pathway, hematopoietic cell lineage, 
inflammatory bowel disease, type 1 diabetes mellitus, TNF signaling 
pathway, NF-kappa B signaling pathway, cytokine-cytokine 
receptor interaction, and chemokine signaling pathway were 
similarly enriched with the upregulated DEGs in the BCG group 
at both time points (24 h and 72 h) (Figures 4, 5). When observing 
the pathways enriched in downregulated DEGs, we noted pathways 
like influenza A, measles, antigen processing and presentation, 
hepatitis C, parathyroid hormone synthesis, secretion, and action, 
osteoclast differentiation, hepatitis B, human papillomavirus 
infection, cell adhesion molecules, Epstein-Barr virus infection, 
calcium signaling pathway, COVID-19, PI3K-Akt signaling 
pathway, and pathways in cancer were consistent at both time 
FIGURE 3 

Transcriptome profiling of mouse BMDMs infected with vaccine strains in comparison to Mtb H37Rv. (A, D), Heatmap of the differentially expressed 
genes at 24 h and 72 h; (B, E), Venn diagram of the differentially expressed genes showing the number of overlapping and unique genes among 
groups at 24 h and 72 h; (C, F), Volcano plot showing differentially expressed genes as green (downregulated), red (upregulated) and black (Not 
significant) at 24 h and 72 h with respective bar graphs in percentage. 
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points (24 h and 72 h). However, multiple pathways were uniquely 
dysregulated at their respective time points (Figures 6, 7). 

Subsequently, we compared the pathways overrepresented in 
differentially regulated genes by BCG vaccine strains with those 
from Mtb-derived vaccines to assess how closely our newly 
Frontiers in Immunology 07 
developed Mtb-derived vaccines mimic BCG. Remarkably, similar 
KEGG pathways were enriched in our Mtb-derived vaccine strains 
compared to BCG in upregulated DEGs particularly at the 72 h time 
point (Supplementary Figure S6). At the 24 h time point, only a few 
pathways such as rheumatoid arthritis, viral protein interaction 
FIGURE 4 

KEGG pathway analysis in upregulated differentially expressed transcripts of mouse BMDMs infected with vaccine strains versus H37Rv at 24 h post-
infection. Dot plots illustrate the top 30 enriched pathways in upregulated DEGs in BCG, SKO, DKO, TKOD, TKOZ, and QKO compared to H37Rv 
control. Dot plots measure fold enrichment, where the dot size reflects the total number of genes in each pathway, and the gradient color indicates 
statistical significance expressed as −log10 (P). 
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FIGURE 5 

KEGG pathway analysis in upregulated differentially expressed transcripts of mouse BMDMs infected with vaccine strains versus H37Rv at 72 h post-
infection. Dot plots illustrate the top 30 enriched pathways in upregulated DEGs in BCG, SKO, DKO, TKOD, TKOZ, and QKO compared to H37Rv 
control. Dot plots measure fold enrichment, where the dot size reflects the total number of genes in each pathway enriched, and the gradient color 
indicates statistical significance expressed as −log10 (P). 
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FIGURE 6 

KEGG pathway analysis in downregulated differentially expressed transcripts of mouse BMDMs infected with vaccine strains versus H37Rv at 24 h post-
infection. Dot plots illustrate the top 30 enriched pathways in downregulated DEGs in BCG, SKO, DKO, TKOD, TKOZ, and QKO compared to H37Rv 
control. Dot plots measure fold enrichment, where the dot size reflects the total number of genes in each category, and the gradient color indicates 
statistical significance expressed as −log10 (P). 
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FIGURE 7 

KEGG pathway analysis in downregulated differentially expressed transcripts of mouse BMDMs infected with vaccine strains versus H37Rv at 72 h post-
infection. Dot plots illustrate the top 30 enriched pathways in downregulated DEGs in BCG, SKO, DKO, TKOD, TKOZ, and QKO compared to H37Rv 
control. Dot plots measure fold enrichment, where the dot size reflects the total number of genes in each category, and the gradient color indicates 
statistical significance expressed as −log10 (P). 
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with cytokine and cytokine receptor, IL-17 signaling pathway, 
hematopoietic cell lineage, TNF signaling pathway, NF-kappa B 
signaling pathway, and cytokine-cytokine receptor interaction were 
uniquely enriched in upregulated DEGs in SKO, DKO, and TKO-D; 
almost no pathways matched with BCG for the TKO-Z and QKO 
groups. Interestingly, at 72 h, nearly all the pathways were uniquely 
enriched with the upregulated DEGs in our Mtb-derived vaccine 
groups compared to BCG. In examining the pathways enriched in 
downregulated DEGs, very few overlapped at 72 h, and almost none 
at 24 h (Supplementary Figure S7). Notably, the TKO-Z group did 
not  exhibit  any  common  pathways  overrepresented  in  
downregulated DEGs like BCG, in contrast to many that were 
enriched in upregulated DEGs in this group during 72 h. The-
common KEGG pathways enriched in downregulated DEGs across 
all  groups  appeared  primarily  due  to  the  SKO  strain  
(Supplementary Figure S7). 
Gene ontology analysis of mouse BMDMs 
infected with mycobacterial vaccine strains 
compared to H37Rv 

To investigate altered biological processes by DEGs, we 
performed GO analysis for biological processes for all vaccine 
groups compared to H37Rv. Biological processes, such as 
neutrophil chemotaxis, positive regulation of interleukin-6 
production, inflammatory response, and immune response, were 
enriched with upregulated DEGs at the 24 h time point in the BCG, 
SKO, and TKO-D groups (Figure 8). Similar to the KEGG pathway 
analysis, the TKO-Z and QKO groups exhibited delayed 
enrichment of some common pathways in upregulated DEGs to 
other vaccine groups, primarily at the 72 h time point (Figure 9). At 
72 h, biological processes, including neutrophil chemotaxis, positive 
regulation of interferon-gamma production, cytokine-mediated 
signaling pathway, response to lipopolysaccharide, inflammatory 
response, cellular response to lipopolysaccharide, negative 
regulation of cell proliferation, positive regulation of the ERK1 
and ERK2 cascade, immune system process, immune response, and 
response to xenobiotic stimulus, were consistently overrepresented 
in the upregulated DEGs across all vaccine groups (Figure 9). 

Similar to the KEGG pathway analysis, we observed a 
comparable pattern here, with a greater number of the enriched 
biological processes overlapping in the upregulated DEGs than in 
the downregulated DEGs. The TKO-Z group was particularly 
distinct, exhibiting overrepresented biological processes such as 
the positive regulation of endothelial cell proliferation and cell 
adhesion, in downregulated DEGs. Interestingly, most regulation 
of pathways appears to be linked to the deletion of fbpA, as indicated 
by the downregulated DEGs-enriched processes seen in the SKO 
group. These include the phospholipase C-activating G-protein 
coupled receptor signaling pathway, positive regulation of 
angiogenesis, positive regulation of cytosolic calcium ion 
concentration,  response  to  hypoxia,  gene  expression,  
inflammatory response, positive regulation of transcription from 
the RNA polymerase II promoter, response to dietary excess, 
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positive regulation of stress fiber assembly, immune system 
processes, positive regulation of the MAPK cascade, positive 
regulation of the ERK1 and ERK2 cascade, and cell adhesion 
(Figures 10, 11). 
Key immune and cell signaling pathways 
differentially regulated among vaccine 
groups 

KEGG pathway analysis was performed on immune and cell 
signaling pathways to investigate the mechanisms underlying 
vaccine-induced immune responses in macrophages infected with 
various vaccine strains (Supplementary Data 5, 6). Importantly, 
gene deletions in our vaccine strains resulted in differential 
modulation of several signal transduction pathways, including the 
NF-kappa B signaling pathway (mmu04064) and TNF signaling 
pathway (mmu04668). The signaling molecule and interaction 
pathway, particularly Cytokine-cytokine receptor interaction 
(mmu04060), showed significant upregulation, while the ECM-

receptor interaction pathway (mmu04512) demonstrated 
downregulation. Several cytokine and chemokine genes, including 
tnf, il6, il1a, il1b, il1r1, il1r2, il12a, il12b, il23, cxcl1, cxcl2, cxcl3, 
ccl22, ccl2, ccl3, ccl4, ccl6, and ccl7, were significantly upregulated 
across most vaccine groups. In contrast, genes such as cxcr1, cxcr3, 
cxcl9, cxcl12, and ccl8 were downregulated in the majority of vaccine 
groups. Furthermore, as previously noted, the ECM-receptor 
interaction pathway was significantly enriched in downregulated 
DEGs in specific vaccine strain-infected BMDMs, including SKO, 
TKO-D, and QKO, at 72 h (Figure 7). 

Key immune system pathways were also affected, including 
Hematopoietic cell lineage (mmu04640), Chemokine signaling 
pathway (mmu04062), Toll-like receptor signaling pathway 
(mmu04620), IL-17 signaling pathway (mmu04657), Th1 and 
Th2 cell differentiation (mmu04658), Th17 cell differentiation 
(mmu04659), and T cell receptor signaling pathway (mmu04660) 
(Supplementary Data 5, 6). Notably, only a small number of genes 
in the B cell receptor signaling pathway (mmu04662) were 
differentially regulated across all vaccine strains, including BCG. 

Among these pathways, the IL-17 signaling pathway exhibited 
the most pronounced differential regulation of DEGs across all 
vaccine groups. Heatmap analysis confirmed the list of genes with 
differential expression within the IL-17 signaling pathway 
(Figure 12). A few of the upregulated genes, such as csf2, csf3, 
il1b, ptgs2, and  lcn2, were further confirmed by qRT-PCR, 
corroborating the transcriptome findings (Figure 12). 
Further confirmation of DEGs in vaccine-
infected BMDMs using qRT-PCR 

To further confirm the findings of our study, we performed 
qRT-PCR on macrophages infected with our vaccine strains. For 
this analysis, we randomly selected DEGs from various pathways. 
We examined genes such as csf1, TNF, slc7a2, lta, ddit4, and dapk2 
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FIGURE 8 

Gene ontology analysis for biological processes in the differentially upregulated transcripts of mouse BMDMs infected with vaccine strains versus H37Rv 
at 24 h post-infection. Dot plots illustrate the top 30 enriched biological processes in upregulated DEGs in BCG, SKO, DKO, TKOD, TKOZ, and QKO 
compared to H37Rv control. Dot plots measure fold enrichment, where dot size reflects the total number of genes in each biological process, and the 
gradient color indicates statistical significance expressed as −log10 (P). 
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FIGURE 9 

Gene ontology analysis for biological processes in the differentially upregulated transcripts of mouse BMDMs infected with vaccine strains versus H37Rv 
at 72 h post-infection. Dot plots illustrate the top 30 enriched biological processes in upregulated DEGs in BCG, SKO, DKO, TKOD, TKOZ, and QKO 
compared to H37Rv control. Dot plots measure fold enrichment, where the dot size reflects the total number of genes in each biological process, and 
the gradient color indicates statistical significance expressed as −log10 (P). 
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FIGURE 10 

Gene ontology analysis for biological processes in the differentially downregulated transcripts of mouse BMDMs infected with vaccine strains versus 
H37Rv at 24 h post-infection. Dot plots illustrate the top 30 enriched biological processes of downregulated DEGs in BCG, SKO, DKO, TKOD, TKOZ, and 
QKO compared to H37Rv control. Dot plots measure fold enrichment, where the dot size reflects the total number of genes in each biological process, 
and the gradient color indicates statistical significance expressed as −log10 (P). 
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FIGURE 11 

Gene ontology analysis for biological processes in the differentially downregulated transcripts of mouse BMDMs infected with vaccine strains versus 
H37Rv at 72 h post-infection. Dot plots illustrate the top 30 enriched biological processes in downregulated DEGs in BCG, SKO, DKO, TKOD, TKOZ, and 
QKO compared to H37Rv control. Dot plots measure fold enrichment, where the dot size reflects the total number of genes in each biological process, 
and the gradient color indicates statistical significance expressed as −log10 (P). 
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at  the 24 h and 72 h time  points  (Figure 13). The results 
demonstrated strong alignment with the transcriptome data. 
Interestingly, we observed an increased expression of the solute 
carrier family 7-member 2 (slc7a2) gene across all our vaccine 
groups in both transcriptome and qPCR analyses (Figure 13). 
Notably, this gene is reported to be highly expressed in 
macrophages infected with avirulent Mtb strain H37Ra (25), 
indicating that our vaccine strains exhibit reduced virulence 
compared to the wild-type strain. 
Frontiers in Immunology 16 
Discussion 

In this study, we performed genome-wide transcriptome 
analyses of mouse macrophages after infection with our Mtb

derived vaccine strains. We also included the BCG vaccine, as it 
is an established vaccine against TB. While multiple studies have 
reported transcriptome data of mouse macrophages infected with 
either BCG or Mtb, (25–27, 30, 31); our study focused on vaccine 
strains deficient in genes such as fbpA, sapM, zmp1, and dosR, either 
FIGURE 12 

IL17 signaling pathway is differentially regulated in vaccine groups in comparison with H37Rv. (A, C) Heat map depicts the green–red gradient that 
reflects relative gene expression among vaccine groups at 24 h and 72 h. (B, D) Gene expression levels of Csf2, Csf3, ilß, ptgs2, and lcn2 in BMDMs 
infected with vaccine strains at 24 and 72 hours as determined by qRT-PCR. Data were analyzed by one-way ANOVA followed by Dunnett’s multiple 
comparisons test. 
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individually or in combination. Transcriptomic analysis of our 
vaccine-infected macrophages was conducted using a heatmap, 
volcano plot, and venn diagram, demonstrating  a distinct

difference in DEGs expressed among groups. The number of 
DEGs in BCG-infected macrophages was greater than in 
macrophages infected with other vaccine groups and Mtb H37Rv. 
This disparate response between BCG and our Mtb H37Rv-derived 
strains may be due to the deletion of several ORFs within RD1
RD16 regions in BCG. 

KEGG pathway analysis of DEGs identified several immune 
pathways that are implicated in vaccine-infected macrophages. 
Some prominent pathways include infections with intracellular 
bacteria, as well as immune, viral, cancer, and disease-related 
components. Type I interferon-related pathways, such as cytosolic 
DNA-sensing, NOD-like receptor signaling, NF-kappa B signaling, 
and C-type lectin receptor signaling, were significantly enriched 
with upregulated DEGs in our vaccine strains compared to the 
naïve group, similar to the previous reports (30, 32, 33). Also, 
consistent with earlier reports, TNF signaling was enriched with 
upregulated DEGs in all vaccine groups (25, 34). Notably, pathways 
such as the cell cycle, DNA replication, p53 signaling, progesterone-
mediated oocyte maturation, focal adhesion, and efferocytosis were 
Frontiers in Immunology 17 
enriched with downregulated DEGs in all vaccine groups, with 
some of the pathways aligning with earlier findings (30, 35). 

Significant variations in upregulated DEGs-enriched pathways 
were noted across the vaccine groups between 24 and 72 h. Notably, 
TKO-Z and QKO exhibited a few pathways unique to other vaccine 
strains at 24 h, but by 72 h, they aligned with strains like SKO, DKO, 
and TKO-D. This change in pathways in TKO-Z and QKO may 
result from the deletion of zmp1. The zmp1 gene encodes a crucial 
enzyme for M. tuberculosis pathogenicity, playing various roles such 
as inhibiting phagosome maturation, suppressing inflammasome 
activation, mediating necrosis, and providing protection in guinea 
pig models (20, 21, 36). Interestingly, intracellular bacterial 
pathways, including legionellosis, leishmaniasis, and tuberculosis, 
were not enriched with upregulated DEGs in the TKO-Z group 
compared to H37Rv at either time point. However, these pathways 
were significantly enriched in the TKO-Z group when compared to 
the uninfected control. Due to the lack of transcriptome data for a 
zmp1 mutant infected macrophages, direct comparisons with 
previous findings cannot be made. In comparison to H37Rv, the 
upregulation of genes in the H37Rv-derived vaccine groups ranged 
from approximately 0.2 -6.1%, while the downregulated DEGs 
showed minimal changes, with only about 0.1-2.9% of genes 
FIGURE 13
 

qPCR Validation of differentially regulated pathways in vaccine groups comparison with H37Rv. (A, B) Gene expression levels of Csf1, tnf, slc7a2, lta,
 
ddit4, and dapk2 in vaccine strains infected BMDMs at 24 h and 72 h as determined by qRT-PCR. Data were analyzed by one-way ANOVA followed
 
by Dunnett’s multiple comparisons test.
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being downregulated. This highlights the need for transcriptome 
data from Mtb-derived vaccine candidates currently in clinical trials 
for a more comprehensive comparison. Similar to BCG, pathways 
such as ECM receptor interaction, efferocytosis, focal adhesion, and 
PI3K-Akt signaling were enriched with downregulated DEGs in 
some vaccine groups in our study. 

Despite developing numerous vaccines against TB, we still lack 
exact knowledge of the immune correlates of protection (CoPs) for 
TB. However, data from animal and human studies provide insights 
into the immune cells that may be crucial for controlling TB, 
including Th1, Th17, CD8+ T cells, B cells, tissue-resident 
memory T cells, trained immunity, and tissue-resident alveolar 
macrophages (37). Interestingly, genes from the major immune and 
cell signaling pathways like Cytokine-cytokine receptor interaction, 
Chemokine signaling, NF-kappa B signaling pathway, Toll-like 
receptor  signaling,  IL-17  signaling,  Th1  and  Th2  cell  
differentiation, Th17 cell differentiation, T cell receptor signaling, 
and TNF signaling pathway were differentially regulated in our 
vaccine strains compared to wildtype H37Rv. Numerous vaccine 
studies have underscored the crucial role of T cell-mediated 
protection against Mtb infection (19, 38–41) and  the limited

significance of B cell-mediated responses in TB vaccines (42). 
Similarly, our vaccines mainly boost T cell-mediated immune 
pathways instead of B cell receptor signaling pathways. These 
findings offer a hopeful perspective for the development of more 
effective TB vaccines. 

Cytokines and chemokines are essential in coordinating the 
immune response to mycobacterial infection (43). TB vaccine 
candidates like VPM1002 and MTBVAC have shown increased 
cytokine responses (44, 45). Our vaccine strains similarly showed 
different cytokine and chemokine expression profiles. Pro-
inflammatory cytokines, including TNF-a, IL-6, GM-CSF, and IL
1, are crucial for the immune response against Mtb infection and play 
a vital role in host survival (46–48). Consistent with previous 
findings, our vaccine-infected macrophages exhibit increased 
expression of TNF-a, IL-6, and GM-CSF. Furthermore, our vaccine 
strains induce higher levels of IL-1 family cytokines, including IL-1a, 
IL-1b, IL-1R1, and IL-1R2. Chemokines such as CXCL1, CXCL2, and 
CXCL3 promote the recruitment of neutrophils and natural killer 
cells, while CCL3 and CCL4 aid in T-cell recruitment. Additionally, 
CCL7 is vital for recruiting monocytes, dendritic cells, T cells, and 
natural killer cells (49). Notably, our vaccine strains show strong 
expression of these chemokines, highlighting their potential 
immunomodulatory role effects. 

Emerging evidence underscores the essential role of IL-17 in TB 
control across various species, including mice (50, 51), non-human 
primates (52, 53), and humans (54). Initially, IL-17 was thought to 
primarily mediate responses against extracellular pathogens rather 
than intracellular bacteria like Mtb. However, recent findings 
underscore its essential role in TB control. Studies have revealed 
that IL-17 levels are significantly lower in individuals who progress 
to active TB compared to non-progressors (55). Reports indicate 
that CD4+ T cells producing IL-17 are primarily localized in the 
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lungs compared to TNF-a and IL-2. Furthermore, administering 
exogenous IL-17 in human granuloma models has shown 
effectiveness in controlling Mtb (56). Moreover, IL-17 has been 
identified as essential in mice for providing early protective 
immunity against Mtb HN878 infection (51). Mice that lack IL
17 receptors show reduced long-term control of Mtb infection (57). 
In our study, IL-17 signaling was significantly upregulated across all 
vaccine strains, including SKO, DKO, TKO-D, TKO-Z, and QKO. 
Gene ontology analysis revealed upregulated cellular responses to 
IL-17 in TKO-D and QKO, T-helper 17 cell lineage commitment in 
TKO-Z, and positive regulation of IL-17 production in the BCG 
vaccine group. These findings underscore the pivotal role of IL-17 
in TB control and the effectiveness of our vaccine strains in eliciting 
an appropriate immune response. 

Recent studies have reported that the upregulation of slc7a2 in 
macrophages plays a critical role in controlling the intracellular survival 
of Mtb (25). Notably, slc7a2 expression is higher in macrophages 
infected with the avirulent strain H37Ra compared to the virulent 
H37Rv strain. Consistent with these findings, our DEGs analysis 
revealed increased expression of slc7a2 transcripts in our vaccine 
strains compared to the wild-type H37Rv, a result further validated 
through qPCR. While safety studies in SCID mice are still required to 
establish the safety profile of our vaccine strains, these findings suggest 
an improved safety profile for the vaccine strains used in this study. 

One of the major limitations of the present study is that the 
comparative transcriptomic analysis was performed under in vitro 
conditions and not in vivo. While our experimental design 
provides us with the controlled environment to study BMDMs’ 
responses after infection with our vaccine strains, it lacks the in 
vivo conditions like interactions with other cell types, location-
specific cell signals, etc. However, our study offers valuable 
comparative transcriptomic analysis datasets among our vaccine 
strains along with BCG, which offer insights that help enhance our 
understanding. This study focuses exclusively on comparing the 
transcriptomes of vaccine strains derived from the H37Rv Mtb 
strain. Further research is required to understand the relationship 
between the immune and cell signaling pathways activated by 
these vaccines and their actual protective efficacy. Moreover, this 
study emphasizes the importance of performing comparative

transcriptomic analyses for vaccine candidates such as 
VPM1002 and MTBVAC, currently undergoing clinical trials, to 
gain  deeper  insights  into  the  host  immune  response.  
Simultaneously, we recognize the importance of ‘decoy’ immune 
responses in TB infection (58). While certain host immune 
responses may appear promising, they indeed support the 
pathogen by promoting its persistence within the host. Thus, we 
strongly underscore the importance of performing protection 
studies in animal models and correlating these immune 
responses to actual protection, rather than relying solely on the 
statement that heightened proinflammatory cytokine production 
alone is beneficial. Overall, our study provides a thorough 
comparative transcriptome analysis of Mtb-derived vaccine 
strains alongside BCG, highlighting key immune pathways that 
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play a crucial role in modulating immune and cell signaling events 
in the fight against the Mtb pathogen. 
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