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Alzheimer’s disease (AD) is a progressive neurodegenerative disorder

charac te r i zed by cogn i t i ve dec l ine , memory impa i rment , and

neuroinflammation, with no definitive cure currently available. The NLRP3

inflammasome, a key mediator of neuroinflammation, has emerged as a critical

player in AD pathogenesis, contributing to the accumulation of b-amyloid (Ab)
plaques, tau hyperphosphorylation, and neuronal damage. This review explores

the mechanisms by which the NLRP3 inflammasome is activated in AD, including

its interactions with Ab, tau, reactive oxygen species (ROS), and pyroptosis.

Additionally, it highlights the role of the ubiquitin system, ion channels,

autophagy, and gut microbiota in regulating NLRP3 activation. Therapeutic

strategies targeting the NLRP3 inflammasome, such as IL-1b inhibitors, natural

compounds, and novel small molecules, are discussed as promising approaches

to mitigate neuroinflammation and slow AD progression. This review

underscores the potential of NLRP3 inflammasome inhibition as a therapeutic

avenue for AD.
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1 Introduction

Alzheimer’s disease (AD) is a prevalent, chronic, and progressive neurodegenerative

disorder, often leading to significant cognitive decline and memory impairment in its early

stages, with later phases causing substantial daily functioning challenges and psychiatric

symptoms (1). Currently, there are no definitive strategies for the prevention or treatment

of AD (2), and its incidence is escalating rapidly due to global aging trends (3). The

pathogenesis of AD is primarily associated with the accumulation of b-amyloid (Ab),
hyperphosphorylation of tau proteins, and the formation of neurofibrillary tangles. Recent

studies have further underscored the critical role of neuroinflammation in the progression

of AD (4, 5).
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Among the various neuroinflammatory mediators, the NLRP3

inflammasome has gained attention as a potential therapeutic target

(6). First described by Martinon et al. (7), the inflammasome is a

multi-protein complex that includes caspases, ASC, and

cytoplasmic pattern recognition receptors (8). It recognizes

pathogen- or danger-associated molecular patterns, activating

Caspase-1, which processes IL-1b and IL-18 precursors into

active cytokines (9–11). NLRP3, the most extensively studied

inflammasome, has been implicated in the pathogenesis of AD

(10, 12) This review summarizes the structure, activation

mechanisms, and involvement of the NLRP3 inflammasome in

AD, as well as potential therapeutic strategies targeting

this inflammasome.
2 The role of NLRP3 inflammasome in
Alzheimer’s disease

2.1 Ab, microglia, and NLRP3 activation

In brain regions affected by AD, microglia are frequently

observed in proximity to Ab plaques. Research has demonstrated

that these microglial cells play a crucial role in eliminating Ab
through mechanisms such as phagocytosis and proteolysis (13). The

activation of the NLRP3 inflammasome, however, is not solely

triggered by fibrillar Ab but also by smaller Ab oligomers and

protofibrils (14). Ab induces microglial activation through multiple

signaling pathways, including NF-kB, which upregulates the

expression of NLRP3 and pro-IL-1b (15). Moreover, soluble Ab
disrupts lysosomal stability, leading to the release of cathepsins and

subsequent activation of the NLRP3 inflammasome (16).

Additionally, Ab oligomers impair mitochondrial function,

causing oxidative stress and the release of mitochondrial DNA,

which further exacerbates NLRP3 inflammasome activation (17).

As AD progresses, chronic NLRP3 activation leads to excessive

microglial activation, diminishing their ability to clear Ab and

fostering its accumulation (18, 19). Notably, APP/PS1 transgenic

mice lacking NLRP3 exhibit reduced Ab deposition, suggesting that

NLRP3 contributes to Ab accumulation and accelerates disease

progression (20).
2.2 Tau-induced NLRP3 inflammasome
activation

Tau proteins activate the NLRP3 inflammasome in microglial

cells via an ASC-dependent mechanism, triggering IL-1b release

and neuroinflammation (16, 21). This activation also regulates tau

phosphorylation by modulating kinases and phosphatases, leading

to tau hyperphosphorylation and aggregation in neurons (22).

Hyperphosphorylated tau aggregates (NFTs) are recognized by

microglial TLRs, inducing NLRP3 inflammasome assembly

through the NF-kB pathway. Additionally, tau uptake by

microglial lysosomes can release cathepsin B, further activating
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the inflammasome. The resulting IL-1b and IL-18 release

exacerbates neuroinflammation and accelerates AD (23). Tau

precursors can also trigger neuroinflammation and impair

memory through NLRP3 pathways (22). Thus, targeting NLRP3

activation may offer a potential AD therapy.
2.3 ROS and NLRP3 inflammasome

ROS are crucial regulators of the NLRP3 inflammasome, with

their generation closely linked to enzymes such as peroxiredoxin

and NADPH oxidase (24). In normal conditions, thioredoxin

(TRX) and its binding partner thioredoxin-interacting protein

(TXNIP) form a stable complex. However, under oxidative stress,

an increase in ROS levels leads to the oxidation of TRX, which in

turn neutralizes ROS and causes the dissociation of the TRX-

TXNIP complex (25). This dissociation allows TXNIP to interact

with NLRP3, thereby recruiting ASC and procaspase-1, which

ultimately promotes the assembly and activation of the

inflammasome (26). Furthermore, mitochondrial dysfunction can

lead to the release of mitochondrial DNA, a potent activator of the

NLRP3 inflammasome (27). Different ROS sources selectively

modulate NLRP3 signaling in AD (28). Mitochondrial ROS from

electron transport chain (ETC) dysfunction exacerbates oxidative

damage, impairing neuronal energy metabolism and enhancing

NLRP3 activation (29). Conversely, NADPH oxidase-derived

ROS, particularly NOX2 in microglia, amplifies ROS production,

potentiating NLRP3 signaling and neuroinflammation (30).

Targeting these distinct ROS pathways is crucial for precise

NLRP3 inhibition in AD.
2.4 Pyroptosis mediated by NLRP3
inflammasome

Pyroptosis, an inflammatory programmed cell death, is

activated by the NLRP3 inflammasome in AD (31). It promotes

pro-inflammatory cytokine secretion, aiding Ab plaque clearance

but also inducing chronic neuroinflammation that accelerates AD

progression (32). This process is mediated by gasdermin D

(GSDMD) cleavage and caspase-1 activation (33). Pyroptosis

occurs via two pathways: (1) The Classical Pathway, where

caspase-1 cleaves IL-1b and IL-18 precursors, producing mature

cytokines, and modifies GSDMD to form membrane pores,

releasing cytokines and driving pyroptosis; and (2) The Non-

classical Pathway, where caspase-11 (mice) or caspase-4/5

(humans) is activated by cytosolic LPS, triggering pyroptosis

through specific cleavage (34, 35). In AD, Ab-induced pyroptosis

is mediated by the NLRP3-caspase-1-GSDMD axis, exacerbating

neuroinflammation and neuronal damage (36–38). GSDMD

knockout inhibits astrocyte pyroptosis, mitigating Ab42-induced
brain and vascular damage in APP/PS1 mice (39). These findings

suggest that targeting inflammasome-driven pyroptosis holds

potential as a novel therapeutic approach for AD.
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2.5 Integration of Ab, Tau, ROS, and
Autophagy Pathways

Recent studies highlight the interconnected mechanisms of Ab
accumulation, tau hyperphosphorylation, ROS generation, and

defective autophagy in driving AD progression (34). Ab and tau

aggregates activate microglia, increasing ROS and NLRP3

inflammasome activation, which exacerbates mitochondrial

dysfunction and impairs autophagy (40). This creates a vicious

cycle in which NLRP3 serves as a pivotal intersection point,

amplifying neuroinflammation and neuronal damage (40).

Targeting NLRP3 offers a promising therapeutic strategy to

disrupt these cascades, addressing the complex interplay of Ab,
tau, ROS, and autophagy in AD (Figure 1).
3 Mechanisms of NLRP3
inflammasome promoting AD progress

3.1 Ubiquitin system

Ubiquitin, a small protein present in all eukaryotic cells, is

capable of forming chains through enzymatic processes, which

signal target proteins for degradation (41). This modification,
Frontiers in Immunology 03
referred to as ubiquitination, is carried out by a series of specialized

enzymes that alter target proteins, marking them for proteasomal

recognition and breakdown (42). In conjunction with autophagy, this

system plays a critical role in maintaining cellular homeostasis (43).

Disruptions in the ubiquitin-proteasome pathway have been linked to

Alzheimer’s disease and other neurodegenerative conditions (44).

Within the E1, E2, and E3 enzyme families, E3 ligases such as SCF-

FBXL2 selectively target NLRP3 and its associated molecules,

including ASC and caspase-1, promoting NLRP3 ubiquitination

and proteasomal degradation, thereby regulating its activation (45).

Additionally, Cullin1 associates with NLRP3, enhancing its

ubiquitination but without triggering degradation, which serves to

inhibit NLRP3 inflammasome activation (46).
3.2 Ion channels

Ion channels play a critical role in modulating the activation of

the NLRP3 inflammasome, with K+ efflux identified as a pivotal

signaling event (47). In AD, imbalances in the homeostasis of Na+

and K+ disrupt the electrophysiological properties of neurons,

contributing to the pathophysiological change characteristic of the

disease (48). Studies by Gritsenko A et al. (49) demonstrated that K+

efflux in human monocytes leads to the aggregation of ASC,
FIGURE 1

The role of NLRP3 inflammasome in AD.
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cleavage of caspase-1, and subsequent processing of GSDMD.

Inflammatory factors significantly influence the efficacy of

therapies for inflammatory diseases (50–55). Inhibition of NLRP3

or genetic deletion of NLRP3 and GSDMD blocks the release of IL-

18, highlighting the crucial role of early inflammasome assembly

before IL-1b production (56). Additionally, extracellular ATP,

released in response to bacterial toxins, activates P2X7 purinergic

receptors, which disturb intracellular ion balance and promote K+

efflux (57). This perturbation enables the assembly of NLRP3 with

ASC, forming an active inflammasome complex that cleaves

procaspase-1 into active caspase-1. Caspase-1 then facilitates the

secretion of IL-1b and IL-18 (58). Furthermore, GSDMD is cleaved

by the inflammasome, creating membrane pores that allow the

release of these cytokines (45).
3.3 Autophagosomes and lysosomes

Autophagy is a fundamental cellular process in eukaryotic cells

that degrades and recycles cytoplasmic components, such as

damaged organelles and protein aggregates, to maintain cellular

homeostasis (59). Wang D et al. (60) revealed that excessive

accumulation of manganese compromises lysosomal integrity by

altering their structure and impairing their function. In manganese-

induced NLRP3-caspase-1 inflammasome activation, the release of

cathepsin B from lysosomes plays a critical role (61). Additionally,

inflammatory stimuli such as alum, crystalline materials, and

protein aggregates can trigger autophagy (62), leading to

lysosomal destabilization and rupture (63). Following lysosomal

rupture, cathepsin B is released and directly interacts with NLRP3,

thereby promoting the activation of the NLRP3 inflammasome (62).
3.4 ROS production

In AD pathogenesis, Ab peptides compromise synaptic plasticity

and inhibit long-term potentiation (64). Parajuli et al. showed that Ab
promotes the conversion of pro-IL-1b into its active form, IL-1b,
thereby enhancing microglia-mediated neurotoxicity (65). This process

is largely driven by increased caspase-1 activity and the activation of

NOD-like receptors, specifically NLRP3, which features a pyrin

domain (66). Mitochondrial-derived ROS, and to a lesser degree,

ROS generated by NADPH oxidase, play a pivotal role in initiating

NLRP3 activation (67). Elevated ROS levels activate TRPM2 channels,

which subsequently activate NLRP3 and caspase-1, thereby increasing

IL-1b production (68). Notably, the use of mitochondrial ROS

inhibitors, such as DPI, significantly reduces both ROS and IL-1b
levels, indicating a suppression of NLRP3 activation (69).
3.5 Gut microbiota

GM, a consortium of symbiotic microorganisms within the

human intestinal tract, has been implicated in various diseases,
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including AD. Dysbiosis, or disruptions in microbial composition,

is frequently observed in individuals with AD (70). The gut-brain

axis, an increasingly studied area, highlights how microbiota

influences brain function, with both probiotics and prebiotics

playing roles in modulating microbial and immune systems (71).

Dysbiosis impairs the intestinal barrier, allowing pathogen-

associated molecular patterns (PAMPs) to trigger the release of

pro-inflammatory cytokines. These cytokines can then travel to the

brain, aggravating the progression of AD (72–74). Moreover,

microbial activation of the NLRP3 inflammasome leads to the

upregulation of caspase-1 in the AD brain, further advancing

disease pathology (75). While short-chain fatty acids (SCFAs)

from commensal bacteria bind GPCRs (GPR43, GPR41), inhibit

HDACs, reduce cytokines, and downregulate NLRP3 in microglia/

astrocytes (76). Thus, restoring a balanced gut microbiota may

reduce neuroinflammation and enhance cognitive function in AD

patients (77).
4 Therapeutic strategies targeting the
NLRP3 inflammasome

4.1 IL-1b modulation in NLRP3-targeted
Alzheimer’s therapy

Early therapeutic strategies targeting the NLRP3 inflammasome

pathway have largely focused on IL-1b modulation. Notable agents

with proven efficacy include anakinra, a recombinant IL-1 receptor

antagonist; canakinumab, a monoclonal antibody against IL-1b; and
rilonacept, a soluble decoy receptor that binds IL-1b by incorporating
IL-1R1 and IL-1RAcP domains (78). In preclinical experiments using

the 3xTg AD model, anakinra was shown to reduce Ab and tau

accumulation, decrease IL-1b levels, and enhance cognitive function

(79). Furthermore, both anakinra treatment and genetic deletion of

IL-1R improved mitochondrial dysfunction and alleviated memory

deficits associated with Ab in in vivo and in vitromodels (80). Despite

these promising results, the challenge of the blood-brain barrier

(BBB) has hindered further exploration of IL-1b-based therapies in

AD (80). A Phase 2 clinical trial assessing the efficacy of canakinumab

in AD patients is currently ongoing (NCT04795466). However, since

IL-1b acts as a downstream effector, directly targeting NLRP3 or its

inflammasome components could potentially offer more substantial

therapeutic advantages (81).
4.2 Ginkgolide B and sulforaphane

GB has demonstrated protective effects against ischemic brain

injury and neurotoxicity induced by Ab (82). In models of hypoxic-

ischemic brain damage in rats, GB diminishes NLRP3 inflammasome

activation, thereby alleviating neuroinflammation and mitigating AD-

related pathology in BV2 cells (83). Additionally, GB treatment has

been reported to reduce Ab-induced pathological alterations and

inhibit NLRP3 inflammasome activation (84). Furthermore, GB
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promotes the upregulation of anti-inflammatory markers in M2

microglia, while concurrently suppressing the release of pro-

inflammatory cytokines in M1 microglia (85). Through autophagy-

dependent pathways, GB also curbs NLRP3 inflammasome activation,

ultimately safeguarding cognitive function in SAMP8 mice (84, 86).

SFN exhibits notable anti-inflammatory, antioxidant, and

neuroprotective properties (87). Studies suggest that SFN

effectively diminishes the release of IL-1b and IL-18 in LPS-

activated microglia, while also inhibiting the overexpression of

NLRP3 and caspase-1 proteins (88). Furthermore, SFN prevents

pyroptosis in microglia by inhibiting caspase-1 activity (89), and

attenuates NLRP3 inflammasome activation via the downregulation

of NF-kB (88), thus reducing inflammatory responses (90).
4.3 Dapansutrile (OLT1177) and MCC950

OLT1177, an orally available and selective inhibitor of the NLRP3

inflammasome, has demonstrated considerable therapeutic promise

(91). This compound binds directly to NLRP3, blocking its ATPase

function and disrupting several inflammasome activation pathways. In

APP/PS1 transgenic mice, OLT1177 treatment partially alleviated

cognitive impairments as assessed by the Morris water maze test. It

also decreased microglial activation and lowered cortical plaque

accumulation (92). Although there is limited research on its

application in neurodegenerative disorders, OLT1177’s excellent

safety profile, favorable pharmacokinetic characteristics, and minimal

side effects underscore its potential as a therapeutic agent for AD (93).
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MCC950 is a potent anti-inflammatory compound that

selectively inhibits NLRP3 inflammasome activation by targeting its

NACHT domain (94). In models of Alzheimer’s disease, MCC950

effectively dampens the inflammasome activation triggered by Ab or

tau, preventing the cleavage and release of caspase-1 and IL-1b.
Additionally, it completely halts immune responses induced by Ab
aggregates and low-molecular-weight oligomers (95). In vitro

experiments using Ab-stimulated human primary neurons pre-

treated with MCC950 demonstrated its capacity to inhibit

pyroptosis, thereby significantly reducing Ab-induced neuronal

toxicity. Other NLRP3 inhibitors currently under exploration

include IFM-514 (96), CY-09 (97), DFV890 (98), Tranilast (99),

Oridonin (100), Selnolast (101), and Inzomelid (102).
4.4 Other therapeutic strategies targeting
the NLRP3 inflammasome

Nonsteroidal anti-inflammatory drugs (NSAIDs) have shown

potential in delaying the onset of Alzheimer’s disease (AD) or

reducing its risk, likely through their modulation of the NLRP3

inflammasome pathway (103). For instance, indomethacin, a well-

known NSAID, has been demonstrated to inhibit both NLRC4

and NLRP3 inflammasomes. This inhibition leads to a reduction

in the expression of IL-1b and caspase-1, thereby alleviating

neuroinflammation and mitigating memory deficits associated with

AD (104). MicroRNAs have been shown to suppress NLRP3

expression, leading to improved cognitive function in rodent models
TABLE 1 The therapies targeting NLRP3 Inflammasome in AD.

Therapeutic Strategy Mechanism Effect

Targeting IL-1b (Anakinra)
Modulates IL-1b activity by using IL-1 receptor antagonists,
monoclonal antibodies, and decoy receptors.

Reduce IL-1b, improve cognitive function, and
alleviate neuroinflammation.

Ginkgolide B (GB)
Inhibits NLRP3 inflammasome activation and
reduces neuroinflammation.

GB reduces Ab-induced pathology, enhances M2 microglia,
suppresses pro-inflammatory cytokines, and improves
cognitive function.

Sulforaphane (SFN)
Inhibits NLRP3 inflammasome activation via NF-kB
downregulation and reduces pyroptosis.

SFN diminishes IL-1b/IL-18 release, inhibits caspase-1, and
reduces NLRP3 overexpression in LPS-activated microglia.
Shows anti-inflammatory and neuroprotective effects.

Dapansutrile (OLT1177)
Selectively inhibits NLRP3 inflammasome by blocking ATPase
function and inflammasome activation.

OLT1177 improves cognitive function, reduces microglial
activation, and lowers Ab plaque accumulation in AD mouse
models. Favorable pharmacokinetic properties.

MCC950
Selectively inhibits NLRP3 inflammasome via NACHT
domain targeting.

MCC950 inhibits inflammasome activation by Ab/tau, reducing
IL-1b release and preventing neuronal toxicity in AD models.

Ketone Bodies
Ketogenic diets and ketone bodies (e.g., b-hydroxybutyrate)
inhibit NLRP3 inflammasome activation and reduce
Ab buildup.

b-Hydroxybutyrate inhibits NLRP3 inflammasome, reduces Ab
internalization, and mitigates AD progression. 2-DG enhances
bioenergetic capacity and promotes Ab clearance.

Other Strategies
NSAIDs, microRNAs, autophagy, mitophagy, and botanical
extracts modulate NLRP3 inflammasome activity.

Indomethacin, miR-138–5p, miR-223, Quercetin, Ginkgo biloba,
and others reduce NLRP3 activation, improving cognition and
reducing neuroinflammation.

New Therapies Targets autophagy, mitophagy, and inflammasome activation.
Cornuside, Thonningianin A, and Eriodictyol inhibit NLRP3
inflammasome activation, promote mitophagic flux, and
improve cognitive function in AD models.
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of Alzheimer’s disease (105, 106). In AD patients, reduced miR-22

levels in AD patients are associated with increased NLRP3 activation,

while overexpression of miR-22 inhibits GSDMD-mediated pyroptosis,

thereby reducing neuroinflammation and cognitive decline in ADmice

(107). These findings highlight the potential of targeting miRNAs to

modulate NLRP3 activity as a novel therapeutic strategy for AD.

In addition to miRNAs, autophagy and mitophagy also modulate

NLRP3 activation. For example, IIIM-941 has been shown to induce

autophagy via AMPK, inhibiting NLRP3 activity (108). A-68930

activates dopamine D1 receptors, promoting NLRP3 degradation

through AMPK/autophagy, reducing IL-1b/IL-18 secretion, and

mitigating Ab1-42-induced neuroinflammation (109). Ginkgo biloba

extract EGb 761 enhances microglial autophagy, downregulates

NLRP3, and attenuates Ab-induced IL-1b/caspase-1 activation in

TgCRND8 mice (110). Furthermore, Quercetin stimulates

mitophagy, suppressing mtROS-driven NLRP3 activation and

protecting against neuronal damage (111). These studies suggest that

enhancing autophagy and mitophagy in microglia may offer a

promising therapeutic approach for AD.
4.8 New therapies focus on the NLRP3
inflammasome

A recent study has identified cornuside as a promising anti-AD

agent. Cornuside has been shown to restores mitophagic flux, enabling

the efficient the removal of damaged mitochondria and the recovery of

mitochondrial function. Thesemechanisms contribute to the inhibition

of NLRP3 inflammasome activation, thereby reducing neuronal and

synaptic damage and improving cognitive function (112). Structurally

unique diterpenoids, isolated from the mangrove plant Excoecaria

agallocha L., have emerged as promising anti-neuroinflammatory

agents. These compounds exert their effects by inhibiting

macrophage polarization and suppressing the activation of the

NLRP3 inflammasome, highlighting their potential in mitigating

neuroinflammation (113). Additionally, Thonningianin A (ThA)

has demonstrated the ability to suppress NLRP3 inflammasome-

driven inflammation and curb the overactivation of microglia and

astrocytes through the induction of autophagy (114). Moreover,

autophagy has been implicated in mitigating neuroinflammation in

AD by modulating NLRP3 inflammasome activity (115).

Consequently, targeting the autophagy-NLRP3 inflammasome axis

using ThA holds potential as a novel therapeutic approach for

AD (23). Additionally, research suggests that Eriodictyol exerts

beneficial effects on AD by inhibiting NLRP3 activation. Eriodictyol

can cross the BBB and significantly reduce the expression of NLRP3,

caspase-1, and ASC proteins in brain tissue, while also decreasing the

inflammatory cytokines IL-1b and IL-18. These effects improve

cognitive function and memory (116), as well as attenuate AD

pathology (23, 117). The ongoing phase 3 trial TRAILBLAZER-ALZ

2 (NCT04437511) (118), phase 2 clinical trial (NCT04795466) (81) and

other AD clinical trials will offer a more comprehensive strategy for AD

treatment (119) (Table 1).
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5 Conclusion

The NLRP3 inflammasome plays a pivotal role in the pathogenesis

of Alzheimer’s disease by driving neuroinflammation, Ab
accumulation, tau pathology, and neuronal damage. Its activation is

influenced by multiple factors, including ROS, mitochondrial

dysfunction, and gut microbiota dysbiosis. Targeting the NLRP3

inflammasome through various therapeutic strategies, such as IL-1b
modulation, natural compounds, and small-molecule inhibitors, offers

promising potential to alleviate neuroinflammation and slow disease

progression. Future research should focus on developing NLRP3-

targeted therapies that can effectively cross the blood-brain barrier

and provide long-term benefits in AD patients. Moreover, integrating

biomarker identification and precision-targeted drug design into

clinical research could expedite the transition from bench to bedside,

ultimately offering earlier intervention and better protection against

neurodegeneration in individuals at risk for or diagnosed with AD. By

addressing the central role of the NLRP3 inflammasome in AD, these

therapeutic approaches may pave the way for more effective treatments

for this debilitating disease.
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