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Dual regulatory effects of gut
microbiota and their metabolites
in rheumatoid arthritis:
balancing pathogenic and
protective mechanisms
Xingwen Xie1,2†, Xin Chen1†, Xuetao Wang2,
Sunli Wang2 and Peng Qi2*

1Affiliated Hospital of Gansu University of Traditional Chinese Medicine, Lanzhou, China,
2Gansu University of Traditional Chinese Medicine, Lanzhou, China
Rheumatoid arthritis is a chronic autoimmune disorder characterized by

destructive, symmetric joint inflammation and synovitis, resulting in substantial

disability that profoundly compromises patients’ quality of life. Its pathogenesis

encompasses complex interactions between genetic and environmental factors.

Recent advances in bacterial DNA sequencing technologies have uncovered a

significant correlation between the human gut microbiota composition and

rheumatoid arthritis progression. Growing clinical and experimental evidence

establishes the gut-joint axis as a crucial mediator in rheumatoid arthritis

pathogenesis. Comprehensive investigation of gut microbial communities and

their metabolites’ influence on rheumatoid arthritis mechanisms, coupled with

the elucidation of microbiome’s bidirectional regulatory effects in disease

development, not only deepens our understanding of pathological processes

but also establishes a theoretical framework for developing novel diagnostic

biomarkers and personalized therapeutic interventions to enhance

patient outcomes.
KEYWORDS
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1 Introduction

Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease

characterized primarily by polyarticular synovitis, leading to bone and cartilage erosion

and ultimately resulting in joint deformity and functional impairment (1). This condition

affects approximately 1% of the global adult population (2). While the precise etiology of

RA remains elusive, evidence suggests that its pathogenesis involves complex interactions

between genetic and environmental factors, triggering aberrant T-cell immune responses

and subsequent progressive inflammatory reactions in synovial joints (3–5).
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The human microbiome constitutes a sophisticated ecological

system essential for health maintenance and disease progression (6–

10). The gastrointestinal tract is the most densely populated microbial

habitat in humans, with the gut microbiota comprising

approximately 70% of the total microbial load (11). The oral cavity

contains the second largest microbial community, representing

approximately 10% of the total. This oral microbiota plays a crucial

role in maintaining oral health. The remaining microbial populations

are distributed across other niches, including the skin, respiratory

tract, and urogenital tract, where their combined abundance is lower,

contributing to the overall diversity of the human microbiome. The

human gut microbiome is predominantly composed of phyla

including Firmicutes, Bacteroidetes, Actinobacteria, and

Proteobacteria (12), orchestrating essential physiological processes

including nutrient metabolism, toxin degradation, immune

regulation, and intestinal barrier maintenance (13). Evidence

indicates that gut microbiota critically modulate host immune

responses, with their dysbiosis strongly correlating with various

autoimmune disorders’ pathogenesis (14). In dysbiotic conditions,

metabolites—including short-chain fatty acids, polyphenols,

vitamins, and tryptophan—produced by proliferating pathogenic

strains potentially contribute to RA pathogenesis (15). Moreover,

alterations in gut microbiota composition and their metabolic

products influence both RA treatment efficacy and drug-induced

adverse effects. Thus, elucidating the gut microbiota-RA relationship

has profound implications for understanding disease mechanisms,

enhancing diagnostic approaches, and developing optimal

therapeutic strategies.
2 Gut microbiome ecology and its
interplay with rheumatoid arthritis
pathogenesis

Clinical and experimental studies have established a significant

role for the gut-joint axis in the pathogenesis of rheumatoid arthritis

(RA) (16, 17). Specifically, Collinsella spp. are significantly elevated

in patients with stage 1 RA, while Faecalibacterium is associated

with stage 3 RA, and Bifidobacterium longum and Eggerthella are

enriched in stage 4 RA patients (18). Characterization of the gut

microbiome in Chinese RA cohorts has revealed a signature marked

by the enrichment of Lactobacillus salivarius and a reduction in

Haemophilus spp (19). Furthermore, meta-analysis has

demonstrated a significant alteration in the gut microbial

composition of RA patients compared to healthy controls (16).

Microbial community diversity is commonly assessed using a-
Abbreviations: RA, rheumatoid arthritis; NF-kB, nuclear factor kappa-light-

chain-enhancer of activated B cells; MAPK, mitogen-activated protein kinase;

FMT, fecal microbiota transplantation; IL-6, Interleukin-6; TNF-a, tumor

necrosis factor - alpha; IL-1b, Interleukin-beta; IL-23, Interleukin-23; TGF-b,

transforming growth factor beta; IL-10, Interleukin-10; Th17, T helper 17; IL-17,

Interleukin-17; IL-22, Interleukin-22; AhR, aryl hydrocarbon receptor; SCFAs,

short-chain fatty acids; RANKL, receptor activator of nuclear factor kappa-B

ligand; Treg, regulatory T cells.
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diversity (species richness within a single sample) and b-diversity
(differences in microbial composition between samples). Analyses

of microbial diversity in RA patients generally indicate reduced or

unchanged a-diversity, while b-diversity analyses reveal significant
shifts in microbial community structure (20, 21). At the phylum

level, the gut microbiota of RA patients is characterized by a

significant increase in Proteobacteria and Verrucomicrobia, and a

decrease in Firmicutes. Although the Firmicutes/Bacteroidetes (F/B)

ratio has not consistently reached statistical significance, its

imbalance has been implicated in activating pro-inflammatory

pathways by disrupting intestinal barrier integrity (22). At the

genus level, RA patients exhibit a significant increase in Klebsiella,

Escherichia, Eisenbergiella, and Flavonifractor, alongside a

significant decrease in Clostridium, Megamonas, and Enterococcus

(21, 23–26). Specifically, Prevotella spp. have been identified as key

pathobionts in RA, with significant enrichment observed in patient

fecal samples (21, 27). A 27 kDa protein-derived peptide produced

by Prevotella can mediate Th1 cell immune responses in early RA

patients via HLA-DR (28, 29). Gut microbes and their metabolites

exert a dual regulatory role in RA. Metabolomic analyses have

revealed elevated levels of glycerophospholipids, benzene and its

derivatives, and cholesterol in RA patients, coupled with decreased

levels of sphingolipids and tryptophan-derived downstream

metabolites (21). Furthermore, fecal butyrate levels are

significantly reduced in RA patients. Butyrate, known for its anti-

inflammatory properties, can inhibit arthritis progression, a finding

supported by animal studies showing that exogenous butyrate

supplementation suppresses arthritis (21). The reduced levels of

tryptophan-derived downstream metabolites in RA patients, along

with the correlation between serum tryptophan and its metabolites

with disease activity and rheumatoid factor, suggest that gut

microbes and their metabolites influence RA development.

Systematically elucidating the molecular mechanisms underlying

the gut microbiome’s association with RA pathogenesis will provide

critical insights for understanding disease mechanisms, developing

diagnostic markers, and optimizing therapeutic strategies.
3 Mechanistic insights into gut
microbiome and metabolite-driven
pathogenesis of rheumatoid arthritis

Gut microbiota dysbiosis is increasingly recognized as a pivotal

factor in the pathogenesis of RA, primarily by modulating intestinal

barrier integrity and immune system function (30, 31). Immune

dysregulation resulting from microbial imbalance affects both innate

and adaptive immunity (16). Within innate immunity, a disrupted

microbiota can lead to aberrant activation of pattern recognition

receptors, subsequently inducing the upregulation of pro-

inflammatory cytokines and the downregulation of anti-

inflammatory mediators, thereby disrupting local immune

homeostasis. In adaptive immunity, a dysbiotic microbiota mediates

the initiation and perpetuation of autoimmune responses by

modulating antigen-presenting cell function, influencing T cell subset

differentiation, and regulating B cell activation states. Microbiota-
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driven inflammation can compromise the tight junctions between

intestinal epithelial cells, leading to increased intestinal permeability

(32). However, while increased epithelial barrier permeability is a

prerequisite for substance translocation, it is not the sole

determinant. Although heightened permeability allows for

greater translocation of microbes, their metabolites, and

antigenic components into the systemic circulation, the specific

substances critically involved in RA pathogenesis depend on the

precise composition of the barrier-crossing metabolites and bacterial

constituents. Specific bacterial components, such as lipopolysaccharide,

can elicit significant systemic inflammation due to their potent

immunostimulatory properties, even in small quantities. Similarly,

imbalances in the levels of specific microbial metabolites, such as

short-chain fatty acids (SCFAs), can contribute to the RA pathological

process by influencing immune cell function (33). Therefore, while

increased intestinal barrier permeability facilitates the entry of microbes

and their metabolites into the host, the etiology of RA is contingent

upon the specific types and concentrations of metabolites and bacterial

components that traverse the barrier (34). Further elucidation of RA

pathogenesis requires a deeper understanding of the precise

mechanisms underlying increased intestinal barrier permeability, the

identification of key metabolites and bacterial components that

effectively translocate across the epithelial barrier, and the assessment

of their relative importance in RA development. It can be hypothesized

that increased intestinal barrier permeability, the composition of

specific metabolites, and the presence of particular bacterial
Frontiers in Immunology 03
components act synergistically to mediate the translocation of

substances across the epithelial barrier (35), ultimately

influencing systemic immune responses and promoting the onset

and progression of RA. Figure 1 illustrates the proposed role of gut

microbes and their metabolites in promoting rheumatoid

arthritis development.
3.1 Immunological microenvironment
modulation

The gut microbiota orchestrates RA pathogenesis through

complex immunological networks. In innate immunity, dynamic

signaling between gut-associated lymphoid tissue immune cells and

intestinal microbiota establishes critical immune barriers (36).

Microbial dysbiosis initiates aberrant innate immune cell

activation, elevating pro-inflammatory cytokines (Interleukin-6

(IL-6), tumor necrosis factor - alpha (TNF-a), Interleukin-beta
(IL-1b), Interleukin-12, Interleukin-23 (IL-23)) while suppressing

anti-inflammatory mediators (transforming growth factor beta

(TGF-b), Interleukin-10 (IL-10)) (31, 37). The gastrointestinal

tract, as the body’s largest immune organ, engages in bidirectional

communication with the host immune system to precisely balance

immune homeostasis and inflammatory responses (38).

In adaptive immunity, microbiota primarily modulates the T

helper 17/regulatory T cells (Th17/Treg) axis. After microbial
FIGURE 1

Schematic illustration depicting how gut microbiota and their metabolites promote the development of RA. Dysbiosis of the gut microbiome leads
to an increase in harmful bacteria, which, by modulating the immune microenvironment, triggers inflammation. This microbial imbalance also
enhances intestinal permeability, facilitating bacterial translocation that activates immune responses and initiates a cascade of events leading to the
destruction of bone and cartilage. The immune cross-reactivity mechanism, supported by molecular simulations, elucidates how microbial antigens,
due to their structural similarity to self-proteins, induce autoimmunity, subsequently causing inflammatory damage to joint tissues.
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antigen presentation by dendritic cells and macrophages to CD4+ T

cells, these lymphocytes differentiate into distinct functional subsets

(39, 40). RA patients display elevated peripheral Th17 cells,

secreting pro-inflammatory cytokines (Interleukin-17 (IL-17),

Interleukin-21, Interleukin-22 (IL-22), granulocyte-macrophage

colony-stimulating factor, TNF-a) that induce synovial fibroblast

receptor activator of nuclear factor kappa-B ligand (RANKL)

expression. RANKL/osteoprote gerin imbalance drives

osteoclastogenesis and bone erosion while promoting pannus

formation and synovial angiogenesis (41, 42). Conversely, Treg

cells maintain immunological homeostasis by secreting IL-10 and

TGF-b1, thereby suppressing Th17 activity (43–45). The Th17/Treg
balance regulation exhibits strain-specific microbial control.

Clinical investigations reveal inverse correlations between

Firmicutes abundance and Th17 cells in RA patients (46), while

Bacteroides fragilis colonization enhances immunomodulation

through Treg activation (47, 48). Faecalibacterium prausnitzii

exerts protective effects by maintaining intestinal barrier integrity,

modulating the Th17/Treg balance, and suppressing inflammatory

responses (49). Studies in germ-free K/BxN mice demonstrate that

Segmented filamentous bacteria colonization promotes functional

Th17 cell differentiation via two mechanisms: elevated ileal serum

amyloid A mediating dendritic cell-driven Th17 differentiation, and

ATP-activated CD70highCD11clow cells inducing IL-6, IL-23p19,

and TGF-b expression through integrin-aV/-b8 signaling (50–52).

Microbiota further modulates T follicular helper and regulatory

cell equilibrium. Decreased T follicular regulatory cells correlate

with enhanced RA activity and autoantibody production, inversely

relating to Ruminococcus levels (53). Microbial antigens cooperate

with T follicular helper cells to trigger B cell hyperactivation,

enhancing pathogenic autoantibody production (18). Bacterial

peptidoglycan detection in RA synovium (29, 54) confirms

altered microbiota’s role in immune dysregulation (19, 55, 56).

The aryl hydrocarbon receptor (AhR) pathway critically influences

RA immunoregulation, particularly in RANKL-mediated

osteoclastogenesis through nuclear factor kappa-light-chain-

enhancer of activated B cells/mitogen-activated protein kinase

(NF-kB/MAPK) signal ing (57, 58) . AhR addit ional ly

regulates immune surveillance via Th17/Treg modulation (59),

with pathway disruption promoting autoimmunity and

systemic inflammation.
3.2 Enhanced intestinal mucosal barrier
permeability

The intestinal barrier system consists of multiple structural

components: mucus layer, epithelial cell layer, basement membrane,

vascular endothelium, and immune molecules. This system

maintains precise regulation of innate and adaptive immune

responses under physiological conditions, enabling selective

barrier function while facilitating nutrient absorption (44).

Zonulin, a protein secreted by intestinal epithelial cells, primarily

functions to modulate tight junction protein complexes between

these cells, thereby influencing intestinal barrier permeability.
Frontiers in Immunology 04
Increased expression or activity of zonulin can alter the structure

and function of tight junction proteins, leading to enlarged

intercellular spaces and a consequent increase in intestinal barrier

permeability, which allows larger molecules to translocate into the

bloodstream via the paracellular pathway. Clinical studies have

demonstrated a concurrent increase in serum and fecal zonulin

levels, providing evidence for the association between intestinal

barrier dysfunction and RA (60). Gut microbiota dysbiosis is a

critical factor in inducing intestinal barrier dysfunction. Studies

have revealed an abnormal increase in the abundance of Collinsella

spp. in RA patients (27, 61), and the molecular mechanisms by

which these bacteria disrupt the intestinal barrier include the

downregulation of tight junction protein expression in intestinal

epithelial cells and the activation of the NF-kB1-mediated

inflammatory pathway. Furthermore, metabolites produced by

Collinsella, such as a-aminoadipic acid and asparagine, synergize

with IL-17A to further exacerbate intestinal barrier damage (62).

The regulatory relationship between microbial composition and

intestinal permeability has been validated in HLA-DQ8 transgenic

mouse models. Experimental evidence indicates that overexpression

of Collinsella aerofaciens increases the incidence of collagen-

induced arthritis by suppressing the expression of tight junction

proteins in intestinal epithelial cells (63). Increased intestinal

permeability facilitates the translocation of microbes and their

metabolites across the compromised barrier into the systemic

circulation, subsequently activating local tissue immune responses

(37). This can initiate a cascade of destructive events in bone and

cartilage tissues (64–66).
3.3 Molecular simulation insights into self-
antigen recognition and rheumatoid
arthritis pathogenesis

Molecular mimicry constitutes a mechanism wherein structural

or sequence homology between pathogenic microorganisms and

host molecules generates cross-reactive immune responses that

trigger autoimmunity. In RA pathogenesis, this process operates

through cross-recognition between microbial antigens and self-

protein epitopes. Clinical investigations demonstrate that RA

patient T and B cells recognize N-acetylglucosamine-6-sulfatase

and filamin A as autoantigens (52% and 56%, respectively) (67)

These autoantigens share extensive sequence homology with

Prevotella-derived bacterial proteins within human leukocyte

antigen-DR presentation regions. Through cross-recognition,

anti-P. copri immune responses activate autoantigen-specific

lymphocyte responses, inducing autoantibody production. These

autoantibodies display marked RA specificity, occurring

significantly less frequently in healthy individuals and patients

with other autoimmune conditions (67). The spleen tyrosine

kinase deficient mouse model has illuminated molecular

mimicry’s role in RA pathogenesis. This model harbors zeta-

chain-associated protein kinase 70 gene mutations that impair T

cell receptor signaling, potentiating T cell autoreactivity (68). In

specific pathogen-free environments, P. copri colonization enhances
frontiersin.org
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Th17 responses and arthritis manifestations in spleen tyrosine

kinase deficient mice. Notably, germ-free mice maintain arthritis

resistance despite fungal exposure, underscoring the gut

microbiota’s essential role in autoreactive T cell activation (68).

Mechanistic studies reveal that P. coprimonocolonization amplifies

immune responses to the arthritis-associated autoantigen 60S

ribosomal protein L23a in lymphoid tissues (69). The molecular

mimicry-based mechanism of immune cross-reactivity elucidates

how microbial antigens, through their structural resemblance to

self-proteins, can trigger autoimmune responses, subsequently

leading to inflammatory damage in joint tissues. Beyond the

immune-inflammatory responses mediated by molecular mimicry,

gut microbial metabolites may also play a pathogenic role in RA.

Paralleling the mechanism of microbial metabolite-induced bone

loss in periodontitis, we hypothesize that gut microbiota dysbiosis

in RA patients leads to the aberrant production of specific

metabolites, such as SCFAs and lipopolysaccharide, which may

translocate to the joints via a compromised intestinal barrier.

Locally within the joints, these metabolites may directly activate

osteoclasts or indirectly induce synovial cells to release pro-

inflammatory cytokines and bone-resorbing factors, thereby

promoting the destruction of joint bone. Thus, microbial

metabolite-induced bone resorption may constitute another

significant pathway through which the gut microbiota influences

RA pathological progression, acting in concert with molecular

mimicry mechanisms to promote disease onset and development.

This finding offers a novel perspective on understanding the

pathogenesis of RA.
4 Mechanistic insights into gut
microbiome and metabolites’
inhibitory effects on rheumatoid
arthritis pathogenesis

Gut microbiota dysbiosis exerts bidirectional effects on RA

pathogenesis. Beneficial microbes maintain intestinal homeostasis

through immune modulation and barrier preservation, particularly

Lactobacillus, Bifidobacterium, and Bacteroides fragilis species,

which attenuate RA manifestation and progression (70, 71).

Clinical studies have characterized distinct alterations in RA

patients’ gut microbiota, revealing depletion of multiple genera

including Bacteroides, Streptococcus, Rhodococcus, Prevotella,

Haemophilus, and Parabacteroides (72–74). These compositional

shifts influence host immunity through altered metabolic profiles.

The tryptophan metabolic pathway emerges as a critical mediator of

RA suppression, where microbe-derived tryptophan metabolites

function as aryl hydrocarbon receptor ligands to regulate both

innate and adaptive immunity (75). Metabolomic profiling has

identified reduced concentrations of tryptophan-derived

compounds in RA patients’ fecal samples, specifically N-methyl-

5-hydroxytryptamine, 5-hydroxyindoleacetic acid, kynurenic acid,

xanthurenic acid, and 3-hydroxyanthranilic acid, underscoring
Frontiers in Immunology 05
tryptophan metabolism’s pivotal role in RA pathogenesis (21).

Figure 2 illustrates how gut microbiota and their metabolites

inhibit the development and progression of RA.
4.1 Immunosuppressive regulatory
mechanisms

Gut microbiota and their metabolites attenuate RA progression

through modulation of immune responses and inflammatory

pathways. Probiotic strains exhibit distinct immunosuppressive

properties, with Lactobacillus casei, L. rhamnosus, and Lactococcus

lactis demonstrating therapeutic potential (76, 77). Mechanistic

studies suggest that Lactobacillus casei may induce anti-

inflammatory responses by influencing the maturation and

function of dendritic cells, upregulating the expression of the

anti-inflammatory cytokine IL-10, and downregulating the levels

of pro-inflammatory cytokines IL-6 and TNF-a, thereby leading to
reduced C-reactive protein levels and improved arthritis symptoms.

Lactobacillus rhamnosus, on the other hand, primarily mediates

immunosuppressive effects by modulating the expression of the

pro-inflammatory cytokine IL-1 (27). Despite elevated detection in

severe RA patients (78, 79), L. salivarius exhibits anti-inflammatory

activity in collagen-induced arthritis models, mitigating bone

erosion and neutrophil infiltration. Falcatibacterium prausnitzii

reduces pro-inflammatory cytokines IL-17, IL-1b, TNF-a while

enhancing commensal microbiota proliferation, particularly

Akkermansia and Bilophila (27).

SCFAs and bile acid metabolites serve as key immunomodulators.

In arthritis models, butyrate drives follicular regulatory T cell

development, attenuating autoimmune progression (80). Propionate

may influence the balance between Th17 cells and regulatory T cells.

Metabolites produced by Parabacteroides distasonis, including

lithocholic acid, deoxycholic acid, isoallolithocholic acid, and 3-

oxolithocholic acid, exert anti-arthritic effects through synergistic

action. Specifically, 3-oxolithocholic acid and isoallolithocholic acid

act as TGR5 receptor agonists, inducing macrophage polarization

towards the M2 phenotype and inhibiting Th17 cell differentiation

(81). The tryptophan metabolic pathway emerges as a critical

immunoregulator in RA, with clinical studies revealing diminished

tryptophan metabolites in RA synovial fluid versus osteoarthritis

samples (82). The serotonin metabolite 5-hydroxyindoleacetic acid

promotes regulatory T cell development via AhR activation (83).

Microbial SCFAs enhance regulatory B cell function through elevated

5-hydroxyindoleacetic acid levels, reducing arthritis manifestations

(84). Additionally, kynurenic acid limits synovial proliferation (21),

while 3-hydroxyanthranilic acid attenuates lipopolysaccharide-

induced macrophage inflammation through NF-kB inhibition (85).

Dietary composition significantly influences the composition of the

gut microbiota and the production of its metabolites, thereby

indirectly modulating these immunosuppressive mechanisms.

Signaling molecules generated by the gut microbiota and their

metabolites can traverse the bloodstream to impact the systemic
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immune system, including immune responses in distal sites such as

the joints.
4.2 Intestinal mucosal barrier restoration

The intestinal barrier functions as a crucial regulator of

organismal homeostasis, with its impairment contributing to

autoimmune disease pathogenesis. Diverse nutritional factors

orchestrate barrier maintenance and repair by modulating

microbial ecosystems and metabolic networks. Dietary fiber

constitutes an essential nutritional element in preserving barrier

integrity, reducing serum concentrations of both the permeability

regulator Zonulin and the inflammatory biomarker calprotectin

(86). Furthermore, dietary fiber maintains mucus layer stability,

thereby influencing microbial community structure (87). SCFAs

fortify intestinal barrier function while serving as microbial energy

substrates and community regulators. These metabolites enhance

barrier integrity through three primary mechanisms: tight junction

protein induction, epithelial cell regeneration, and antimicrobial

peptide production. Butyrate demonstrates particular efficacy in

promoting tight junction protein expression (88). Vitamins

contribute to barrier homeostasis through epithelial cell
Frontiers in Immunology 06
regulation: vitamin D coordinates tight junction assembly and cell

survival (88), while vitamin E strengthens barrier function by

supporting butyrate-producing bacteria and maintaining

microbial homeostasis (89). Select amino acids emerge as critical

mediators of barrier function. Glutamine and tryptophan

insufficiency directly compromises barrier integrity, elevating

intestinal permeability (90, 91). Plant polyphenols quercetin,

myricetin, kaempferol, and curcumin reinforce barrier function

by augmenting transepithelial electrical resistance and enhancing

tight junction protein expression zonula occludens-1 and claudin-1

(92), consequently attenuating RA progression.
5 Translational applications of gut
microbiome in rheumatoid arthritis
diagnosis and treatment

Dysregulation of gut microbial composition and diversity drives

RA pathogenesis and progression through immune system

modulation (65). Therapeutic strategies targeting intestinal

microbiota represent an emerging frontier in RA treatment.

Methotrexate, while established as the primary RA therapeutic,

exhibits marked inter-patient variability in clinical outcomes. Such
FIGURE 2

Schematic illustration showing how gut microbiota and their metabolites inhibit the development and progression of RA. Probiotics and their
metabolites exert inhibitory effects on RA by modulating immune cell functions and regulating the expression of inflammatory cytokines. Short-
chain fatty acids play a key role in this process. Additionally, various nutritional factors contribute to the repair and maintenance of the intestinal
barrier by modulating microbiota composition and metabolic pathways. Dietary fiber, an essential nutrient for maintaining barrier integrity, when
adequately consumed, reduces serum levels of Zonulin and calprotectin, thereby inhibiting the onset and progression of RA.
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heterogeneity encompasses both pharmacodynamic responses

sensitivity and tolerability and pharmacokinetic parameters

distribution and clearance across renal, hepatic, and serosal

compartments. Gut microbiota and their enzymatic products

modulate drug efficacy through multiple mechanisms, influencing

the bioavailability, therapeutic response, and adverse effects of

various medications, particularly methotrexate. Reciprocally, these

therapeutics and their metabolites reshape microbial communities,

thereby altering immune function. Interventions targeting intestinal

homeostasis have demonstrated promising clinical outcomes in RA

management, with preclinical studies validating the therapeutic

potential of microbiome modulation and barrier function

enhancement (93). Furthermore, leveraging immune reactivity

against selected gut bacterial species holds potential clinical

utility. Exploring the detection of specific antibodies or T cell

responses against particular gut bacteria in RA patients could lead

to the development of novel diagnostic biomarkers, enabling earlier

or more precise RA diagnosis. Moreover, immune reactivity against

these specific gut bacteria may also offer new insights into

therapeutic strategies (94). Developing specific immunotherapies,

such as vaccines or antibodies, targeting pathogenic bacteria to

inhibit their growth or mitigate their induced inflammatory

responses warrants consideration. Inducing immune tolerance to

specific gut bacteria could also be a strategy to alleviate

inflammation driven by these bacteria. These advances suggest

that targeted manipulation of microbial ecosystems may yield

novel diagnostic markers and personalized interventions. Figure 3

shows the translational applications of the gut microbiome in the

diagnosis and treatment of RA. This microbiome-centric approach

establishes new paradigms for precision medicine in RA treatment.
Frontiers in Immunology 07
5.1 Biomarker discovery and diagnostic
tool development

The composition of the gut microbiota and serum cytokine

profiles are emerging as valuable molecular biomarkers for the early

diagnosis of rheumatoid arthritis (RA), monitoring disease activity,

and evaluating treatment responses. Microbiome sequencing

analyses have revealed characteristic alterations in the gut

microbiota of RA patients, including an increased ratio of

Bacteroidetes to Firmicutes (24, 95). Community structure

analysis further indicates that early RA patients exhibit an

increased abundance of Prevotella and a decreased abundance of

Bacteroides, a pattern with potential diagnostic utility. The

pathogenic role of the microbiota in RA development has been

validated in germ-free SKG mouse transplantation models. Patients

with active disease display specific microbial signatures, such as

reduced levels of Haemophilus and increased Streptococcus

salivarius. Compared to patients in remission, those with active

disease show a significant increase in the relative abundance of

Collinsella and Akkermansia, suggesting that these microbial shifts

may serve as effective indicators for monitoring disease activity

(3, 96).

RA-associated autoantibodies, such as rheumatoid factor, anti-

citrullinated peptide antibodies, and anti-carbamylated antibodies,

can be detected in serum years before the clinical onset of RA (97–

99). Although established RA typically involves the joints, the

disease’s pathogenesis may originate beyond the articular

structures, potentially linking to citrullination in the lungs or

periodontal tissues, the gut microbiota, or adipose tissue. The

normal appearance of synovial tissue in anti-citrullinated peptide
FIGURE 3

Schematic illustration of the translational applications of the gut microbiome in the diagnosis and treatment of RA. While RA can be managed
through various methods, including oral medications, clinical outcomes exhibit significant individual variability. Interventions such as probiotic
supplementation and stabilization of the intestinal barrier show potential therapeutic benefits in RA. By precisely modulating microbiota composition,
interventions like probiotics, fecal microbiota transplantation, and therapies targeting the gut-joint axis may pave the way for the development of
novel diagnostic biomarkers and personalized treatment strategies.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1584023
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xie et al. 10.3389/fimmu.2025.1584023
antibodies-positive individuals with arthralgia supports this notion

(100). The oral microbiome in patients with rheumatoid arthritis

exhibits significant dysbiosis, which can be restored with RA

treatment, and the extent of this restoration correlates with the

patient’s response to therapy (101). Epidemiological studies have

shown a high prevalence of periodontitis in RA patients.

Periodontitis, a chronic inflammatory disease of the oral cavity,

suggests a close relationship between the oral microbiome and RA.

The periodontal anaerobe Porphyromonas gingivalis can synthesize

bacterial peptidylarginine deiminase involved in RA pathogenesis

(102). P. gingivalis is currently the only known bacterium that

expresses peptidylarginine deiminase and is significantly associated

with RA. Continuous peptidylarginine deiminase secretion by P.

gingivalis leads to the citrullination of a- and b-fibrin chains in the

joint synovium, generating autoantigens that drive anti-

citrullinated peptide antibodies production. anti-citrullinated

peptide antibodies then forms immune complexes with

citrullinated proteins, binding to immune-inflammatory cells via

Fc and C5a receptors, triggering a complex cascade of reactions and

the release of inflammatory mediators, ultimately leading to local

synovial inflammation and the development of RA (103).

Analysis of serum cytokine profiles provides crucial insights for

evaluating disease activity and treatment responses. Elevated levels

of pro-inflammatory cytokines TNF-a and IL-6 reflect increased

disease activity, while decreased levels of the anti-inflammatory

cytokine IL-10 suggest impaired immunosuppressive function.

Integrating the characteristic changes in microbiota composition

and cytokine profiles can facilitate the construction of a multi-

dimensional diagnostic system based on the gut-joint axis (3, 96).

Next-generation high-throughput sequencing technologies and

metabolomics analysis platforms have enhanced the precision of

identifying gut microbiota and their metabolites. The application of

multi-omics data combined with machine learning algorithms

offers robust technical support for developing more accurate and

sensitive diagnostic tools for RA. Machine learning algorithms can

integrate gut microbiota data, cytokine profiles, and other clinical

data to improve the accuracy and sensitivity of RA diagnosis.

Furthermore, multi-omics data can be used to identify different

subtypes of RA patients, enabling personalized treatment strategies.

Next-generation high-throughput sequencing technologies allow

for the precise analysis of gut microbiota composition and

diversity, while metabolomics analysis platforms provide a more

comprehensive analysis of gut metabolites, aiding in the discovery

of novel biomarkers.
5.2 Microbiome modulatory mechanisms in
existing therapeutic paradigms

Disease-modifying antirheumatic drugs modulate RA

progression through restructuring intestinal microbial

communities. Clinical studies reveal elevated relative expression

units of Bacteroides and Prevotella species in disease-modifying

antirheumatic drugs-treated patients’ fecal samples, concurrent

with decreased Clostridium abundance (25). Antibiotic
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intervention studies establish the microbiome’s causative role in

RA pathogenesis: four-week clindamycin treatment selectively

depletes anaerobic bacteria, intensifying both incidence and

severity of collagen-induced arthritis in murine models (104).

Natural compounds demonstrate therapeutic efficacy through

regulation of microbial ecosystems and metabolic networks.

Berberine administration specifically reduces Prevotella while

enriching butyrate-producing bacteria, attenuating collagen-

induced arthritis symptoms via enhanced butyrate synthesis,

intestinal hypoxia stabilization, and nitrate metabolism

modulation (105). The parasitic immunomodulator excretory/

secretory products of Acanthocheilonema viteae, derived from

Acanthocheilonema, preserves microbiota homeostasis and barrier

function when administered subcutaneously, preventing arthritic

manifestations in collagen-induced arthritis models (106).

Tripterygium wilfordii extract restores microbial equilibrium by

suppressing pro-inflammatory taxa (Desulfovibrio, Mucor,

Helicobacter, Spirochaetaceae), thereby attenuating tissue damage

and inflammatory cytokine production such as TNF-a, IL-1b, IL-6,
IL-7, IL-23 (88).

Paeoniae radix glycosides normalize gut microbial taxonomy in

collagen-induced arthritis models, enhancing commensal

populations while suppressing inflammatory mediators, including

secretory Immunoglobulin A and Interferon gamma (107).

Microbial metabolites emerge as therapeutic targets, with SCFAs

mitigating RA progression through concurrent inhibition of T

helper 1 differentiation and promotion of Treg proliferation

(108). Clematis saponins regulate SCFAs homeostasis, with linear

discriminant analysis effect size validating their role in maintaining

Gram-negative/positive bacterial balance (109), consequently

ameliorating RA symptoms.
5.3 Microbiome-mediated mechanisms of
therapeutic efficacy modulation

The gut microbiota emerges as a potential therapeutic target in

RA, with targeted modulation strategies encompassing probiotic

interventions, prebiotic supplementation, and fecal microbiota

transplantation. These microbiome-based therapeutic approaches

ameliorate disease progression through restoration of intestinal

microbial homeostasis. Such microbiota-mediated interventions,

operating through multiple regulatory layers, establish novel

paradigms for precision RA treatment.

5.3.1 Therapeutic strategies modulated by
microbiome regulation

Probiotics demonstrate therapeutic potential through diverse

mechanisms. They suppress inflammatory signaling pathways by

downregulating Toll-like receptor expression. These pattern

recognition receptors mediate immune cell activation and

inflammatory mediator production through pathogen-associated

molecular pattern recognition. Probiotics additionally induce

immunoregulat forkhead box P3 ory factor secretion by antigen-

presenting cells. Experimental studies confirm their promotion of
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forkhead box P3-positive regulatory T cell differentiation, thereby

inhibiting inflammatory cascades. Furthermore, Lactobacillus and

Bifidobacterium species maintain intestinal barrier integrity

through short-chain fatty acid production (71). Clinical

investigations validate probiotic therapeutic efficacy. RA patients

in remission (DMARD-naïve) demonstrate significantly improved

health scores following 12-month L. rhamnosus intervention (110).

Combined supplementation with L. acidophilus, L. casei, and B.

bifidum reduces disease activity scores and high-sensitivity C-

reactive protein levels (111, 112). Multi-strain formulations,

including LC-11, LA-14, LL-23, BL-04, and BB-06, exhibit

significant efficacy in active RA patients (113).

Microbial metabolites play pivotal roles in maintaining

intestinal barrier function. Butyrate and short-chain fatty acids

ameliorate inflammation associated with leaky gut syndrome by

enhancing tight junction protein expression (114, 115). Lithocholic

acid demonstrates anti-inflammatory activity in collagen-induced

arthritis models (116, 117), while Bacteroides fragilis and propionate

serve as adjuvant therapeutic factors, enhancing conventional

treatment efficacy (118). Indole-3-methanol inhibits adjuvant-

induced arthritis progression (119). Sinomenine attenuates RA-

associated inflammation by elevating microbiota-derived indolic

tryptophan metabolites, activating AhR, and modulating NF-kB/
MAPK signaling pathways (16).

5.3.2 Microecosystem reconstruction
Fecal Microbiota Transplantation (FMT) constitutes a therapeutic

approach that rehabilitates recipient microbial ecosystems via healthy

donor microbiota transfer. Mechanistic studies reveal that normal

microbiota transplantation enhances bone mass regeneration through

orchestration of microbial metabolism and immune networks (120).

The interplay between dysbiosis and mucosal immunity emerges as a

critical initiating factor in RA pathogenesis (121). Investigations using

germ-free BALB/c ZAP-70W163C mutant models demonstrate that

RA patient-derived FMT intensifies arthritic manifestations via Th17-

mediated signaling cascades (122). FMT, which involves the transfer of

gut microbiota from a healthy donor, aims to reconstruct the recipient’s

intestinal microecosystem. Its mechanisms of action extend beyond the

direct supplementation of beneficial bacteria to encompass complex

modulation of the host immune system. FMT reduces systemic

inflammation by regulating the production of gut metabolites,

influencing host immune cell function, and repairing the

compromised intestinal barrier, thereby limiting the translocation of

bacteria and their metabolites into the systemic circulation.

Furthermore, FMT can modulate the balance of immune cells within

the intestine of RA patients, increasing the number of Tregs and

decreasing the proportion of pro-inflammatory Th17 cells. With the

continuous advancement of FMT techniques, its application in clinical

translational research for RA is gaining momentum (123). Preliminary

clinical studies have observed some symptom relief in a subset of RA

patients; however, larger-scale clinical trials are needed to validate its

efficacy due to the limited sample sizes of current studies. The efficacy

of FMT is influenced by multiple factors, including donor selection,

microbial composition of the transplant, and the route of

administration (124). Therefore, precise analysis of the gut
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microbiota composition of healthy donors and optimization of

delivery methods (e.g., oral capsules, enemas) are crucial for

enhancing the clinical efficacy of FMT. Nevertheless, FMT carries

potential risks of infection, particularly for immunocompromised RA

patients. The long-term effects of microbiota transplantation on the

host remain largely unknown and necessitate long-term follow-up

studies. Further refinement is required regarding the optimization of

FMT administration routes, long-term efficacy, and safety assessments.

Systemic FMT treatment holds promise for providing a novel

therapeutic target for the precision treatment of RA by reshaping the

diversity and functional network of the gut microbiota in affected

individuals. This strategy underscores a new research direction for RA

treatment by modulating RA-related immune responses from the

perspective of restoring microecological balance.
5.4 Translational clinical strategies for
microbiome-based therapeutics

Triptolide orchestrates anti-arthritic effects by modulating

microbial communities and metabolic networks. Mechanistic

investigations demonstrate its therapeutic action through three

primary pathways: enhancement of Lactobacillus populations,

upregulation of microbiota-derived tryptophan metabolites, and AhR

signaling activation for inflammatory suppression (81). Moreover,

triptolide-enriched Paracasei and L. casei communities mitigate RA

manifestations through potentiated tryptophan metabolism and AhR

pathway stimulation. Photobiomodulation therapy attenuates TNF-

mediated RA progression via gut-joint axis modulation (125). This

intervention reconstructs microbial ecosystems, facilitating beneficial

bacterial expansion - particularly Clostridium, Lactobacillus, and

Escherichia species - thus reinforcing symbiotic network integrity.

Microbial amino acid metabolites emerge as key mediators in

photobiomodulation’s regulation of the gut-joint axis, with efficacy

determined by precise intervention protocols, metabolomic signatures,

and tissue-specific enzymatic activities (125). Although non-steroidal

anti-inflammatory drugs suppress RA symptoms, they commonly

disrupt intestinal mucosal integrity and microbial homeostasis (74).

Evidence indicates that probiotic supplementation counteracts non-

steroidal anti-inflammatory drugs-induced enteropathy, with

Bifidobacterium, Lactobacillus, and Prevotella species demonstrating

robust mucosal protection in preclinical models (126), underscoring

the microbiome’s therapeutic potential.
6 Conclusion

Gut microbiota and their metabolites orchestrate critical regulatory

networks in RA pathogenesis. RA patients demonstrate enrichment of

Klebsiella, Escherichia, Eisenbergiella, and Flavobacterium, concurrent

with depletion of beneficial microorganisms, particularly

Bifidobacterium, Streptococcus, and SCFA-producers. Pathogenic

bacteria accelerate RA progression through inflammatory cascade

activation and barrier compromise, while beneficial microbes

attenuate disease development via anti-inflammatory mechanisms
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and barrier reinforcement. The microbiome emerges as a promising

therapeutic and diagnostic frontier, with specific microbial populations

representing potential intervention targets.

Therapeutic strategies aimed at modulating the gut microbiome

and restoring intestinal microecological balance have demonstrated

the potential to regulate the immune system, offering new avenues

for the treatment of RA. However, several limitations remain.

Current research is largely correlational, observing alterations in

gut microbial composition and metabolite levels in RA patients.

Whether these changes are a direct cause or a consequence of RA

requires further investigation. Furthermore, the gut microbiota and

metabolite profiles of RA patients exhibit significant inter-

individual variability, potentially influenced by genetic,

environmental, and lifestyle factors. The application of gut

microbiota modulation strategies in RA treatment is still in its

early stages, necessitating more extensive clinical trials to validate

their efficacy and safety. The development of diagnostic and

therapeutic tools for RA based on the gut microbiota and its

metabolites also warrants further research. Future endeavors

should prioritize more clinical studies to verify the effects and

mechanisms of gut homeostasis regulation in RA prevention and

treatment. Exploring the mechanisms of specific probiotics or

metabolites, developing novel therapies targeting the gut

microbiome, and integrating these approaches with traditional

pharmacological treatments and lifestyle interventions will offer

more comprehensive strategies for RA management. With a deeper

understanding of the intricate relationship between the gut

microbiota and its metabolites and the immune system, future

research should emphasize the integrated analysis of multi-omics

data, the combined use of animal models and clinical trials, and the

development of personalized treatment strategies. Notably,

exploring the interplay between the gut microbiota and drug

metabolism in RA patients, and investigating the therapeutic

potential of modulating gut microbes and their metabolites holds

promise for novel insights and therapeutic targets for the clinical

prevention and treatment of RA, ultimately leading to improved

patient outcomes and enhanced quality of life.
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18. Bakinowska E, Stańska W, Kiełbowski K, Szwedkowicz A, Boboryko D, Pawlik
A. Gut dysbiosis and dietary interventions in rheumatoid arthritis-A narrative review.
Nutrients. (2024) 16:3215. doi: 10.3390/nu16183215

19. Zhang X, Zhang D, Jia H, Feng Q, Wang D, Liang D, et al. The oral and gut
microbiomes are perturbed in rheumatoid arthritis and partly normalized after
treatment. Nat Med. (2015) 21:895–905. doi: 10.1038/nm.3914

20. Chu XJ, Cao NW, Zhou HY, Meng X, Guo B, Zhang HY, et al. The oral and gut
microbiome in rheumatoid arthritis patients: a systematic review. Rheumatol (Oxford).
(2021) 60:1054–66. doi: 10.1093/rheumatology/keaa835

21. Yu D, Du J, Pu X, Zheng L, Chen S, Wang N, et al. The gut microbiome and
metabolites are altered and interrelated in patients with rheumatoid arthritis. Front Cell
Infect Microbiol. (2022) 11:763507. doi: 10.3389/fcimb.2021.763507

22. Khan R, Sharma A, Ravikumar R, Parekh A, Srinivasan R, George RJ, et al.
Association between gut microbial abundance and sight-threatening diabetic
retinopathy. Invest Ophthalmol Vis Sci. (2021) 62:19. doi: 10.1167/iovs.62.7.19

23. Vaahtovuo J, Munukka E, Korkeamäki M, Luukkainen R, Toivanen P. Fecal
microbiota in early rheumatoid arthritis. J Rheumatol. (2008) 35:1500–5.

24. Lee JY, Mannaa M, Kim Y, Kim J, Kim GT, Seo YS. Comparative analysis of fecal
microbiota composition between rheumatoid arthritis and osteoarthritis patients.
Genes (Basel). (2019) 10:748. doi: 10.3390/genes10100748
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R, van der Leij C, et al. Features of the synovium of individuals at risk of developing
rheumatoid arthritis: implications for understanding preclinical rheumatoid arthritis.
Arthritis Rheumatol. (2014) 66:513–22. doi: 10.1002/art.38273

101. Bodkhe R, Balakrishnan B, Taneja V. The role of microbiome in rheumatoid
arthritis treatment. Ther Adv Musculoskelet Dis. (2019) 11:1759720X19844632.
doi: 10.1177/1759720X19844632

102. Potempa J, Mydel P, Koziel J. The case for periodontitis in the pathogenesis of
rheumatoid arthritis. Nat Rev Rheumatol. (2017) 13:606–20. doi: 10.1038/
nrrheum.2017.132

103. Liao F, Li Z, Wang Y, Shi B, Gong Z, Cheng X. Porphyromonas gingivalis may
play an important role in the pathogenesis of periodontitis-associated rheumatoid
arthritis. Med Hypotheses. (2009) 72(6):732–5. doi: 10.1016/j.mehy.2008.12.040

104. Yang S, Chen H, Wei B, Xiang M, Hu Z, Peng Z, et al. Clindamycin
administration increases the incidence of collagen-induced arthritis in mice through
the prolonged impact of gut immunity. Inflammation. (2018) 41:1900–11. doi: 10.1007/
s10753-018-0833-4

105. Yue M, Tao Y, Fang Y, Lian X, Zhang Q, Xia Y, et al. The gut microbiota
modulator berberine ameliorates collagen-induced arthritis in rats by facilitating the
generation of butyrate and adjusting the intestinal hypoxia and nitrate supply. FASEB J.
(2019) 33:12311–23. doi: 10.1096/fj.201900425RR

106. Doonan J, Tarafdar A, Pineda MA, Lumb FE, Crowe J, Khan AM, et al. The
parasitic worm product ES-62 normalises the gut microbiota bone marrow axis in
inflammatory arthritis. Nat Commun. (2019) 10:1554. doi: 10.1038/s41467-019-09361-0

107. Peng J, Lu X, Xie K, Xu Y, He R, Guo L, et al. Dynamic alterations in the gut
microbiota of collagen-induced arthritis rats following the prolonged administration of
frontiersin.org

https://doi.org/10.2147/JEP.S63549
https://doi.org/10.3390/nu15102386
https://doi.org/10.1136/annrheumdis-2021-221267
https://doi.org/10.1038/s41467-021-21350-w
https://doi.org/10.1186/s13073-016-0299-7
https://doi.org/10.1111/nyas.2016.1364.issue-1
https://doi.org/10.1038/s41467-020-15831-7
https://doi.org/10.1016/j.medj.2021.04.013
https://doi.org/10.1016/j.fct.2017.09.027
https://doi.org/10.1016/j.jaut.2017.12.006
https://doi.org/10.1111/apt.2017.46.issue-9
https://doi.org/10.1111/apt.2017.46.issue-9
https://doi.org/10.1039/C9FO02556A
https://doi.org/10.3390/nu13103376
https://doi.org/10.1016/j.bpg.2017.09.011
https://doi.org/10.1146/annurev-virology-091919-074551
https://doi.org/10.1146/annurev-virology-091919-074551
https://doi.org/10.3390/ijms17030431
https://doi.org/10.3390/ijms17030431
https://doi.org/10.1016/j.immuni.2013.08.003
https://doi.org/10.1016/j.immuni.2013.08.003
https://doi.org/10.1128/spectrum.00348-22
https://doi.org/10.1080/19490976.2015.1011876
https://doi.org/10.1007/s00284-021-02623-5
https://doi.org/10.1007/s00284-021-02623-5
https://doi.org/10.1186/s40168-018-0538-9
https://doi.org/10.1016/j.ebiom.2020.102913
https://doi.org/10.1136/gutjnl-2022-327756
https://doi.org/10.3899/jrheum.141505
https://doi.org/10.1016/j.chom.2018.05.003
https://doi.org/10.1016/j.chom.2018.05.003
https://doi.org/10.1016/j.cmet.2020.03.003
https://doi.org/10.1039/C6FO00187D
https://doi.org/10.1080/21688370.2016.1251384
https://doi.org/10.1172/JCI60975
https://doi.org/10.1016/j.jep.2018.08.012
https://doi.org/10.3389/fmed.2018.00349
https://doi.org/10.1002/j.1536-4801.2005.tb00922.x
https://doi.org/10.3389/fimmu.2015.00612
https://doi.org/10.3389/fimmu.2015.00612
https://doi.org/10.1093/jn/138.9.1664
https://doi.org/10.1186/s40168-019-0719-1
https://doi.org/10.3389/fimmu.2024.1331518
https://doi.org/10.3389/fmicb.2018.01791
https://doi.org/10.1002/ijc.v144.11
https://doi.org/10.1136/annrheumdis-2013-204154
https://doi.org/10.1136/annrheumdis-2013-204154
https://doi.org/10.1038/s41584-024-01124-6
https://doi.org/10.1038/s41584-022-00786-4
https://doi.org/10.1002/art.38273
https://doi.org/10.1177/1759720X19844632
https://doi.org/10.1038/nrrheum.2017.132
https://doi.org/10.1038/nrrheum.2017.132
https://doi.org/10.1016/j.mehy.2008.12.040
https://doi.org/10.1007/s10753-018-0833-4
https://doi.org/10.1007/s10753-018-0833-4
https://doi.org/10.1096/fj.201900425RR
https://doi.org/10.1038/s41467-019-09361-0
https://doi.org/10.3389/fimmu.2025.1584023
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Xie et al. 10.3389/fimmu.2025.1584023
total glucosides of paeony. Front Cell Infect Microbiol. (2019) 9:204. doi: 10.3389/
fcimb.2019.00204

108. Mizuno M, Noto D, Kaga N, Chiba A, Miyake S. The dual role of short fatty
acid chains in the pathogenesis of autoimmune disease models. PloS One. (2017) 12:
e0173032. doi: 10.1371/journal.pone.0173032

109. Guo LX, Wang HY, Liu XD, Zheng JY, Tang Q, Wang XN, et al. Saponins from
Clematis mandshurica Rupr. regulates gut microbiota and its metabolites during
alleviation of collagen-induced arthritis in rats. Pharmacol Res. (2019) 149:104459.
doi: 10.1016/j.phrs.2019.104459

110. Hatakka K, Martio J, Korpela M, Herranen M, Poussa T, Laasanen T, et al.
Effects of probiotic therapy on the activity and activation of mild rheumatoid arthritis–
a pilot study. Scand J Rheumatol. (2003) 32:211–5. doi: 10.1080/03009740310003695

111. Vaghef-Mehrabany E, Alipour B, Homayouni-Rad A, Sharif SK, Asghari-Jafarabadi
M, Zavvari S. Probiotic supplementation improves inflammatory status in patients with
rheumatoid arthritis. Nutrition. (2014) 30:430–5. doi: 10.1016/j.nut.2013.09.007

112. Alipour B, Homayouni-Rad A, Vaghef-Mehrabany E, Sharif SK, Vaghef-
Mehrabany L, Asghari-Jafarabadi M, et al. Effects of Lactobacillus casei
supplementation on disease activity and inflammatory cytokines in rheumatoid
arthritis patients: a randomized double-blind clinical trial. Int J Rheum Dis. (2014)
17:519–27. doi: 10.1111/apl.2014.17.issue-5
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