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Breast cancer (BC) is one of the most prevalent malignant tumors among women

globally, with the number of cases accounting for evenmore than 1/3 of all tumor

patients in women. Recent studies have found that the incidence of BC is

increasing every year. Despite the great progress made in BC treatment, the

characteristics of BC cells, such as strong immune evasion, easy recurrence and

drug resistance, are still the main reasons limiting the survival of BC patients.

Epigenetics is becoming an important method to reveal the development of

cancer, mainly through the study of DNA methylation, histone modification,

chromatin structure changes and non-coding RNA. In addition, researchers have

found that epigenetic markers have great potential for early detection and

personalized treatment of BC. Inhibitors targeting epigenetically modified

enzymes are effective in treating a wide range of tumors and provide

significant patient survival and quality of life. Therefore, this review will

comprehensively summarize the role of epigenetic modifications in BC

development. Second, this paper will focus on summarizing how epigenetic

modifications induce the formation of tumor immune microenvironment (TIME)

in BC. Targeting the mechanism of action of epigenetic modifications provides

new perspectives to unravel the complex process of BC development, while

paving the way for the development of novel diagnostic and therapeutic targets.

In the future, by integrating multi-omics data to enable a deeper understanding

of the pathogenesis of BC, we will be able to promote the overall development of

precision medicine.
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1 Introduction

BC is one of the most common malignant tumors affecting the

lives and health of women worldwide (1). Global cancer statistics

show that BC claims hundreds of thousands of women’s lives every

year, and its incidence and mortality rates are still on the rise,

especially in high-income regions (2). As of 2022, there are already

more than 2.3 million new cases of BC worldwide, and by 2025 that

number will double. Among women with tumors, the incidence of

breast cancer is 1/3. Unfortunately, about 15% of BC patients die

each year due to ineffective treatment. BC places a huge burden on

the world (3, 4). Currently, with the gradual spread of early

detection and continuous advances in treatment methods, among

others, the overall survival rate of patients has gradually improved

(5–7). However, many patients still face major challenges in terms

of prognosis: including drug resistance, growth recurrence and

metastasis (8–10). The ability of BC cells to effectively evade

recognition and killing by the immune system is another major

factor contributing to the poor quality of patient survival. These

clinical issues suggest that breast cancer growth is not only driven

by genetic mutations, but may also involve more complex molecular

mechanisms. Epigenetics is the study of how genes are turned on or

off without altering the DNA itself. In recent years, changes in

epigenetic modifications have played an important role in BC (11,

12). These regulatory mechanisms influence important processes

such as tumor cell proliferation, apoptosis and immune escape by

regulating gene expression. In BC, epigenetic modifications are

regulated in multiple ways (12–14). These epigenetic changes are

closely associated with the onset and progression of BC. They may

also be a key cause of tumor immune escape, ineffective treatment

and cancer recurrence (15).

Epigenetic research has actually been relocating in the direction of

professional applications, showing wonderful possible, especially in the

fields of early lump diagnosis and customized treatment. The growth of

liquid biopsy modern technology has made it possible for the non-

invasive detection of epigenetic pens, such as methylated DNA or non-

coding RNA in blood or other body fluids, permitting very early BC

diagnosis (16, 17). Additionally, inhibitors targeting epigenetic

modification enzymes have actually demonstrated therapeutic

possibility in a number of kinds of cancer cells (18). Despite

significant progress in epigenetic studies of BC, many challenges

remain to be addressed. How precisely epigenetic modifications

regulate the growth, proliferation, and function of tumor cells and

immune cells, and how to develop novel therapeutic targets against

epigenetic modifications are major challenges for future research.

Epigenetics provides a fresh perspective to understand the

complexity of BC and creates new opportunities for the

development of its novel therapeutic targets. This article provides

insight into the mechanisms by which epigenetic abnormalities play a

role in BC. Meanwhile, its role in promoting BC immune escape is

summarized in focus. Finally, we summarize the current progress in

the development of epigenetic modifier enzyme inhibitors and their

potential in immunotherapy combination applications. In the future,

we will lay a solid theoretical foundation for the development of novel

therapeutic targets and treatment regimens for BC.
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2 Epigenetics definition and basic
types

Epigenetics focuses on how genes are turned on or off without

altering their own DNA sequence. These regulatory mechanisms

include chemical modifications and other molecular processes (19).

Major epigenetic changes include DNA methylation, the way

chromatin is organized, and the role of noncoding RNAs.

DNA methylation frequently takes place at CpG islands, where

the addition of methyl teams prevents gene expression (20). DNA

methylation, the most classical form of epigenetic modification, is

catalyzed by DNA methyltransferases, which add methyl groups to

cytosines at CpG islands and usually inhibit gene transcription. In

tumor cells, hypermethylation of oncogene promoters can lead to

their silencing, thereby promoting tumor proliferation and

metastasis. Changes to histones, like adding or removing chemical

groups on their tails, affect how tightly DNA wraps around them.

This controls how accessible and active the genes are (21). For

example, histone acetylation loosens chromatin to promote

transcription by neutralizing charge, while methylation (e.g.,

H3K27me3) can repress oncogene expression. Chromatin

remodeling alters the framework of chromatin, ensuring genes

more or less obtainable for transcription (22). Non-coding RNAs

(NcRNAs), like miRNAs and lncRNAs, can control how genes work

by attaching to mRNAs or by affecting transcription factors (23).

Non-coding RNAs (e.g. miRNAs, lncRNAs) regulate gene

expression by targeting mRNA degradation, recruiting epimerase

modifying enzymes, or competitive binding, e.g. miR-21 targets

oncogenes, whereas HOTAIR lncRNA promotes oncogene

activation by recruiting EZH2 (24). Recent developments in

epigenetics study have actually highlighted the crucial duties of

these adjustments in various pathological problems, including

cancer, metabolic diseases, neurological disorders, and immune

diseases (25). Particularly, epigenetic adjustments are considered

crucial regulatory factors in tumorigenesis and development. Recent

studies have actually demonstrated that these alterations are

reversible (26, 27), giving a crucial structure for developing

unique healing techniques. As a result, the development of

epigenetic drugs has become a significant emphasis in cancer

treatment. Epigenetic modifications play a crucial role in the

development of BC (28).
3 Mechanisms of epigenetic
abnormalities in BC

3.1 DNA methylation

DNA methylation is an epigenetic device largely happening at

CpG islands, which are areas rich in cytosine and guanine

dinucleotides. This process involves adding a methyl group to the

fifth carbon of the cytosine ring using enzymes called DNA

methyltransferases (DNMTs). When CpG islands located in gene

promoter regions are methylated, it commonly leads to the
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transcriptional silencing of the affiliated genetics, consequently

properly hindering their expression. In growth cells, the DNA

methylation standing is often abnormal, defined by a global

decrease in methylation degrees that results in enhanced genetic

instability. De novo methylation primarily occurs in the promoter

regions of tissue-specific genes. Oncogenes are frequently

hypomethylated, leading to their aberrant activation, whereas

tumor suppressor genes are often hypermethylated, resulting in

transcriptional silencing. These problems collectively affect various

elements of BC cell behavior, including expansion, apoptosis,

invasion, metastasis, and feedback to treatment (29).

Genes that stop tumors, like breast cancer susceptibility gene 1

(BRCA1), p16, and RASSF1A, often have high levels of methylation

in the CpG islands near their starting points. This makes these genes

inactive. The inactivation of these genetics promotes cell spreading,

hinders apoptosis, and promotes tumor formation and

advancement (30). Studies have actually shown that in BC

individuals, hypermethylation of the BRCA1 marketer directly

causes a significant decrease in gene expression, a sensation

observed in as much as 30% of erratic BC situations (31). A study

team at Lund University in Sweden (32) used multi-omics data

from BC to assess the frequency of BRCA1 promoter

hypermethylation and functional loss characteristics in early

triple-negative BC (TNBC). They discovered that the incidence of

BRCA1 hypermethylation in early unclassified TNBC is two times

that of useful loss lumps, suggesting a solid connection with very

early TNBC. Furthermore, hypermethylation of the p16 gene is

associated with the unlimited proliferation of BC cells, and

increased methylation levels are closely related to dysregulation of

cell cycle control (33). Abnormal DNA methylation may also

indirectly lead to the overexpression of oncogenes through

complex epigenetic regulatory networks. For instance, in BC, the

ERa gene often has less methylation, which leads to it being more

active. This higher activity is linked to the cancer getting worse and

becoming more invasive (26). More and more studies show that

DNA methylation plays a role in how cancer starts and could be

used as a sign for early detection of BC. But, using just one gene’s

methylation isn’t very accurate for diagnosis, so it’s better to look at

several places together for a better prediction.
3.2 Abnormal histone modifications

Histones are very basic proteins that have a lot of lysine and

arginine. They are found in the nuclei of eukaryotic cells. These act

like spools for DNA to wind around, making nucleosomes. This

helps stop DNA from getting tangled or damaged. It also has an

important part in controlling genes and copying DNA.

Histone modifications, particularly methylation, acetylation,

and phosphorylation, are critical in tumorigenesis. Histone

methylation changes how genes are expressed by changing the

chromatin structure. The place and amount of methylation can lead

to different effects on genes. For example, when there is a lot of

methylation on lysine 4 of histone H3 (H3K4me3), it usually means

the gene activation. This adjustment keeps chromatin in a
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reasonably open state, permitting transcription factors and RNA

polymerase to accessibility DNA, consequently promoting gene

expression (34). On the other hand, when there is a lot of

methylation on lysine 9 and lysine 27 of histone H3, it usually

means gene silencing. These modifications attract silencing

complicated, leading to tighter chromatin packaging and

preventing gene expression (35). For instance, in BC cells, the

H3K27me3 level at the promoter areas of tumor suppressor genes

like BRCA1 is substantially elevated. This methylation recruits the

PRC2, additional tightening chromatin framework and stopping the

binding of transcription factors, consequently inhibiting the

expression of tumor suppressor genes (36). High acetylation of

lysine residues at the amino termini of histones is typically

connected with open chromatin and gene transcription activation,

while low acetylation is associated with genetics silencing or

repression (37).Histone acetylation levels are crucial in the

development of various tumor types, including thyroid cancer

(38), BC (39), cervical cancer (40), and prostate cancer (41). In

BC, HAT1 from the GNAT family induces histone H3 acetylation at

the CCR4 promoter in Tregs through the FOXP3/HAT1 complex,

promoting Tregs infiltration in the tumor microenvironment and

tumor cell immune evasion (42). MOF, a member of the MYST

family of acetyltransferases specific for lysine 16 on histone H4, is

upregulated in BC, leading to overexpression of H4K16ac, resulting

in dysregulated DNA damage response and cell growth in tumor

cells (43, 44). The balance of histone acetylation is regulated by

HATs and HDACs. An imbalance can lead to modification

disorders and tumorigenesis. HDAC inhibitors are potential

therapeutic agents for BC. Studies have found that HDAC1 (45),

HDAC2 (46), and HDAC3 (47, 48) are significantly overexpressed

in BC, with high expression levels positively correlated with

advanced TNM and N stages and negatively correlated with DFS

and OS, serving as independent prognostic factors. However, in

Asian BC patients, increased HDAC1 expression seems to longer

OS (37). Overexpression of SIRT6 can inhibit Tbx3 expression

through deacetylation of lysine 9 on histone H3. Loss-of-function

mutations or low expression of Tbx3 can predict poor prognosis in

HER2-positive BC patients (49). The abnormal expression and

function of HDACs in BC suggest their potential as novel

indicators of invasiveness and therapeutic targets.
3.3 Abnormal expression of non-coding
RNA

NcRNAs are very important in starting and developing BC.

When ncRNAs are not expressed normally, they can affect how BC

develops in different ways. Both types of RNAs help regulate the

function of genes.

miRNAs control genes by attaching to the 3’ UTR of target

mRNAs. This stops the mRNAs from being translated into proteins

or causes them to break down. In BC, miR-21 is a well-known

example. Its overexpression targets and inhibits the tumor

suppressor gene PTEN, leading to the abnormal activation of the

PI3K/AKT signaling pathway, which promotes cell proliferation
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and survival (35). Research has shown that many miRNAs

specifically regulate the expression of target genes and signaling

pathways in BC stem cells (BCSCs) (50). These miRNAs are

essential for the self-renewal, growth, and metastasis of BC cells

and can serve as potential diagnostic markers for tumor

progression, metastasis, and therapeutic response. For instance,

the overexpression of miR-155 is associated with the

aggressiveness and malignancy of BC. It targets and inhibits the

cytokine signaling inhibitor SOCS1, activates the JAK/STAT

signaling pathway, and enhances the proliferation and metastatic

potential of cancer cells (36).

LncRNAs are a type of RNA that is more than 200 nucleotides

long and does not make proteins. They were once considered

“transcriptional noise” without biological function. However, with

the advancement of high-throughput technologies and in-depth

research, lncRNAs have been found to have significant biological

functions under physiological conditions. lncRNAs influence BC

development by encoding peptides (51, 52), regulating epigenetics

(53, 54), modulating immunity (55), and regulating protein

expression (56). Key lncRNAs associated with BC include H19,

which promotes cancer cell proliferation, and MALAT1, which

facilitates distant metastasis of cancer cells. High levels of H19

expression in BC cells are associated with positive expression of the

tumor HER2 (57). H19 promotes cancer cell migration and can

serve as a potential biomarker for BC diagnosis (58). Studies have

found that MALAT1 is associated with cancer invasion and

metastasis (59). Therefore, MALAT1 can promote the distant

metastasis of BC cells (60). Researchers have discovered that
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MALAT1 can inhibit the distant metastasis of cancer cells in

triple-negative BC patients by regulating HIF-1a (61).

Additionally, clinical studies have shown that certain lncRNAs,

which inhibit the migration of cancer cells in tumor suppressor

genes, such as MAGI2-AS3, are significantly downregulated in BC

tissues. The expression level of MAGI2-AS3 is linked to the tumor

spreading to lymph nodes (62). In patients with triple-negative BC,

there is much less MAGI2-AS3, and this is related to how long

patients stay free of the disease (63). MAGI2-AS3 is expected to be

an effective indicator for assessing patient prognosis and recurrence,

and for use in individualized tumor therapy (Table 1).
4 Epigenetic modifications remodel
the immune-suppressive
microenvironment in BC

The normal anti-tumor immune response mainly consists of

recognition by the immune system, and attack by the immune

system to kill tumor cells. This process can also be referred to as the

cancer immune cycle, which consists of several steps, including the

generation and presentation process of tumor antigens, the

activation process of immune cells, and the recognition and

clearance of tumor cells (64). However, in BC, immune escape is

one of the main characteristics of tumor cells. Recent studies have

found that epigenetic dysregulation is the key to regulating tumor

immune escape (Figure 1).
TABLE 1 Epigenetic markers in BC subtypes.

Breast
Cancer
Subtype

Epigenetic Marker Gene Expression Clinical Relevance Therapeutic Significance

Luminal A Hypermethylation of ESR1 Decreased ESR1 expression Favorable prognosis Responsive to endocrine therapy

Luminal A Hypermethylation of GATA3 Decreased GATA3 expression Favorable prognosis Responsive to endocrine therapy

Luminal B Hypermethylation of CCND1 Increased CCND1 expression Less favorable prognosis compared
to Luminal A

Combination of endocrine therapy
and chemotherapy

Luminal B Hypermethylation of PR Decreased PR expression Prognosis better than Luminal A Potential resistance to
endocrine therapy

HER2-positive
Breast Cancer

Overexpression of miR-21 Increased HER2 expression Rapid progression and
poor prognosis

Effective in HER2-targeted therapy

HER2-positive
Breast Cancer

Hypermethylation of RASSF1A Reduced RASSF1A expression Higher risk of metastasis Potential application of miRNA-
based therapies

Triple-negative
Breast Cancer

Hypermethylation of BRCA1 Reduced BRCA1 expression Elevated risk of disease progression Responsive to platinum-
based chemotherapy

Triple-negative
Breast Cancer

Loss of H3K27me3 Decreased genome-wide
H3K27me3 levels

Increased sensitivity
to chemotherapy

Potential benefit from
HDAC inhibitors

Basal-like
Breast Cancer

Hypermethylation of TP53 Decreased TP53 expression Highly aggressive with
poor prognosis

Responsive to platinum-
based chemotherapy

Basal-like
Breast Cancer

Hypermethylation of CDH1 Decreased E-cadherin Loss of cell adhesion leading to
increased invasiveness

Potential for epigenetic therapy
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4.1 Generation of tumor antigens

Epigenetics can promote the formation of some neoantigens

and abnormal antigen presentation processes during the generation

and presentation of tumor antigens. CTA is a gene that is normally

expressed only in male germ cells. Under normal conditions, CTA

expression is precisely regulated by epigenetic mechanisms and is

barely expressed in other cells (65). This allows the male testes to

avoid the influence of immune cells. Recent studies have found that

in BC, CTA-associated CpG sites are demethylated, an aberrant

epigenetic mechanism that promotes CTA re-expression in tumors

and leads to the formation of tumor neoantigens. DNA

Methyltransferase Inhibitors Reactivate the CTA gene and

promote tumor antigen generation, thereby enhancing anti-tumor

immune responses (66).
4.2 Tumor antigen presentation

During antigen presentation, antigen-presenting cells display

antigenic peptide fragments on MHC molecules on their surface.

Through this process, T cells are effectively activated, which in turn

initiates an adaptive immune response (67). In BC, MHC-I

molecules are effectively inhibited, which in turn promotes

immune escape of tumor cells. It has been found that in BC, the

MHC-I gene is aberrantly methylated, resulting in MHC-I deletion,

which in turn promotes dysregulated antigen presentation (67, 68).

The use of DNA methyltransferase inhibitors (e.g., guadecitabine)

can effectively reverse this process and promote MHC-I expression,

thereby enhancing the anti-tumor immune response (69).
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4.3 Activation of immune cells and the
process of recognizing and eliminating
tumor cells

Tumor-associated antigens (TAAs) expressed on the surface of

tumor cells are processed into short peptide fragments and

presented to the cell surface via MHC class I molecules.CD8+ T

cells specifically recognize the MHC I-antigenic peptide complexes

via the TCR, while the CD8 co-receptor enhances the binding

stability. This process described above simultaneously requires

strong activation signals from the dendritic cell pre-existing.

During the immune response, chemokines can recruit

CD8+toxic T lymphocytes (CTLs) toward the tumor site. CTLs

destroy cancer cells by secreting perforin, granzyme, and death

ligands to induce an intrinsic apoptotic response in the cell.

Increased expression of chemokines such as CCL5 and CXCL9

effectively promotes anti-tumor immune function of CTLs. In

TNBC, overexpression of LSD1 was negatively correlated with the

levels of chemokines that attract CD8+ T cells, and the expression of

these chemokines could be repromoted by inhibiting LSD1 (70).

Among other things, inhibition of LSD1 was closely associated with

increased levels of H3K4me2 in the promoter region of the relevant

chemokine genes. Thus, the use of LSD1 inhibitors enhances the

migration of CD8+ T cells, which in turn enhances immunotherapy

efficacy. In addition, the JmjC demethylase JARID1B bound to the

LSD1/NuRD complex inhibited BC cell angiogenesis and metastasis

by inhibiting the chemokine CCL14, which promotes immune cell

activation (71). In BC cells, the demethylase Fbxl10 is recruited to

the CCL7 promoter region and inhibits CCL7 expression and

normal function. As an H3K4me3-targeted histone demethylase,
FIGURE 1

Epigenetic regulation of different immune cells in the tumor immunosuppressive microenvironment.
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knockdown of Fbxl10 promotes CCL7 expression, which in turn

enhances anti-tumor immune responses (72). Targeting aberrant

chemokines, in combination with immunotherapy, can enhance

anti-tumor immunity and thus provide clinical benefit to BC

patients (Figure 1).
5 Epigenetic modifications induce
immunotherapy resistance in BC

Epigenetic modifications promote immunotherapy resistance in

BC through multilevel mechanisms of action. Epigenetic

modifications affect antigen presentation and inhibit anti-tumor

immune cell function by regulating the expression of relevant genes,

thereby impairing the anti-tumor immune response (73, 74).

through aberrant methylation of DNA methyltransferase

(DNMT1) and histone methyltransferase (EZH2), they inhibit the

expression of MHC-I molecules The above processes lead to a

decrease in antigen-presenting capacity on the surface of tumor

cells, which in turn hinders the recognition and clearance of tumor

cells by CD8+ T cells (75, 76). In addition, histone demethylase

LSD1 reduces the infiltration of CD8+ T cells into the TME by

inhibiting the expression of chemokines such as CCL5 and CXCL9,

further weakening the immunotherapeutic response (77, 78).

Notably, EZH2 also inhibits the expression of endogenous

retroviruses (ERVs) through H3K27me3 deposition, blocks the

activation of the cGAS-STING signaling pathway, and inhibits the

production of type I interferon and its downstream T-cell initiation

process, thereby enhancing the immune escape ability of tumor cells

(79, 80). Together, these alterations in epigenetic modifications

c on s t i t u t e a n impo r t a n t mo l e c u l a r b a s i s f o r BC

immunotherapy resistance.

Furthermore, epigenetic modifications further exacerbate

immunotherapy res i s tance by remodel ing metabol ic

reprogramming pathways and promoting the formation of an

immunosuppressive microenvironment. Histone demethylase

KDM5B significantly suppresses innate immune responses by

inhibiting the expression of STING, and consequently, the innate

immune response (81). Moreover, it promotes tumor cell migration

by regulating lipid metabolism. It was found that the tight binding

of JARID1B to the LSD1/NuRD complex maintained an

immunosuppressive microenvironment by inhibiting the

expression of the chemokine CCL14 and limiting the activation of

immune cells (71, 82). In addition, Fbxl10, an H3K4me3-targeted

histone demethylase, is actively recruited to the CCL7 promoter

region in BC and significantly inhibits its expression, ultimately

inducing therapeutic resistance (72). Against the above targets,

LSD1 inhibitors are able to restore chemokine function and

enhance CD8+ T cell recruitment and activity. In contrast,

KDM5 inhibitors can overcome BC resistance to trastuzumab by

upregulating STING expression and reactivating the cGAS-STING

signaling pathway (83). Wang et al. showed that HIF-1a
transcriptionally activates the m6A demethylase FTO under
Frontiers in Immunology 06
hypoxic conditions, which in turn hinders the recognition and

degradation of PDK1 by YTHDF3 by inhibiting the m6A-modified

water of PDK1 mRNA. Further studies revealed that high

expression of PDK1 activates the AKT/STAT3 signaling pathway,

which ultimately stabilizes and upregulates PD-L1 expression and

inhibits T cell activity (84). RPN1 (ribonucleoprotein I), a key

regulator of membrane-bound glycosylation, is abnormally highly

expressed in TNBC.RPN1 enhances the stability of PD-L1 by

promoting its glycosylation modification, which mediates tumor

cell immune escape. Knockdown of RPN1 could remodel TME and

enhance the response rate to anti-PD-1 immunotherapy. The

transcription factor YY1 regulates the expression of RPN1 by

directly binding to its promoter region, whereas RPN1 and YBX1

synergize to form a regulatory axis, which together promote PD-L1

stability and high expression, and ultimately act as a resistance to

immunotherapy (85, 86).
6 New strategies for epigenetics in BC
treatment

6.1 Inhibitors of epigenetic modifying
enzymes

Epigenetic modifying enzyme inhibitors have demonstrated

significant potential in BC treatment by reversing abnormal

epigenetic modifications and restoring normal gene expression

patterns. These inhibitors mainly target DNA methyltransferases

(DNMTs) and histone deacetylases (HDACs), effectively altering

gene activity to inhibit tumor growth and progression.

6.1.1 DNMTi
DNA methyltransferase inhibitors, such as Azacitidine and

Decitabine, bind to DNMTs, preventing their methylation activity

on DNA, thereby avoiding the methylation-induced silencing of

tumor suppressor genes. These drugs restore the expression of

tumor suppressor genes through demethylation, inhibiting tumor

spread. For example, Decitabine can reactivate the silenced BRCA1

gene in BC, restoring its DNA repair function and enhancing the

sensitivity of BC cells to chemotherapy (31). Decitabine and

Eugenol, DNMTs inhibitors, can suppress the invasion and pro-

angiogenic abilities of CAFs in breast cancer (BC), significantly

improving the quality of life for patients.

6.1.2 HDACi
Histone deacetylase inhibitors, such as Vorinostat and

Panobinostat, inhibit the activity of HDACs, increasing the

acetylation levels of histones, which leads to a more relaxed

chromatin structure. When chromatin is more relaxed, it makes it

easier for transcription factors to reach the DNA. This helps turn on

genes that can stop tumors. In BC, drugs that block HDAC can slow

down cell growth and cause cells to die by turning on important

genes like p21 (26, 33). Recent studies suggest that epigenetic
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modifying enzyme inhibitors can be used not only as

monotherapies but also in combination with other treatments to

enhance therapeutic efficacy. The combination of HDAC inhibitors

with ICIs has shown stronger anti-tumor activity, potentially

overcoming resistance in certain BC (33, 34). HDAC inhibitors

like Scriptaid and ACY1215 can inhibit the activity of CAFs and the

aggregation of M2 macrophages, while promoting the recruitment

of CD8 T cells (87).
6.2 Therapy of non-coding RNAs

6.2.1 Mechanism and impact of miRNA mimics
NcRNAs can closely play biological roles through various

epigenetic modifying enzymes with DAN methylation, histone

modification, etc., which in turn regulate the expression of

related genes and ultimately regulate the proliferation and

metastasis of BC. miRNA mimics are synthetic miRNA

molecules designed to restore or enhance the function of specific

miRNAs, thus regulating gene expression. In BC, the expression of

certain tumor-suppressive miRNAs, such as miR-34a and miR-15/
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16, is often downregulated. Introducing miRNA mimics can

restore the levels of these tumor-suppressive miRNAs, thereby

inhibiting oncogene expression and inducing apoptosis in tumor

cells. As an example, miR-34a mimics have actually demonstrated

significant anti-tumor results in preclinical research studies,

successfully preventing the expansion and movement of BC cells

(31). The lncRNA MIAT promotes DLG3 methylation and

expression down-regulation by recruiting DNMTs to the DLG3

promoter region. And silencing of MIAT restored DLG3 levels

while significantly activating the expression of the Hippo signaling

pathway, ultimately inhibiting BC growth and proliferation (88).

The expression of circMETTL3 is mainly dependent on METTL3-

mediated m6A modification, and its expression is significantly

decreased upon METTL3 knockdown. It was found that METTL3

knockdown was also accompanied by a significant decrease in m6A

modification. circMETTL3 indirectly promotes tumorigenesis by

competitively binding to miR-31-5p and deregulating the

inhibition of target gene CDK1 by this microRNA. And

METTL3 deficiency can weaken this oncogenic axis by

downregulating circMETTL3 (89). Here, we summarize the

mechanism of action of the targeted lncRNA factors (Figure 2).
FIGURE 2

Mechanisms of action of targeted lncRNA factors.
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6.2.2 Mechanism and impact of antisense
oligonucleotides

ASOs are short single-stranded DNA or RNA oligonucleotides

that hybridize with target mRNA, avoiding its translation or

inducing its degradation. By especially binding to oncogene

mRNAs or other cancer-related mRNAs, ASOs inhibit their

expression, therefore halting lump progression. The BCL-2 gene,

which inscribes a healthy protein that helps cancer cells withstand

apoptosis, is typically overexpressed in BC. ASOs targeting BCL-2

mRNA can minimize its expression, bring back the apoptotic ability

of cells. In BC versions, ASOs targeting BCL-2 have shown

considerable anti-tumor effects (33). Additionally, in hormone-

dependent BC, the high expression of estrogen receptor alpha

(ERa) advertises lump growth. ASOs can substantially reduce

ERa protein degrees by inhibiting the translation of ERa mRNA,

thereby inhibiting growth cell spreading (26). Current research

studies recommend that ASOs hold terrific possible in BC

treatment, especially in personalized therapies targeting specific

gene expressions. With innovations in delivery systems and

enhanced targeting, ASOs are anticipated to be used in mix with

various other treatments to increase precision and effectiveness.

Study is likewise exploring the combination of ASOs with

immunotherapy to further enhance their anti-tumor results (90).
7 Targeted epigenetics and
immunotherapy

In BC treatment, combining epigenetic treatments with

immunotherapy has demonstrated substantial synergistic impacts.

Epigenetic therapies modify cancer cell gene expression, improving

the body immune system’s capacity to recognize and strike growths.

Concurrently, immunotherapy enhances the individual’s immune

response, amplifying the general anti-cancer result.
7.1 Targeting aberrant DNA methylation to
enhance immunotherapy effect

Epigenetic therapies, such as DNMTi and HDACi, can reverse

abnormal epigenetic alterations in lump cells, reactivating silenced

antigens and immune-related genetics. This reactivation enhances

the presence of tumor antigens, facilitating immune cell recognition

and assault on tumors. As an example, HDAC inhibitors can lower

PD-L1 expression, making tumors extra at risk to immune

checkpoint inhibitors, therefore enhancing the effectiveness of

immunotherapy (91–93). The combination of DNMTi targeting

and immunotherapy is of significant importance in BC treatment.

Research has shown that monotherapy with anti-PD-1 is ineffective

in halting tumor progression in some BC patients (94). However,
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the combination of DNMTi with anti-PD-1 inhibitors significantly

improves patient survival rates and quality of life, with tumor

burden reduced by over 80% (95). Additionally, a phase II clinical

trial found that the DNA demethylating agent CC-486, when

combined with the anti-PD-1 antibody durvalumab, achieved

excellent therapeutic outcomes in metastatic BC patients and was

very safe for the patients (96).
7.2 Combination of histone modifying
enzyme inhibitors with immunotherapy

HDACi can improve the response to PD-1 inhibitors by

upregulating the expression of PD-L1 and HLA-DR and

inhibiting Treg activity. Moreover, the combination of HDACi

and ICIs can promote the infiltration and function of anti-tumor

immune cells, suppress the activity of MDSCs and immune-

resistant breast tumor cells, thereby enhancing a stronger anti-

tumor immune response (97–99) . EZH2, a h i s tone

methyltransferase, promotes gene silencing through H3K27me3.

In BC, overexpression of EZH2 is connected to lump aggressiveness

and immune evasion. Preventing EZH2 can protect against

H3K27me3 development, lifting the suppression of immune-

related genetics and enhancing immune cell attack on growths.

Research studies show that incorporating EZH2 inhibitors with

anti-PD-1/PD-L1 therapies significantly improves BC treatment

results and decreases tumor worry (93, 100). Kim and colleagues

demonstrated that the combination of entinostat and anti-CTLA-4

antibody was effective in inhibiting MDSC activity, thereby

significantly inhibiting BC metastasis. Phase I clinical trial finds

entinostat and nivolumab achieved significant therapeutic efficacy

in treating metastatic HER2-negative BC patients (101, 102). The

trial confirmed that the patients showed good safety and tolerance,

with a low incidence of immune-related adverse events, and a

significant improvement in the patients’ quality of life. Here, we

summarize relevant clinical trials combining targeted epigenetic

agents and immunotherapy (Table 2).
8 Limitations and future outlook

8.1 Limitations

Targeting epigenetic modification targets currently shows great

potential in BC therapy, but still faces many challenges. First,

epigenetic drugs have low specificity and selectivity. This can

make them interfere with some specific genes in a way that may

affect the expression of other normal genes, leading to side effects.

Moreover, some BC patients may develop resistance to epigenetic

drugs or even escape drug treatment through reprogramming (74).
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Second, the mechanism of action of epigenetic modifications in

different cell types and microenvironments is extremely complex,

which greatly increases the difficulty of targeted therapy (103).

Existing drugs and technologies are difficult to effectively regulate

multiple epigenetic pathways or modifications at the same time, and

it is difficult to comprehensively restore the normal pattern of gene

expression (104); therefore, optimal efficacy may not be achieved

through intervention at a single target only. In addition, long-term

interventions of epigenetic modifications may result in erratic

effects or potential genomic alterations, and these uncertainties

may lead to new health risks (105, 106). Finally, numerous

challenges remain in the process of applying epigenetics to the

clinic, including multiple stages of preclinical studies, clinical trials,

and drug development.
8.2 Future outlook

As epigenetics research continues to deepen, especially in areas

such as oncology and immunotherapy, the study of epigenetic

modification targets has provided a completely new direction for

the treatment of tumor patients (100). The biggest limitation of

immunotherapy is that about 40% of patients do not respond to the

treatment and the side effects are more significant. The combination

of targeting epigenetic modifications and immunotherapy may be

the key to promoting patient response to treatment in the future. In

the future, personalized medicine is expected to achieve more

individualized and efficient therapeutic strategies by targeting

epigenetic modifications and precisely regulating gene expression.
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The combination of epigenetic drugs with traditional therapies such

as immunotherapy may result in more effective combination

therapies that increase the efficacy of treatment and reduce the

development of drug resistance (107). Novel inhibitors of epigenetic

modifications, such as those targeting DNMTs and HDACs (97,

108), will hopefully play a greater role in the clinic. Meanwhile, the

application of epigenetics in regenerative medicine is promising.

Finally, the discovery of epigenetic markers contributes to the early

diagnosis and prognostic assessment of tumors, and they may

become routine screening tools in the future, significantly

improving the survival rate and quality of life of patients.
9 Conclusion

Epigenetics is critical in the onset, progression, immune escape,

and treatment of BC. The development of BC is usually closely

associated with aberrant epigenetic modifications. Notably,

epigenetic modifications in turn tightly regulate immune cell

proliferation, differentiation, and function. It also plays a major

role in promoting immune escape from BC cells. Therapeutically,

inhibitors targeting epigenetic modifying enzymes are able to

reverse aberrant epigenetic changes and thus show significant

anti-tumor act ivity. When used in combination with

immunotherapy, these inhibitors can further improve efficacy and

overall patient survival. In conclusion, epigenetics has provided new

perspectives for a deeper understanding of the pathogenesis of BC

and proposed new targets and strategies for its treatment.
TABLE 2 The relevant clinical trials combining targeted epigenetic agents and immunotherapy.

NCT Number Study Title Study Status Conditions Interventions Phases

NCT02395627 Reversing Therapy Resistance With
Epigenetic-Immune Modification

TERMINATED Breast Neoplasms DRUG: Tamoxifen|DRUG:
Vorinostat|
DRUG: Pembrolizumab

PHASE2

NCT04190056 Pembrolizumab and Tamoxifen With
or Without Vorinostat for the
Treatment of Estrogen Receptor
Positive Breast Cancer

TERMINATED Anatomic Stage IV
Breast Cancer AJCC
v8|Prognostic Stage
IV Breast Cancer
AJCC v8

BIOLOGICAL: Pembrolizumab|
DRUG: Tamoxifen|
DRUG: Vorinostat

PHASE2

NCT05680662 The Study of Quadruple Therapy
Quercetin, Zinc, Metformin, and
EGCG as Adjuvant Therapy for Early,
Metastatic Breast Cancer and Triple-
negative Breast Cancer, a
Novel Mechanism

UNKNOWN Breast Cancer
Female|Triple
Negative
Breast Cancer

COMBINATION_PRODUCT:
quercetin, EGCG, metformin, zinc

EARLY_PHASE1

NCT04335669 NordicTrip, a Translational Study of
Preoperative Chemotherapy in TNBC

RECRUITING Breast Cancer|Triple
Negative
Breast Neoplasms

DRUG: epirubicin,
cyclophosphamide, paclitaxel,
carboplatin, pembrolizumab|
DRUG: epirubicin,
cyclophosphamide, capecitabine,
paclitaxel,
carboplatin, pembrolizumab

PHASE3
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