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The reprogramming factor
KLF4 in normal and malignant
blood cells
H. Daniel Lacorazza*

Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States
The Krüppel-like factor 4 (KLF4) is an evolutionarily conserved zinc finger

transcription factor that regulates cellular processes in stem cells, epithelial

cells, and immune blood cells by controlling gene expression through genetic,

epigenetic, and chromatin remodeling. The landmark 2006 publication identified

KLF4 as one of the factors involved in reprogramming differentiated cells into

pluripotent stem cells, sparking increased interest in KLF4 research a decade after

its discovery, particularly in the fields of stem cell research, epithelial cell biology,

endothelial cell function, and tumorigenesis. Over the years, KLF4 has emerged

as a key transcription factor in modulating innate and adaptive immunity,

especially in macrophage differentiation and function. This review summarizes

the key findings regarding KLF4 in normal blood cells and leukemia.
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Introduction

KLF4 is a member of the Krüppel-like factor (KLF) family of transcription factors that

play essential roles in stem cell functions, including self-renewal (1–5), pluripotency (1–3,

5, 6), embryogenesis (7), and erythropoiesis (8). The KLF4 protein contains three distinct

functional domains involved in DNA binding, gene activation, and gene repression (9).

Three zinc fingers within the carboxyl terminal domain mediate the binding of KLF4 to

GC-rich sequences (i.e., CACCC) found in gene regulatory promoters and enhancers,

leading to the recruitment of co-activators or co-repressors in a cell context-dependent

manner (Figure 1A) (10). In addition to binding DNA, KLF4 regulates gene expression

through protein-to-protein interactions with proteins bound to gene regulatory regions

(e.g., the KLF4 to b-catenin interaction regulating the telomerase reverse transcriptase

gene) (11). The expression of KLF4 is regulated at the transcriptional level through

mechanisms such as CpG methylation, gene regulation, and miRNA, as well as by post-

translational modifications including phosphorylation, acetylation, sumoylation, and

methylation (12–14). The number of publications on KLF4 has steadily increased since

its discovery in 1996, exhibiting an upward trend ten years later when Yamanaka’s group

published their groundbreaking findings on reprogramming somatic cells into pluripotent

stem cells by the factors KLF4, c-MYC, SOX2, and OCT3/4 (Figure 1B) (6). A search of
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PubMed for KLF4 and specific immune cells reveals that

macrophages lead the publications, with a growing interest in T

cells (Figure 1C).

As a pioneering transcription factor, KLF4 regulates gene

expression by binding to silent chromatin and influencing the

epigenetic landscape and cell fate (15, 16). To add to the

complexity, it has been shown that KLF4 can organize chromatin

by forming a liquid-like biomolecular condensate with DNA that

recruits OCT4 and SOX2 (17). KLF4 is part of a small group of

transcription factors that bind to both unmethylated and CpG-
Frontiers in Immunology 02
methylated DNA (18, 19). This feature allows KLF4 to bind

methylated loci to initiate stem-cell gene expression profiles

during reprogramming. KLF factors often work in synchrony.

The KLF circuitry composed of KLF2, KLF4, and KLF5 regulates

self-renewal in embryonic stem cells (ESC) and the expression of

pluripotency genes such as Nanog (1). In addition to ESCs, KLF4

promotes self-renewal in tissue-specific stem cells (e.g., embryo,

intestine, skin) and cancer-associated stem cells (1, 13, 20–31).

KLF4 has both tumor suppressor and pro-oncogenic roles in

carcinogenesis. This dual role is influenced by several factors,
FIGURE 1

Publication growth related to KLF4 over the years. (A) A diagram depicting the main domains in the KLF4 protein. (B) Number of publications in
PubMed focused on KLF4. (C) Number of publications in PubMed focused on KLF4 in conjunction with immunity, T cells, B cells, macrophages, or
dendritic cells (DC).
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including the cell cycle (e.g., p21 and p53), oncogenic signals (Ras,

Wnt, hormone receptors, TGFb, Notch1), and cell survival (32–35).

KLF4 tumor suppressor function in solid tumors (e.g.,

gastrointestinal, lung adenocarcinoma, prostate, pancreatic) and

hematological malignancies (e.g., leukemia, lymphoma) has been

associated with silencing of the KLF4 locus through different

mechanisms (DNA methylation, micro RNAs, histone

modifications) (reviewed in (36)). Our group investigated the role

of KLF4 in leukemia stem cells using mouse models developed

through the retroviral transformation of hematopoietic stem/

progenitor cells and transplantation (37–39). In this review

article, part of the research topic “Exploring KLF4’s role in

immune cell function and disease progression,” we will summarize

KLF4’s role in blood cells, including immune cells, and focus on

hemato log i c a l ma l i gnanc i e s , ma in l y l ympho id and

myeloid leukemias.
KLF4 regulation of normal blood cells

KLF4 regulates the function and differentiation of

hematopoietic stem cells (HSCs) and mature blood cells,

including immune cells (Figure 2). It plays a crucial role in

monocytic differentiation, macrophage polarization, natural killer

cell survival, antibody responses in memory B cells, dendritic cell

development, and the inhibition of homeostatic proliferation of
Frontiers in Immunology 03
naïve T cells (Table 1). Next, we will summarize the key findings

regarding hematopoietic stem cells and the main immune cells.
Hematopoietic stem cells

An early study demonstrated normal stem cell function using

fetal liver (E14.5) Klf4−/− HSCs because the embryonic deletion of

the Klf4 gene leads to perinatal lethality due to an impaired skin

barrier (40, 41). Our group recently reported that the conditional

deletion of the Klf4 gene in hematopoietic cells weakens the

regenerative capacity of adult HSCs while maintaining many of

the stem cell functions during homeostasis (Figure 3, Table 1) (42).

Competitive transplantation of Klf4fl/fl Vav-iCre+ HSCs revealed a

reduced ability to regenerate the hematopoietic system in an

inflamed bone marrow. Transcriptome analysis revealed that loss

of KLF4 was linked to increased expression of toll-like receptors

(TLRs), such as TLR4, and the activation of the non-canonical

NFkB2 (nuclear factor kappa light chain enhancer of activated B

cells) pathway (Figure 3) (42). This finding aligns with earlier

studies showing that chronic activation of the NFkB pathway

causes bone marrow failure by disrupting the quiescence and

impairing the regenerative function of HSCs (43). Activating NF-

kB via the transgenic expression of constitutively active IKK2,

enzyme that activates NF-kB, promotes HSC proliferation,

decreases quiescence, and impairs the repopulating ability in
FIGURE 2

A diagram illustrating the role of KLF4 in immune cells. KLF4 directly regulates the differentiation and function of CD4 and CD8 T cells, conventional
dendritic cells (cDCs), B cells, monocytes, and hematopoietic stem cells (HSCs). Additionally, KLF4 secondarily regulates Th17 and Th2 CD4 T cells,
NK cells, and macrophages.
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secondary and competitive transplants (44). Thus, KLF4 preserves

the capacity of HSCs to regenerate blood cells during

transplantation-induced hematopoiesis by suppressing the

expression and activity of toll-like receptors (TLRs) during

homeostasis. However, one question remains unanswered: does

KLF4 activity decline with age in HSCs, contributing to chronic

stem cell inflammation and potentially linking to stem cell aging

and myelodysplasia?
Monocytes and macrophages

The role of KLF4 in inflammatory diseases has been extensively

studied (45). This review will briefly summarize the role of KLF4 in

differentiating these cells, focusing on other myeloid and lymphoid

cells. Research on loss- and gain-of-function in HL-60 cells and

murine stem/progenitor cells has established the role of KLF4 in

differentiation toward the monocytic lineage (46). Furthermore,

ectopic expression of KLF4 in PU.1-null fetal liver cells restored the

ability to differentiate into monocytes, suggesting that PU.1

promotes KLF4 expression during monocyte differentiation. This

finding was confirmed by the transplantation of fetal liver Klf4−/−

HSCs, which showed impaired differentiation of monocytes (40).

Research has demonstrated that interferon regulatory factor 8

(IRF8) induces the expression of the Klf4 gene in myeloid

progenitor cells, while PU.1, a crucial transcription factor in

myeloid development, targets KLF4 (46, 47). KLF4 also regulates

the differentiation of monocytes into macrophages and tumor-

associated macrophages during tissue migration (48–50). KLF4 is

essential for M1-type differentiation and influences macrophage

activation, activating cytokine response (40, 46, 47, 51).

Interestingly, decreased diurnal KLF4 expression in aged

macrophages disrupted diurnal rhythms in phagocytic activity,

indicating that KLF4 is involved in the circadian regulation of the
Frontiers in Immunology 04
innate immune response during aging (52). This finding raises the

concern that many functional studies of KLF4 in different blood

cells may need to be re-evaluated to investigate the impact of

circadian variations on KLF4 expression.
Dendritic cells

Conditional Klf4 gene deletion through Vav-iCre transgenic

mice showed loss of Ly6Chi monocytes and reduced interferon

regulatory factor 4 (IRF4) expression on pre-conventional dendritic

cells (pre-cDC) but not mature cDCs (53). The splenic classical DCs

(cDC: CD11chi CD11b+), regulated by KLF4, enhance the survival

of NK cells in peripheral tissues through IL-15 signaling (54).

Conditional Klf4 deletion in cDCs using Itgax-Cre mice impairs

Th2 cell responses to the helminth Schistosoma mansoni (53).

Additionally, KLF4 is essential for differentiating a subpopulation

of plasmacytoid DCs, pre-DC2 cells, into CX3CR1+ ESAM−

(cDC2b) cells, which play a key role in maintaining the Th17 cell

pool in the surveillant lymph nodes of the skin (55).
Natural killer cells

Natural killer (NK) cells are crucial in the innate immune

response. KLF4 regulates the differentiation and survival of NK

cells through several mechanisms. KLF4 enhances the survival of

NK cells in peripheral tissues by promoting the differentiation of

splenic conventional dendritic cells (cDC) defined as CD11chi

CD11b+ cells (54). KLF4 induces the expression of the NKG2D

ligand MICA in acute myeloid leukemia cell lines; however, the

function of KLF4-NKG2D in primary leukemic cells still requires

additional investigation (56). KLF4 induces ICAM-1 expression in

hypoxia-sensitive epididymal cells via the KLF4-ASH1L-ICAM-1
TABLE 1 The physiological role of KLF4 in the immune system based on mouse models.

Cell/tissue Model Effect Mechanism Ref.

Fetal liver HSC Klf4 −/− fetal liver chimeras Normal hematopoietic stem and progenitor cells n.d. (40)

Bone marrow HSC Klf4 fl/fl VaviCre transplantation Impaired hematological reconstitution
upon transplantation.

KLF4 inhibits TLR4
and NFkB2

(42)

Monocytes
Macrophages

Overexpression and knockdown in HL-60 cells and
common myeloid progenitor cells
Klf4 −/− fetal liver chimeras
Klf4 fl/fl Mx1-Cre & VaviCre

Alteration monocytic differentiation

Monocytic and macrophage differentiation
Reduced CD11+ Gr1− monocytes in blood

PU.1→ KLF4 (46)

(40)
(54)

Plasmacytoid dendritic
cells (pDC)

Klf4 fl/fl CD11c-Cre Defective classical dendritic cell 2
(cDC2) development

(55)

Classical dendritic
cells (cDC)

Klf4 fl/fl Vav1-iCre Altered development of IRF4-expressing cDCs and
impaired Th2 cell responses.

KLF4 → IRF4 (53)

CD8 T cells Klf4 fl/fl E8i-Cre
Klf4 fl/fl Mx1-Cre

Impaired differentiation and antitumor function.
Increased homeostatic and TCR-
mediated proliferation

ELF4 → KLF4
→ p21

(66)
(63)

Th17 T cells Klf4 −/− fetal liver chimeras Differentiation of Th17 CD4 T cells KLF4 → IL17 (61)

B cells Klf4 fl/fl CD19-Cre Lower numbers of B cells and proliferation. KLF4 → Cyclin D2 (68)
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Arrows indicate gene activation. n.d., not described.
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axis, which leads to NK cell activation and epididymal damage (57).

KLF4 interacts with ASH1L, a subunit of the histone

methyltransferase complex MLL, bringing it to the adhesion

molecule ICAM-1 promoter for the tri-methylation of histone H3

at lysine 4 (H3K4me3), an epigenetic mark linked to

gene activation.
T cells

T cells are developed in the thymus from bone marrow-derived

T cell progenitor cells. Early thymic progenitors do not express CD4

or CD8 (double negative: DN) and can be further classified into

subsets based on CD44 and CD25 expression, progressing in

differentiation from DN1 (CD44+ CD25−) to DN2 (CD44+

CD25+) to DN3 (CD44− CD25+) and finally to DN4 (CD44−
Frontiers in Immunology 05
CD25−) cells, with the latter differentiating into immature double-

positive (DP) cells that finally mature in either CD4 or CD8 T cells.

The expression of Yamanaka factors in thymocyte subsets shows

that KLF4 is highest in embryonic stem cells, with lower levels in

HSCs, CLPs, and DN1, and continuing to drop in DN2-DN4 and

DP cells (58). The conditional deletion of the Klf4 gene in

hematopoietic cells using Vav-iCre transgenic mice leads to

decreased cellularity across all thymocyte subsets, from DN1 to

CD4 and CD8 single-positive cells, despite showing no significant

differences in cell proliferation and survival in peripheral tissues,

which are regulated by other mechanisms (59). The expression of

KLF4 in thymic endothelial cells (TEC) during late pregnancy

prompted the conditional deletion of the Klf4 gene in these cells.

This deletion led to a notable reduction in thymic size and

cellularity during pregnancy-induced thymic involution despite

causing minimal changes in thymic cellularity during homeostasis

(60). This finding suggests that KLF4 preserves the integrity of

thymic endothelial cells during pregnancy and thymic regeneration

after childbirth.

As stated above, KLF4 can modulate the function of different T

cell subsets by promoting the differentiation of specialized dendritic

cells or myeloid-derived suppressor cells. KLF4 promotes Th17

differentiation in CD4 T cells by activating the IL17 promoter (61).

On the other hand, KLF4 inhibits Th17 differentiation in the ob/ob

mouse pressure ulcer model, which promotes diabetic chronic

wound healing through myeloid-derived suppressor cells (62). In

naïve CD8 T cells, the transcription factor ELF4 directly activates

the Klf4 gene, inhibiting cell division through cell cycle kinase

inhibitor p21 expression during homeostasis and in response to

antigen-driven proliferation by activating the T cell receptor (TCR)

(63). CD8+ T cells from mice with Klf4 gene deletion, induced by

the Mx1-Cre (cre-recombinase driven by the Mx1 promoter) and

poly-I:C injection (double stranded RNA induces systemic IFNg
secretion) model, showed increased cell division upon in vitro

crosslinking with anti-CD3 and anti-CD28, alongside homeostatic

expans ion of CD8+ T ce l l s showing a memory- l ike

immunophenotype (CD122+ CD44hi) (63). Klf4-null CD8+ T cells

expressing the OT1 transgene (ovalbumin-specific TCR)

demonstrated enhanced expansion in both primary and recall

responses to infection with Listeria monocytogenes-OVA (bacteria

expressing ovalbumin) (59). The regulation of KLF4 by ELF4 was

governed upstream by the ERK and mTOR pathways in CD8+ T

cells (64). Consistent with these findings, the proteasomal

degradation of KLF4, which is ubiquitinated at lysine by the E3

ligase Mule, promotes the transition from G1 to S-phase in T cells

(51). As a result, deleting the Klf4 gene exacerbates experimental

autoimmune encephalomyelitis due to the pathogenic role of Th17

cells while hindering the clearance of lymphocytic choriomeningitis

virus (LCMV) infection (65). A group reported that KLF4 is a

hallmark of cytolytic effector-like CD8 T cells during the exhaustion

process; therefore, ectopic KLF4 expression can enhance the activity

of exhausted T cells and is associated with better prognosis in cancer

patients (66). Stabilization of the KLF4 protein through PRMT5

arginine methylation, which prevents ubiquitination by VHL,

contributes to genome stability and carcinogenesis (12); however,
FIGURE 3

KLF4 protects the regenerative capacity of HSCs. KLF4 represses the
expression of TLRs and NFkB2 in HSCs during steady state,
preventing chronic inflammation that hinders their capacity to
regenerate the hematopoietic system after transplantation into
inflamed bone marrow.
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the role of this post-translational modification in regulating

homeostat ic and ant igen-dr iven T cel l prol i ferat ion

remains unexplored.
B cells

Transcriptional profiling of multipotent progenitor cells

induced to differentiate into B cells by Id3 expression revealed a

wave of priming transcription factors (e.g., KLF4, NR4A2, EGR1)

before the expression of core transcription factors E2A, EBF1, and

PAX5 (67). The conditional deletion of Klf4 in B cells using the

CD19-Cre system reduces the frequency of pro-B and mature B

cells and lowers proliferation induced by crosslinking with anti-IgM

and anti-CD40, attributed to the regulation of the cyclin D2

promoter (68). Transcriptional analysis during in vitro B cell

differentiation identified KLF4 as one of the transcription factors

involved in the early priming of B cell progenitor cells (67). KLF4

expression in bone marrow plasma cells promotes a gene expression

profile supporting early cell differentiation (69). Naïve B cells

express higher levels of KLF4, KLF9, and PLZF compared to

memory B cells, and this expression decreases following B cell

activation. This indicates that the reduced expression in memory B

cells allows them to enter the cell cycle rapidly, which is a key

feature of memory cells (70). B cells can undergo reprogramming; a

tetracistronic Sendai virus carrying OCT4, SOX2, KLF4, and MYC

can reprogram CD19-positive B cells from cord blood or peripheral

blood into induced pluripotent stem cells, which are extremely

useful for studying B cell function and transformation in

hematological malignancies (71).
KLF4 has tumor suppressive and pro-
leukemic functions in leukemia

Most research on KLF4 in cancer centers compares its expression

in patient samples with that in healthy individuals. Examining the

correlation between DNA methylation and gene expression revealed

that hypermethylation of the KLF4 gene was associated with lower

KLF4 expression in fifteen patients with chronic lymphocytic

leukemia (72). However, DNA methylation profiling in leukemia

does not have diagnostic value, and its potential link to tumor

suppression needs to be investigated in mouse models. In B-cell

non-Hodgkin lymphoma, KLF4, regulated by the transcription factor

YY1, acts as a tumor suppressor by inducing apoptosis through the

pro-apoptotic gene BAK1 (36, 73, 74). Research on the oncogenic role

of KLF4 has mainly focused on overexpression in established cell

lines, with limited assessment in mouse models of cancer, especially

concerning blood malignancies. In this review, we will summarize

studies from our group that utilized conditional Klf4 deletion and

retroviral transduction models with oncogenes to investigate their

role in leukemia stem cells (LSC) within lymphoid and myeloid

leukemia (Figure 4A). Generally, purified HSCs (Lin− Sca-1+ c-kit+

CD150+= LSK-CD150 cells) or bone marrow cells from mice pre-

treated with 5-fluorouracil (5-FU) to enrich bone marrow in
Frontiers in Immunology 06
hematopoietic stem/progenitor cells (HSPC) are utilized for

retroviral transduction carrying leukemia specific oncogenes

(Figure 4A). Retrovirus carrying a gain-of-function NOTCH1

mutant, the constitutively activated BCR-ABL1 kinase, or the

fusion MLL-AF9 are used to induce T-cell acute lymphoblastic

leukemia (T-ALL, chronic myeloid leukemia (CML), or acute

myeloid leukemia (AML), respectively.

Acute lymphoblastic leukemia (ALL) is the most common cancer

in children under 14 years old, with T-cell ALL (T-ALL) being a

subtype recognized for its high relapse rate. KLF4 in T-ALL has been

studied due to its ability to inhibit the proliferation of naïve T cells

and its suppressive role in T-ALL cell lines (37, 75, 76). A gene

expression profiling analysis in pediatric leukemia indicates that

KLF4 is significantly downregulated in T-ALL compared to normal

bone marrow, particularly in T-ALL subtypes associated with the

worst prognosis (37). This finding aligns with the epigenetic silencing

of the KLF4 gene due to DNA CpGmethylation seen in children with

T-ALL, which was not present in the bone marrow and T cells

obtained from healthy individuals (37). The conditional deletion of

the Klf4 gene accelerated leukemia in the NOTCH1-induced T-ALL

mouse model, increasing both the proliferation of T-ALL cells and

the frequency of leukemia-initiating cells (LIC) measured in a

limiting dilution transplantation study (37). Since KLF4 represses

theMap2k7 gene, which encodes a dual specificity mitogen-activated

protein kinase kinase 7 (MAP2K7), the epigenetic silencing of KLF4

in patients and its conditional deletion in the mouse model of T-ALL

lead to the aberrant activation of the MAP2K7-JNK pathway

(Figure 4B) (37, 77). Pharmacological inhibition of the MAP2K7

kinase has demonstrated anti-leukemic effects in T-ALL cell lines and

patient-derived xenograft cells (78–80). In summary, KLF4 has tumor

suppressor activity in pediatric T-ALL, at least in part by inhibiting

MAP2K7, which may be considered for therapeutic targeting.

Research now is focused on developing specific, potent, and safe

MAP2K7 inhibitors to translate into the clinics.

Chronic myeloid leukemia (CML) is caused by the oncoprotein

BCR-ABL1, which is the product of the chromosomal translocation t

(9, 22). While remission can be achieved with the tyrosine kinase

inhibitor Imatinib, patients must be kept on treatment for life. As a

result, a considerable amount of research focuses on LSCs due to their

resistance to Imatinib and potential to cause relapses if the treatment

is stopped. Using the retroviral BCR-ABL1 model to induce

myeloproliferative-like disease, which serves as a model for CML,

researchers found that the conditional deletion of the Klf4 gene

prolonged overall survival. This effect is attributed to the inhibition of

self-renewal and the induction of apoptosis in leukemia stem cells

(LSCs), a rare population of leukemic cells with stem cell features that

continuously feed the neoplasm (38). KLF4 loss leads to the

upregulation of the dual-specificity DYRK2 kinase since KLF4

represses the expression of the Dyrk2 gene (Figure 4B). DYRK2

upregulation was linked to increased apoptosis through p53

phosphorylation and c-Myc proteasomal degradation via prime-

phosphorylation, as DYRK2 can be activated by auto-

phosphorylation (38). In addition to the genetic upregulation of

DYRK2, inhibiting the ubiquitin ligase SIAH2, which mediates the

proteasomal degradation of DYRK2, with synthetic vitamin K3
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stabilizes the DYRK2 protein (38). However, vitamin K3 cannot be

administered to patients due to its high toxicity. Like embryonic stem

cells, KLF4 promotes self-renewal in CML LSCs, but it does so by

repressing a DYRK2-mediated inhibition mechanism. It needs to be

further investigated whether the pharmacological stabilization of

DYRK2 protein could help achieve treatment-free remission by

eliminating LSCs.

Acute myeloid leukemia (AML) is an aggressive cancer that

primarily affects the elderly and has a poor prognosis due to

ineffective treatments. Unlike T-ALL, the KLF4 gene is not

silenced epigenetically by CpG methylation in AML. Genome

editing of the KLF4 gene in the AML cell lines NB4 and

MonoMac6 by CRISPR/Cas9 showed reduced cell growth and

increased apoptosis (81). In the AML model induced by retroviral

expression of the MLL-AF9 fusion in hematopoietic stem/

progenitor cells followed by transplantation, the loss of KLF4
Frontiers in Immunology 07
caused improved survival of leukemic mice, which was linked to a

reduced frequency of LSCs identified in this model as granulocyte

monocyte progenitor (GMP) cells that are positive for MLL-AF9

(Figure 4B) (39, 81). Gene expression profiles obtained from

purified leukemic GMP cells of wild-type and Klf4 knockout

leukemic mice indicate that the loss of KLF4 is associated with

decreased expression of genes regulated by MLL-AF9, as well as a

leukemic stemness gene signature and cell cycle regulators (39).

Genes related to inflammation, such as the dsRNA helicase DDX58,

were upregulated in murine HSCs and LSCs (L-GMP), indicating a

role in the inflammatory type I interferon pathway in AML.

However, experiments of knocking down DDX58 in Klf4

knockout MLL-AF9-induced leukemia suggested that elevated

levels of DDX58 in Klf4 knockout LSCs did not contribute to

impaired LSC frequency despite reducing clonogenicity in

methylcellulose (39). Overall, KLF4 supports MLL-AF9-driven
FIGURE 4

Control of leukemia stem cells (LSC) and leukemia-initiating cells (LIC) in myeloid and lymphoid leukemia. (A) Transduction of hematopoietic stem/
progenitor cells with a retrovirus carrying an oncogene: BCR-ABL1 to induce chronic myeloid leukemia (CML), gain-of-function NOTCH1 mutant
(gfNOTCH1) for T-cell acute lymphoblastic leukemia (T-ALL), and MLL-AF9 for acute myeloid leukemia (AML). (B) KLF4 represses MAP2K7 in T-ALL
(tumor suppressor function). KLF4 exhibits a pro-oncogenic function in BCR-ABL1-induced CML by repressing the DYRK2 gene, preventing
inhibition of LSC self-renewal. In AML, the upregulation of DDX58 in Klf4 knockout LSCs does not appear to contribute to the impaired frequency of
LSCs. The activity repressing or activating target gene expression is indicated in red and green, respectively.
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AML by sustaining the expression of genes related to LSC stemness

and MLL target genes.
Concluding remarks

Recently, there has been a growing interest in studying KLF4 in

normal and malignant hematopoiesis. In normal hematopoietic stem

cells, KLF4 preserves their regenerative capacity after transplantation

by repressing TLR and NFkB2 during homeostasis. In leukemia,

KLF4 may inhibit or promote self-renewal in leukemic stem cells,

depending on oncogenic signals and KLF4’s dual role as a

transcriptional activator and repressor. Likewise, KLF4 can function

as either a tumor suppressor or a pro-oncogene, depending on the

regulation of cell cycle and signaling within an oncogenic

environment. In myeloid leukemias, KLF4 has pro-leukemic

function in CML by suppressing a mechanism that inhibits LSC

self-renewal, and in AML by promoting the expansion of LSCs. In

line with its role in inhibiting cell division in normal T cells, KLF4

functions as a tumor suppressor in leukemic T cells by repressing a

kinase that drives T-ALL cell proliferation. Further investigation is

needed to clarify the physiological and pathological roles of KLF4 in

various blood lineages and to identify actionable target genes and

downstreammechanisms for potential pharmacological intervention.

This is necessary because transcription factors are often considered

undruggable, and there are concerns regarding systemic therapy

targeting KLF4, given its dual carcinogenic functions.
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