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Background:Multiple myeloma (MM) is a biologically heterogeneousmalignancy

of clonal plasma cells, often progressing fromMGUS or smoldering MM. It causes

anemia, bone lesions, and immune dysfunction due to abnormal plasma cell

expansion in the bone marrow. Neuroinflammatory and neurotrophic factors

may influence MM progression by affecting immune cells and the bone marrow

niche. Growing evidence points to a role for neuroimmune regulation in tumor

immunity. Despite therapeutic progress, disease heterogeneity and resistance

highlight the need for new strategies targeting the tumor microenvironment and

neuroimmune axis.

Methods: This investigation exploited single-cell RNA sequencing (scRNA-seq)

to analyze MM and high-risk smoldering multiple myeloma (SMMh) samples,

identifying 11 distinct cell types. We examined their transcriptional signatures,

stemness, proliferative properties, and metabolic pathways, with particular

attention to neuroimmune interactions in the tumor microenvironment. Using

trajectory inference tools such as CytoTRACE, Monocle2, and Slingshot, we

traced the differentiation paths of MM cell subpopulations and identified key

s igna l ing pathways that may influence immune responses and

tumor progression.

Results: The analysis identified four distinct subpopulations of myeloma cells,

with the C0 IGLC3+myeloma cells representing the least differentiated andmost

proliferative subset. These cells played a critical role in MM progression and may

contribute to immune evasion mechanisms. Additionally, receptor-ligand

interactions within the tumor microenvironment were identified, which may be

influenced by neuroinflammatory and neurotrophic factors. These findings

suggest that the nervous system and immune modulation significantly affect

tumor biology, highlighting potential therapeutic targets that could be exploited

to overcome resistance to conventional therapies.
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Conclusion: This single-cell analysis provided new insights into the cellular

diversity and differentiation trajectories in MM, offering a deeper understanding

of the complex neuroimmune interactions that drive tumor progression and

resistance. By incorporating the role of neuroinflammation and immune

modulation, our study suggested novel therapeutic strategies targeting the

neuroimmune axis in oncology, ultimately contributing to the development of

more effective, personalized treatment approaches for MM.
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Introduction

Cancer neuroimmunology is an emerging discipline that

investigates the intricate relationships involving the central

nervous system and cancer immunity. Recent research has

transformed the perspective on the nervous system, not just as a

bystander, instead as a crucial regulator of malignancy and

therapeutic responses (1). The core characteristics of the immune

microenvironment of MM, such as myeloid-derived suppressor

cells (MDSCs) accumulation, T cell exhaustion state, and IL-6

driven immunosuppression. Both the central and peripheral

nervous systems contribute to modulating the tumor

microenvironment, influencing neuroinflammation, immune

responses, and immune evasion mechanisms (2). Interactions in

hematological tumors, such as multiple myeloma (MM), are

significant, as the immune system’s microsetting is critical to

disease progression and therapeutic resistance.

MM is a kind of plasma cell carcinoma that develops mostly in

its bone marrow, which accounts for roughly ten percent of all

hematologic malignancies (3, 4). MM precursor lesions include

monoclonal gammopathy, which is of unknown significance, as well

as smoldering multiple myeloma (SMMh) (5). Of these, SMM can

progress to symptomatic MM. MM is diagnosed with a ≥10%

proportion of monoclonal plasma cells in the bone marrow or a

biopsy-confirmed plasmacytoma with end-organ damage (6).

The distinguishing feature of MM is the aberrant proliferation

of monoclonal plasma cells in the bone marrow, resulting in the

creation of large numbers of nonfunctional immunoglobulins or

their light chains (7). These abnormal plasma cells trigger clinical

manifestations such as anemia, bone lesions, infections,

hypercalcemia, and renal failure by interacting with other cells in

the bone marrow microcosm (8). Despite enormous advances in the

medical management and prognosis of MM in the past decade, its

bioheterogeneity and drug resistance mechanisms remain a barrier

for research (9, 10).

The neurological system has a vital function in regulating the

immune response to MM. Neuroimmune interactions occur

through neurotransmitters and neuropeptides, which can

influence immune cell function and tumor progression. For
02
example, neuroinflammation, induced by factors such as stress,

can alter immune responses, promoting tumor growth and

resistance to therapies. Furthermore, the nervous system can

impact immune evasion mechanisms in MM, such as through

immune checkpoint molecules such as PD-L1, which are

expressed upon the cells of the MM, which inhibits T-cell activity

(9, 11). These emerging insights highlight the neuroimmune axis as

a critical area for exploring new therapeutic strategies in MM.

MM treatment includes chemotherapy, targeted therapy,

immunotherapy, bone marrow transplantation, and supportive

care (12). Immunotherapy is particularly important in MM, and

the main strategies include: immune checkpoint inhibition, in

which MM cells evade immune killing by inhibiting T-cell activity

through the expression of PD-L1 (13). Cytokine modulation, by

secreting cytokines such as IL-6, MM cells inhibit immune cell

function and promote self-proliferation (14). Innovative

immunotherapies, such as CAR-T cell therapy targeting BCMA

and bispecific immunoglobulins, albeit showing great success, must

still overcome difficulties, including resistance to medicines and

negative reactions (14).

The heterogeneity of MM stems from complex interactions

between cellular subpopulations within the tumor and the bone

marrow microenvironment, and traditional bulk sequencing

methods struggle to capture differences at the single-cell level

(15). Single-cell RNA sequencing (16, 17) (scRNA-seq) provides a

revolutionary technique for resolving MM, revealing:

transcriptional patterns of discrete cellular subpopulations clearly

described at the single-cell level (18). Analyze intercellular signaling

pathways and key receptor-ligand pairs (19). Identify specific

subpopulations with active proliferation, high stemness and

significant metabolic features. Importantly, scRNA-seq also

provides an opportunity to explore the neuroimmune axis in MM

by revealing how neuroinflammatory pathways and immune

modulation influence tumor progression and treatment resistance

(20–22).

In this study, we used scRNA-seq to examine the cellular

heterogeneity of MM, focusing on transcriptional signatures,

stemness characteristics, proliferative capacity, and metabolic

profiles of MM cells. Using trajectory inference tools such as
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CytoTRACE, Monocle2, and Slingshot, we mapped the

differentiation pathways of MM subpopulations and identified key

proliferative and functional subpopulations.

In addition, we investigated the interactions between MM cells

and the bone marrow environmental conditions, focusing on

neuroimmune interactions and receptor-ligand combinations that

may contribute to immune regulation. By uncovering these cellular

characteristics and their interplay with neuroinflammation, we aim

to provide new insights for precision medicine and the development

of novel therapeutic strategies, particularly in the context of

neuroimmune modulation (23).
Materials and methods

Data sources

During this investigation, we used scRNA-seq data fromMM as

well as SMMh from the GEO database (GSE124310). Ethical

approval numbers were not required for this study as the data

were obtained from publicly available databases (24). Open data

access helped to avoid the ethical review process.
Single-cell sequencing

Gene expression data were processed using Seurat in R (25, 26).

Poor-quality cells were excluded using specific standards, selecting

cells with nFeature counts between 300 and 5000, nCount between

500 and 50,000, and mitochondria or red cell gene expression

contributions of less than 10% and 5%, respectively. Following

quality control, 13,437 cells remained (27, 28).
Identification of cell types

The NormalizeData functions of Seurat were used to normalize the

data (29–32). FindVariableFeatures was used to identify the 2000

highly variable genes (HVGs) (33–36). The scaleData function

standardized the data. Principal component analysis (PCA)was

performed on these HVGs using the RunPCA function (37–39), and

Harmony package was applied to reduce batch effects. For clustering

the reduced data (40–42), the FindNeighbors and FindClusters

functions were used. Uniform Manifold Approximation and

Projection (UMAP) (43, 44) was used for dimensionality reduction

clustering analysis, and the results were displayed in a two-dimensional

space. To enhance annotation accuracy, FindAllMarkers was applied

alongside reference datasets from the CellMarker database and

published literature for single-cell annotation.
Cell stemness assessment

AUCell was a strategy for finding cells containing genes with activity

in scRNA-seq data. The “activity” of each cell’s genes was produced by
Frontiers in Immunology 03
AUCell using a set of genes as input. of genes as input. The stemness

level of cell subpopulations was assessed using the AUCell method.
Gene ontology and gene set enrichment
analysis

GO enrichment analysis was a bioinformatics method used to

analyze gene function (45–47). Based on the GO database (48–52),

it mapped a set of genes to three levels: Biological Process (BP),

Molecular Function (MF) and Cellular Component (CC) (53–56).

Differentially expressed genes (DEGs) were found using

the FindAllMarkers tool (min.pct = 0.25, threshold = 0.25).

Gene enrichment and analysis were carried out utilizing

ClusterProfiler, concentrating on important GO keywords with

adjusting p-values <0.05. GO descriptions from the National

Center for Biotechnology Information, UniProt, and Gene

Ontology databases were used to investigate the functional roles

of marker genes. To identify key GO categories, the exact Fisher

test was used, with FDR corrections included in p-values.

Pathway enrichment was assessed using GSEA software (32, 57, 58)

(http://www.gsea-msigdb.org This method ranks DEGs to identify p-

values.) This method ranks DEGs to identify significantly enriched

pathways between experimental and control groups (59).
pySCENIC analysis

pySCENIC was a Python-based tool designed for inferring Gene

Regulatory Networks (GRNs) and characterizing cell states in

single-cell analysis. First, it constructed GRNs by identifying

regulatory interactions between transcription factors (TFs) and

their target genes. Connection specific index (CSI) was used to

analyze the distribution of TFs in myeloma cells. Finally, the AUCell

algorithm evaluated TF activity across different cells, quantifying

their regulatory influence. These steps collectively provided a

comprehensive understanding of the role and regulatory

mechanisms of TFs at the single-cell level.
Metabolic analysis

We evaluated the activity scores of key metabolic pathways in

each cell by the AUCell method based on single-cell transcriptome

data. The distribution of pathway scores across cell subtypes was

compared to identify significantly different metabolic pathways.

Pathway scores were averaged for cells within each subtype, and the

overall level of activity of specific metabolic pathways in each

subtype was calculated.
Proposed time-series analysis

CytoTRACE infered cell differentiation status by analyzing

single-cell RNA-seq data (60–62). It estimates the “stemness” or
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developmental potential of cells by measuring their transcriptional

heterogeneity and identifies cells that are likely at early or late stages

of differentiation.

Monocle2 reconstructs cellular differentiation paths (or

pseudotime) by performing dimensionality reduction and ordering

cells along a trajectory. It can handle branching trajectories and

identify genes that are differentially expressed along the progression,

useful for studying dynamic biological processes like cell fate

decisions. Slingshot constructs tree-like structures to model

branching trajectories and is particularly effective when combined

with clustering techniques. Monocle2 and Slingshot are more focused

on constructing cell differentiation pathways and are suitable for

depicting multi-branched developmental trajectories. These methods

comprehensively evaluate the differentiation status and

deve lopmenta l po t en t i a l o f MM ce l l subse t s f rom

different dimensions.
Communication between cells

With the CellChat application, cell-cell interactions between

various cell types were predicted. We examined the patterns of

incoming and outgoing signals as well as the strength of each

receptor-ligand interaction (63).
Cell culture

KMS-26 and MM1-S were cell lines commonly used in multiple

bone marrow studies. KMS-26 cell lines were cultured in RPMI-

1640 (Roswell Park Memorial College 1640 medium) or Dulbecco’s

Modified Eagle Medium (Dulbecco’s Modified Eagle medium)

supplemented with 10% fetal bovine serum (FBS) and 1%

penicillin/streptomycin. The MM1-S cell line was cultured in

RPMI-1640 supplemented with 10% fetal bovine serum (FBS) and

1% penicillin/streptomycin; the environment was 37°C, 5% CO2.

The culture environment was 37°C, 5% CO2. Cells were passaged

every 2–3 days, depending on the cell growth.
Cell viability assay

Cell viability assay was a method for assessing cell health,

viability and proliferation, which is widely used in cell culture,

drug screening, toxicity testing and cancer research (64). The assay

could quantitatively assess cell viability and determine the effects of

different treatment conditions (e.g. drug action, gene knockdown or

environmental changes) on cells.
qPCR

qPCR (65) was a molecular biology technique used to detect and

quantify specific nucleic acid sequences (66). Quantitative analysis

of nucleic acids was achieved by monitoring the amplification of

DNA in real time during the amplification of the PCR reaction

using a fluorescent dye or a probe (67, 68).
Frontiers in Immunology 04
Colony formation assay

Colony formation assay was used to detect the proliferation

ability of individual cells and was particularly suitable for the study

of clone formation ability of tumor cells. The assay was based on the

long-term growth of cells in a culture medium, resulting in the

formation of a colony that was visible to the naked eye. The colony

formation assay was based on the principle that when a single cell

undergoes more than six rounds of proliferation in vitro, its progeny

collectively formed a distinct cluster of cells, referred to as a colony.

By computing the colony formation efficiency, the test cells’ ability

to proliferate was ascertained.
Cell scratch assay

Cell migration was measured using the cell scratch assay. The

ability of the cells to migrate was assessed by looking at their

capacity to fill a “scratch” on a monolayer cell culture dish.
The transwell assay

The Transwell assay served to investigate a cell’s capacity for

invasion and migration. The capacity of cells to move over the

membrane from the upper chamber to the lower chamber was

evaluated using a Transwell with holes. Cell invasive capacity can be

assessed using a Matrigel-coated membrane.
EdU staining

During DNA replication, the thymidine analog EdU (5-

Ethynyl-2’-deoxyuridine) can be added to freshly produced DNA.

A fluorescently tagged Click-iT reaction was used to identify EDU-

labeled cells and evaluate their capacity for cell proliferation.
Statistical analysis

Statistical analyses were performed using R packages (69) to process

the database counts. Two-tailed p-values were employed, and values

below 0.05 were considered statistically significant. * p<0.05, * * p< 0.01,

* * * p<0.001, * * * *<0.0001, ns indicates no statistical difference.
Results

Heterogeneity of cells in MM as well as
SMMh

First, we showed the overall flow chart of this study (Figure 1).

By analyzing scRNA-seq data obtained from 15 myeloma patient

samples, we successfully identified two tissue types, SMMh cells as

well as MM cells. Following rigorous quality control and the
frontiersin.org
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removal of batch effects, we were able to extract 13,437 high-quality

cells. Then, by further dimensionality reduction clustering analysis,

we identified 18 different cell states of these cells (Figure 2A). And

we labeled the tissue origin (MM,SMMh) as well as the cell cycle

order (G1, G2M, S) in which all cells were located (Figure 2B).

Based on previous studies in the literature and specific biomarkers

for each cell type identified by research consensus, we categorized

these cell clusters into 11 major cell types: Monocytes and

Macrophages (2,556), T cells (6,254), Plasma cells (1696), NK

cells (1355), B cells (690), Proliferating cells (222), HSCs (208),

cDC2s (178), Erythrocytes (141), pDCs (86), and Pro B cells (51)

(Figure 2C). Bar plots demonstrated 11 cell types for Cell Stemness

AUC (the AUC score of Cell Stemness), nCount RNA, and nFeature

RNA scores for 11 cell types. Monocytes and Macrophages, T cells,

Plasma cells, HSCs and cDC2s had relatively high Cell Stemness

AUC, the levels of nCount RNA and nFeature RNA of Erythrocytes,

Proliferating cells, HSCs, cDC2s and Plasma cells were relatively

high, which indicates that these cell clusters were active and may be

in the stage of cell proliferation and active function (Figure 2D). The

expression of TOP5 differential genes IGLL5, MZB1, IGHG1,
Frontiers in Immunology 05
IGHG3 and IGKC in Plasma cells were demonstrated by Bar

plots, among which IGLL5 and MZB1 were highly expressed in

Plasma cells, while IGKC was also highly expressed in other cells

(Figure 2E). IGLL5 is closely associated with the early stages of B cell

development, suggesting a possible role in maintaining the

immature state of malignant plasma cells. MZB1 is an

endoplasmic reticulum chaperone involved in immunoglobulin

assembly, which may be related to secretion load and stress

response of MM cells . IGHG1 and IGHG4 represent

immunoglobulin heavy chain type changes, reflecting the

differences in the differentiation lineages of MM clones. It was

worth noting that 90.60% of Plasma cells are from MM (Figure 2F).

In order to further study the expression of up-regulated and down-

regulated genes in all cell types, we showed them by volcano

diagrams (Figures 2G, H). The up-regulated genes in Plasma cells

were IGHGP, IL5RA, CADPS2, UCHL1 and KDELR3, and the

down-regulated genes were RPL28, RPS27A, MT-ND3, RPL39 and

RPL26. Based on the DEGs, we performed enrichment analysis of

related biological processes in different cells. The ATP production

coupled with electron mobility, the biogenesis of the
FIGURE 1

Flow chart of this study. In this study, cellular heterogeneity in MM and SMMh samples was analyzed by single-cell RNA sequencing, identifying 11
cell types. Significant differences in transcriptional profiles were found between MM and SMMh cells, and different cell subpopulations had different
regulatory activities in cellular value-addition, differentiation and metabolic pathways. The differentiation process of myeloma cells was speculated
using trajectory analysis methods such as CytoTRACE and Monocle2, revealing that C0 IGLC3+ Myeloma cells are the most naïve tumor cells and
that they have a key role in myeloma development and progression. The molecular characterization of myeloma cells during malignant
transformation was further elucidated by the analysis of TFs and metabolic pathways.
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ribonucleoprotein complex, mitochondrial gene expression, and

other pathways were enriched in plasma cells, while the

regulation of actin filament-based operations, leukocyte-mediated

immunity, and the organization of the actin cytoskeleton were
Frontiers in Immunology 06
enriched in proliferating cells (Figure 2I). These findings suggest

that plasma cells are primarily engaged in energy production and

mitochondrial function, whereas proliferating cells are more

involved in cytoskeletal organization and immune regulation.
FIGURE 2

Heterogeneity of cells in MM as well as high-risk smoldering myeloma. (A) UMAP plots showed the analysis of all cells from 15 MM and SMMh
samples using the scRNA-seq method (upper panel) as well as these samples after dimensionality reduction clustering into 17 cell clusters. (B) UMAP
plots showed the tissue type of all cells (MM,SMMh) and the cell cycle stage they are in (G1, G2M, S). (C) UMAP plot showed 11 different cell types
(Monocytes and Macrophages, T cells, Plasma cells, NK cells, B cells, Proliferating cells, HSCs, cDC2s, Erythrocytes, pDCs, Pro B cells). (D) Bar plots
showed the Cell Stemness AUC (the AUC score of Cell Stemness), nCount RNA, and nFeature RNA scores for 11 cells. (E) Bar plots showed the
expression of TOP5 marker gene in Plasma cells in all cell types separately. (F) Bar plots demonstrated the percentage of SMMh and MM tissue types
in each cell type. (G-H) Volcano plots demonstrated the expression of up- and down-regulated differential genes in all cell types. (I) Enrichment
analysis of differential genes in 11 cell types.
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Single cell characteristics of myeloma cell
subsets

We classified 1501 plasma cells in MM into four distinct cell

subsets, C1 IGHA1+ Myeloma cells, C2 IGHG1+ Myeloma cells,

and C3 IGHG4+ Myeloma cells, in order to better understand the

characteristics of plasma cells in MM (Figure 3A). Next, we

analyzed the RNA copy number variability of myeloma cell

subpopulations as well as the active levels of stemness genes, and

found that the differences in CNVscore and Cell Stemness AUC

scores among the four myeloma cell subpopulations were small

(Figures 3B–D). When examining the tissue origin distribution of

myeloma cells, it was found that all four myeloma cell

subpopulations were mostly derived from MM, with less

distribution of SMMh, and there was no significant difference in

the distribution of the three cell cycle phases, which were

distributed in all phases (Figures 3E, F). This suggested that all

four myeloma cell subsets are likely to be malignant cells.

Figures 3G, H demonstrated the nCount RNA and nFeature RNA

scores of all myeloma cells, the C1 IGHA1+ Myeloma cells of the

both nCount RNA and nFeature RNA were low. It was noteworthy

that C0 IGLC3+Myeloma cells and C3 IGHG4+Myeloma cells had

higher nFeature RNA scores, indicating that they had active

intracellular proliferation, which might play an important role in

the growth and metastasis of MM tumors. The expression of TOP5

differential genes in the four myeloma cell subpopulations was

shown in Figure 3I. The TOP5 differential genes in C0 IGLC3+

Myeloma cells were IF127, IGLL5, GSTP1, HLA-B, andHLA-C. The

TOP differential genes in C3 IGHG4+ Myeloma cells were HBB,

HBA2, HBA1, and JUNB. The expression patterns of the myeloma

cell subpopulation marker genes in Figures 3J, K could be observed

that the expression of IGLC3 and IGHA1 was higher in C0 IGLC3+

Myeloma cells, C1 IGHA1+ Myeloma cells, and that the expression

of IGHG1 and IGHG4 was higher in C2 IGHG1+Myeloma cells, C3

IGHG4+Myeloma cells. The enhanced genes in C0 IGLC3+ and the

diminished genes in the four myeloma cell subpopulations were

depicted in volcano plots. The genes that were down-regulated were

IGKC, IGHA1, IGHG4, IGHG3, and IGHG1, and the myeloma cells

were HLA-C, HLA-B, B2M, GSTP1, and IGLL5 (Figure 3L).

In order to understand the biological functions as well as

molecu lar charac ter i s t ic s o f d i ffe rent mye loma ce l l

subpopulations, we performed GOBP enrichment analysis, and

the word cloud maps showed that C0 IGLC3+ Myeloma cells

were enriched in the pathways related to reticulum, endoplasmic,

targeting, and viral, and C1 IGHA1+ Myeloma C1 IGHA1+

Myeloma cells were enriched in electron, triphosphate, purine,

atp and other related pathways, C2 IGHG1+ Myeloma cells were

enriched in subunit, ribosomal, burst and other related pathways,

C3 IGHG4+ Myeloma cells were enriched in oxide, nitric,

cysteinetype, endopeptidase, electron and other related pathways

(Figure 3M). Lastly, the enrichment analysis’s findings were further

illustrated: C0 IGLC3+ ATP synthesis and electron transport, the

mitochondrial ATP generation and electron transport, respiratory

and aerobic electron transport chains, oxidative phosphorylation,

and aerobic respiration pathways were all shown to be more
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abundant in myeloma cells. C1 IGHA1+ aerobic respiration,

respiratory electron transport chain, ATP synthesis linked

electron transport, mitochondrial ATP synthesis coupled electron

transport, oxidative phosphorylation, and other pathways were

enriched in C2 IGHG1+ in myeloma cells. Aerobic breathing,

pulmonary electron transport chain routes, myeloma cells, and

electron transport. C2 IGHG1+ Myeloma cells were enriched in

cytoplasmic translation, ribosome biogenesis, ribonucleoprotein

complex biogenesis, ribosomal small subunit biogenesis, rRNA

processing, and ribosomal large subunit biogenesis. C3 IGHG4+

myeloma cells were enriched in cytoplasmic translation, ribosome

biogenesis, ribonucleoprotein complex biogenesis, ribosomal small

subunit biogenesis, rRNA processing, ribosome assembly, and other

pathways (Figure 3N).Taken together, it suggests that cellular

proliferation is more active in C0 IGLC3+ Myeloma cells and was

associated with oxidative phosphorylation, which might regulate

metabolic activities through a specific pathway and therefore had a

significant impact on the growth and metastasis of MM tumors.
Proposed time-series analysis of myeloma
cell subpopulations

A series of trajectory prediction techniques were used to infer

the differentiation process and development trajectory of myeloma

cell subsets, to elucidate the differentiation and development

relationship among various myeloma cell subsets, and to evaluate

the proliferation and differentiation capacity. First, CytoTRACE

was used to analyze the cell differentiation and proliferation

potential. The results showed that C0 IGLC3+ myeloma cells had

the highest differentiation potential, indicating that C0 IGLC3+

myeloma cells had the strongest proliferation ability and were naive

tumor cells, followed by C1 IGHA1+ myeloma cells, C2 IGHG1+

myeloma cells, and C3 IGHG4+ myeloma cells (Figures 4A, B).

Then, CytoTRACE was used to score cells from different tissues,

and it was found that the stemness level of cells from MM was

significantly higher than that from SMMh (Figure 4C). In addition,

it was found that genes such as IGHG4, IGHG1, IGHG3 and IGKC

were negatively correlated with CytoTRACE, while genes such as

CD74, IGLL5, HLV2-B and IGLV2–8 were positively correlated with

CytoTRACE (Figure 4D).

Next, we analyzed the subpopulation of myeloma cells by

Monocle2, and inferred the cell differentiation trajectory. The

results showed that there was a branch point in predicting the

development trajectory of myeloma cells, and the whole

development trajectory was divided into three states (Figures 4E,

F). In order to know more clearly the distribution and changes of

each myeloma cell subpopulation in the whole development track, we

used ridge map and facet maps for visualization (Figures 4G, H). The

results showed that C0 IGLC3+Myeloma cells are mainly distributed

in the initial section of the simulated trajectory, namely State1 and

State 2. C1 IGHA1+ Myeloma cells were mainly distributed in the

middle stage, namely State 2; C2 IGHG1+ Myeloma cells and C3

IGHG4+ Myeloma cells were mainly distributed in the final stage of

the trajectory, that is, State3. Further combination Figure 4I, the cell
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differentiation trajectory could be inferred as C0 IGLC3+ Myeloma

cells→C1 IGHA1+Myeloma cells→C2 IGHG1+Myeloma cells→C3

IGHG4+ Myeloma cells. By analyzing the differentiation

characteristics of different tissue features, it was found that the

degree of differentiation of MM was significantly lower than that of
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SMMh (Figure 4J). The cells derived from MM were confirmed to be

malignant tumor cells. The percentages of the four myeloma cell

subpopulations in the three States (Figures 4K, L), C0 IGLC3+

Myeloma cells accounted for 32.4% in State1 and 87.4% in State2;

C1 IGHA1+Myeloma cells accounted for 60.1% in State1 and 11.2%
FIGURE 3

Single cell characteristics of myeloma cell subsets. (A) UMAP plot showed the distribution of four myeloma cell subsets. (B) UMAP plots showed the
difference of CNVscore and Cell Stemness AUC scores of all myeloma cells. (C) The bar plots showed the difference of CNVscore of four myeloma
cell subsets and different tissue types. (D) The bar plot showed the difference of Cell Stemness AUC scores among four myeloma cell subsets.
(E) The tissue types (SMMh, MM) and the distribution of cell cycle stages (G1, G2M, S) of all myeloma cells. (F) UMAP plots showed the distribution of
four myeloma cells and pie chart shows the tissue type and the proportion of cell cycle stages of each myeloma cell subpopulation. (G, H) UMAP
plots and Bar plots showed the differences of nCount RNA and nFeature RNA scores of all myeloma cells. (I) Bubble plot showed the expression of
TOP5marker gene in four myeloma cell subsets. (J, K) UMAP and bar plots showed the expression of IGLC3, IGHA1, IGHG1, IGHG4 in all myeloma
cells. (L) Volcano plots showed up-regulated and down-regulated differential genes in four myeloma cell subsets. (M) The word cloud plots showed
the results of path enrichment. (N) The bar plots showed the enrichment analysis results of GO-BP of myeloma cell subsets.
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FIGURE 4

Proposed time-series analysis of myeloma cell subpopulations. (A, B) The UMAP and Bar plots showed the results of the stemness ability of four
subtypes of myeloma cells calculated based on CytoTRACE. (C) Bar plot showed the different levels of differentiation in SMMh and MM. (D) Correlation
of stemness-related genes in with CytoTRACE. (E) UMAP plot demonstrated the order of cell differentiation inferred by Monocle2. (F) Two-dimensional
trajectory plots demonstrated the differentiation trajectories of myeloma cells labeled with putative chronological order, cellular subpopulations, and
putative temporal stages, respectively. (G) Ridge plot demonstrated the difference in distribution of the 4 myeloma cell subpopulations across the
proposed temporal trajectory. (H) 2D trajectory faceted plots demonstrated the distribution of each of the 4 myeloma cell subpopulations across the
pseudotime trajectories. (I, J) Bar plots demonstrated the differences in the proposed temporal order of the 4 myeloma cell subpopulations as well as
different tissue types. (K, L) Stacked bar plots demonstrated the distribution of the 4 myeloma cell subpopulations as a percentage of the distribution in
the three proposed temporal order trajectory phases. (M) Scatter plots demonstrated the distribution of IGLC3, IGHA1, IGHG1, IGHG4 along with
Monocle2 simulated mimetic timing trajectories in different myeloma cell subpopulations. (N) Heatmap demonstrated the expression of differential
genes along with the pseudotime trajectories. (O, P) UMAP plots depicted the temporal dynamics of cell differentiation profiles of four myeloma cell
subtypes: C0-C1-C2-C3. (Q) Heatmap showed GO-BP pathway enrichment during myeloma cell differentiation. (R) Scatter plots showed the
distribution of IGLC3, IGHA1, IGHG1, IGHG4 along with Slingshot-simulated pseudotime trajectories in different myeloma cell subpopulations.
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in State3; 40.7% of cells in State3 originated from C2 IGHG1+

Myeloma cells, and 21.6% of cells originated from C3 IGHG4+

Myeloma cells; in addition, the number of cells in State2 was

significantly higher than that in State1, which indicated that C0

IGLC3+ Myeloma cells and C1 IGHA1+ Myeloma cells were at the

anterior end of the developmental trajectory and are less

differentiated, while C2 IGHG1+ Myeloma cells, and C3 IGHG4+

Myeloma cells were at the terminal end and were more differentiated.

Analyzing the expression changes of markers in the four myeloma

cell subpopulations with the predicted developmental trajectories

(Figure 4M), IGLC3 was the most highly expressed in the initiation

segment and gradually decreased with the proposed chronological

trajectory, IGHA1 was relatively evenly expressed throughout the

developmental trajectory, and IGHG1 and IGHG4 were elevated with

the proposed chronological trajectory, and were more highly

expressed in the terminal segment. Changes in other genes with the

proposed temporal trajectory were shown in Figure 4N.

Finally, we performed developmental analysis again using

Slingshot and hypothesized 1 cell lineage developmental

trajectory, i.e. Lineage: C0 IGLC3+ Myeloma cells→C1 IGHA1+

Myeloma cells→C2 IGHG1+ Myeloma cells→C3 IGHG4+

Myeloma cel ls (arrows indicate the direct ion of cel l

developmental trajectories) (Figures 4O, P). Based on the cell

lineage developmental characteristics, GO BP enrichment analysis

was performed, and C0 IGLC3+ Myeloma cells were enriched in

alphabeta immune mediated leukocyte, immunity differentiation

activation and antigen lymphocyte pathways, C3 IGHG4+Myeloma

cells were enriched in subunit ribosomal, biogenesis ,

riponucleoprotein and translational translaton pathways, and C2

IGHG1+ Myeloma cells were enriched in blood pressure, arterial

systemic and reninangiotensin and other related pathways

(Figure 4Q). The changes in gene expression with the

development of the proposed temporal trajectory showed that

IGLC3 had the highest expression at the beginning, IGHA1 had

the highest expression at the intermediate stage, and IGHG1 and

IGHG4z had the highest expression at the terminal segment

(Figure 4R). In summary, we determined that C0 IGLC3+

Myeloma cells are malignant tumor cells with high proliferation

capacity and low differentiation level, which are important for MM.
TF regulation and subpopulation-specific
activity in myeloma cells

A protein known as a TF attached to particular DNA sequences,

either by itself or in combination with other proteins. It then either

promoted or inhibited the recruitment of particular genes to RNA

polymerase, controlled gene expression, and influenced the biological

processes of cells. Initially, we reclassified myeloma cells according to

TFs activity regulation (Figure 5A). The UMAP plots of the

downward clustering based on the regulatory activities of TFs were

less discrete, and the distributions of C0 IGLC3+ Myeloma cells and

C2 IGHG1+ Myeloma cells were more clearly delineated; similarly,

the histological characteristics of four myeloma cell subsets were
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more favorable to MM. Next, TFs of myeloma cells into four

regulatory modules (M1, M2, M3, and M4) (Figure 5B), with

higher TF regulatory activities in M3 and M4. The distribution of

TFs in the four regulatory modules was shown in Figures 5C, D. The

regulatory activities of GABPA, ETV7, NFATC3 and MAZ were

higher in M1, KLF6, YY1, IKZF2 and POU2F2 in M2, ATF4, JUND,

ELF2 and EGR1 in M3, and the levels of TAL1, HOXB2, YY2 and

ELK4 in M4. The regulatory activities of the four myeloma cell

subpopulations varied in different regulatory modules (Figures 5E, F),

with some degree of regulatory activity of C0 IGLC3+Myeloma cells

in the M1 and M4 regulatory modules, C0 IGLC3+ Myeloma cells

and C1 IGHA1+ Myeloma cells in the M2 regulatory module. C2

IGHG1+ Myeloma cells and C3 IGHG4+ Myeloma cells in M3

regulatory module had relatively high regulatory activity. Next, we

demonstrated the expression of TOP5 TFs in different tissue types as

well as in different myeloma cell subpopulations by different

visualizations, the top five TFs with the highest regulatory activity

in MMwere ELF1, IRF7, BCLAF1, EGR1 and STAT1, and the TOP5

TFs in SMMh were HES1, GATA1, HMGA1, HLTF and FLI1

(Figures 5G, H); the top five regulators of regulatory activity in C0

IGLC3+Myeloma cells were KLF6, NR3C1, IRF7, YY1 and JUN, and

the TOP5 TFs in C1 IGHA1+Myeloma cells were ELK4, TAL1, E2F1,

ELK1 and ATF6B, TOP5 TFs in C2 IGHG1+ Myeloma cells were

ELF2, HOXB2, TAL1, KLF10 and ATF4, TOP5 TFs in C3 IGHG4+

Myeloma cells were ATF4, ELF2, JUND, ETV7 and TCF7

(Figures 5I, J).
Analysis of TFs and metabolic
characteristics of C0 IGLC3+ myeloma
cells

Next, we further analyzed the regulatory activity of TOP5 TF of

C0 IGLC3+ Myeloma cells, and we visualized the expression of

KLF6, NR3C1, IRF7, YY1 and JUN in all cells and different tissue

sources (Figures 6A–C). The results showed that KLF6, NR3C1,

IRF7 and YY1 were all actively regulated in C0 IGLC3+ Myeloma

Cells, C1 IGHA1+ Myeloma Cells, and JUN was actively regulated

in C0 IGLC3+Myeloma Cells, C1 IGHA1+ Myeloma Cells and C3

IGHG4+Myeloma Cells. KLF6 was active in MM, YY1 and JUN are

active in SMMh, and IRF7 and NR3C1 may be active in MM.

Single cell metabolism analysis was of great significance in

revealing cell heterogeneity, disease mechanism and personalized

treatment. Finally, we analyzed the metabolic characteristics of

myeloma cell subsets, and found that the expression level of

Oxidative phosphorylation was higher in C0 IGLC3+ Myeloma

cells and C3 IGHG4+ Myeloma cells, while the expression levels of

Drug metabolism-cytochrome P450 and Drug metabolism-other

enzymes were more active in C0 IGLC3+ Myeloma cells.

In addition, all three metabolic pathways were actively

expressed in MM (Figures 6D–F). The above results indicated

that C0 IGLC3+ Myeloma cells was a subpopulation of MM cells

with active cell metabolism, which was related to various

metabolic activities.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1584350
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhao et al. 10.3389/fimmu.2025.1584350
FIGURE 5

Analysis of TF regulatory activity in myeloma cells. (A) UMAP plots showed the distribution of cell subpopulations as well as tissue origin after
reclustering analysis based on regulatory activity of myeloma cell TFs. (B) Heatmap demonstrated the categorization of endothelial cell TFs into four
regulatory modules (M1, M2, M3, and M4) based on the CSl matrix. (C) UMAP plots demonstrated the distribution of TFs in the four regulatory
modules. (D) The TFs in the four regulatory modules were ranked according to fraction of variance across subtype, and their rankings are shown
separately. (E, F) Bar plots and scatter plots showed the expression levels of TFs and Regulon activity score based on the four myeloma cell
subpopulations in the four regulatory modules, respectively. (G) Heatmap showed the expression of TOP5 TFs in SMMh as well as MM. (H) UMAP
plots and scatter plots showed the distribution of TFs in SMMh and MM and Specificity score of Regulon. (I) Heatmap demonstrated the expression
of TOP5 TFs in four myeloma cell subpopulations. (J) UMAP plots and scatter plots demonstrated the distribution of TFs in four myeloma cell
subpopulations and specificity score of Regulon.
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Analysis of the interaction between various
cell types in myeloma

In this study, the researchers aimed to analyze cellular

interactions and gain insights into complex biological processes
Frontiers in Immunology 12
by examining ligand-receptor communication networks through

CellChat analysis. Initially, various cell types, including four

subpopulations of myeloma cells, T cells, NK cells, B cells,

proliferating cells, monocytes, macrophages, HSCs, cDC2s,

erythrocytes, pDCs, and pro B cells, were analyzed for
FIGURE 6

Visualization of TOP5 TFs of C0 IGLC3+ Myeloma Cells. (A) UMAP plots demonstrated the distribution density of TOP5 TFs (KLF6, NR3C1, IRF7, YY1,
JUN) of C0 IGLC3+ Myeloma Cells. (B) Bar plots demonstrated the expression levels of KLF6(+), NR3C1(+), IRF7(+), YY1(+), JUN (+) in four myeloma
cell subpopulations. (C) Bar plots showed the expression levels of KLF6(+), NR3C1(+), IRF7(+), YY1(+), JUN (+) in SMMh as well as MM. (D) Levels of
regulatory activity of myeloma cell subpopulations under different metabolic pathways. (Oxidative phosphorylation, Drug metabolism-cytochrome
P450 and Drug metabolism-other enzymes) (E) Differential expression levels of different tissue types under different metabolic pathways. (F) Bar
plots further demonstrated the regulatory activity of myeloma cell subpopulations under different metabolic pathways.
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intercellular communication and interactions within the cellular

microenvironment. Figure 7A showed the amount of receptor-

ligand pair connections and the strength of relationships among

each type of cell. The number of C0 IGLC3+ Myeloma cells

interacting with other cells was relatively high compared to other

myeloma cell subpopulations. The relationships among cells and

communication networks were investigated using gene expression

pattern evaluation methods that were accessible on CellChat. To

further investigate the role of proteins in both incoming and

outgoing cell signaling, we used heatmaps to display the

communication patterns of target cells (incoming signals) and

secreting cells (outgoing signals) (Figure 7B). The results revealed

three outgoing communication patterns of secreting cells (pattern 1,

pattern 2, pattern 3) and three ingoing communication patterns of

target cells (pattern 1, pattern 2, pattern 3), respectively. We focused

on four myeloma cell subpopulations, specifically, in the efferent

communication patterns of secretory cells, all four myeloma cell

subpopulations interacted with other cells mainly through Pattern

1, and the main pathways functioning in Pattern 1 were MK, MIF,

and NCAM. In addition, C0 IGLC3+ Myeloma cells, C2 IGHG1+

Myeloma cells and C3 IGHG4+ Myeloma cells also played an

important role through Pattern 3, and the major pathways that

played a role in Pattern 3 are APP, IL16 and so on. In the afferent

communication pattern of target cells, all myeloma cell

subpopulations function through Pattern 1 and Pattern 3, with

major pathways such as PARs, NCAM, etc. Compared with other

myeloma cell subpopulations, the C0 IGLC3+ Myeloma cells had

the highest combined probability of communication for each

pathway in both Outgoing signaling patterns and Incoming

signaling patterns, suggesting that C0 IGLC3+ Myeloma cells

were the most strongly interacting myeloma cell subpopulation

(Figures 7C, D). Notably C0 IGLC3+ Myeloma cells cross talked

with each other through MIF and APP in both Outgoing signaling

patterns and Incoming signaling patterns. Next, we screened four

myeloma cell subpopulations (Figures 7E, F) as well as Monocytes

Macrophages (Figures 7G, H) for mutual crosstalk patterns when

source or target, respectively. Consistent with these results, we

found that C0 IGLC3+ Myeloma cells were the more active

myeloma cell subpopulation, which was reflected in the weight as

well as the number of cell-cell interactions, and found that the

interaction between C0 IGLC3+ Myeloma cells and Monocytes

Macrophages was also stronger. Finally, we investigated the strength

of specific receptor-ligand pairs under these pathways and found that

C0 IGLC3+Myeloma Cells were the source and interacted with other

cells mainly through APP-CD74, MIF-(CD74+CXCR4), and MIF-

(CD74+CD44) (Figure 7I). Similarly, Monocytes Macrophages acted

through MIF-(CD74+CD44) with C0 IGLC3+ Myeloma cells

(Figure 7J). Taken together, this suggested that APP and MIF were

important pathways for myeloma cells to function. Finally, we also

analyzed the interactions between Proliferating cells and the four

myeloma cell subpopulations, and found that Proliferating cells

interacted strongly with C0 IGLC3+ Myeloma Cells, in which the

MIF-(CD74+CD44) protein plays an important role (Supplementary

Figures 1A-C).
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Cellular crosstalk patterns in the MIF
signaling pathway and APP signaling
pathway

After revealing the signaling pathways of each cellular

interaction, next, we conducted a study on the signaling pathways

in the C0 IGLC3+ Myeloma Cell sand other cells. First, the study

was carried out based on the MIF signaling network, and the results

showed that all four myeloma cell subpopulations were more active

(Figures 8A, B). The results of network centrality scoring showed

that C0 IGLC3+Myeloma Cells played the roles of Sender, Receiver,

Mediator, and Influencer roles, with the main role as Influencer

(Figure 8C). Interaction possibilities between different cell types in

response to MIF were depicted in the heatmap (Figure 8D).

Furthermore, MIF and CD74 proteins were more active in the

MIF signaling pathway, according to the violin plot (Figure 8E). We

next looked at the APP signaling network, and the findings

indicated that monocyte/macrophages, C3 IGHG4+ myeloma

cells, and C0 IGLC3+ myeloma cells had substantial relationships

with one another. APP-CD74 was the primary protein pair

implicated in this network (Figures 8F, G). In the centrality score,

the C0 IGLC3+ Myeloma Cells mainly played the roles of Receiver,

Influencer and Mediator. C3 IGHG4+ Myeloma cells mainly

playing the role of Influencer, Monocytes Macrophages Play the

roles of Receiver and Influencer (Figure 8H). Figure 8I displayed the

interaction likelihood of several cell groups according to the APP

signaling pathway. According to the violin plot, the CD99 signaling

pathway primarily functions via the CD74 protein (Figure 8J).
Effect of NR3C1 on proliferation, invasion
and metastasis of myeloma cells

In a previous analysis we found that C0 IGLC3+ Myeloma cells

are naive tumor cell population in MM. Studies had shown that these

cells have high proliferation capacity and strong self-renewal

properties, which might be key drivers of myeloma development

and progression. In C0 IGLC3+ myeloma cells, NR3C1 exhibited

strong regulatory activity, indicating that it might be crucial for

controlling cell division and proliferation in this subpopulation. The

proliferation and spread of myeloma cells might be facilitated by the

elevated expression of NR3C1. NR3C1 not only played an important

role in the proliferation and differentiation of myeloma cells, but

might also affect tumor growth and progression by regulating cellular

metabolic pathways. Therefore, we chose NR3C1 as a target and

observed the changes in migration and proliferation ability of

myeloma cells by knocking down NR3C1. We chose KMS26 cell

line and MM1-S cell line for our experiments, using the method of

comparing the negative control and knockdown FOXM1 groups. In

the cell viability assay (Figures 9A, B), CCK-8 test showed a

significant decrease in cell viability after NR3C1 knockdown. The

mRNA as well as protein expression levels were found to be

significantly reduced after NR3C1 knockdown in myeloma cells

using qRT-PCR assay (Figures 9C, D). The results of plate cloning
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FIGURE 7

Analysis of the Interaction between Various Cell Types in Myeloma. (A) Circle plots showed the weight and quantity of receptor ligand pair
interactions between four myeloma cell subsets and all other cells (Monocytes and Macrophages, T cells, NK cells, B cells, Proliferating cells, HSCs,
cDC2s, Erythrocytes, pDCs, Pro B cells). (B) Heatmaps showed the communication Pattern of outgoing signal (left) and incoming signal (right)
between various cells in myeloma. (C) Heatmaps showed the communication probability of each communication in Outgoing signaling patterns and
Incoming signaling patterns of all cell types. (D) Bubble plots showed Outgoing communication patterns of secreting cells and Incoming
communication patterns of target cells. (E) Screening of four myeloma cell subpopulations for source, circle plots showed the weight (left) and
number (right) of cell-cell interactions contributing. (F) Screening of four myeloma cell subpopulations for Target, with weight (left) and number
(right) contributions of interactions between cells. (G) Screening of Monocytes Macrophages for source, where we used circle plots to show the
weight (left) and number (right) contributions of interactions between cells. (H) Screening of Monocytes Macrophages for Target, with weight (left)
and number (right) contributions of interactions between cells. (I) Bubble plot demonstrated the interaction of receptor-ligand pairs between C0
IGLC3+ Myeloma Cells as source and other cells as target. (J) Bubble plot demonstrated Monocytes Macrophages as source and four myeloma cell
subpopulations as the role of receptor-ligand pairs between targets.
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FIGURE 8

C0 IGLC3+ Myeloma Cells played important roles through APP signaling pathway and MIF signaling pathway. (A, B) Hierarchical plot and circled plot
demonstrated autocrine and paracrine interactions of the four myeloma cell clusters with other cells in the MIF signaling pathway. (C) Heatmap
demonstrated the network centrality scores of different cell clusters in the MIF signaling pathway. (D) Heatmap demonstrated the communication
probability of different cell clusters in the MIF signaling communication network. (E) Violin plot demonstrated the proteins involved in cell-to-cell
interactions in the MIF signaling pathway network. (F) Hierarchical plot demonstrated cell-to-cell interaction patterns in the APP signaling pathway
network. (G) Circle plot demonstrated cellular communication patterns of interactions through APP-CD74 protein pairs. (H) Heatmap demonstrated
network centrality scores of different cell clusters in the APP signaling pathway. (I) Heatmap demonstrated the communication probability of
different cells under the APP signaling pathway network. (J) Violin plot visualized the interacting proteins in the APP signaling pathway.
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assay showed that the colony forming ability of KMS26 cell line and

MM1-S cell line was significantly decreased after NR3C1 knockdown

(Figures 9E, F). According to the findings of cell scratch assay, the two

lineages that had NR3C1 broken down had 48-hour scratch widths

that were noticeably wider than those of the control group
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(Figures 9G–I). Finally, the results of Transwell assay

(Figures 10A–D) as well as EdU staining (Figures 10E–G) showed

that the proliferation and migratory invasion of KMS26 cell line and

MM1-S cell line were significantly reduced after NR3C1 knockdown.

Through these experiments, we discovered that myeloma cells with
FIGURE 9

Observe and analyze the changes of cell proliferation ability after NR3C1 knockdown. (A, B) CCK-8 was used to detect the changes of cell viability of
KMS26 cell line and MM1-S cell line NR3C1 after knockdown. (C, D) qRT-PCR was used to detect the mRNA and protein expression levels in KMS26
cell line and MM1-S cell line before and after NR3C1 knockdown. (E, F) Colony formation assay was carried out on KMS26 cell line and MM1-S cell
line before and after NR3C1 knockdown. (G–I) Scratch assay was performed on KMS26 cell line and MM1-S cell line before and after NR3C1
knockdown, **p<0.01, ***p<0.001.
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NR3C1 knockdown had reduced invasion, migration, and

proliferation—all of which were critical for the malignant evolution

of myeloma.
Discussion

Understanding the intricate interactions between tumor cells

and the bone marrow (BM) microenvironment remains a major

challenge in MM, an incurable BM-resident plasma cell malignancy

(1). In this study, we employed scRNA-seq to comprehensively

characterize the cellular heterogeneity of high-risk smoldering

multiple myeloma (SMMh) and overt MM at an unprecedented
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resolution. By delineating the complex cellular crosstalk within the

BM niche, we identified critical subpopulations and signaling

pathways that potentially drive disease progression and facilitate

immune evasion in MM.

Importantly, the immune responses within the BM were not

only shaped by tumor cell proliferation but were also influenced by

the neuroimmune interactions that drive neuroinflammation,

which played a crucial role in tumor progression. The BM

microenvironment i tse l f was known to be a s i te of

neuroinflammation, where sensory nerve fibers released

neurotransmitters and neuropeptides that modulated immune

responses, contributing to immune escape mechanisms in MM

(70). Such interactions highlighted the complexity of tumor
FIGURE 10

Effect of NR3C1 on proliferation, invasion and metastasis of myeloma cells. (A–D) Transwell assay showed that the migration and invasion of KMS26
cell line and MM1-S cell line were significantly reduced after NR3C1 knockdown. (E–G) EdU staining showed that the cell proliferation of KMS26 cell
line and MM1-S cell line was inhibited after NR3C1 knockdown, **p<0.01, ***p<0.001.
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immunology, where neural activity and immune regulation were

tightly intertwined. Studies had shown that stress-induced

neuroinflammation can impact immune responses in tumors,

including MM, by modulating cytokine profiles and immune cell

functions, which might influence tumor progression and resistance

to therapies (71). This suggested that the nervous system could be

an underappreciated but critical player in regulating tumor

microenvironments and immune modulation.

We investigated the differentiation trajectories of malignant

plasma cells and identified four major myeloma subpopulations: C0

IGLC3+, C1 IGHA1+, C2 IGHG1+, and C3 IGHG4+ myeloma

cells. These subclusters displayed distinct molecular signatures,

differentiation states, proliferative capacities, and metabolic

profiles, reflecting the cellular heterogeneity and dynamic

evolution of MM. Among them, the C0 IGLC3+ subset stood out

with the highest stemness score and the lowest differentiation level

as determined by CytoTRACE, alongside elevated proliferative

activity based on cell cycle analysis. These features suggest that

C0 cells may represent an initiation-like population at an early stage

of differentiation, with the potential to drive MM progression.

Moreover, comparative analysis revealed a significant enrichment

of C0 IGLC3+ cells in more advanced disease stages (e.g., MM

compared to SMM), implicating this subpopulation in the

transition from indolent to aggressive disease. In line with prior

studies and our own findings, C0 cells may contribute to disease

advancement through mechanisms such as immune evasion and

interactions with the bone marrow stromal microenvironment.

Notably, their transcriptional profile also hinted at potential

involvement in neuroimmune regulatory pathways, suggesting a

complex interplay between intrinsic tumor properties and extrinsic

neural-immune cues.

Our functional analysis revealed that the C0 and C3

subpopulations were enriched for pathways involved in oxidative

phosphorylation, a key metabolic process linked to rapid cell

proliferation and tumor metastasis (72). This aligns with recent

findings in cancer neuroimmunology, which had shown that

metabolic pathways regulated by neuropeptides and stress

responses could influence tumor aggressiveness (73). In this

context, the activation of oxidative phosphorylation could be a

mechanism through which MM cells escape immune surveillance,

aided by neuroinflammatory signals that promote tumor growth.

Gene expression analysis further supports the hypothesis that

these subpopulations contributed to immune evasion. For example,

genes like HLA-C, HLA-B, and GSTP1 were highly expressed in the

C0 subpopulation, suggesting a role in antigen presentation and

immune escape. In contrast, the C3 subpopulation, enriched in

genes like HBB and JUNB, may contribute to oxidative stress

regulation and cell cycle progression, suggesting a more mature,

functionally active tumor cell. These findings were consistent with

the growing understanding that neuroinflammation, often triggered

by neural activity, can promote immune evasion by modifying

tumor cell behavior and influencing immune checkpoint

expression (74).

Our temporal trajectory analysis further refined the

differentiation paths of myeloma cells, revealing that the C0
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subpopulation lies at the early stage of differentiation, while the

C3 subpopulation represents more differentiated, functionally

active cells. These insights suggested that the early-stage C0

IGLC3+ cells, with their high stemness, could be crucial for

tumor initiation, while the later-stage C3 cells, enriched for

oxidative stress regulation, might play a role in tumor progression

and resistance to treatment. This temporal progression mirrors

immune evasion strategies, where early-stage myeloma cells might

evade immune surveillance by mimicking the effects of

neuroinflammatory signaling, while later-stage cells might further

complicate immune responses through adaptive immune resistance.

Among other cancers, IGLC3 was identified as a novel

prognostic biomarker for intestinal-type gastric cancer (IGC), and

its expression level was closely correlated with the onset and

progression of IGC. In addition to being a possible biomarker for

intestinal-type gastric cancer, IGLC3might be crucial in controlling

the immunological milieu and the development of tumors (75);

IGLC3 expression was significantly upregulated in cervical cancer

(CESC) tissues was significantly up-regulated and associated with

multiple clinical and molecular features, which might be involved in

tumor regulation by affecting the immune microenvironment and

tumor cell properties, and has potential value as a diagnostic and

therapeutic target (76); IGLC3 was one of the important marker

genes for B-cells in lung adenocarcinoma (LUAD), which was

closely related to B-cell recognition and function, and studies had

shown that significant differences in immunoreactivity in different

metabolic subtypes and that IGLC3 might play a linking role

between metabolism and immune regulation (77). We

hypothesized that C0 IGLC3+ myeloma cells are closely linked to

the progression of MM as a result of these findings. Increased

IGLC3 expression levels and the discovery of mutations in the

disease stated clearly imply that IGLC3 plays a role in the onset and

progression of disease.

We analyzed the regulatory activity of TOP5 TFs in C0 IGLC3+

Myeloma cells and found that KLF6 was actively regulated in MM,

and IRF7 and NR3C1 might be active in MM. In addition, IRF7 and

NR3C1 might be active in MM. The role of KLF6 in tumors was

dichotomous: wild-type KLF6 (wtKLF6) acts as a tumor suppressor

gene that inhibited tumor growth; while its splice variant KLF6-SV1

promoted tumor progression, drug resistance, and metastasis (78).

Modulation of the expression levels of KLF6 and its variants,

especially in hematological tumors such as MM and CLL,

provided new potential strategies for precision therapy and

overcoming drug resistance (79, 80). NR3C1 encoded the

glucocorticoid receptor (GR), a nuclear receptor TF that regulated

the expression of multiple genes involved in cell proliferation,

apoptosis, metabolism, and inflammatory responses (81).

Upregulation of NR3C1 in certain tumors might cause oncogenes

to become active or alter the tumor microenvironment to encourage

the migration and multiplication of cancer cells. The nuclear factor-

kB (NF-kB) signaling pathway controled NR3C1 in breast cancer

cells (82). Breast cancer cell migration and proliferation were linked

to up-regulation of NR3C1. By drastically lowering NR3C1

expression, NF-kB inhibition slowed the growth of tumors. In

previous studies, up-regulation of NR3C1 was associated with
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enhanced cell proliferation and migration, possibly through

metabolic regulation and signaling pathway interactions.NR3C1

and its related regulators (e.g., MDM4, SETBP1, and NF-kB)
were potential therapeutic targets, and tumor progression could

be inhibited and treatment enhanced by modulating NR3C1

expression (83, 84). IRF7 (interferon regulatory factor 7) was an

important TF mainly involved in the up-regulation of type I

interferon (IFN), which exerted antiviral immunity and

apoptosis-inducing effects. IRF7 regulated gene expression

through activation of downstream signaling molecules (e.g.,

IFNB) in a variety of cell types, which were often associated with

apoptosis and proliferation (85). IRF7 could regulate tumor

microcirculation through the regulation of NR3C1 expression

under some environments could promote tumor cell proliferation

by regulating the tumor microenvironment. IRF7 was a significant

immune-related gene, and myeloma patients used its expression

level as a prognostic indicator to help guide their individualized

treatment. Through multi-level control, YY1 influenced drug

sensitivity, apoptosis, and proliferation in MM. By stabilizing

m6A-modified YY1 mRNA, increasing the transcription of miR-

27a-3p, and favorably regulating TUG1, YY1 influenced drug

sensitivity, apoptosis, and proliferation in MM (86). The JUN

gene encoded the c-Jun protein, a significant TF belonging to the

AP-1 family that was essential to the development of cancer,

particularly in controlling the proliferation and death of tumor

cells. By controlling the expression of several genes linked to the cell

cycle and proliferation, c-Jun stimulates the growth of tumor cells.

Its activation could lead to increased expression of cell cycle

proteins (e.g. Cyclin D1), accelerating cell cycle progression and

thus enhancing cell proliferation.

We discovered coordinated contacts between C0 IGLC3+

myeloma cells and other cell types by using CellChat

communication pattern analysis. This method offered important

new information on the cellular relationships in the myeloma

microenvironment. We were able to uncover important

connections between various cell types by delving further into the

cellular interactions in MM, which provided insight into the

d yn am i c i n t e r c e l l u l a r c ommun i c a t i o n w i t h i n t h e

tumor microenvironment.

Our research specifically demonstrated how C0 IGLC3+

myeloma cells coordinate their interactions with different cell

types. Through a network of MIF and APP communication

routes, we were able to determine how these cells interact with

the surroundings. This complex intercellular communication was

essential to the onset and course of MM. Certain communication

patterns and the signaling pathways that go along with them were

identified by our investigation. Interestingly, we discovered that a

subset of C0 IGLC3+ myeloma cells is associated with the MIF

signaling pathway, indicating its significance in the signaling

network of this subpopulation. These myeloma cells’ biological

activities and functions were probably significantly influenced by

the MIF pathway. APP signaling regulates the interaction between

myeloma cells and bone marrow stroma through CD74 and CXCR4

receptors, affects the adhesion of myeloma cells to the bone marrow

microenvironment, and leads to immune evasion by altering
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immune cell responses. MIF interacts with CD74 and CXCR4 on

myeloma cells to promote their proliferation, survival, and immune

evasion, and also supports the inflammatory environment in the

bone marrow to promote tumor progression and immune

suppression (87). The specific receptor-ligand pairs such as

CX3CL1-CX3CR1, NGF-NTRK1, APP-CD74, and MIF-CD74

highlight key signaling axes that influence the communication

network in the myeloma microenvironment, suggesting potential

therapeutic targets for disrupting these pathways and improving

treatment outcomes in multiple myeloma.

Notably, the present study revealed that the C0 and C3

subpopulations have important effects on MM growth and drug

resistance through metabolism-related pathways. The notable

concentration of pathways like ATP generation and oxidative

phosphorylation in particular raised the possibility that these

metabolic characteristics could be used as therapeutic targets. The

intricate involvement of the bone marrow microenvironment was

directly linked to both medication resistance and the progression of

MM. The immunological escape mechanism of MM might be

significantly impacted by variations in the quantity and activity of

immune cell subpopulations in the tumor microenvironment. For

example, monocyte-macrophages exhibited higher cell stemness

scores and functional activity, suggesting that they might play

important pro-inflammatory and pro-tumorigenic roles in

supporting tumor growth. This study provided important new

insights into the precise typing and personalized treatment of

MM through systematic analysis at the single-cell level. We

proposed that different myeloma cell subpopulations might

influence disease progression and therapeutic response through

unique functional pathways and cell-to-cell interaction

mechanisms. This finding not only deepened the understanding

of MM heterogeneity, but also provided a theoretical basis for the

future development of precision therapeutic strategies targeting

specific cell subpopulations.

However, this study still had some limitations. First, although

we analyzed samples from multiple patients, the sample size was

more limited and may not be sufficient to comprehensively cover all

subtypes of MM. In addition, the proposed time-series analysis

provided a speculative model for the differentiation trajectory of

myeloma cells, but further experimental validation was still needed.

Future studies should combine in vitro and in vivo functional

experiments to further validate the functions of myeloma cell

subpopulations and their potential therapeutic targets.

To sum up, this study demonstrated the variety of tumor cells

and how they interact with the microenvironment in MM, which

offered important hints for comprehending the disease’s pathogenic

mechanisms and creating new treatment alternatives.
Conclusion

Our research offered fresh perspectives on the cellular variety

and developmental paths of MM, highlighting the critical role of

neuroimmune interactions and neuroinflammation in shaping the

tumor microenvironment. These findings underscored the potential
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for targeting both tumor cell biology and the neuroimmune axis to

improve therapeutic strategies in MM, particularly for overcoming

resistance mechanisms. The identification of key subpopulations

and their associated pathways offered promising targets for novel,

personalized therapies that address the complex interactions

between tumor cells , the BM microenvironment, and

neuroinflammatory signals, providing a new avenue for

MM treatment.
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