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Astrocytes play a pivotal role in the inflammatory response triggered by traumatic

brain injury (TBI). They are not only involved in the initial inflammatory response

following injury but also significantly contribute to Astrocyte activation and

inflammasome release are key processes in the pathophysiology of TBI,

significantly affecting the progression of secondary injury and long-term

outcomes. This comprehensive review explores the complex triggering

mechanisms of astrocyte activation following TBI, the intricate pathways

controlling the release of inflammasomes from activated astrocytes, and the

subsequent neuroinflammatory cascade and its multifaceted roles after injury.

The exploration of these processes not only deepens our understanding of the

neuroinflammatory cascade but also highlights the potential of astrocytes as

critical therapeutic targets for TBI interventions. We then evaluate cutting-edge

research aimed at targeted therapeutic approaches to modulate pro-

inflammatory astrocytes and discuss emerging pharmacological interventions

and their efficacy in preclinical models. Given that there has yet to be a relevant

review elucidating the specific intracellular mechanisms targeting astrocyte

release of inflammatory substances, this review aims to provide a nuanced

understanding of astrocyte-mediated neuroinflammation in TBI and elucidate

promising avenues for therapeutic interventions that could fundamentally

change TBI management and improve patient outcomes. The development of

secondary brain injury and long-term neurological sequelae. By releasing a

variety of cytokines and chemokines, astrocytes regulate neuroinflammation,

thereby influencing the survival and function of surrounding cells. In recent years,

researchers have concentrated their efforts on elucidating the signaling crosstalk

between astrocytes and other cells under various conditions, while exploring

potential therapeutic interventions targeting these cells. This paper highlights the

specific mechanisms by which astrocytes produce inflammatory mediators

during the acute phase post-TBI, including their roles in inflammatory

signaling, blood-brain barrier integrity, and neuronal protection. Additionally,

we discuss current preclinical and clinical intervention strategies targeting
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astrocytes and their potential to mitigate neurological damage and enhance

recovery following TBI. Finally, we explore the feasibility of pharmacologically

assessing astrocyte activity post-TBI as a biomarker for predicting acute-phase

neuroinflammatory changes.
KEYWORDS

traumatic brain injury, astrocyte, inflammasome, pro-inflammatory cytokines,
chemokines, therapy
1 Introduction

Traumatic brain injury (TBI) is a major global health burden

and a leading cause of death and long-term disability across all

populations (1). TBI is characterized by an initial mechanical insult

to the brain parenchyma, which subsequently initiates intricate

secondary injury mechanisms. These secondary processes can

persist and progress over extended temporal scales, spanning

from hours to years post-injury. Within the spectrum of

secondary factors, the inflammatory response emerges as a critical

determinant of tissue fate and long-term neurological sequelae (2–

4). This inflammatory cascade response exhibits a biphasic nature,

initially serving a neuroprotective function before rapidly

transitioning into a potentially deleterious process (5–7). In

mouse models, the acute phase of traumatic brain injury (TBI)

typically refers to the early stage occurring within hours to days

post-injury, particularly during the critical 24–72 hour window (8,

9). This phase is characterized by rapid progression of pathological

damage, including direct mechanical trauma-induced neuronal

structural destruction, tissue edema, and rapid initiation of

inflammatory responses (9). Notably, plasma levels of the

astrocytic marker GFAP and axonal injury marker NFL show

significant elevation (8).The acute phase response of TBI exhibits

specific characteristics distinguishable from other neurological

disorders: First, TBI’s acute response has a defined temporal

profile (24–72 hours), contrasting sharply with the chronic

inflammatory processes (lasting months to years) observed in

neurodegenerative diseases such as Alzheimer’s and Parkinson’s

disease (8). Second, TBI-induced elevations in GFAP and NFL

during the acute phase are characteristic, whereas these markers

may show delayed or insignificant changes in other conditions (1).

Furthermore, TBI-specific pathological processes include blood-

brain barrier (BBB) disruption, local ischemia, and mechanical cell

necrosis, features that are rare or manifest through different

mechanisms in other neurological conditions (10, 11). During the

acute phase, astrocytes rapidly enter an activated state,

characterized by cellular hypertrophy, proliferation, and

significant upregulation of GFAP expression (12). Activated

astrocytes simultaneously secrete pro-inflammatory factors such

as IL-6, TNF-a, and MMP9, further exacerbating BBB damage and

neuronal oxidative stress (13). This process is primarily mediated
02
through the activation of TLR2/p44/42 MAPK signaling and NF-kB
pathways (14). While excessive inflammatory response may lead to

neuronal death and tissue edema, the formation of glial scarring

effectively isolates the injured area, limiting inflammatory spread

(12, 15). In the subacute phase (3 days to several weeks), levels of

pro-inflammatory factors (TNF-a, IL-6) gradually decrease, while

anti-inflammatory factors (IL-10) and neuroprotective molecules

(IGF-1) show increased expression (16). Astrocytes begin secreting

chondroitin sulfate proteoglycans (CSPGs) and laminins, which

both inhibit inflammatory spread and promote angiogenesis (17).

Through STAT3 and TGF-b signaling pathway regulation, these

processes promote synaptic remodeling, neurogenesis, and axonal

regeneration, while glial scarring serves dual roles in suppressing

inflammation and facilitating repair (17). Notably, the JAK/STAT

signaling pathway gradually transitions from promoting

inflammation to regulating repair-related gene expression (18).In

the chronic phase (weeks to months), some astrocytes continue to

express pro-inflammatory markers such as C3d, maintaining

chronic neuroinflammation (19). Simultaneously, damaged

neurons activate astrocytes through the DAMPs-RIPK3 signaling

pathway, leading to persistent inflammation and neurodegeneration

(20) . During this phase, anti- inflammatory astrocyte

subpopulations promote axonal regeneration through S100A10

protein secretion, although excessive glial proliferation may

inhibit neural plasticity, ultimately resulting in cognitive

dysfunction (21). Epigenetic regulatory mechanisms (including

DNA methylation and histone modifications) significantly

influence astrocyte phenotype, determining their pro- or anti-

inflammatory fate (22). Additionally, abnormal opening of Cx43

hemichannels further exacerbates chronic inflammation, a

phenomenon closely associated with neurological conditions such

as multiple sclerosis (23).

Building on the previous discussion, we now turn our attention

to a key cellular component of the neuroinflammatory cascade

response following TBI: astrocytes. Historically regarded as

supportive cells in central nervous system (CNS) function,

astrocytes have now emerged as pivotal regulators of the brain’s

innate immune response. Recent advancements in neuroscience

have elucidated the multifaceted changes of astrocytes in both

physiological and pathological states (24). Astrocytes, exhibit

remarkable heterogeneity, with their morphology and functions
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dynamically changing across brain regions, developmental stages,

and pathological conditions. In response to injury or inflammation,

these cells transform into a reactive state (reactive astrogliosis) and

differentiate into distinct subtypes, most notably the neurotoxic A1

phenotype and the neuroprotective A2 phenotype. A1 astrocytes,

first reported by Liddelow et al., are primarily induced by activated

microglia through the secretion of inflammatory mediators,

including IL-1a, TNF-a, and C1q. These factors subsequently

activate cells through NF-kB and JAK/STAT signaling pathways

(25). A1 astrocytes are characterized by significant upregulation of

complement component C3, MX1, and pro-inflammatory cytokines

(such as IL-6 and TNF-a) (26). Notably, these cells lose their

supportive functions and instead secrete neurotoxic substances,

leading to the death of neurons and oligodendrocytes (27). In

contrast, A2 astrocytes are predominantly induced under

ischemic or traumatic conditions, with their formation

mechanism involving STAT3 activation and ROS-mediated NF-

kB inhibition (28, 29). These cells are molecularly characterized by

high expression of S100A10, EMP1, and anti-inflammatory factors

(such as Arginase 1 and Nrf2) (29, 30). They promote synaptic

formation, neuronal survival, and antioxidant effects through the

secretion of neurotrophic factors, including BDNF, VEGF, and

bFGF (27). In response to TBI, astrocytes undergo a rapid and

profound phenotypic transformation, a process termed reactive

astrogliosis (31). This reactive state is characterized by

hypertrophy of astrocytic processes, upregulation of intermediate

filament proteins (particularly glial fibrillary acidic protein, GFAP),

and substantial alterations in gene expression profiles (32, 33).

Reactive astrocytes undergo a remarkable functional shift from

homeostatic maintenance to active participation in the

inflammatory response. This functional plasticity is evidenced by

their capacity to synthesize and release a diverse array of pro-

inflammatory mediators, including cytokines chemokines, and

other inflammatory modulators such as prostaglandins and

reactive oxygen species (34–39). Furthermore, astrocytes

upregulate the expression of pattern recognition receptors (PRRs),

including Toll-like receptors (TLRs) and NOD-like receptors

(NLRs), thereby enhancing their responsiveness to damage-

associated molecular patterns (DAMPs) released during TBI (40–

42). Through the release of chemokines and cytokines, reactive

astrocytes promote the recruitment and activation of peripheral

immune cells, thus amplifying the inflammatory cascade. In

addition, matrix metalloproteinases (MMPs) released by

astrocytes exacerbate blood-brain barrier disruption, further

promoting neuroinflammation (43). However, the roles of

astrocytes in TBI are not uniformly deleterious. These cells also

exhibit neuroprotective functions, including scavenging of free

radicals and production of neurotrophic factors (44, 45). This

duality underscores the complexity and context-dependent nature

of the astrocyte response to TBI, emphasizing the necessity for a

nuanced approach in targeting astrocyte-mediated inflammation.

Recent studies have begun to elucidate the molecular mechanisms

governing astrocyte responsiveness in TBI, identifying key signaling

pathways such as signal transducer and activator of transcription 3

(STAT3), nuclear factor kappa b (NF-kB), and mitogen-activated
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protein kinase (MAPK) cascades as potential therapeutic targets

(46–48). Moreover, the evolving understanding of astrocyte

heterogeneity in health and disease has prompted investigations

into specific astrocyte responses to TBI, unveiling novel avenues for

targeted interventions.

This review focuses specifically on the substances released by

astrocytes following TBI activation and their role in the initiation

and propagation of inflammatory cascades. A comprehensive

understanding of these mechanisms will elucidate the complex

interactions between astrocytes and other components of the

neurovascular unit in the context of TBI, illuminate the temporal

dynamics of the inflammatory response, and potentially identify

critical windows for therapeutic intervention.
2 Triggers of astrocyte activation in
TBI

Astrocyte activation in the acute phase following TBI is a complex

process initiated by multiple interrelated mechanisms. The primary

triggers and their associated activation pathways can be broadly

categorized into mechanical, biochemical, and cellular responses to

injury. Mechanical stimuli initiate the process of acute astrocyte

activation. The direct physical force of trauma induces cellular

deformation and mechanoreceptor activation in astrocytes. This

mechanical stress facilitates the opening of mechanosensitive ion

channels, particularly stretch-activated calcium channels, culminating

in an influx of calcium ions (49, 50). Elevated intracellular calcium

concentration functions as a crucial second messenger, activating a

diverse array of signaling cascades and promoting astrocyte reactivity

(Figure 1) (51). Concomitantly, mechanical disruption of the BBB

contributes to astrocyte activation. A compromised BBB permits the

infiltration of blood-derived molecules and cells into the brain

parenchyma. The primary mechanism by which plasma proteins,

such as thrombin and fibrinogen, activate astrocytes is through the

interaction of protease-activated receptors (PARs), specifically PAR-1,

PAR-3, and PAR-4, with astrocyte surface receptors, triggering

activation and proliferation (52). Fibrinogen activates astrocytes

through the synergistic action of at least three distinct fibrinolytic

proteinase receptors, leading to the expression of proinflammatory

cytokines (53). Additionally, the extravasation of immune cells,

particularly neutrophils and monocytes, further amplifies the

astrocyte activation process through the release of proinflammatory

cytokines and chemokines (54).

Biochemical triggers play a crucial role in astrocyte activation

following the initial mechanical injury (Figure 1 Molecular

mechanisms underlying TBI-induced inflammatory responses and

cellular damage.). The rapid disruption of cellular homeostasis leads

to the release of various signaling molecules and ions from damaged

cells. Notably, the extracellular concentration of adenosine

triphosphate (ATP) increases substantially following TBI due to

cell damage and lysis. Astrocytes express a variety of purinergic

receptors, including P2XR and P2YR, which are activated by

extracellular ATP (55, 56). Stimulation of these receptors induces

calcium influx and initiates a signaling cascade that promotes
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astrocyte responsiveness (57). Concurrently, ATP released by

astrocytes modulates synaptic transmission. ATP activates P2XR

in neighboring neurons, thereby enhancing excitatory signaling

(58). Further studies have revealed that ATP induces graded

activation responses in astrocytes, including cell proliferation,

stellate morphogenesis, and shape remodeling (59). Experimental

evidence demonstrates that the increase in ATP persists for 24

hours post-brain cell death, suggesting a sustained release from

necrotic post-inflammatory tissues (56). Oxidative stress, a

hallmark of acute TBI, represents another potent biochemical

trigger for astrocyte activation. Reactive oxygen species (ROS)

and reactive nitrogen species (RNS) are produced as a result of

mitochondrial dysfunction, NADPH oxidase activation, and

inflammatory responses (60). Astrocytes possess redox-sensitive

transcription factors, such as nuclear factor erythroid 2-related
Frontiers in Immunology 04
factor 2 (Nrf2) and NF-kB, which respond to oxidative stress by

inducing the expression of genes associated with astrocyte

activation and neuroinflammation. Notably, activation of Nrf2

confers neuroprotection against oxidative stress-induced injury,

whereas activation of NF-kB elicits a series of proinflammatory

responses that culminate in neuronal death (61, 62). Cellular debris

and DAMPs released by injured or necrotic cells serve as potent

triggers of astrocyte activation. These molecules, including high

mobility group box 1 (HMGB1), ATP, and heat shock proteins,

bind to PRRs on astrocytes, such as the Toll-like receptor (TLR) and

the receptor for advanced glycation end-products (RAGE) (63). The

activation of these receptors initiates a signaling cascade involving

MAPK and NF-kB, leading to the production of proinflammatory

cytokines and chemokines, thereby perpetuating the process of

astrocyte activation (summarized in Figure 1).
FIGURE 1

Molecular mechanisms underlying TBI-induced inflammatory responses and cellular damage. TBI triggers three primary pathological processes:
mechanical damage, biochemical damage, and oxidative stress. Following mechanical injury, TRPV4 and Piezo1 channels mediate Ca2+ influx, while
cell death releases DAMPs including HMGB1 and ATP. HMGB1 activates the RAGE receptor pathway, leading to NF-kB activation through IKKa/b/g
signaling, while simultaneously triggering MAPK cascades (JNK, ERK, and P38). ATP signaling operates through both P2Y and P2X receptors, inducing
calcium influx and subsequent activation of AKT and ROS production. The increased intracellular Ca2+ and mitochondrial dysfunction generate
mitochondrial ROS (mtROS), which activates the NLRP3 inflammasome complex. This activation leads to caspase-1-mediated processing of pro-IL-
1b and pro-IL-18 into their mature forms (IL-1b and IL-18). The interconnected signaling networks culminate in the production of inflammatory
mediators and oxidative stress, establishing a feedback loop that potentially exacerbates the initial injury.
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The acute phase response to TBI involves the rapid production

and release of cytokines and growth factors from diverse cell types,

including neurons, microglia, and endothelial cells. These factors,

including substance P, interleukin-1b (IL-1b), tumor necrosis

factor-a (TNF-a), and transforming growth factor-b (TGF-b),
bind to their respective receptors on astrocytes, activating

downstream signaling pathways that promote astrocyte

proliferation, hypertrophy, and adoption of the reactive

phenotype (64). These triggers and mechanisms operate within a

complex, interconnected network of signaling events rather than in

isolation. For instance, mechanical disruption of the BBB facilitates

the infiltration of blood-borne molecules and contributes to ROS

production and proinflammatory mediator release, which further

compromise BBB integrity. Excitotoxicity in astrocytes promotes

elevated intracytoplasmic calcium ion levels, enhanced calcium

transients, and increased frequency of calcium oscillations (65).

The accumulation of calcium ions in mitochondria depletes the

mitochondrial membrane potential, resulting in impaired ATP

production. Formation of the mitochondrial permeability

transition pore (MPTP) facilitates the release of cytotoxic factors,

including cytochrome c and ROS, into the cytoplasm, exacerbating

oxidative stress and perpetuating the activation cycle (66, 67).

Activated astrocytes themselves become sources of diverse

signaling molecules, including cytokines, chemokines, and growth

factors. This phenomenon creates feedforward loops that amplify

and sustain the activation process. For instance, astrocyte-secreted

brain endothelin-1 (ET-1) acts on the astrocyte endothelin B (ETB)

receptor, maintaining and enhancing astrocyte activation through

the autocrine pathway and by upregulating ETB receptor expression

(68). Connective tissue growth factor (CTGF) can be Activated

autocrinally and by astrocytes through the ASK1-p38/JNK-NF-kB/
AP-1 pathway, promoting astrocyte-mediated inflammatory

responses (69). These factors further activate astrocytes and

promote the release of additional proinflammatory mediators,

perpetuating the inflammatory cascade.

The temporal dynamics of these triggers and mechanisms

warrant careful consideration. Certain processes, such as

mechanoreceptor activation and glutamate release, occur almost

instantaneously following injury, whereas others, including

immune cell infiltration and the full manifestation of oxidative

stress, develop over a period of hours to days. This temporal

heterogeneity contributes significantly to the complexity and

progression of astrocyte activation in the acute phase following

TBI. These triggers collectively drive astrocytes toward a pro-

inflammatory phenotype, subsequently leading to the release of

inflammatory mediators through multiple pathways.
3 Key substances released by
activated astrocytes

Astrocytes play a crucial role in neuroinflammatory responses

within the central nervous system (CNS), with their key

inflammatory mediators exhibiting distinct release mechanisms,

signaling pathways, and functional localization compared to those
Frontiers in Immunology 05
produced by other immune cells. Astrocytes, activated through IL-

1a stimulation or endoplasmic reticulum stress pathways, produce

IL-1b, leading to neurotoxic effects (70, 71). In contrast, microglia,

as CNS-resident immune cells, generate IL-1b through the NLRP3

inflammasome (72, 73), while endothelial cells participate in IL-1b
release during vascular injury (74), and infiltrating monocyte-

macrophages activate inflammasomes via TLR signaling following

BBB disruption (75). Astrocytes release TNF-a through the NF-kB
signaling pathway and act synergistically with COX2 to promote

inflammation (71), whereas microglia rapidly secrete TNF-a
following glutamate receptor activation, directly triggering

neuronal death (72). Infiltrating M1 macrophages exhibit a pro-

inflammatory phenotype in the CNS, releasing high levels of TNF-a
(76), while neutrophils release TNF-a through NETs (77). In their

reactive state, astrocytes release IL-6 via the DAMPs-TLR4

signaling axis (78), while microglial-derived extracellular vesicles

(MDEVs) carry IL-6, activating autocrine and paracrine

inflammatory cycles (71). Infiltrating M1 macrophages secrete IL-

6 at injury sites (76), and neurons also express IL-6 during extended

survival periods following TBI (29).Astrocytes trigger CCL2 release

through TLR/IL-1R signaling, recruiting monocytes (64, 79), while

microglia, serving as primary chemokine sources, facilitate

peripheral immune cell migration across the BBB (71, 75).

Infiltrating monocytes are recruited to the CNS via the CCL2-

CCR2 axis and further secrete CCL2, establishing a positive

feedback loop (64, 75). Astrocytes upregulate CXCL10 through

JAK2/STAT3 and NF-kB pathways, promoting T cell infiltration

(71), while microglia secrete CXCL10 under LCN2 stimulation,

participating in cell migration and inflammation amplification (77).

CXCR3+ T cells enter the CNS through CXCL10-mediated

chemotaxis, enhancing local immune responses (80), and

dendritic cells (DCs) may mediate adaptive immune regulation

through CXCL10 in late-stage TBI (77). Astrocytes and microglia

form inflammatory networks following TBI, exemplified by

microglial extracellular vesicles activating astrocytic IL-6 and

TNF-a release (71). Infiltrating macrophages share phenotypic

overlap (M1/M2) with resident immune cells (such as microglia)

but may exhibit complementary or antagonistic functions (76, 81).
3.1 Pro-inflammatory cytokines

The mechanisms and pathways underlying the production and

release of pro-inflammatory factors by reactive astrocytes are

intricate, encompassing diverse molecular cascades and

intercellular interactions. Upon activation in response to CNS

injury or disease, astrocytes generate and release a diverse array

of pro-inflammatory factors, thereby playing a pivotal role in the

initiation and progression of neuroinflammation. The key pro-

inflammatory factors secreted by reactive astrocytes can be

broadly classified into four categories: cytokines, chemokines,

complement components, and miscellaneous factors. Elucidating

the temporal release patterns and spheres of influence of various

pro-inflammatory factors facilitates the precise definition of

therapeutic windows and target regions for the treatment of CNS
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injuries and diseases, potentially enhancing patient outcomes

through tailored interventions. The outcomes of these studies are

summarized in Table 1.

3.1.1 IL-1b
Reactive astrocytes predominantly produce pro-inflammatory

cytokines, including IL-1b, TNF-a, and interleukin-6 (IL-6). IL-1b
functions as a potent mediator of inflammatory responses, inducing

the expression of other cytokines and promoting neuronal damage.
Frontiers in Immunology 06
TBI induces cellular damage, resulting in the release of DAMPs,

including ATP, HMGB1, and uric acid crystals (114). DAMPs bind

to PRRs on astrocytes, initiating signaling cascades that upregulate

pro-IL-1b gene expression and cellular IL-1b production (115).

Subsequent to the initial activation signal, a secondary stimulus

(e.g., additional DAMPs) triggers the assembly of the NLRP3

inflammasome complex, comprising NLRP3, the adaptor protein

ASC, and pro-caspase-1. Within the inflammasome, pro-caspase-1

is activated to caspase-1, which subsequently cleaves pro-IL-1b into
TABLE 1 Inflammatory receptor activation pathways in astrocytes following traumatic brain injury.

Receptor
Family

Specific
Receptor

TBI-induced
Ligands/Activators

Signaling
Pathways

Pro-inflammatory
Mediators

Impact on Secondary
Injury

Cite

Pattern
Recognition
Receptors

TLR4 HMGB1 (necrotic cells);
HSP60/70 (cellular stress);
Fibrinogen (BBB disruption);
S100b (astrocytic damage);

MyD88-dependent
pathway: IRAK1/4,
TRAF6, TAK1, NF-
kB/MAPK activation;
TRIF-dependent
pathway: IRF3-
mediated response

Pro-inflammatory
cytokines: TNF-a, IL-1b,
IL-6;
Chemokines: CCL2,
CXCL10;
Inflammatory mediators:
NO, PGE2

Exacerbation of neuronal
death; BBB dysfunction;
Cerebral edema formation;
Axonal injury progression

(82–86)

TLR2 HMGB1; Cellular debris;
HSP60/70 (cellular stress)

MyD88-dependent
signaling cascade;
NF-kB
nuclear translocation

Pro-inflammatory
cytokines: TNF-a, IL-1b,
IL-6;
Proteases: MMP-9

Neuroinflammation
amplification; BBB integrity
compromise;
Impaired neuroregeneration

(13, 86–88)

Cytokine
Receptors

IL-1R IL-1a (mechanical trauma);
IL-1b
(inflammatory response)

MyD88 recruitment;
IRAK1/4 complex;
NF-kB translocation;
MAPK cascade

Inflammatory mediators:
IL-6, TNF-a;
Enzymes: COX-2,
MMP-9

Enhanced neuronal apoptosis;
Glial scar formation

(89–91)

TNF-R1 TNF-a (early
inflammatory response)

TRADD-mediated
signaling; TRAF2
recruitment; NF-kB
activation;
JNK pathway

Cytokines: IL-1b, IL-6;
Chemokines: CCL2;
Enzymes: iNOS

Oxidative stress enhancement;
Neuronal death propagation

(92–94)

Purinergic
Receptors

P2X Mechanical stress-
induced; ATP

Calcium influx;
NLRP3
inflammasome
activation;
MAPK signaling

Cytokines: IL-1b, IL-18;
Oxidative species: ROS

Calcium overload; Cell death
initiation; Inflammatory
cascade amplification

(95–97)

P2Y ATP/ADP Calcium
mobilization;
ERK activation

Inflammatory mediators:
COX-2, TNF-a

Vascular response modulation;
Inflammation perpetuation

(98, 99)

Chemokine
Receptors

CCR2 CCL2 (microglial activation);
CCL2
(monocyte infiltration)

PI3K/AKT pathway;
MAPK cascade

Chemokines: CCL2;
Proteases: MMP-2/9;

Enhanced inflammatory cell
recruitment; Tissue damage
progression; BBB
integrity compromise

(100, 101)

Complement
Receptors

C3aR/C5aR C3a/C5a; Coagulation
cascade products

G-protein signaling;
PKC activation;
MAPK pathway; NF-
kB signaling

Cytokines: IL-1b, TNF-a;
Chemokines: CCL2/5

Neuroinflammation
enhancement; Complement
cascade amplification

(102, 103)

Damage
Recognition

RAGE HMGB1; S100b; NF-kB activation;
MAPK signaling;
JAK/STAT pathway

Cytokines: TNF-a, IL-1b;
Growth factors:VEGF
Oxidative species: ROS

Chronic inflammation
promotion;
Vascular dysfunction

(104–109)

Death
Receptors

Fas FasL (damaged cells);
Inflammatory cell expression

FADD recruitment;
Caspase-8 activation;
NF-kB signaling

Cytokines: TNF-a, IL-1b Apoptotic pathway activation;
Tissue damage enhancement

(110, 111)

Oxidative
Stress

NOX4 IL-1b;IFN-g; NOX;
Cellular debris

PKC activation;
MAPK cascade; NF-
kB pathway

Oxidative species: ROS,
NO; Cytokines: TNF-a

Oxidative damage
amplification;
Mitochondrial dysfunction

(45, 112, 113)
HSP, Heat Shock Protein; PI3K, Phosphatidylinositol 3-Kinase; COX-2, cyclooxygenase-2; CCL2, C-C Motif Chemokine Ligand 2.
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its mature, active form (116, 117). This process represents the

classical activation pathway. Current research demonstrates that

NLRP3 inflammasome activation initiation is complex, involving

transcriptional and post-translational mechanisms, and

necessitating multiple protein binding partners (118, 119). NLRP3

inflammasome activation induces pore formation in the cell

membrane, facilitating the release of mature IL-1b into the

extracellular space (120).

Extensive research demonstrates that IL-1b indirectly activates

STAT3 as an upstream regulator (121). IL-1b amplifies STAT3

signaling through NF-kB; activated NF-kB translocates to the

nucleus and downregulates the expression of suppressor of

cytokine signaling 3 (SOCS3), a protein that inhibits STAT3

signal transduction. The decrease in SOCS3 levels enhances

STAT3 susceptibility to phosphorylation and activation,

promoting its nuclear translocation and transcriptional activity

(122). Additionally, IL-1b increases local chromatin accessibility,

enhancing STAT3’s impact on interleukin-17a/f (Il17a/f) loci (123).

Several studies indicate that the Janus kinase 2 (JAK2)-STAT3

pathway is a crucial mechanism mediating IL-1b release from

astrocytes. JAK2 participates in fundamental cellular processes,

including apoptosis, autophagy, and proliferation. The JAK2-

STAT3 pathway is activated upon pro-inflammatory cytokine

binding to their respective membrane receptors (124). Activated

JAK2 phosphorylates tyrosine residues on STAT3, inducing STAT3

dimerization (125). The phosphorylated STAT3 dimers

subsequently translocate to the nucleus (126, 127). Within the

nucleus, STAT3 binds to the IL-1b gene promoter region,

initiating its transcription. The resulting IL-1b mRNA is

translated into protein and subsequently released into the

extracellular space via exocytosis (116, 128). Inhibition of the

JAK2-STAT3 pathway significantly reduces IL-1b production by

astrocytes in diverse disease models (128, 129).

3.1.2 TNF-a
TNF-a is initially synthesized as a transmembrane protein,

termed ‘transmembrane TNF-a (tmTNF-a)’ or ‘pro-TNF-a’.
Analogous to IL-1b, NF-kB regulates the upregulation of TNF-a
gene expression. Additionally, inflammation activates the MAPK

pathway. Activated MAPK translocates to the nucleus, where it

phosphorylates transcription factors such as activator protein 1

(AP-1) or NF-kB. These phosphorylated transcription factors

subsequently bind to the TNF-a gene promoter, enhancing its

transcription and facilitating TNF-a production by astrocytes (130,

131). TNF-a converting enzyme (TACE), a metalloproteinase,

specifically recognizes and cleaves the transmembrane structural

domain of tmTNF-a at specific sites. This cleavage releases soluble

TNF-a (sTNF-a), which is subsequently processed and secreted by

astrocytes via the classical secretory pathway (132). The membrane-

bound form of TNF-a (tmTNF-a), signaling primarily via TNF

receptor 2 (TNFR2), mediates protective and reparative effects.

Conversely, the soluble form (sTNF-a), signaling primarily via

TNF receptor 1 (TNFR1), promotes pro-inflammatory and

detrimental functions. Upon release into the extracellular space,

sTNF-a binds to TNFR1 on target cells, triggering a downstream
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signaling cascade. This cascade includes pathways such as NF-kB,
MAPKs (p38 MAPK, c-Jun N-terminal kinase [JNK]), and PI3K

(133). In astrocytes, TNF-a binding to TNFR1 upregulates

glutaminase expression and increases glutamate production. This

interaction also induces glutamate cytotoxicity, enhances the release

of extracellular vesicles, inhibits glutamate uptake, and elevates

extracellular glutamate levels (134, 135). During excessive

neuroinflammation, TNF-a initiates the apoptotic pathway.

Binding to TNFR1 leads to recruitment of junction proteins such

as TNF receptor-associated death domain protein (TRADD), which

activates the apoptotic cascade. This cascade includes the NF-kB
pathway and involves cysteine-dependent aspartate-directed

proteases (caspases), ultimately leading to neuronal apoptosis (136–

138). TNF-a also triggers necroptosis, a caspase-independent form of

programmed cell death, by activating receptor-interacting serine/

threonine-protein kinase 1 (RIPK1) (139).

TNF receptor 2 (TNFR2) is predominantly expressed in

immune and glial cells, mediating the neuroprotective and

neurorestorative effects of TNF-a. In the CNS, TNFR2 is

predominantly found in neuroglia, with highest expression in

microglia (140, 141). TNFR2 expression in astrocytes may

promote myelin regeneration through the induction of cytokine

expression (142). While TNF-a binding to TNFR1 is associated

with pro-apoptotic effects, TNFR2 can also promote cell death

pathways, depending on the cellular environment and signaling

complexes involved. A recent study demonstrates that reactive

astrocytes undergo necroptosis mediated by receptor-interacting

protein kinase 3 (RIPK3) and mixed lineage kinase domain-like

protein (MLKL) (143). Another study showed that TNFR2

signaling triggers apoptosis in the presence of the adaptor

molecule receptor-interacting protein (RIP) (144). These findings

suggest that TNF-a binding to TNFR2 may lead to necroptosis of

astrocytes under certain conditions.

TNF-a affects intercellular gap junctions through multiple

pathways (145). For instance, TNF-a stimulation of spinal cord

astrocytes significantly reduces connexin 43 (Cx43) expression and

gap junction function through activation of JNK (146). Similarly, a

study on corneal endothelial cells reported that TNF-a disrupts gap

junctional intercellular communication (GJIC) in the corneal

endothelium by interfering with the connection between Cx43

and zonula occludens-1 (ZO-1). In a study of cerebral

hemorrhage, TNF-a was shown to activate the NF-kB pathway,

promoting the binding of p65 to the promoter region of the

aquaporin-4 gene. This enhances aquaporin-4 expression,

ultimately reducing astrocyte viability and causing cellular edema

(147, 148). In conclusion, the role of TNF-a in neuroinflammation

appears to be predominantly detrimental, with damaging effects on

neurons, glial cells, and endothelial cells. The most compelling

evidence for the role of TNF-a in neuroinflammation and CNS

disorders is derived from experimental and clinical studies

investigating the therapeutic blockade of this cytokine.

3.1.3 IL-6
The molecular mechanism and signaling pathway of IL-6

production by reactive astrocytes is a complex, multistage process
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1584577
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1584577
involving the synergistic action of multiple signaling molecules and

transcription factors. Similar to the mechanisms of IL-1b and TNF-a
production, this process typically initiates with cell surface receptors

recognizing specific stimulus signals, such as DAMPs, pathogen-

associated molecular patterns (PAMPs), or inflammatory factors

(115, 149). These stimuli bind to PRRs, such as IL-1 receptor (IL-

1R) or TNF receptor (TNFR), triggering intracellular signaling

cascades. IL-6 mediates pro-inflammatory effects in the CNS by

initially binding to its specific receptor, IL-6R, forming the IL-6/IL-

6R complex. This complex subsequently binds to the signaling

protein glycoprotein 130 (gp130), triggering an intracellular

signaling cascade. gp130 dimerization activates associated Janus

kinases (JAKs), primarily JAK1, JAK2, and tyrosine kinase 2

(TYK2) (150). IL-6 also utilizes gp130 to activate the PI3K-Akt

pathway and the Ras-RAF-MEK-extracellular signal-regulated

kinase 1/2 (ERK1/2) pathways, further enhancing inflammatory

response and cell survival (151, 152). Notably, IL-6 can also act on

cells that do not express membrane-bound IL-6R through a trans-

signaling mechanism (153). Soluble IL-6R (sIL-6R) binds to IL-6,

forming a complex that can bind to widely expressed gp130 and

activate signaling, a process known as IL-6 trans-signaling (154, 155).

In the neuroinflammatory environment, activated astrocytes and

microglia produce substantial amounts of IL-6, which amplifies the

inflammatory response through autocrine and paracrine effects (156,

157). IL-6-induced STAT3 activation promotes reactive proliferation

of astrocytes and formation of glial scarring (158, 159). Additionally,

IL-6/STAT3 signaling upregulates the expression of various cell

adhesion molecules (e.g., intercellular adhesion molecule-1 [ICAM-

1] and vascular cell adhesion molecule-1 [VCAM-1]) and promotes

leukocyte infiltration into the CNS (18). In neurons, IL-6 can increase

neuronal excitability by modulating the function and expression of

N-methyl-D-aspartate (NMDA) receptors (160, 161). While IL-6 can

increase neuronal excitability under certain conditions, its effects are

complex and context-dependent, potentially acting as a

neuroprotective agent in other situations depending on the

concentration and cellular environment (160). IL-6 also induces the

expression of COX-2 and increases the production of prostaglandin

E2 (PGE2), further amplifying the inflammatory response (162, 163).

The IL-6 signaling pathway is subject to strict negative feedback

regulation, including the induction of SOCS3 expression and

activation of protein tyrosine phosphatases (e.g., Src homology

region 2 domain-containing phosphatase-2 [SHP2]) (164, 165).

These negative regulatory mechanisms limit the pro-inflammatory

effects of IL-6 under normal physiological conditions but may be

disrupted in chronic neuroinflammatory states, leading to a sustained

inflammatory response (166, 167).
3.2 Chemokines

Astrocytes, as the main immune effector cells in the CNS,

produce and release a variety of chemokines through complex

molecular mechanisms and play a key role in neuroinflammatory

responses. Injury stimuli activate PRRs on astrocytes, such as TLRs

and RAGE receptors, triggering downstream signaling pathways such
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as NF-kB and MAPK cascades, inducing the transcription and

expression of chemokine genes. These chemokines include, but are

not limited to, CCL2, CCL5, CXCL1, and CXCL10. By binding to the

corresponding chemokine receptors, they attract peripheral immune

cells such as neutrophils, monocytes, and T cells to migrate to the

injury site. The production of chemokines can further activate other

glial cells in the microenvironment, forming a positive feedback loop

and amplifying the inflammatory response. This process may be

beneficial in the acute phase to clear cellular debris and repair tissue,

but sustained chemokine release may lead to chronic inflammation

and exacerbate neuronal damage. In addition, certain chemokines

such as CCL2 are also involved in regulating the permeability of the

BBB and affecting the degree of infiltration of inflammatory cells.

Therefore, precise regulation of chemokines released by astrocytes is

of great significance for the prognosis of TBI.

3.2.1 CCL2 (MCP-1)
Chemokines play a crucial role in directing cell migration in

various processes, including angiogenesis and inflammatory

responses. In the inflammatory milieu, chemokines act

synergistically with selectins and integrins to facilitate leukocyte

recruitment to inflammatory sites. Within the CNS, multiple cell

types are capable of chemokine production. Astrocytes serve as the

primary source of CCL2 in experimental models of TBI,

endotoxemia, and multiple sclerosis (168). CCL2, also known as

monocyte chemoattractant protein-1 (MCP-1), is a chemokine that

plays a pivotal role in binding to the CCR2 receptor and facilitating

monocyte recruitment to inflammatory sites (169). Astrocytes

contribute to the regulation of leukocyte homing to the inflamed

CNS. IL-1b and TNF-a stimulate CCL2 production in astrocytes in

a time- and concentration-dependent manner (170). IL-1b activates

IkB kinase (IKK), and subsequently, the IKK complex activates NF-

kB by phosphorylating the IkB molecule, leading to its degradation

and the release of NF-kB (171). The liberated NF-kB translocates to

the nucleus, where it binds to specific sequences in the regulatory

elements of inflammation-related genes, such as CCL2, thereby

activating their transcription (47, 172). In contrast to IL-1b, TNF-a
primarily induces CCL2 production through activation of the

intracellular MAPK signaling pathway (173).

3.2.2 CXCL10
The activation and production process of CXCL10 in astrocytes

following TBI parallels that of CCL2, as previously described. Upon

production and secretion, CXCL10 exerts multifaceted functions in

neuroinflammatory and repair processes following TBI. Primarily,

CXCL10 functions as a chemokine, attracting inflammatory cells

including monocytes, natural killer (NK) cells, and T helper 1 (Th1)

cells from the periphery into the CNS (174). Furthermore, CXCL10

can modulate tight junction proteins, potentially leading to BBB

disruption. A study demonstrated that incubation of brain

microvascular endothelial cells with CXCL10 significantly reduced

the expression of Claudin-5 and Occludin, key components of tight

junction proteins (175). Additionally, CXCL10 plays a role in

modulating neuronal survival and apoptosis. Studies on spinal

cord injury have shown that CXCL10 activates CXCR3 receptors
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during the acute phase, elevating intracellular calcium levels and

triggering the release of cytochrome c from mitochondria. This

cascade subsequently activates caspase-9, followed by caspase-3

activation, ultimately resulting in neuronal apoptosis (176) (177).

In-depth exploration of the CXCL10 production mechanism

and signaling pathway reveals a highly complex and precisely

regulated process. The interplay of multiple signaling pathways

forms a complex regulatory network, ensuring rapid and precise

CXCL10 expression in response to microenvironmental changes

following TBI (178). In addition to the NF-kB pathway, the Janus

kinase-signal transducer and activator of transcription (JAK-STAT)

signaling cascade plays a pivotal role in CXCL10 production (179).

The binding of interferon-g (IFN-g) to its receptor activates JAK1

and JAK2, resulting in STAT1 phosphorylation. Subsequently,

phosphorylated STAT1 molecules dimerize and translocate to the

nucleus, where they bind to the Gamma-Interferon Activation Site

(GAS), thereby promoting CXCL10 transcription. Furthermore, the

activation of p38 MAPK and extracellular signal-regulated kinases

1/2 (ERK1/2) pathways contributes to the regulation of CXCL10

expression (180). These pathways modulate CXCL10 expression

either by influencing transcription factor activity or by directly

acting on the CXCL10 gene promoter region.
3.3 Anti-inflammatory cytokine

Activated astrocytes modulate neuroinflammatory responses

and promote tissue repair through the release of various anti-

inflammatory substances. Among these, TGF-b represents a key

anti-inflammatory factor secreted by astrocytes. Post-TBI, blood-

derived factors such as albumin and fibrinogen stimulate astrocytic

TGF-b secretion (181). TGF-b reduces the release of pro-

inflammatory cytokines (including IL-6, IL-1b, and TNF-a) and

suppresses the pro-inflammatory (M1) microglial phenotype

through Smad pathway activation. Additionally, TGF-b enhances

the neuroprotective functions of astrocytes via p-Smad2 signaling

upregulation, promoting neurite outgrowth and glial scar formation

to limit injury spread. While some studies suggest TGF-b may

exacerbate fibrosis or inhibit neuroplasticity under certain

conditions, its overall anti-inflammatory and reparative roles in

TBI are widely acknowledged (182).

IL-10, another crucial anti-inflammatory mediator, is released

by activated astrocytes through TLR4 signaling or endotoxin

tolerance mechanisms (183). IL-10 effectively reduces pro-

inflammatory cytokine secretion from both astrocytes and

neighboring microglia by blocking NF-kB and JNK/AP-1

pathways. Furthermore, IL-10 promotes microglial polarization

toward the M2 anti-inflammatory phenotype, enhancing

phagocytic function and post-injury repair (184). Clinical studies

confirm that elevated IL-10 levels strongly correlate with reduced

cerebral edema and neuronal death following TBI (184).

miR-873a-5p represents the third key anti-inflammatory

mediator, present in astrocyte-derived exosomes and functioning
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through intercellular communication. This miRNA reduces the

release of inflammatory mediators such as IL-6 and IL-1b by

directly targeting pro-inflammatory signaling molecules and

blocking NF-kB nuclear translocation (185). Additionally,

through ERK signaling inhibition, miR-873a-5p induces M2

microglial differentiation, enhancing anti-inflammatory and

neuroregenerative functions. Animal studies demonstrate that

miR-873a-5p delivery significantly improves post-TBI motor and

cognitive deficits (186).
4 Astrocyte metabolism in TBI

4.1 TBI induces metabolic reprogramming
of astrocytes

Following TBI, astrocytes undergo significant metabolic

reprogramming. This process begins with massive uptake of

neuron-released glutamate through Na+-dependent transporters

(EAAT1), subsequently activating Na+/K+-ATPase to maintain

ionic gradients, leading to rapid cellular ATP depletion.

Additionally, glutamate conversion to glutamine further

intensifies energy demands (31). During this process, astrocytes

exhibit cancer cell-like metabolic characteristics, known as the

Warburg effect: enhanced glycolysis with suppressed OXPHOS,

closely associated with mitochondrial dysfunction and ROS

accumulation (187).

At the molecular level, bA1-crystallin regulates mitochondrial

function by modulating PTP1B activity; its deficiency exacerbates

mitochondrial oxidative stress, reduces OXPHOS efficiency, and

leads to compensatory glycolysis enhancement (188).

Simultaneously, the energy sensor AMPK activates during ATP

deficiency, reducing mitochondrial biosynthesis and promoting

glycolysis through mTOR pathway inhibition (189). TBI-induced

neuroinflammation further intensifies this metabol ic

reprogramming, with activated microglia releasing pro-

inflammatory factors like IL-6 and TNFa, enhancing glycolysis

while suppressing OXPHOS through TLR signaling pathways (190).

Moreover, BBB disruption-induced microenvironment

dysregulation aggravates metabolic imbalance (191).

During metabolic reprogramming, key glycolytic enzymes

including HK, PFK, and LDH show significantly increased

activity, promoting glucose conversion to lactate (192). Astrocytes

release excess lactate through MCT4; although lactate can serve as

an energy substrate for neurons, its excessive accumulation leads to

extracellular acidification and neuronal dysfunction (189).

Simultaneously, TBI directly impairs mitochondria, causing

decreased membrane potential and reduced ETC complex activity

(187). Impaired OXPHOS not only reduces ATP production but

also releases ROS that further damage mitochondria, creating a

vicious cycle (193). Additionally, glycolytic intermediates (such as

citrate) may indirectly suppress OXPHOS by inhibiting PDH,

reducing acetyl-CoA entry into the TCA cycle (194).
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4.2 Role of astrocyte lactate metabolism in
neuroprotection

Following TBI, metabolic coupling between astrocytes and

neurons plays a crucial role in neural repair. When neuronal

mitochondrial dysfunction leads to decreased OXPHOS efficiency,

astrocyte-derived lactate can enter neuronal mitochondria via

MCT2, converting to pyruvate for participation in the TCA cycle,

thereby generating ATP to maintain neuronal membrane potential

and synaptic activity (195). Particularly under ischemic conditions,

astrocytic glycogen reserves effectively delay axonal function loss,

while exogenous lactate supplementation significantly reduces brain

atrophy and improves long-term behavioral outcomes (196).

Astrocyte-derived lactate exhibits multiple neuroprotective

effects. First, lactate promotes glutathione regeneration by

elevating neuronal NAD+ levels, thus alleviating oxidative stress-

induced neuronal damage (197). Second, lactate participates in

ionic gradient regulation, effectively reducing post-TBI cellular

edema through its metabolically generated osmotic balancing

effects (198).In terms of synaptic plasticity and cognitive function

recovery, ANLS plays an indispensable role. In the hippocampal

region, ANLS activation is essential for inducing LTP, where lactate

promotes synaptic remodeling by modulating NMDAR activity and

CREB signaling pathways (199). Post-TBI, increased hippocampal

glycogenolysis leads to elevated lactate release, which positively

correlates with the expression of memory-related genes (such as Arc

and c-Fos). Studies have shown that ANLS blockade significantly

impacts cognitive function recovery (200).

Therapeutic strategies targeting lactate metabolism show promise

in neuronal recovery. Hypertonic sodium lactate administration

improves CBF and reduces cerebral edema while enhancing

cognitive recovery (201). Combining pyruvate with PDK inhibitors

like DCA optimizes lactate production for neuronal energetics (202).

Modulation of lactate transporters - promoting MCT4-mediated

export and MCT1-mediated neuronal uptake - improves metabolic

coupling (203). BCATm inhibition reduces astrocytic BCKA

accumulation, mitigating glutamate toxicity (204).Alternative

energy substrates, including b-HB and succinate, support neuronal

metabolism by directly entering the TCA cycle and enhancing

mitochondrial function (205) (206). PPARg agonists demonstrate

dual benefits by suppressing NF-kB-mediated inflammation and

upregulating lactate synthesis. The triterpene Lupeol attenuates

oxidative stress through ROS suppression (207).Molecular

interventions including MAGL deletion enhance astrocytic 2-AG

signaling, promoting anti-inflammatory effects via CB1R and PPARg
pathways (208). Nrf2 activation increases antioxidant capacity

through SOD and GSH upregulation, protecting against lactate-

induced oxidative damage (182).
4.3 Key regulators in astrocyte metabolic
changes after TBI

Following TBI, astrocytic metabolic regulation involves

multiple signaling pathways. AMPK, a cellular energy sensor,
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plays crucial regulatory roles post-TBI. During early glucose

metabolic depression and subsequent transient enhancement,

AMPK phosphorylates GAPDH and PDH to inhibit glycolysis

and fatty acid synthesis while promoting mitochondrial oxidative

metabolism to alleviate energy crisis (209). In glutamate-toxic

environments, AMPK regulates glutaminase activity to maintain

the glutamate-glutamine cycle, providing metabolic support for

neurons (210). Additionally, AMPK suppresses inflammatory

factor release via JAK2/STAT3/NF-kB pathway inhibition and

protects astrocytes through MSC-derived exosomes (211).

Through resveratrol-mediated AMPK/mTOR axis, AMPK

activates autophagy to clear damaged mitochondria and protein

aggregates (212). In the metabolic network, AMPK and mTOR

form a negative feedback loop through TSC2 phosphorylation

(213). Under hypoxic conditions, AMPK cooperates with HIF-1a
to enhance glycolytic capacity. The mTOR complexes (mTORC1/2)

exhibit temporal-spatial dependent effects post-TBI. Early

mTORC1 hyperactivation exacerbates glial scarring (214), while

during recovery, it supports astrocyte repair through lipid synthesis

(215). mTORC2 promotes cell survival via Akt signaling (216).

HIF-1a drives astrocytic metabolic reprogramming by upregulating

GLUT1 and LDHA, enhancing glycolysis to produce lactate as an

alternative neuronal energy substrate (210). While HIF-1a
promotes angiogenesis through VEGF, its sustained activation

may worsen cerebral edema (216). It also reduces pro-

inflammatory factors via NF-kB pathway inhibition (214) and

activates antioxidant enzymes like SOD2 and HO-1 (217).

Therapeutic strategies targeting AMPK show promise. AICAR

effectively activates AMPK (218), while metformin indirectly

activates it through mitochondrial complex I inhibition (219).

Curcumin reduces LPS-induced astrocytic inflammation via AMPK

activation (220). Metabolic substrate regulation, including pyruvate

supplementation (221) and BCAA intervention (204), shows efficacy.

Combined approaches demonstrate advantages: PGC-1a agonists

synergize with AMPK to enhance mitochondrial biogenesis (222),

while mTORC1 inhibit ion augments AMPK-mediated

mitochondrial quality control (223). Intervention timing is crucial:

acute phase (≤6h post-TBI) should focus on glucose oxidation

restoration and AMPK activation, while subacute phase (3-7d)

emphasizes mitochondrial autophagy and antioxidant defense (221).
5 Therapeutic studies targeting pro-
inflammatory astrocytes after TBI

5.1 Limitations and progress of research
methods on TBI mechanisms

Real-time in vivomonitoring of astrocytic activity faces multiple

technical challenges. Regarding spatiotemporal resolution, while

diffusion MRI can detect functional changes in astrocytes, its

resolution is insufficient to capture subcellular dynamic changes.

Two-photon microscopy provides higher resolution but is limited

by optical penetration depth and tissue scattering in live

experiments (224). Similarly, calcium imaging can record
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astrocytic Ca²+ signals but may miss rapid transient activities (225),

while photoacoustic and bioluminescence imaging’s low sampling

rates might overlook millisecond-scale signal fluctuations (226).At

the experimental operation level, invasive devices such as fiber

recording and two-photon imaging require head fixation or probe

implantation, which not only restricts natural mouse behavior but

may also activate local astrocytes (122, 125). Some imaging

techniques require anesthesia, which suppresses neuronal and

astrocytic activity, affecting the observation of post-TBI

pathological processes (225, 226).Cellular heterogeneity and signal

specificity constitute another significant challenge. Astrocytes in

different brain regions exhibit marked differences in calcium signal

patterns, morphology, and function, making it difficult for current

technologies to distinguish these subtypes’ specific responses in TBI

(227, 228). Furthermore, calcium indicators may be affected by pH

fluctuations and struggle to differentiate between overlapping

neuronal and astrocytic signals (225, 229). Regarding technical

integration and data analysis, differences in sampling rates and

spatial coverage among multimodal data make temporal alignment

challenging (226), while high-resolution imaging generates massive

datasets requiring sophisticated algorithms (230). In physiological

and pathological state monitoring, variations in TBI model injury

characteristics affect the uniformity of astrocytic responses (231),

and current technologies struggle to achieve long-term dynamic

tracking of chronic astrocyte activation (232).

Multi-omics approaches play a crucial role in studying astrocyte

subtypes following TBI. scRNA-seq represents a crucial

breakthrough in TBI research. A 2018 study published in Nature

Communications utilized single-cell analysis to reveal early

activation of microglia and astrocytes following concussion,

elucidating their driving role in neuroinflammatory cascade

reactions (233). This technology also successfully identified

susceptibility differences among specific neuronal subpopulations

in axonal injury (234). Spatial transcriptomics, integrating LCM

and in situ sequencing, enables researchers to precisely localize

molecular characteristics of cells surrounding injury sites,

particularly advancing understanding of spatial correlations

between endothelial cells and pericytes signaling pathways in BBB

disruption regions post-TBI (235). Proteomics and metabolomics

analyses have identified multiple subtype-specific markers.

Following TBI, upregulated AQP4 expression leads to edema,

while decreased GLT-1 expression induces glutamate toxicity (11,

182, 236). Notably, astrocyte-derived exosomes carrying molecules

such as miR-148a-3p influence neuroinflammation by modulating

microglial phenotypes (186). Epigenomic studies have revealed that

Nrf2 deficiency promotes astrocyte transformation toward pro-

inflammatory phenotypes by enhancing NF-kB signaling (182).

Bioinformatics analysis plays a crucial role in target screening.

Differential expression analysis identifies subtype-specific genes,

while KEGG/GO enrichment analysis clarifies functional

pathways (237, 238). Protein interaction network construction has

identified hub genes such as NF-kB and STAT3 (238). Machine

learning models have revealed PPAR-g as a core regulatory factor

for astrocyte protective functions (208, 239). Currently validated

therapeutic targets include: AQP4 inhibitors for reducing brain
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edema (11, 236), GLT-1 agonists for restoring glutamate

homeostasis (182), 2-AG metabolic regulation through MAGL

inhibi t ion or CB1 receptor act ivat ion for enhanced

neuroprotection (208), and PPAR-g agonists for modulating

inflammatory responses and improving cognitive function (118).

The application of optogenetics has further expanded the depth

of TBI research. Through selective activation or inhibition of

specific neuronal populations using light-sensitive proteins (such

as ChR2 or NpHR), researchers have successfully decoded post-TBI

neural network reorganization mechanisms and discovered that

modulating PFC-hippocampal circuits effectively improves post-

traumatic memory deficits (240). A 2024 Brain Circulation review

highlighted that combining optogenetics with closed-loop feedback

systems enables real-time regulation of post-traumatic epilepsy-

associated aberrant neural oscillations (241).2P microscopy

technology, particularly miniaturized fiber-based systems, enables

researchers to observe calcium signaling dynamics in freely moving

mice, capturing millisecond-scale neuronal activity changes post-

TBI. This technology has not only revealed the spatiotemporal

propagation patterns of post-injury CSD and its association with

secondary injury but also achieved simultaneous “manipulation-

recording” observations through integration with optogenetic

stimulation, thoroughly elucidating the mechanistic roles of

specific neural circuits in injury repair processes (240).
5.2 Clinical relevance of astrocyte
activation and TBI

Clinical manifestations following TBI are closely associated

with astrocyte activation. In epilepsy, particularly PTE, multiple

mechanisms are involved: dysfunction of astrocytic potassium

channel Kir4.1 leads to extracellular K+ accumulation, resulting

in elevated neuronal excitability (182, 242, 243); simultaneously,

reduced GLT-1 expression causes glutamate homeostasis

disruption, leading to synaptic glutamate accumulation and

NMDA receptor activation, triggering excitotoxicity (182). In

diffuse TBI models, the expansion of atypical astrocytic regions

positively correlates with seizure frequency (15). Regarding

cognitive and motor dysfunction, sustained release of IL-6 and

TNF-a suppresses synaptic plasticity, resulting in hippocampus-

dependent memory impairment (244). Additionally, inflammation-

activated astrocytes exhibit abnormal mitochondrial fission, causing

energy metabolism disorders and affecting neuronal survival (245).

In the pathological process of cerebral edema and elevated ICP,

altered polarity of AQP4 in reactive astrocytes exacerbates

vasogenic edema (246).

Astrocytes exert dual effects on TBI clinical outcomes. In the

acute phase of moderate TBI, astrocytes provide protection through

secretion of various neuroimmune modulators, not only limiting

inflammatory spread but also maintaining ionic homeostasis and

reducing cortical tissue loss (247, 248). However, in the chronic

phase, persistently activated astrocytes release pro-inflammatory

mediators, leading to secondary neuronal degeneration associated

with long-term cognitive deficits and cerebral atrophy (249).
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Regarding epileptogenesis risk, atypical astrocytic responses

following diffuse TBI closely correlate with epilepsy latency

period, with approximately 30% of mice developing spontaneous

seizures weeks post-injury. Clinical studies indicate GLT-1

expression levels may serve as biomarkers for PTE prediction

(15). For functional recovery and prognosis, inflammatory

mediator levels negatively correlate with outcomes, with elevated

IL-1b and TNF-a concentrations associated with reduced GOSE

scores, indicating poor neurological recovery (250, 251).

Astrocyte-related biomarkers play crucial roles in the diagnosis

and prognostic evaluation of TBI. GFAP, as a key marker, reaches

peak blood levels around 24 hours post-injury, closely correlating

with injury severity (252). The TRACK-TBI study demonstrated

that serum GFAP exhibits superior sensitivity (AUC 0.88) for

detecting intracranial lesions compared to UCH-L1 (AUC 0.71).

In acute diagnosis, GFAP shows excellent diagnostic performance

(AUC 0.91), particularly in patients with CT-visible lesions (253).

While GFAP alone has limited ability to predict 3-month outcomes

(AUC 0.65-0.74), its combination with UCH-L1 significantly

enhances predictive value (AUC 0.94) (254). Sustained GFAP

elevat ion may indicate secondary injury or chronic

neuroinflammation, correlating with neurodegenerative changes

in chronic traumatic encephalopathy (255). However, GFAP

application has certain limitations. Healthy astrocytes show

regional variations in GFAP expression, with high expression in

the hippocampus and low expression in the thalamus, and its

expression is dynamically regulated by environmental factors

such as mechanical stretch (256, 257). Additionally, GFAP release

may occur in extra-CNS injuries, necessitating differential diagnosis

through imaging or neurological symptoms (255).

Another important marker, S100b, primarily secreted by

astrocytes and oligodendrocytes, participates in Ca²+ signaling

regulation and neuroprotection, though excessive release may lead

to neurotoxicity (258). S100b exhibits unique release kinetics,

reaching plasma peaks within 1–3 hours post-injury with a half-

life of approximately 30 minutes, making it suitable for early

detection (259). Although S100b shows high sensitivity in mTBI

diagnosis, its specificity is limited by peripheral sources (252).

S100b levels correlate with cerebral edema severity and BBB

disruption, but its independent ability to predict long-term

outcomes remains limited (260). Notably, S100b may elevate in

non-neurological conditions, necessitating combination with other

markers for improved diagnostic accuracy (252).
5.3 Advances in astrocyte-targeted therapy

5.3.1 Treatment mechanisms
A1 astrocytes are critical therapeutic targets in neurological

disorders. While BBB presents a significant delivery challenge,

several strategies have emerged to overcome this barrier. Small

molecules with optimal lipophilicity can directly penetrate the BBB.

The HDAC6 inhibitor LASSBio-1911 promotes A1-to-A2

phenotype conversion and reduces inflammatory mediator release

(261). Similarly, FLX acts through astrocytic 5-HT2B/b-arrestin2
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signaling to suppress A1 activation (262). Receptor-mediated

targeting has shown promise, with GLP-1R agonist semaglutide

achieving CNS delivery while maintaining BBB integrity (263).

Advanced delivery systems including NPs and EVs enhance

therapeutic efficiency, particularly EV-delivered HDAC inhibitors

which show improved astrocytic accumulation with reduced

systemic effects (261). Liposomal anti-inflammatory agents,

especially anti-C3 antibodies, demonstrate enhanced delivery

through nano-carrier conjugation (25).

Off-target considerations are crucial in therapeutic

development. While selective HDAC6 inhibitors like Tubastatin

A show specificity, their BBB penetration may affect multiple CNS

substrates. Altered microtubule acetylation can impact both target

and non-target cells, potentially affecting astrocyte migration and

synaptic plasticity (264). Long-term FLX administration may

modulate neuronal excitability through astrocytic ATP release

and Kir4.1 channel inhibition, risking edema or seizure threshold

alterations (265). GLP-1R agonists, due to widespread receptor

distribution in hypothalamic and amygdalar regions, may

influence reward circuitry through dopaminergic modulation.

Their acute versus chronic effects on stress responses and BDNF

expression require individualized clinical assessment (266).

Recent studies reveal multiple mechanistic pathways in

targeting astrocytic NLRP3 inflammasome. D2R activation

inhibits NLRP3 inflammasome by enhancing b-arrestin2-NLRP3
interaction (55). Studies under hyperoxic conditions have

elucidated NLRP3 inflammasome-mediated pyroptosis pathways

in astrocytes, providing therapeutic strategy insights (267). ASCT2

plays a crucial role in glial inflammatory responses, with its

inhibitor talniflumate revealing novel regulatory mechanisms

through ASCT2-NLRP3 binding disruption (268). These findings

offer new therapeutic targets for neuroinflammation, particularly in

modulating astrocytic inflammatory and secretory pathways

(269).Caspase-1 inhibitors demonstrate significant therapeutic

potential in inflammasome regulation. These compounds

specifically target glial inflammasome activation, effectively

reducing pro-inflammatory cytokine production (270). Their high

specificity and affinity modulate cytokine release following

astrocytic activation (271). Through Nlrp1 inflammasome

regulation, they effectively control cognitive dysfunction and

inflammatory responses (272). Specifically, YVAD treatment

significantly reduces pro-inflammatory mediators while providing

neuroprotection (273).

STAT3 inhibitors demonstrate significant therapeutic potential

in neurological disorders. Stattic, targeting STAT3’s SH2 domain,

inhibits phosphorylation and dimerization (274). In AD models, it

suppresses astrocytic STAT3 activation, reducing Ab-induced
neuronal death (275). In SCI models, Stattic decreases astrocytic

chemokine expression (CX3CL1, CXCL10) in dorsal horn,

alleviating mechanical pain (274). For PD models, it inhibits

H2O2-induced GFAP expression and pro-inflammatory cytokine

release (276).H-4-54 (KD=300nM) effectively inhibits STAT3

phosphorylation and downstream transcription (142). In APP/

PS1 mice, it reduces pSTAT3-positive astrocytes near plaques and

enhances microglial morphological complexity, though amyloid
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clearance effects remain limited (277).AG490, a JAK2 inhibitor,

reduces STAT3 phosphorylation. In AD models, it decreases

astrocyte activation through JAK2/STAT3 pathway inhibition,

requiring careful dose control to preserve neuronal viability (275).

In PD models, it effectively suppresses H2O2-induced astrocyte

activation through STAT1/3 inhibition (276). Indirect STAT3

modulators show promise. ADORA2A agonists like CGS21680

inhibit STAT3/YKL-40 signaling and reduce inflammatory

cytokine release. In CCH models, they attenuate astrocyte

activation and improve cognition, showing synergy with STAT3

inhibitors (278). Similarly, si-sEH reduces astrocytic inflammatory

r e sponse s i n LPS - induced mode l s th rough STAT3

modulation (279).

NF-kB, a key transcription factor in astrocytic inflammatory

responses, is central to neuroinflammation. Pro-inflammatory

factors like TNF-a and IL-1b upregulate inflammation-related

genes through NF-kB pathway activation (280). In SCI models,

NF-kB activation correlates with astrocytic inflammation, while its

inhibition reduces white matter damage and improves recovery

(281). NF-kB suppression decreases TNF-a and IL-1b production,

with potential cross-regulation through MAPK pathways (282). IL-

6 regulation exhibits complex mechanisms. In SCI models, NF-kB
inhibition paradoxically increases IL-6 expression, possibly through

negative feedback or compensatory STAT3 activation (281).

Conversely, in AD models, NF-kB inhibition reduces IL-6

secretion (283). For COX-2 and iNOS regulation, PD168393

reduces their secretion via EGFR phosphorylation inhibition

(284). Mn-induced NF-kB activation through NOS2 expression

confirms its role in oxidative stress (285).While direct evidence for

IL-12, IL-18, and CCL2 regulation is limited, NF-kB likely

influences their expression indirectly, with CCL2 upregulation

closely linked to NF-kB activation (286). VEGF-B reduces

inflammatory factors through NF-kB pathway inhibition (282).

Additionally, Nrf2 activators show neuroprotective potential by

antagonizing NF-kB’s pro-inflammatory effects (283).

5.3.2 Treatment strategies
Therapeutic strategies for astrocyte targeting have evolved

significantly. ADCs and nanocarriers targeting astrocytic surface

markers enhance local drug concentrations (287). Novel

approaches focus on dual inhibitors targeting astrocyte-neural cell

interactions (288, 289), while disease progression stages necessitate

specific strategies based on astrocytic inflammasome activation

mechanisms (290). NPs demonstrate unique advantages in

astrocyte-targeted therapy. For BBB penetration, NPs utilize RMT

through TfR or LDLR surface modifications, while FUS with

microbubble oscillation enhances penetration efficiency (291).

Surface modifications improve targeting specificity; 30nm

glucose-coated AuNPs show doubled astrocyte uptake compared

to GSH-coated variants, and CSF-derived protein corona increases

PLGA NP uptake seven-fold (292). CeNPs effectively reduce A1

astrocyte inflammation and promote myelination via ROS-NF-kB
pathway inhibition (26). Compared to traditional treatments like

fluoxetine (293), nano-delivery systems offer superior efficacy.

MSNs provide pH-responsive drug release with reduced systemic
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toxicity (294), while PEG-modified Fe3O4 MNPs combine targeted

delivery with MRI monitoring capabilities (295).Safety concerns

persist, as Ag-NPs may disrupt BBB TJ proteins and impair

astrocytic mitochondrial function (296). Ongoing research

incorporates scRNA-seq to identify astrocyte subtype markers for

developing more selective nanocarriers (297). The CRISPR/Cas9

system, derived from bacterial adaptive immunity, enables precise

gene editing through sgRNA-guided targeting (298). In astrocyte

research, this technology facilitates gene KO, KI, and epigenetic

modulation. Cre-loxP-mediated STAT3 KO reduced glial scarring

post-SCI, despite increased inflammation (299), while Smad3 or

TGFBR gene editing improved astrocyte function in TBI models

(181).CRISPR-mediated KO of TREK-1 or TWIK-1 reduced K+

leak currents in astrocytes (300), and APP KO enhanced Ab
clearance in NDDs (301). HB-EGF KO revealed its protective role

under inflammatory conditions (302), while IFN-g pathway editing
affected astrocytic APC capacity (303).

5.3.3 Progress in drugs targeting A1 astrocytes
The transformation of astrocytes into the neurotoxic A1

phenotype following TBI represents a critical factor exacerbating

secondary injury. Recent years have witnessed significant progress

in targeted therapeutic studies against A1 astrocytes, offering new

prospects for improving TBI prognosis. Current research primarily

focuses on three directions: modulation of cell signaling pathways,

inhibition of inflammatory responses, and promotion of

cytoprotective mechanisms. Strategies targeting cell signaling

pathways are particularly promising, exemplified by the

application of the mammalian target of rapamycin (mTOR)

inhibitor, rapamycin. Rapamycin mitigates NLRP3 inflammasome

activation by inhibiting the mTOR complex 1 (mTORC1), which

directly reduces A1 astrocyte formation and enhances autophagy-

mediated removal of damaged cellular components, thereby

attenuating neuroinflammation (304–306). This dual mechanism

of action confers unique neuroprotective advantages to rapamycin

following TBI. Concurrently, significant advancements have been

made in the investigation of fingolimod, a sphingosine-1-phosphate

(S1P) receptor modulator. Fingolimod primarily influences

astrocyte polarization by modulating S1P receptor 1 (S1P1)

activity. This modulation not only inhibits the transformation to

the A1 phenotype but also promotes the formation of the A2

phenotype, which is conducive to neural repair (307, 308). The

regulation of this phenotypic conversion offers novel approaches for

optimizing the neural microenvironment following TBI, potentially

mitigating inflammation while promoting neuroregeneration.

Regarding the inhibition of inflammatory responses, cytokine

therapy and the development of specific inhibitors have emerged as

focal points of research. A particularly noteworthy direction is the

application of a7 nicotinic acetylcholine receptor (a7nAChR)
agonists. Compounds such as GTS-21 can inhibit the NF-kB
pathway and STAT3 phosphorylation through a7nAChR
activation, thereby attenuating A1 astrocyte activation (309).

Furthermore, a7nAChR activation promotes the release of anti-

inflammatory factors, such as interleukin-10 (IL-10), establishing a

positive feedback loop that augments its anti-inflammatory effects
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(310, 311). This multifaceted regulatory mechanism endows

a7nAChR agonists with significant neuroprotective potential

following TBI.

The promotion of cytoprotective mechanisms represents the

third crucial research direction, with glucagon-like peptide-1 (GLP-

1) receptor agonists garnering particular interest. Recent studies have

demonstrated that GLP-1 receptor agonists mitigate inflammation

and BBB disruption in experimental stroke models. For instance, the

GLP-1 receptor agonist exendin-4 (Ex-4) attenuates astrocytic

production of inflammatory factors, including vascular endothelial

growth factor A (VEGF-A), matrix metalloproteinase-9 (MMP-9),

CCL2, and C-X-C motif chemokine ligand 1 (CXCL-1) (312).

Liraglutide, originally developed for diabetes treatment, has been

found to play a significant role in neuroprotection (313, 314). In a

murine model of ischemic stroke, the GLP-1 agonist semaglutide

demonstrated alleviation of BBB disruption by inhibiting C3d

+/GFAP+ A1 astrocyte transformation (263). Another noteworthy

direction is the application of 3K3A-APC, a variant of activated

protein C. 3K3A-APC activates protease-activated receptor 1 (PAR1),

and APC signaling through PAR1 differs significantly from

thrombin-induced signaling; thrombin effects are mediated by G

proteins, whereas APC-induced signaling is b-arrestin-mediated.

Activation of PAR1 by 3K3A-APC reduces A1 astrocyte formation

and promotes A2 astrocyte transformation. Furthermore, it enhances
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cell survival by activating the protein kinase B (Akt) signaling

pathway and mitigates inflammatory factor production by

inhibiting the NF-kB signaling pathway (315–317). This dual anti-

inflammatory and neuroprotective property positions 3K3A-APC as

a promising drug candidate in TBI treatment research (Figure 2

Integration of multiple signaling pathways in the regulation of

cellular inflammatory responses.).

Recent years have witnessed significant progress in targeted

therapies for astrocytes. NLY01, a GLP-1R agonist, effectively

blocks A1 astrocyte activation by inhibiting microglial release of

IL-1a, TNFa, and C1q. This drug has completed Phase I safety

trials for PD treatment and is currently undergoing Phase II trials

(NCT04154072) to evaluate its efficacy in early untreated PD

patients (318). In AD research, preclinical studies indicate that

NLY01 reduces Ab deposition and astrocyte activation,

demonstrating potential in delaying neurodegenerative disease

progression through indirect targeting of upstream A1 activation

signals. Simvastatin inhibits A1 astrocyte polarization by

suppressing HMG-CoA reductase and modulating NR4A2

activity, thereby reducing IL-6 and TNFa production. A Phase II

clinical trial (NCT02787590) for moderate PD patients has been

completed, with results pending publication (319). Current research

focuses on validating the drug’s specific regulatory effects on

astrocyte phenotypes. Neflamapimod, a selective p38 MAPK a
FIGURE 2

Integration of multiple signaling pathways in the regulation of cellular inflammatory responses. The diagram illustrates five major signaling cascades
and their interconnections: (1) The rapamycin pathway, where rapamycin complexes with FKBP to inhibit mTORC1, subsequently modulating NLRP3
inflammasome activity; (2) a7nAChR signaling, initiated by agonist binding and calcium influx, which activates dual pathways - the JAK2/STAT3
cascade and the PI3K/AKT/GSK3b/Nrf2 pathway, culminating in HO expression and anti-inflammatory effects; (3) GLP-1R signaling, triggered by
receptor agonist binding, which stimulates adenylate cyclase to produce cAMP, activating the PKA/CREB pathway and inducing IL-10 expression
through promoter activation; (4) The fingolimod pathway, operating through S1PR1 and Gi protein activation to regulate STAT3 and the NLRP3/IL-1b
pro-inflammatory axis; and (5) 3K3A-APC signaling, which functions through PI3K/AKT activation to promote anti-inflammatory responses. These
pathways demonstrate the intricate molecular mechanisms controlling inflammation, featuring key regulatory elements including transcription
factors (STAT3, Nrf2, CREB), kinases (PI3K, AKT, JAK2, PKA), second messengers (Ca2+, cAMP), and inflammatory mediators (NLRP3, IL-1b, IL-10).
The integration of these signaling cascades reveals multiple therapeutic targets and their respective pharmacological interventions in the modulation
of inflammatory responses, highlighting the complex interplay between pro- and anti-inflammatory mechanisms in cellular regulation.
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subtype inhibitor, effectively reduces inflammatory factor release

from astrocytes and microglia. In AD treatment, Phase IIa trials

have confirmed its ability to lower CSF tau protein levels, and Phase

IIb trials (NCT03402659) are ongoing (320, 321). While not directly

targeting A1 astrocytes, it may indirectly suppress their activity

through neuroinflammation regulation. Regarding combination

therapy strategies, the joint application of ibuprofen and

Cromolyn demonstrates unique advantages. Ibuprofen inhibits

COX-2-mediated inflammatory responses, while Cromolyn blocks

microglial activation, collectively reducing A1 astrocyte

polarization. This combination therapy is currently undergoing

Phase I clinical trials (NCT04570644) for early AD, focusing on

safety assessment and biomarker effects (322).

In TBI treatment research, regulatory strategies targeting

astrocytes primarily encompass three directions: small molecule

drugs, gene therapy, and stem cell transplantation. In the small

molecule drug field, TGF-b signaling pathway regulation has

shown significant value. Studies reveal that TGF-b exhibits dual

effects in TBI: moderate activation suppresses inflammatory

responses, while excessive activation leads to glial scar formation

and neurite growth inhibition. Fibrinogen activates the astrocytic p-

Smad2 pathway by releasing latent TGF-b, and inhibiting this

pathway significantly improves neuroplasticity (181). In preclinical

studies, TGF-b inhibitor SB431542 has been used to reduce astrocyte

proliferation, though its application requires precise control of dosage

and administration timing (323). Endothelin receptor antagonist

studies demonstrate that post-TBI ET-1 promotes astrocytic

STAT3 pathway activation through ETB-R, inducing reactive

proliferation and vasoconstriction. ETB antagonist BQ788 has

shown effectiveness in reducing cerebral edema and restoring BBB

function in animal experiments (324), while decreasing the release of

chemokines CCL2 and CXCL1, effectively suppressing

neuroinflammation (325). Estrogenic compounds, particularly E2

and its analogs, enhance antioxidant and anti-inflammatory

capabilities by activating astrocytic ERs. Notably, phytoestrogen

isoflavones significantly reduce post-TBI glial scarring and promote

synaptic remodeling (326). Regarding anti-inflammatory and

antiepileptic drugs, LEV prevents post-TBI epilepsy by maintaining

astrocytic connexin expression (327), while minocycline indirectly

modulates inflammation by inhibiting microglial p38 pathway (328).

Breakthroughs in gene therapy primarily focus on CRISPR/

Cas9 technology applications. Research indicates that APOE4 allele

correction can improve cholesterol metabolism and Ab clearance

dysfunction in APOE4-carrying astrocytes, validated in AD models

and potentially applicable to post-TBI neurodegeneration treatment

(329). Viral vector-mediated gene delivery, particularly AAV-

delivered GDNF/BDNF genes to astrocytes, shows potential in

improving dopaminergic neuron function in PD models (330). In

stem cell therapy, iPSC-derived astrocyte transplantation

demonstrates unique advantages. Using the LRRK2-mutant PD

model as an example, transplantation of genetically corrected

iPSC-astrocytes effectively reduces a-synuclein aggregation. While

early clinical trials have confirmed stem cell transplantation safety,

further optimization of cell types and transplantation strategies is

needed for functional recovery (329).
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6 Conclusions and future directions

Exploration of astrocyte activation in the context of TBI has

revealed a complex interplay of cellular and molecular mechanisms

that significantly influence outcome after injury. This review

systematically investigates the pathways triggering astrocyte

activation after TBI, the complex mechanisms controlling the

release of inflammatory mediators from activated astrocytes, and

the multifaceted roles that these inflammatory mediators play in the

progression of secondary injury. In addition, we highlight recent

advances in targeted therapeutic approaches aimed at modulating

pro-inflammatory astrocytes. Activation of astrocytic inflammatory

mediators after TBI represents a pivotal moment in the

pathophysiology of secondary brain injury. The dual nature of

astrocyte reactivity (neuroprotective and neurotoxic) emphasizes

the complexity of targeting these cells in therapeutic interventions.

The current state of research presents both promising

opportunities and significant challenges. Despite the exponential

growth in our understanding of astrocyte biology in TBI,

translating this knowledge into effective clinical interventions

remains an ongoing endeavor. The heterogeneity of astrocyte

responses to injury, coupled with the dynamic nature of

inflammation following TBI, requires a nuanced therapeutic

approach. Recent advances in understanding the molecular basis of

astrocyte inflammasomes activation have paved the way for new

therapeutic strategies. Targeted approaches aimed at modulating

specific components of the inflammasomes machinery, such as

NLRP3 inhibitors and caspase-1 blockers, have shown promise in

preclinical models. However, translating these findings into clinically

viable therapeutics remains a major challenge. Looking forward,

several key areas emerge as priorities for ongoing research: a) A

more comprehensive understanding of astrocyte subpopulations and

their differential responses to TBI may lead to more targeted and

effective therapies. b) Developing methods to selectively modulate

pro-inflammatory astrocytes while preserving the beneficial functions

of other astrocyte subpopulations. c) Exploring the synergistic effects

of simultaneously targeting multiple aspects of the astrocyte

inflammasomes pathway in a synergistic manner. d) Drug delivery

methods that allow for precise, localized delivery of anti-

inflammatory drugs to overcome the BBB and minimize systemic

side effects. e) Bridging the gap between preclinical success and

clinical application through improved animal models and

innovative clinical trial design.

The path forward for TBI research and treatment is

undoubtedly challenging, but full of potential. As we continue to

unravel the complexities of astrocyte inflammatory mediator

activation production, we are getting closer to discovering

targeted and effective therapies that can significantly improve the

prognosis of patients with TBI. The integration of cutting-edge

technologies such as single-cell genomics and advanced imaging

with traditional research methods promises to accelerate progress in

this critical area. As our understanding of astrocyte biology in TBI

continues to evolve, so does the potential for developing targeted

therapies. Significant progress in this area is expected in the future,

with the potential to further fill the therapeutic landscape for
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patients with TBI. However, the complex role of astrocytes in

maintaining brain homeostasis must be carefully considered to

avoid unintended consequences of therapeutic interventions.
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Pérez-Sen R, et al. Prostaglandin E2 impairs P2Y2/P2Y4 receptor signaling in cerebellar
astrocytes via EP3 receptors. Front Pharmacol. (2017) 8:937. doi: 10.3389/
fphar.2017.00937

35. Sheng WS, Hu S, Feng A, Rock RB. Reactive oxygen species from human
astrocytes induced functional impairment and oxidative damage. Neurochem Res.
(2013) 38:2148–59. doi: 10.1007/s11064-013-1123-z

36. Giovannoni F, Quintana FJ. The role of astrocytes in CNS inflammation. Trends
Immunol. (2020) 41:805–19. doi: 10.1016/j.it.2020.07.007

37. Liu X-X, Yang L, Shao L-X, He Y, Wu G, Bao Y-H, et al. Endothelial Cdk5 deficit
leads to the development of spontaneous epilepsy through CXCL1/CXCR2-mediated
reactive astrogliosis. J Exp Med. (2020) 217:e20180992. doi: 10.1084/jem.20180992

38. Liang P, Zhang X, Zhang Y, Wu Y, Song Y, Wang X, et al. Neurotoxic A1
astrocytes promote neuronal ferroptosis via CXCL10/CXCR3 axis in epilepsy. Free
Radical Biol Medicine. (2023) 195:329–42. doi: 10.1016/j.freeradbiomed.2023.01.002

39. Li L, Ni L, Heary RF, Elkabes S. Astroglial TLR9 antagonism promotes
chemotaxis and alternative activation of macrophages via modulation of astrocyte-
derived signals: implications for spinal cord injury. J Neuroinflammation. (2020) 17:73.
doi: 10.1186/s12974-020-01748-x

40. Sofroniew MV. Astrocyte reactivity: subtypes, states, and functions in CNS
innate immunity. Trends Immunol. (2020) 41:758–70. doi: 10.1016/j.it.2020.07.004

41. Li L, Acioglu C, Heary RF, Elkabes S. Role of astroglial toll-like receptors (TLRs)
in central nervous system infections, injury and neurodegenerative diseases. Brain
Behav Immun. (2021) 91:740–55. doi: 10.1016/j.bbi.2020.10.007

42. Liu Z, Shen C, Li H, Tong J, Wu Y, Ma Y, et al. NOD-like receptor NLRC5
promotes neuroinflammation and inhibits neuronal survival in Parkinson’s disease
models. J Neuroinflammation. (2023) 20:96. doi: 10.1186/s12974-023-02755-4

43. Manu DR, Slevin M, Barcutean L, Forro T, Boghitoiu T, Balasa R. Astrocyte
involvement in blood–brain barrier function: A critical update highlighting novel,
complex, neurovascular interactions. Int J Mol Sci. (2023) 24:17146. doi: 10.3390/
ijms242417146

44. Boghdadi AG, Teo L, Bourne JA. The neuroprotective role of reactive astrocytes
after central nervous system injury. J Neurotrauma. (2020) 37:681–91. doi: 10.1089/
neu.2019.6938

45. Chen Y, Qin C, Huang J, Tang X, Liu C, Huang K, et al. The role of astrocytes in
oxidative stress of central nervous system: A mixed blessing. Cell Prolif. (2020) 53:
e12781. doi: 10.1111/cpr.12781

46. Wen X, Hu J. Targeting STAT3 signaling pathway in the treatment of Alzheimer’s
disease with compounds from natural products. Int Immunopharmacology. (2024)
141:112936. doi: 10.1016/j.intimp.2024.112936

47. Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, et al. NF-kB in biology and targeted
therapy: new insights and translational implications. Signal Transduction Targeted
Ther. (2024) 9:1–37. doi: 10.1038/s41392-024-01757-9
Frontiers in Immunology 17
48. Islam F, Roy S, Zehravi M, Paul S, Sutradhar H, Yaidikar L, et al. Polyphenols
targeting MAP kinase signaling pathway in neurological diseases: understanding
molecular mechanisms and therapeutic targets. Mol Neurobiology. (2023) 61:2686–
706. doi: 10.1007/s12035-023-03706-z

49. Weber JT. Altered calcium signaling following traumatic brain injury. Front
Pharmacol. (2012) 3:60. doi: 10.3389/fphar.2012.00060

50. Gao K, Wang CR, Jiang F, Wong AY, Su N, Jiang JH, et al. Traumatic scratch
injury in astrocytes triggers calcium influx to activate the JNK/c-Jun/AP-1 pathway and
switch on GFAP expression. Glia. (2013) 61:2063–77. doi: 10.1002/glia.22577

51. Gomez-Cruz C, Fernandez-de la Torre M, Lachowski D, Prados-de-Haro M, del
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