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Phagocytes, including granulocytes (especially neutrophils), monocytes,

macrophages, and dendritic cells, are essential components of the innate

immune system, bridging innate and adaptive immunity. Their activation and

function are tightly regulated by transcription factors that coordinate immune

responses. Among these, Krüppel-like factor 4 (KLF4) has gained attention as a

regulator of phagocyte differentiation, polarization, and inflammatory

modulation. However, its role is highly context-dependent, exhibiting both

pro- and anti-inflammatory properties based on environmental signals, cellular

states, and the invading pathogen. KLF4 influences monocyte-to-macrophage

differentiation and shapes macrophage polarization, promoting either

inflammatory or regulatory phenotypes depending on external cues. In

neutrophils, it affects reactive oxygen species production and immune

activation, while in dendritic cells, it regulates monocyte-to-dendritic cell

differentiation and cytokine secretion. Its diverse involvements in immune

responses suggests that it contributes to maintaining a balance between

effective pathogen defense and the prevention of excessive and potentially

harmful inflammation. This review summarizes current knowledge on the

function of KLF4 in phagocytes during infections, highlighting its regulatory

mechanisms, context-dependent roles, and its impact on immune activation

and resolution. Additionally, potential implications for therapeutic interventions

targeting KLF4 are discussed.
KEYWORDS

KLF4, phagocytes, macrophages, neutrophils, dendritic cells, innate immunity,
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1 Introduction

Phagocytes, such as neutrophilic granulocytes, monocytes macrophages, and dendritic

cells, are critical effectors of the innate immune system and play a pivotal role in host

defense against pathogens. These cells employ a diverse array of mechanisms, including

phagocytosis, production of reactive oxygen species (ROS), and release of antimicrobial
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peptides, to eliminate invading microorganisms (1, 2). Moreover,

phagocytes serve as a crucial link between innate and adaptive

immunity by presenting antigens and secreting cytokines that

modulate T and B cell responses (3, 4).

The activation and function of phagocytes are tightly regulated

by a complex network of transcription factors that orchestrate gene

expression programs in response to environmental triggers,

ensuring effective pathogen elimination on the one hand, while

protecting against excessive and self-destructive inflammation on

the other. Among these, the transcription factor Krüppel-like factor

4 (KLF4) has received increasing attention as a regulator of several

important aspects of phagocyte function, including differentiation,

polarization, pathogen recognition, and the modulation of

inflammatory responses. KLF4, a member of the KLF family of

zinc finger transcription factors, was initially identified as a key

regulator of a functional epithelial barrier (5, 6). It later gained

prominence with the discovery that its expression, in combination

with other transcription factors, can reprogram differentiated cells

into pluripotent stem cells (7, 8). Its role in regulating the immune

response has been recognized relatively recently. The function and

regulation of KLF4 in phagocytes is complex, partially

contradictory, and still far from fully understood. KLF4 plays a

context-dependent role in infectious diseases, exhibiting both pro-

and anti-inflammatory effects, depending on a multitude of factors

such as context-dependent binding partners, the pathogen, and the

cell type in which it is expressed (5, 9, 10).

This review aims to summarize current knowledge on the

multifaceted roles of KLF4 in phagocytes during infectious

diseases. The regulation and function of KLF4 in different types

of phagocytes, as well as its role in response to specific pathogens,

including bacterial, fungal, and parasitic agents, are examined.

Furthermore, future perspectives, such as the therapeutic

potential of targeting KLF4 to modulate phagocyte-mediated

responses in the treatment of infectious diseases, are discussed.
2 Monocytes and macrophages

Monocytes are blood-circulating immune cells and precursors

of tissue-resident macrophages and certain dendritic cells (11).

They circulate for 1-3 days before differentiating and migrating

into tissues, where they function as macrophages for weeks to
Abbreviations: ARG1, arginase 1; CD, cluster of differentiation; DCs, dendritic

cells; HMGB1, high mobility group box 1 protein; IFN-g, interferon gamma; IL,

interleukin; iNOS, inducible nitric oxide syn-thase; IRF4, interferon regulatory

factor 4; KLF4, Krüppel-like factor 4; LPS, lipopolysaccharide; LytA, N-

acetylmuramoyl-L-alanine amidase; MHC, major histocompatibility complex;

miR, micro ribonucleic acid; MyD88, myeloid differentiation primary response

88; NF-kB, nuclear factor kap-pa-light-chain-enhancer of activated B cells;

PPAR-g, peroxisome proliferator-activated receptor gamma; ROS, reactive

oxygen species; SENP1, sentrin-specific protease 1; STAT, signal transducer

and activator of transcription; SUMO, small ubiquitin-related modifier; Th2, T

helper cell 2; TLR, Toll-like receptor; TNF, tumor necrosis factor; TRIM29,

tripartite motif-containing protein 29.
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months (12, 13). Macrophages exhibit functional plasticity. While

traditionally the differentiated M0 naïve macrophages were

classified into pro-inflammatory M1 and anti-inflammatory M2

states (14), this model has been expanded to reflect a spectrum of

activation states with fluid transitions (15). M1 macrophages

eliminate pathogens, produce ROS and nitrogen species, and

secrete pro-inflammatory cytokines like interleukin (IL)-6 and IL-

8, but may also contribute to tissue damage and autoimmune

diseases (16, 17). In contrast, wound-healing and regulatory M2

macrophages suppress inflammation, with the latter secreting IL-10

to limit tissue damage and support repair (15, 18). KLF4 plays an

important role at various levels of monocyte and macrophage

differentiation and activation. First, KLF4 is important for

monocyte-to-macrophage differentiation. It is a downstream

target of PU.1, a key transcription factor for the regulation of

myeloid cell fate (19), which binds to and activates the KLF4

promoter in monocytes (20). KLF4 promotes the expression of

monocyte-specific markers such as cluster of differentiation (CD)

14 and CD11b and induces morphological and functional

characteristics of mature monocytes (21, 22). Loss of KLF4, as

demonstrated in mouse knockout models, results in a loss or

marked reduction of bone marrow derived inflammatory

monocytes and resident monocytes, coupled with increased

apoptosis and impaired expression of key trafficking molecules (23).

Second, KLF4 is essential for macrophage polarization upon

inflammatory stimuli. The rapid onset and timely resolution of

inflammatory responses in macrophages are interconnected

processes, both essential for effective host defense against

pathogenic infections while simultaneously avoiding unnecessary

collateral tissue damage. KLF4 expression is strongly upregulated in

macrophages in response to inflammatory stimuli, such as pro-

inflammatory cytokines, lipopolysaccharide (LPS), or pathogen

contact (24–27). Several studies in murine macrophages suggest

that KLF4 predominantly promotes the M2 anti-inflammatory

macrophage phenotype through transcriptional synergy with signal

transducer and activator of transcription (STAT) 6 and peroxisome

proliferator-activated receptor gamma (PPAR-g), driving the

expression of M2 markers such as arginase 1 (ARG1) and CD206

(27–31). Moreover, KLF4 was shown to actively suppress theM1 pro-

inflammatory phenotype by interfering with nuclear factor kappa-

light-chain-enhancer of activated B cells (NF-kB) recruitment to pro-

inflammatory gene promoters, thereby attenuating transcription of

mediators like inducible nitric oxide synthase (iNOS) and tumor

necrosis factor (TNF)-a (24, 32, 33). However, under specific

conditions, mechanisms such as sentrin-specific protease 1

(SENP1)-mediated de-SUMOylation of KLF4 shifts its function to

enhance M1 polarization via NF-kB activation, leading to increased

production of pro-inflammatory cytokines (34). In line with this

observation, the induction of KLF4 expression in macrophages by

pro-inflammatory stimuli like self-derived interferon gamma (IFN-g),
TNF-a and bacterial-derived LPS can lead to an interaction of KLF4

with NF-kB, promoting the M1 phenotype with increased inducible

nitric-oxide synthase (iNOS) expression (25).

Also, the timing within the course of an infection may influence

whether KLF4 acts in a pro- or anti-inflammatory manner in
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macrophages. During infection, LPS-induced KLF4 expression can

promote IL-10 release, particularly in the early course of infection,

while later it may contribute to the release of high mobility group

box 1 protein (HMGB1), a rather pro-inflammatory mediator (35).

Moreover, KLF4 is upregulated alongside STAT1 in exhausted

monocytes after repetitive challenges with high-dose LPS, leading

to a gene expression profile indicative of both pathogenic

inflammation and immunosuppression, characteristic for

exhausted monocytes in septic patients (36, 37). Additionally,

KLF4 interacts with non-coding RNAs to finetune macrophage

responses. Micro ribonucleic acid (miR)-34a inhibits KLF4

expression, promoting an M1 phenotype, while miR-126 and

exosomal miR-103-3p enhance the role of KLF4 in M2

polarization (38, 39).

It is therefore undisputed that KLF4 plays a crucial role in

macrophage differentiation upon inflammatory stimuli, seemingly

exhibiting a Janus-like function with both pro- and anti-

inflammatory properties. Based on the available data, currently no

definitive conclusion can be drawn as to whether KLF4 acts

predominantly in a pro- or anti-inflammatory manner in

macrophages, nor at what time point or which factors drive

this behavior.

Interestingly, KLF4 plays a crucial role in maintaining rhythmic

immune responses in macrophages, which are disrupted during

aging. In aged macrophages, KLF4 expression is diminished,

leading to a loss of circadian gene transcription and impaired

functions like monocyte trafficking, phagocytosis, and bacterial

resistance. This decline in KLF4-driven rhythmicity probably

contributes to the age-associated vulnerability to infections and

inflammatory diseases in older individuals (40).
2.1 KLF4 in macrophages during bacterial
infections

KLF4 plays a critical role in regulating macrophage responses

during bacterial infections. In Streptococcus pneumoniae infections,

KLF4 expression in macrophages is induced only by viable

pneumococci that establish direct contact with host cells and

release autolysin N-acetylmuramoyl-L-alanine amidase (LytA)-

dependent DNA, partially mediated via Toll-like receptor (TLR) 9

and the adaptor protein myeloid differentiation primary response

88 (MyD88) (26). This KLF4 induction promotes a pro-

inflammatory macrophage phenotype, increasing cytokine

secretion such as IL-6 and TNF-a while suppressing IL-10 release

(26). In pneumococcal pneumonia, KLF4 in myeloid cells is

essential for an effective early immune response as its deficiency

leads to reduced pro-inflammatory cytokine levels, impaired

bacterial clearance, and increased disease severity in the early

course of infection (9). Contact with Pseudomonas aeruginosa

also leads to an upregulation of KLF4 expression in lung resident

alveolar macrophages (41). However, in contrast to Streptococcus

pneumoniae, this upregulation does not enhance the immune

response but instead promotes a pro-efferocytosis phenotype shift,

a process by which apoptotic cells are removed by phagocytes,
Frontiers in Immunology 03
preventing severe inflammatory injury (41). Additionally, KLF4 is

involved in macrophage polarization during Mycobacterium

tuberculosis infection. Infection with Mycobacterium tuberculosis

strongly induces KLF4 expression, leading to M2 polarization with

decreased expression of antibacterial effectors such as iNOS and

impaired trafficking of Mycobacterium tuberculosis to lysosomes,

thereby promoting bacterial survival (42). Furthermore, in

Mycobacterium bovis infection, KLF4 contributes to immune

evasion by repressing major histocompatibility complex (MHC)-

II expression through epigenetic modifications, thereby limiting

antigen presentation and adaptive immune activation (43). Overall,

KLF4 exerts both pro- and anti-inflammatory effects in bacterial

infections, depending on the pathogen, probably cell type (bone

marrow derived versus resident macrophages) and immune

context. In Streptococcus pneumoniae infections, KLF4 enhances

early inflammation and bacterial clearance, whereas in

Pseudomonas aeruginosa infections, it prevents excessive immune

activation, and in Mycobacterium infections, it promotes

bacterial persistence.
2.2 KLF4 in macrophages during parasitic
infections

Also in parasitic infections, KLF4 has been shown to be involved

in macrophage activation. KLF4 is downregulated in the liver

during Schistosoma japonicum infection in mice, which fosters the

M2 activation of liver-resident macrophages and supports the

development of liver fibrosis (44, 45). In Echinococcus granulosus

infection, by contrast, KLF4 is upregulated in peritoneal

macrophages, promoting the development of an anti-

inflammatory M2 phenotype, likely as a mechanism for

Echinococcus granulosus to evade the immune response to

enhance its survival and growth (46). In cerebral malaria,

infection with Plasmodium berghei ANKA leads to platelet-

dependent upregulation of KLF4 in macrophages, resulting in

increased production of pro-inflammatory cytokines such as IL-6,

which probably worsens disease severity and the overall outcome

(47). These findings highlight the context-dependent role of KLF4

in parasitic infections, where it can either contribute to immune

evasion and tissue pathology or exacerbate inflammatory responses.
3 Neutrophilic granulocytes

Neutrophilic granulocytes are part of the first line of defense

against bacterial infections. They rapidly migrate to infection sites,

where they eliminate pathogens through phagocytosis,

degranulation of granules containing a multitude of antimicrobial

and cytotoxic substances, and the release of neutrophil extracellular

traps (48, 49). There are generally few studies on KLF4 in

neutrophilic granulocytes, limiting our understanding of its role

in this cell type. As in macrophages, KLF4 expression in

neutrophilic granulocytes is induced by pro-inflammatory stimuli

such as LPS (50, 51). KLF4 deficiency in these cells leads to impaired
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degranulation of neutrophilic granules in response to LPS

stimulation and delays neutrophil apoptosis, which is critical for

the resolution of neutrophil-mediated inflammation (50). This

impairment appears to be at least partially caused by disrupted

LPS signaling through TLR4, the IkB kinase complex, and NF-kB in

these cells. KLF4 seems to be essential for the proper function of this

cascade in neutrophils (50). Thus, KLF4 expression in neutrophils

appears to be necessary both for the effective elimination of

pathogens and for limiting immune activation to prevent

excessive immune responses.
3.1 KLF4 in neutrophilic granulocytes
during bacterial infections

Our understanding of KLF4 in neutrophils during bacterial

infections is primarily based on two studies. The absence of KLF4

leads to reduced intracellular killing of Escherichia coli in neutrophils

due to impaired ROS production (50). The resulting increased

susceptibility to infections, such as Escherichia coli, in myeloid-

specific conditional KLF4-deficient mice is, however, accompanied

by a reduced risk of excessive systemic inflammation and septic shock

in response to Escherichia coli infection in these animals (50). In

Streptococcus pneumoniae infection, KLF4 expression is upregulated

in neutrophils through direct contact with viable pneumococci (52).

KLF4 is necessary for effective intracellular killing of Streptococcus

pneumoniae, enhances the production of the pro-inflammatory

cytokines TNF-a and keratinocyte chemoattractant, and inhibits

the production of the anti-inflammatory IL-10 (52). In summary,

the upregulation of KLF4 in neutrophilic granulocytes appears to be

necessary for effective clearance of bacterial pathogens.
4 Dendritic cells

Dendritic cells (DCs) are antigen-presenting cells that bridge the

innate and adaptive immune system. They capture, process, and

present antigens to T cells, thereby orchestrating immune responses

(53, 54). DCs exist in various subsets, including conventional DCs,

plasmacytoid DCs, and monocyte-derived DCs, each with specialized

functions (55, 56). KLF4 is important for the differentiation and

function of DCs, exhibiting context-dependent regulatory effects.

During monocyte-to-DC differentiation, KLF4 expression is

maintained in monocyte-derived DCs and inflammatory DC

subsets but is repressed in Langerhans cells, a specialized DC

population in the skin (55–58). Notch signaling has been identified

as a key mechanism repressing KLF4 expression to allow Langerhans

cell differentiation (58). Functionally, KLF4 regulates cytokine

production in DCs, particularly IL-6 expression, through both

direct promoter activation and epigenetic modifications (59, 60). It

is also essential for interferon regulatory factor 4 (IRF4)-expressing

DCs that drive T helper 2 (Th2) responses, as KLF4 deletion in these

cells impairs Th2 polarization in response to parasites or allergens

like house dust mites (61, 62). In fungal infections such as Aspergillus

fumigatus and Candida albicans, KLF4 expression is downregulated
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in DCs, primarily through TLR2 activation, contrasting with its

upregulation by bacterial stimuli such as LPS, which primarily

activates TLR4. While both pathways result in IL-6 release, LPS-

induced IL-6 production is considerably more pronounced compared

to fungal stimulation (59).
5 Concluding remarks and future
perspectives

KLF4 plays a fundamental role in shaping the immune response by

regulating various aspects of phagocyte function. As a keymodulator of

monocyte and macrophage differentiation, neutrophil activity, and

dendritic cell responses, KLF4 influences how the innate immune

system responds to infections (summarized in Figure 1 and Table 1). Its

effects extend beyond simple activation or suppression, as it seems

dynamically adapt to different environmental cues, cellular states, and

pathogen-specific interactions. Its role in immune responses is highly

context-dependent. In some settings, it enhances inflammatory

pathways to promote pathogen clearance, while in others, it

promotes a shift toward anti-inflammatory states to prevent

excessive tissue damage. KLF4’s ability to interact with a multitude of

other transcription factors, signaling pathways, and non-coding RNAs

adds another layer of complexity to its regulatory functions, suggesting

that our understanding of the role and function of KLF4 in the context

of inflammation and infection is still preliminary. Future studies should

focus on elucidating the mechanisms and binding partners that

determine how KLF4 switches between pro- and anti-inflammatory

activity or between transcriptional activation and inhibition of target

genes, depending on external factors. It should also be investigated

whether the induction of KLF4 in other non-phagocytic cell types,

through cell-cell interactions, influences its function or expression in

phagocytes. In addition to investigating KLF4’s role in further bacterial,

fungal, and parasitic infections, future studies should also explore its

function in phagocytes during viral infections, as these cells can, under

certain circumstances, serve both as viral targets, as shown for

respiratory phagocytes in influenza A infection, and as mediators of

antiviral immune responses (63–67). Interestingly, in this context,

KLF4 is known to transactivate tripartite motif-containing protein 29

(TRIM29) expression (68), a transcription factor that modulates

antiviral immune responses in various cell types (69–72). However, it

remains unclear whether an interplay between KLF4 and TRIM29 also

influences antiviral immune responses in phagocytes. Given the above

discussed role of KLF4 in parasitic infections, a potential role of KLF4

in eosinophil granulocytes should also be explored, as these cells are

fundamentally important for parasite defense (73), but the expression

and function of KLF4 in these phagocytes remain unknown.

Given its pivotal regulatory role in phagocyte function, KLF4

presents as an interesting, yet complex, candidate for therapeutic

intervention in infectious diseases. Modulating KLF4 activity could

allow for tailored immune responses - enhancing its expression may

promote anti-inflammatory macrophage polarization or

efferocytosis to prevent tissue damage in chronic or excessive

inflammation, while inhibiting KLF4 could restore bactericidal

functions in macrophages or enhance pro-inflammatory
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TABLE 1 Overview of the role of KLF4 in regulating the inflammatory response across different phagocyte types in response to specific pathogens,
with potential therapeutic implications.

Phagocyte type Pathogen KLF4 function Clinical implication Potential therapeutic
approach

Macrophages Streptococcus pneumoniae Induces pro-inflammatory
cytokines, suppresses IL-10
(9, 26)

Enhances early immune
response, but may promote
excessive inflammation

Controlled KLF4 modulation
to balance clearance
vs. inflammation

Pseudomonas aeruginosa Promotes efferocytosis and
anti-inflammatory
response (41)

Protects against tissue damage
through immune modulation

KLF4 induction to
limit immunopathology

Mycobacterium tuberculosis Induces M2 polarization,
reduces bactericidal
activity (42)

Facilitates pathogen persistence KLF4 inhibition to restore
antimicrobial functions

Mycobacterium bovis Represses MHC-II, reduces
adaptive immune
activation (43)

Facilitates pathogen persistence KLF4 inhibition to restore
antimicrobial functions

Schistosoma japonicum Downregulation promotes
M2 phenotype in hepatic
macrophages (44, 45)

Contributes to liver fibrosis KLF4 induction to prevent
fibrotic remodeling

Plasmodium berghei (cerebral malaria) Platelet-dependent
upregulation leads to IL-6
production (47)

Exacerbates inflammation and
worsens disease outcome

KLF4 inhibition to reduce
inflammatory severity

Neutrophilic
granulocytes

Escherichia coli Enhances ROS
production (50)

Improves pathogen clearance, but
increases risk of septic shock

Controlled KLF4 modulation
to balance clearance
vs. inflammation

S. pneumoniae Enhances bacterial killing
and pro-inflammatory
cytokine production,
suppresses IL-10 (52)

Improves pathogen clearance Controlled KLF4 modulation
to balance clearance
vs. inflammation

Dendritic Cells Candida albicans, Aspergillus fumigatus Downregulated by TLR2
signaling; reduces IL-6
production (59)

Weakens antifungal immunity KLF4 induction to enhance
antigen presentation

Parasites Promotes Th2 polarization
via IRF4+ dendritic
cells (61)

Enhances anti-parasitic responses KLF4 induction to promote
adaptive immune response
F
rontiers in Immunology
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IL, interleukin; IRF4, interferon regulatory factor 4; KLF4, Krüppel-like factor 4; MHC, major histocompatibility complex; ROS, reactive oxygen species; TLR, Toll-like receptor.
FIGURE 1

Overview of the regulatory roles of KLF4 in phagocytes during infections. DC, dendritic cells; KLF4, Krüppel-like factor 4. Image created
with BioRender.
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responses during immune suppression. Similarly, selective KLF4

modulation in neutrophils and dendritic cells could influence

microbial clearance and adaptive immune activation, respectively.

However, due to its context-dependent and time-sensitive

functions, any therapeutic approach must be precisely timed and

cell-specific to avoid adverse effects, such as impaired pathogen

clearance or immunopathology. Moreover, concerns regarding

KLF4’s role in tumorigenesis (74–77) underscore the need for

cautious and highly targeted strategies in potential future

therapeutic development. We identified one study that used

honokiol, a natural compound derived from parts of the plant

Magnolia grandiflora commonly used in Oriental herbal medicine,

to counteract LPS-induced upregulation of KLF4 in murine

microgl ia l ce l l s , result ing in reduced product ion of

proinflammatory cytokines (78). However, whether this approach

allows for a targeted and finely tunable modulation of KLF4 in vivo

remains uncertain.

While this review summarizes the current understanding of

KLF4 in phagocyte activation during infectious diseases, several

limitations should be acknowledged. First, the existing body of

literature is limited, with most experimental data derived from

murine models or in vitro systems, making translational

applicability to human disease uncertain. Second, although one

study has explored a potential therapeutic strategy targeting KLF4,

further investigations in the context of infectious diseases are still

lacking. Thus, the therapeutic strategies discussed remain largely

theoretical. Third, due to the fragmented and pathogen-specific

nature of the available data, comprehensive comparisons across

different infectious agents or phagocyte subtypes are difficult, and

conclusions may not be generalizable.

Therefore, while KLF4 represents a significant regulator of

immune function in phagocytes, its complex and context-

dependent roles necessitate a cautious approach when

considering it as a therapeutic target, underscoring the need for

further in-depth studies to fully understand its implications in

immunity and disease.
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