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Nucleic acid vaccines:
innovations, efficacy,
and applications in
at-risk populations
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1Drexel University College of Medicine, Department of Microbiology and Immunology, Philadelphia,
PA, United States, 2Drexel University College of Medicine, Department of Medicine, Division of
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For more than two centuries, the field of vaccine development has progressed

through the adaptation of novel platforms in parallel with technological

developments. Building off the advantages and shortcomings of first and

second-generation vaccine platforms, the advent of third-generation nucleic

acid vaccines has enabled new approaches to tackle emerging infectious

diseases, cancers, and pathogens where vaccines remain unavailable. Unlike

traditional vaccine platforms, nucleic acid vaccines offer several new advantages,

including their lower cost and rapid production, which was widely demonstrated

during the COVID-19 pandemic. Beyond production, DNA and mRNA vaccines

can elicit unique and targeted responses through specialized design and delivery

approaches. Considering the growth of nucleic acid vaccine research over the

past two decades, the evaluation of their efficacy in at-risk populations is

paramount for refining and improving vaccine design. Importantly, the aging

population represents a significant portion of individuals highly susceptible to

infection and disease. This review seeks to outline the major impairments in

vaccine-induced responses due to aging that may be targeted for improvement

with design and delivery components encompassing mRNA and DNA vaccine

formulations. Results of pre-clinical and clinical applications of these vaccines in

aged animal models and humans will also be evaluated to outline current

successes and limitations observed in these platforms.
KEYWORDS
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Introduction

Traditional vaccine platforms, including whole virus, viral vector, and protein-based

vaccines have been used for numerous infectious diseases and cancers. Vaccine

development is vital globally for preventing infectious diseases and mitigating the risk

and economic burden of outbreaks. Recent estimates suggest that bringing a novel vaccine
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to market in the United States costs approximately $886.8 million

and requires 10–15 years of laboratory research, highlighting the

extensive and expensive nature of vaccine development (1). Beyond

preventative vaccines, therapeutic vaccines for autoimmune

diseases and cancers have also been of significant interest.

Technological advancement has played a major role in shaping

the history of the vaccine development pipeline, leading to the most

recent progression of next-generation vaccine platforms. Over the

past 20–30 years, nucleic acid-based vaccines (DNA and mRNA)

have gained substantial attention. Since their inception, nucleic acid

vaccines have evolved significantly. The emergence of DNA

vaccines began in the 1990s when investigators discovered

injection of plasmid DNA had immunostimulatory properties,

subsequently leading to the first DNA vaccine clinical trials (2).

Although early preclinical results held promise, clinical trials

revealed limited efficacy due to weak immune stimulation and

delivery, thereafter sparking advancements in delivery

technologies including electroporation and lipid nanoparticles to

improve performance. In parallel, beginning in the late 1980s,

landmark experiments by Robert Malone served as the

foundation for the use of mRNA as a potential drug target (3).

From this point, massive developments have been made on the lipid

nanoparticle technology necessary to deliver mRNA transcripts.

Importantly, the COVID-19 pandemic showcased the rapid

development and promising efficacy of mRNA vaccines in

humans through its accelerated development. Nucleic acid

vaccines offer several potential advantages over traditional vaccine

platforms, including rapid and cost-effective production, high

antigen specificity compared to whole-organism vaccines, versatile

applications across infectious disease, cancer, and genetic disorders,

and potent induction of both humoral and cellular responses.

Nonetheless, as with any new therapeutic, further investigation

into the safety and efficacy of nucleic acid vaccines is still necessary.

While vaccines are essential for the general population to

protect against emerging diseases and reduce their spread, the

induction of strong vaccine-induced responses in at-risk

populations is of paramount interest. Notably, elderly individuals

(65+ years) constitute the largest at-risk group, comprising 10% of

the world population in 2024, with this percentage expected to more

than double by 2050 (4, 5). Given the significant age-related decline

in immune responses and the rapidly growing elderly population,

enhancing vaccine-induced immunity is crucial. For example, in

2022, mortalities for those 65 and older reached almost 2.5 million

with COVID-19 and cancer as two of the top three causes of death

(6). This data emphasizes the burden of infectious diseases and

cancer on elderly mortality rates and, therefore, the necessity to

progress and enhance vaccination strategies in aging populations.

This review will outline age-related impairments in immune cells

associated with vaccination responses. Considering the growing

efforts in investigating next-generation nucleic acid vaccine

formulations, this review will also explore the mechanisms, design,

delivery, advantages, and disadvantages of mRNA and DNA

vaccines to further our understanding of these platforms. Pre-

clinical and clinical studies emphasizing responses elicited in aged

animal models and humans will be discussed to highlight the
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potential of these platforms for vaccinating the elderly and their

shortcomings. Finally, as adjuvants and immune modulators are

critical components for enhancing vaccine-induced responses in the

elderly, previously investigated adjuvants and adjuvant-like

properties of nucleic acid vaccines will be examined.
Immunosenescence and challenges of
vaccination in the elderly

Aging is a biological process that causes a gradual deterioration in

the function of multiple systems of the body, including the immune

system. This process of impaired immune function with aging is also

known as immunosenescence. With an increase in life expectancy of

humans over the past century, the consequential growth of elderly

populations has resulted in higher rates of age-related diseases such as

cancer in addition to failure of therapeutics for cancers and infectious

diseases. Several aspects of immune function at both the innate and

adaptive levels decline because of immunosenescence. One key factor

influencing immunosenescence is thymic involution, or the progressive

reduction in size of the thymus, which acts as a primary lymphoid

organ important for T cell maturation. Similarly, aging correlates with

an increase in pro-inflammatory status, a phenomenon known as

“inflammaging”, representing another hallmark of immunosenescence.

Beyond this, aging-mediated hematopoietic stem cell dysfunction,

altered T/B cell ratios, impaired antigen responses, accumulation of

senescent cells, mitochondrial dysfunction, and genomic instability also

underly immunosenescence. This section will focus on age-associated

changes to innate antigen-presenting cells (APCs) and adaptive T and

B cell function as it relates to vaccine responses (Figure 1).
Immunosenescence associated with
antigen presenting cell function

Modern vaccines function by prompting immunological

memory through the induction of innate (macrophages, dendritic

cells) and adaptive (T, B cells) arms of the immune system by

introducing antigen. The development of immunologic memory is

initially mediated by innate cells that activate T and B lymphocytes

through antigen presentation and the secretion of cytokines. This

process enables the differentiation of antigen-specific lymphocytes

into memory T and B cells that can be stimulated rapidly upon a

subsequent encounter with the same antigen.

The three professional APCs—macrophages, dendritic cells, and

B cells—play a crucial role in initiating antigen-specific immune

responses and are susceptible to immunosenescence. First, age-

related dysregulation of macrophage populations is one of the

many alterations responsible for impaired immune function.

Generally, macrophages can be grouped into two major types,

including M1 (pro-inflammatory) and M2 (anti-inflammatory). In

mice, aging is associated with increased M1-like macrophage

populations in hepatic and adipose tissues, while M2-like

macrophage populations expand in the bone marrow, lymphoid

tissues, and muscle, among others (7–9). Furthermore, aged human
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macrophages were found to exhibit decreased antigen presentation

because of lower co-receptor and MHCII expression (10–12). A

recent study further identified age-related decreases in the

transcription factors MYC and USF1 correlates with reduced

phagocytosis, migration, and chemotaxis observed in aged human

and murine macrophages (13). With decreased antigen presentation,

the induction of antigen-specific adaptive immune responses,

particularly through T cells, is impaired in aged individuals,

resulting in poor acquired immunity from vaccination and

infection. Although elevated M2-like macrophages and decreased

antigen presentation are observed with aging, non-specific release of

pro-inflammatory cytokines from aged macrophages is commonly

attributed to the persistent low-grade inflammation, or

inflammaging, seen in aged individuals (14). This increased basal

inflammation is likely, in part, due to the ineffective clearance of

pathogens by macrophages, resulting in persistent activation.

Increased basal inflammation in aged macrophages can further

promote T cell immunosenescence, which will be discussed later in

this review. Targeting macrophage phagocytosis, antigen
Frontiers in Immunology 03
presentation, and trafficking through novel optimized vaccine

antigens and adjuvants could offer promising approaches to

improve vaccine responses in the elderly.

Monocytes are precursors to both macrophages and dendritic

cells (DCs). Monocytes have been shown to exhibit weakened

expression of notable cytokines including IFNa/g, IL-1b, and
CCL20 with advanced age (15). Although monocytes exhibit

reduced pro-inflammatory cytokine secretion, increased egress of

monocytes from the bone marrow–due to elevated circulating

TNFa–can further contribute to inflammaging upon activation by

bacterial products (16). Dendritic cells are the second professional

APC and exhibit similar age-related changes to monocytes and

macrophages. For example, myeloid and plasmacytoid DCs, which

are critical for inducing Th1 and CD8+ T cells (via IL-12) and

interferon responses to infection, respectively, show diminished

TNFa, IL-6, and IL-12 production following TLR stimulation.

These age-related changes to DCs have been associated with

impaired vaccination responses to influenza (17). Additionally,

aged murine DCs exhibit diminished cross-presentation and
FIGURE 1

Summary of age-related impairments in T cells, B cells, and antigen presenting cells responsible for vaccine-mediated responses. This schematic
illustrates key changes in immune function with age, broken down into four primary regions: the thymus, circulation and skin, secondary lymphoid
organs, and bone marrow. Thymic Involution (top panel) leads to decreased production of naïve CD4+ and CD8+ T cells and reduced T cell
receptor (TCR) repertoire diversity. In circulation and skin (second panel), altered immune cell populations and function, including changes in
antibody titers, macrophage pro-inflammatory cytokine release, and macrophage polarization are observed. Secondary lymphoid organs (third
panel), including the spleen and lymph nodes, exhibit changes in T cell subsets, B cell function, and antigen-presentation. Bone marrow (bottom
panel) experiences shifts in hematopoietic stem cell populations, reduced B cell and T cell progenitors, and altered macrophage signaling.
Downward arrows indicate decreased function or numbers, while upward arrows indicate increased activity or numbers. Created in BioRender.
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subsequent CD8+ T cell priming compared to young mice, in part

due to increased production of reactive oxygen species (18).

The third class of professional APCs, which will be discussed

further, are B cells. While B cells are critical for antibody production

in response to infection and vaccination, their APC capabilities

assist in T cell-mediated responses. In humans and animals, aging is

associated with the expansion of antigen-experienced aged-

associated B cells (ABCs) (19). In contrast to macrophages,

monocytes, and DCs, ABCs are considered more efficient APCs

than follicular B cells and are heavily associated with autoimmunity

development (20). On the other hand, marginal zone B cells, which

are important APCs for Th1 effector cell differentiation, exhibit

defective antigen capture and presentation with increased age,

resulting in impaired T cell-independent immune responses (21).
Immunosenescence associated with T cell
function

T cells are essential for adaptive immunity, as evidenced by severe

combined immunodeficiency (SCID), where genetic defects impair T

cell development, leading to profound immune dysfunction and

vulnerability to infections. Without T cells, the immune system is

incapable of producing acquired immunity to infectious diseases,

resulting in life-threatening infections and eventual death in humans

as well as other animal models of SCID. Within the classification of T

cells, several subsets with a diverse range of functions exist, including

CD4+ Th1, Th2, Th17, Treg, Tfh, CD8+ cytotoxic T cells, and more.

Unfortunately, as individuals age, T cells are among the immune cell

types highly impacted by immunosenescence with several hallmarks

representing key factors of T cell aging. Evidence of T cell

immunosenescence has been widely studied in humans and animal

models. First, as previously discussed, thymic involution with age leads

to a gradual but impactful decrease in T cell production and

maturation. Thymic involution results in the production of fewer

naïve CD4+ and CD8+ T cells, with the most notable decrease in

CD8+ T cells (22). The diversity of the naïve CD4+ T cell repertoire is

maintained up to the age of 65 years, at which point it begins to collapse

(23), whereas the CD8+ T cell repertoire decline is observed even

earlier in the onset of aging (24). Lower T cell receptor (TCR) clonal

diversity and accumulation of terminally differentiated T cells

exhibiting dysfunction or exhaustion have also been observed as a

result (22). Such age-related changes to naïve T cell populations are

correlated with a greater risk for severe infections like COVID-19 (25).

Age associated thymic involution reduces the TCR repertoire and

leads to accumulation of mature T cells that are susceptible to repeat

antigen activation and recurrent stimulation. Loss of proliferative

capacity (26), telomerase activity (27), reduced IL-2 production and

sensitivity (28–30), decreased CD28 expression (31, 32), and elevated

IFNg production (33) are among the many phenotypes observed in

aging CD4+ and CD8+ T cells. One study found that increased IL-2Ra
expression and phosphorylated STAT5 in aged CD4+ T cells direct

their differentiation into short-lived effector cells. These changes in IL-

2Ra expression were linked to diminished HELIOS expression, a

transcriptional repressor (34). Furthermore, CD28 is an important
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costimulatory molecule for T cells that diminishes with age. As a result

of reduced CD28 expression, aged T cells exhibit qualities of cellular

senescence including poor antigenic activation and response. The

accumulation of CD8+CD28- T cells is associated with a reduced

overall immune response to pathogens and vaccines in the elderly (35).

Moreover, expansion of CD4+CD28- T cells in the elderly, which

exhibit natural killer cell and CD8 T cell-like cytotoxic properties (36)

elevate IFNg production, creating a more pro-inflammatory

environment. In a study using single-cell RNA sequencing of CD4+

T cells from young and aged mice, an accumulation of exhausted,

cytotoxic, and activated regulatory T cells in aged mice was observed

(37). In activated regulatory T cells and cytotoxic CD4+ T cells,

enhanced regulatory and pro-inflammatory phenotypes were

observed, respectively, indicating their contribution to the decline in

immune function. Similarly, an elevated ratio of regulatory T cells to

effector T cells in the CD4+ compartment occurs with age and has been

correlated to poorer Influenza vaccine responses in aged humans (38,

39). Additional post-vaccination analyses in humans indicate a

diminished magnitude of antigen-specific CD8+ T cell responses and

CD4+ T cell polyfunctionality in aged individuals (40).

Beyond these changes to T cell populations and function, a

specific subset of T cells, known as T follicular helper (Tfh) cells,

represent a critical cell type altered with age that are necessary for

protective humoral responses to infection and vaccination. Increased

age correlates with decreased antibody titers, class switching, somatic

hypermutation, affinity, and neutralization, all of which correlate

with Tfh function, demonstrated in both research and clinical studies

(41–44). Tfh cell activation and differentiation into mature GC Tfh

declines with age, leading to impaired antigen-specific immune

responses (42). A study in aged mice further revealed Tfh

upregulation of CXCR4 in aging leads to spatial mislocalization of

GC Tfh cells to the dark zone of germinal centers where they cannot

properly interact with GC B cells for induction of somatic

hypermutation and affinity maturation (45). Likewise, overall GC

response magnitude, volume, and number are reported to decline

with age in several mouse immunization models (46–48). With these

age-related impairments of T cells in mind, additional considerations

for T cell-targeted stimulation must be considered in vaccine design

for improved responses in elderly populations. As such, next-

generation nucleic acid vaccines have shown great potential at

inducing potent T-cell responses compared to traditional vaccine

platforms and will be discussed further.
Immunosenescence associated with B cell
function

Humoral responses from aging B cells in response to infection and

vaccination also decline with age. As a result, aged individuals are

often at higher risk for severe disease and lower protection and

durability from vaccination. B cell immunosenescence is associated

with reduced total antibody production, and poor-quality antibodies

demonstrated with reduced neutralization and affinity. This

phenomenon is a result of impaired germinal center B cell reactions

necessary for somatic hypermutation and affinity maturation (49).
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Increasing age is further linked to decreased B cell differentiation

within the bone marrow as well as increased aberrant production of

mature B cells. Aging correlates with a shift in B cell frequencies as

naïve B cells are displaced by memory B cells reducing B cell receptor

(BCR) repertoire diversity (50–52), which is associated with poor

antigen-specific responses to infection and vaccination. Increased

frequency of pro-inflammatory B cells and decreased expression of

molecules necessary for immunoglobulin class-switching and somatic

hypermutation has also been observed (53, 54).

In an aged mice, the generation of conventional B2 B cells,

necessary for antigen-specific humoral responses, is diminished,

while B1 progenitors are maintained. This is corroborated by the

finding that the frequency and absolute number of B cell lineage

precursor populations are decreased in aged mice and this is, in

part, due to suboptimal IL-7 responsiveness from these progenitors

(55). An additional factor responsible for the decrease of B cell

progenitors is the accumulation of myeloid-biased hematopoietic

stem cell populations in the bone marrow of aged mice and humans

(56, 57). At the molecular level, aging has been associated with

decreased expression of E2A and PAX5 transcription factors as well

as the pre-B cell receptor surrogate light chain necessary for B cell

development and humoral responses (58–60).

When considering age-related changes to peripheral B cell

subsets, studies have found that aged humans exhibit a decrease

in switched memory B cells and an increased frequency of naïve and

double-negative B cells (61, 62). Given the importance of long-lived

switched memory B cells for timely antibody responses to repeat

antigen exposure, it is clear that aging associated reduced

frequencies contribute to an elevated risk for severe infections

and poor vaccine responses in the elderly. Additionally, an

increase in pro-inflammatory TNFa secretion from memory and

double-native B cells in aged individuals negatively correlates with B

cell function and vaccine-specific antibody responses (61, 63).

Aged-associated B cells (ABCs), separate from follicular (FO) and

marginal zone (MZ) B cells (64), are considerably higher in aged

humans and mice with nearly 50% of splenic B cells being ABCs in

24+ month old mice (65). More specifically, ABCs were found to be

refractory to BCR/CD40 stimulation, whereas innate TLR9/7

stimulation combined with BCR signaling induce Ig secretion and

cytokine production (64). The same study also found ABCs favor T

cell polarization to the pro-inflammatory Th17 subtype which may

further promote inflammaging. In aged humans and mice, ABCs

inhibit pro-B cell generation due to elevated TNF secretion (66–68).

This increase in ABCs coincides with a decline in the FO B cell pool

(67), with studies suggesting that the transition of FO B cells to

ABCs may contribute to this shift (62). These age-related changes in

B cell function highlight the need for targeted strategies to enhance

immune responses in the elderly and improve vaccine efficacy.
Immunosenescence associated with long-
lived immunity

Failure of vaccines to induce long-term protective immune

responses in the elderly coincides with the cellular immunosenescence
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observation that aging leads to a more rapid decline in vaccine-

induced antibody titers, often requiring more frequent booster doses

to reach and maintain protective levels (69, 70). The combination of

reduced bone marrow niches, impaired T cell function, and reduced

germinal center responses observed in age-related impairments to

vaccination play a role in the reduction of long-lived plasma cell

(LLPC) production and survival which represent critical mediators of

long-term immunity (71). Therefore, advancements in nucleic acid

vaccine technology and adjuvants to target these compartments could

offer significant improvement in LLPC production and overall

protection induced by fewer doses in the elderly. Critical analysis of

these long-term vaccine responses in the context of aging are necessary

to progress the development of optimized vaccine formulations.

As shown in Figure 1, key changes in immune function

associated with age can be broken down into four primary

regions: the thymus, circulation and skin, secondary lymphoid

organs, and bone marrow. Thymic Involution (top panel) leads to

decreased production of naïve CD4+ and CD8+ T cells and reduced

TCR repertoire diversity. Circulation & Skin (second panel) exhibit

altered immune cell populations and function, including changes in

antibody titers, macrophage pro-inflammatory cytokine release,

and macrophage polarization. Secondary lymphoid organs (third

panel), including the spleen and lymph nodes, exhibit changes in T

cell subsets, B cell function, and APC activity. The Bone Marrow

(bottom panel) experiences shifts in hematopoietic stem cell

populations, reduced B cell and T cell progenitors, and altered

macrophage signaling. Taken together, age-related impairments in

T cells, B cells, and APCs play a role in reduced immunity

to vaccination.
Nucleic acid vaccines

Nucleic acid vaccines offer unique properties differentiating

them from first- and second-generation vaccine platforms. For

example, unlike protein-based vaccines, nucleic acid vaccines

introduce mRNA or DNA transcripts that guide cells to produce

a protein of interest for subsequent immune responses. In contrast

to viral vector vaccines, the genetic material delivered is not

accompanied by replication machinery. Furthermore, compared

to inactivated virus vaccines which risk virulence reversion, nucleic

acid vaccines are safe for administration to immunocompromised

individuals. Lastly, across all vaccine platforms, nucleic acid

vaccines offer the most rapid production and scalability. This

section will cover the mechanism, design, and delivery mRNA

and DNA vaccines (Figure 2), highlighting their advantages,

disadvantages, and relevant pre-clinical and clinical studies in aging.
mRNA vaccine mechanism and design

mRNA is a single-stranded molecule created during the process

of transcription from a DNA template and is responsible for the

subsequent translation of encoded proteins. Depending on the
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encoded protein(s), signal sequences can direct the protein to

remain within the cell, traffic to the cellular membrane, or be

secreted. Over 30 years ago, the ability of mRNA to be administered

to produce vaccine antigens rapidly and cost-effectively was

envisioned. Compared to other vaccine platforms such as viral

vectors and DNA vaccines, mRNA vaccines circumvent potential

risks of genome integration and overall exhibit favorable safety

profiles (72, 73). Furthermore, mRNA can encode multiple

antigens, allowing for vaccination against multiple pathogens and

variants. When administered, mRNA will enter the cytoplasm of

cells where it can be directly translated into antigenic proteins,

enabling a cascade of subsequent innate and adaptive immune

responses. This is an advantage compared to DNA vaccines that

require access to the nucleus, and require the additional step of

transcription, before effective translation of protein antigen. To

bring mRNA vaccines to fruition, several considerations must be

made for successful administration and induction of

immune responses.

In terms of vector design, synthetic mRNA molecules encoding

one or multiple proteins can be designed and produced rapidly in a

cell-free setting (74). Similar to endogenous mRNA, synthetic

mRNA is comprised of a 3’ UTR, poly(A) tail, antigen-encoding

region, 5’ UTR, and 5’ cap. On the 5’ end, the 2’-O-methylation

must be retained to prevent detection and innate responses by

mammalian cytosolic sensors of RNA. Further changes can be made

to the 5’ and 3’ UTRs, including the removal of micro-RNA binding
Frontiers in Immunology 06
sites and AU-rich sites to delay degradation. Additionally, the

protein-encoding region of synthetic mRNA can be optimized by

incorporating more common codons to enhance protein

production. N1-methylpseudouridine, pseudouridine, and other

modified nucleosides are also used to optimize protein translation

and prevent immune recognition (74).

The delivery of mRNA vaccines has been widely investigated

since the 1990s but were first broadly deployed in humans with the

release of the SARS-CoV-2 spike mRNA vaccine. To deliver mRNA,

it must breach the barrier of cellular membranes to enter the cytosol

where it can be translated to protein. Due to the negatively charged

membrane, negatively charged mRNA must be encapsulated to

avoid repulsion. Three main nanoparticle delivery systems have

been used in mRNA vaccine design, including lipid-based

nanoparticles (LNPs), polymeric nanoparticles, and cationic

nanoemulsion. Besides encapsulating the mRNA within their

core, these delivery systems also share cationic or ionizable

molecules. In the case of LNPs, these nanoparticles often contain

four major components, including ionizable lipids (DLin-MC3-

DMA (75), SM-102 (76), A6 (77), and more), cholesterol or

cholesterol variants (b-sitosterol (78) and 20a-hydroxycholesterol
(79)), helper lipids (DSPC (80) and DOPE (81)), and PEGylated

lipids (ALC-0159 (82) and PEG-DMG (82)). The cationic lipid

facilitates encapsulation of the negatively charged mRNA but may

induce toxic pro-inflammatory responses (83). The addition of an

ionizable lipid can improve the safety profile, extend circulation
FIGURE 2

Comparative overview of mRNA and DNA vaccine design. Methods for (1) Routes of administration, (2) Delivery, and (3) Adjuvants for mRNA (right
panel, red) and DNA (left panel, blue) vaccines are illustrated. APC, antigen-presenting cell; MHC, Major histocompatibility complex; PLGA, Poly
(lactic-co-glycolic acid); PEI, Polyethylenimine; PBAE, poly(b-amino ester); CART, charge-altering releasable transporters; DLinDMA, 1,2-
dilinoleyloxy-N,N-dimethyl-3-aminopropane; DDA, dimethyl-dioctadecyl ammonium; ADA-1, Adenosine deaminase-1. Created in BioRender.
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time (84), and promote endosomal release of the mRNA (85).

Investigation into other ionizable lipids for mRNA delivery has

expanded rapidly and includes lipids targeting immune cells such as

DCs (86) and T cells (87) to improve immunogenicity.

Furthermore, inclusion of cholesterol or its derivatives improves

LNP stability and endosomal fusion (86), whereas helper lipids

influence fluidity, endosomal fusion (88), and can enable organ

specificity (89). Finally, PEGylated lipids can be used to alter the

size, circulation time, and efficacy of LNPs (90, 91).

Polymeric nanoparticles like PEI (92), PBAE (93), PEG-PAsp

(DET) (94), and charge-altering releasable transporters (CART)

(95) can be used alternatively to form condensed polymer-mRNA

complexes for effective mRNA delivery. Similar to LNPs, different

polymers can be chosen to influence organ specificity (96), pH

responsiveness (97), and more. Modifications such as the

introduction of disulfide linkages and PEGylation can further

modulate toxicity (98) and organ specificity (94, 99–101). Lastly,

cationic nanoemulsions have also been studied for mRNA delivery.

This delivery system contains a squalene core, a cationic lipid shell,

and surfactants like Tween 80 for the electrostatic binding and

adsorption of mRNA (102). Investigation into peptide-based

nanocomplexes for mRNA delivery are also under investigation

and has shown promising results for eliciting T-cell mediated

immunity (103). The continued advancement of mRNA vaccine

technology presents exciting opportunities for improving immune

responses in aging populations, with potential strategies focusing on

optimizing delivery systems and enhancing antigen-specific

immunity to address age-related immune decline.
Pre-clinical testing of mRNA vaccines
related to aging

mRNA vaccines are being developed for a broad range of

infectious diseases (e.g., Influenza, Clostridioides difficile,

Norovirus, Tuberculosis, Herpes Simplex Virus, Hepatitis C),

genetic disorders, and cancers, that disproportionately affect

elderly individuals, however there is further research necessary to

evaluate their efficacy pre-clinically, in aged models (104). To

review our current understanding of mRNA vaccine efficacy in

aged individuals, we investigated the most up-to-date preclinical

studies using aged models for COVID-19 and Influenza A

vaccination. Evaluating the efficacy of mRNA vaccines in elderly

populations requires a critical analysis of overall protection,

humoral immune responses, and cellular immune responses.

The use of aged mouse models has proven to be a useful tool to

further our understanding of the impact of aging on the immune

response and level of protection conferred by mRNA vaccines

specifically in the context of COVID-19 mRNA vaccines. Brooke

et al., combined an aged mouse model with human clinical data to

characterize an impaired Th1 response to the COVID-19 vaccine in

vivo (105). Chen et al. utilized a similar aged model to conduct

rechallenge experiments with COVID-19 to better characterize

breakthrough infection, finding that even with 2 doses of the

vaccine, aged mice were more susceptible to infection (106).
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Taken together, these in vivo models allow us to identify

additional opportunities for optimized treatments and prevention

strategies against SARS-CoV-2 among older individuals (107).

Similarly, preclinical studies investigated the efficacy of mRNA

vaccines for Influenza A in aged models. Specifically, one group

has developed an mRNA vaccine capable of inducing long-lived

protective immunity to Influenza A in very young and very old

mice, as evidenced by the effective humoral and cellular responses

elicited (108). These findings highlight the critical role of aged

models in advancing the development and optimization of mRNA

vaccines, providing valuable insights and opportunities for

improving vaccine efficacy and durability in older populations

across a range of infectious diseases.
Clinical testing of mRNA vaccines related
to aging

A variety of mRNA vaccines are currently undergoing clinical

trials targeting infectious diseases beyond COVID-19, including

Human immunodeficiency virus (HIV), Zika virus, Nipah virus,

and Respiratory syncytial virus (RSV)—as well as genetic disorders

and various cancers (109), however there are limited trials that look at

the efficacy of these mRNA vaccines specifically in aged populations.

While randomized clinical trials typically exclude elderly populations,

the heightened vulnerability of this group to COVID-19 led to their

inclusion in licensing trials under the exceptional circumstances of

the pandemic which allowed for considerable insight into the efficacy

of mRNA vaccines in elderly (109). Here, we will review the key

findings from clinical trials evaluating the efficacy of mRNA vaccines

in aged populations, focusing on their response to the COVID-19

pandemic, as well as trials for RSV and Influenza A.While we, among

others, have characterized the impact of immunosenescence on

vaccine efficacy (110, 111), mRNA vaccines demonstrated

surprising efficacy in aged individuals during the COVID-19

pandemic and in multiple clinical trials (112). A large-scale

matched case–control study of individuals aged 80–83 showed that

emergency hospital admissions were 75.6% lower among those fully

vaccinated with BNT162b2 compared to unvaccinated controls, and

SARS-CoV-2 positivity was reduced by 70.1% in the vaccinated

group. These findings, among others, underscore the high efficacy

of COVID-19 vaccine in the elderly, providing strong protection

against infection and hospitalization (113, 114).

However, beyond high-level efficacy comparing vaccinated vs.

unvaccinated groups, it is important to interrogate differences in the

immune response between young and older vaccinated adults to form

a complete picture of the immune response to mRNA vaccines.

Results from previous aging-focused mRNA vaccine clinical trials in

response to COVID-19 highlight three critical takeaways (1): the

reduced humoral response in aged populations, (2) the importance of

repeat dosing to improve the humoral response, and (3) the challenge

in driving cellular immunity for aged populations. In the context of

the BNT162b2 COVID-19 vaccine (115), the compiled results of

many trials demonstrate the importance of repeat dosing to mount a

protective humoral response in elderly patients. The first clinical
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challenge observed was the delayed response/increase in dosing

required to mount a protective humoral response. A trial in Greece

examining differences in antibody responses after 1 or 2 doses of the

BNT162b2 COVID-19 vaccine (115) found that individuals over 85

exhibit a 41.18-fold increase in neutralizing antibodies after the

second dose. Furthermore, in the cohort of 400 individuals who

received the first dose, the mean antibody response reached 69.75%,

whereas among the 297 recipients of the second dose, it increased to

98.99% (116). This was further demonstrated by Collier, et al. when

investigating immune responses in elderly individuals against key

variants of concern (VOCs) (117). After the first dose, older

individuals, particularly those over 80, exhibited reduced serum

neutralization, IgG, and IgA levels, with lower neutralization

potency against Alpha, Beta, and Gamma variants compared to the

wild-type virus. Many individuals over 80 lacked neutralizations

against variants of concern (VOCs). However, the second dose

restored neutralization against VOCs across all age groups. Elderly

responders also showed reduced somatic hypermutation in class-

switched cells compared to younger individuals (44). Interestingly,

Jergoiv et al. highlighted that while there was robust humoral

immunity achieved in the older cohort, it was delayed in onset.

More specifically, the older cohort displayed lower neutralizing

capacity at 7–14 days following the second dose that equilibrates

with the younger cohort after 2–3 months (118). Despite the increase

in humoral response after repeat dosing, a decrease in overall

durability in aged individuals was displayed by Korosec et al.,

finding that individuals aged 18–55 are predicted to have a four-

fold advantage in humoral response compared to those aged 56–70

and 70+ by 8 months following two doses (119). Taken together,

these data highlight that the humoral response in elderly groups in

response to the COVID-19 vaccine is delayed and requires

additional dosing.

To investigate if increased dosing could close the disparity gap

observed between aged and young populations, some groups

demonstrated that there was a rescue of the humoral immune

response in the elderly after 3–4 doses of the COVID-19 vaccine. To

complement the increasing immunity that is conferred with 2 doses of

the vaccine, Renia et al. found that older individuals take longer to

achieve vaccine-induced immunity but maintain more sustained

responses at 6 months. A third dose significantly enhances antibody

levels in older adults against theWuhan strain and, Delta and Omicron

variants (120). Shapiro et al. also looked at dose response across various

age groups and found that the third dose of vaccine restored functional

antibody responses and eliminated disparities caused by sex, age, and

frailty in older adults (121). Furthermore, 4 doses of the vaccine

enhanced the neutralizing antibodies against the Wuhan Strain and

Omicron (122).

T cells are critical in driving the adaptive immune response of

mRNA vaccines, as previously described, cellular immunity is

impaired by age-mediated reduced thymic activity (123, 124). The

composition and status of both naive and memory T cell repertoires

are critical in determining the quality of immune responses,

including those to SARS-CoV-2 (125). While some groups found

that after repeat vaccination, older vaccinees manifest cellular

immunity comparable to the younger individuals against early-
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pandemic SARS-CoV-2 and more recent variants (44, 118, 119), a

more comprehensive study that included longitudinal analysis of

TCR tracking in conjunction with pre/post-vaccination CD4+T cell

analysis argues that it might be more complex (125). Saggau et al.

found that the SARS-CoV-2-specific T cell repertoire determines

the quality of the immune response to vaccination. They

investigated both naïve and memory T cell compartments and

found that the T cell expansion in both compartments in response

to the mRNA vaccine was severely compromised—calling for a

need for alternative strategies to increase the T cell response to

mRNA vaccines in the elderly (125). These findings underscore the

pivotal role of CD4+ T cells in driving mRNA vaccine responses

and highlight the need for alternative strategies to enhance T cell

responses in older individuals, given the compromised expansion of

both naive and memory T cell compartments with aging.

In addition to insights gained from the COVID-19 vaccine rollout,

five completed and five ongoing clinical trials are testing mRNA

vaccines for influenza and RSV in older individuals (A list of

completed and ongoing clinical trials of mRNA and DNA vaccines

involving aged individuals, outside of those tested for COVID-19 is

shown in Table 1). Most compelling is a Phase II-III clinical trial with

an mRNA vaccine targeting RSV that enrolled older adults over 60,

showing high efficacy against RSV-associated lower respiratory tract

disease (83.7% with two symptoms and 82.4% with three symptoms)

and 68.4% efficacy against acute respiratory disease. The vaccine also

protected both RSV A and B. There is additional early promise from 2

Phase I clinical trials that showed increased humoral and cellular

responses in aged and young adult groups (126, 127). These findings

highlight the potential of mRNA vaccines to significantly improve

protection against respiratory infections in older adults, warranting

further investigation and development. A significant area for

opportunity for future mRNA vaccine development for the elderly is

in cancer applications. mRNA vaccines allow for greater precision and

specificity in delivering tumor associated antigens at a personalized

level, while maintaining effective scalability and low cost. Beyond these

advantages, mRNA vaccines are shown to elicit robust T cell responses

in younger demographics: making this an optimal platform to consider

(128). With the broad increase in the aged population and associated

increased incidence of cancer in elderly, mRNA vaccines for cancer

must be investigated clinically for elderly individuals.
Advantages and disadvantages of mRNA
vaccines

mRNA vaccines represent a significant advancement in

immunization technology, offering several advantages for the

elderly. These advantages include rapid development, high

efficacy, and a favorable safety profile. The rapid, cost-effective,

and scalable production of mRNA vaccines enables swift responses

to emerging health threats that disproportionately affect older

adults. The efficacy of mRNA vaccines in preventing severe

disease outcomes in older populations was demonstrated during

the COVID-19 pandemic (112–114). mRNA have improved safety

implications for elderly because it is non-infectious compared to
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viral vector or live attenuated vaccines which potentiate additional

risks in aged individuals. Furthermore, the transient expression of

mRNA that results from its single stranded nature, may be an

additional safety feature for vaccines in the context of targeting aged

populations and its application in cancer therapy. While additional

clinical trials are needed to consider the safety profile of mRNA

vaccines in elderly populations, the previously described clinical

trials for mRNA-based RSV vaccines found no evident safety

concern (126). Broadly, mRNA vaccines have advantages over

alternative traditional approaches such as DNA plasmids, viral

vector vaccines or live attenuated vaccines. Compared to DNA
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vaccines, mRNA vaccines do not require access to the nucleus and

does not pose the threat of chromosomal integration (129).

Compared to traditional viral vector or live attenuated vaccines

mRNA vaccines can be rapidly designed, scaled quickly and at very

low cost.

However, like any emerging advancement in medicine, there are

existing challenges, limitations and opportunities for improvement

for the mRNA vaccine platform for elderly patients. Key limitations

of mRNA vaccines for elderly populations include stability,

durability and potential adverse immune reactions. First, as

mRNA acts as a transient intermediate between DNA and

protein, its short half-life in the body is of primary concern.

mRNA can be broken down rapidly by deadenylases, the

exosome, ribonuclease, and endonucleases, so carrier design is

critical to mRNA efficacy. These concerns are also critical for

storage and transportation, particularly for countries without

access to rapid transportation and devices necessary to proper

storage. Second, improving the durability and memory of

immune responses to mRNA vaccines is an area that must be

further studied in aged individuals. While mRNA vaccine mediated

immune response can improved with increased dosing in aged

individuals (120–122), there is a lack of clinical evidence showing

long lived memory to mRNA vaccines in aging. Increased dosing is

a potential strategy to improve durability in elderly, however it

could also increases the risk associated with off target, adverse

immune reactions for elderly. Many steps have been taken to

improve the safety of mRNA, to mitigate adverse immune

reactions, such as the 2’-O-methylation strategy to mRNA which

prevents detection by innate pattern recognition receptors (PRRs).

However, the concern mRNA vaccination and development of

autoimmune disease is a concern for elderly. In the context of

SARS-COV2, it was concluded that mRNA vaccines were not

associated with an increased risk of most autoimmune connective

tissue diseases (AI-CTDs) (130), however, understanding long term

safety profile and risk associated with mRNA vaccines in elderly

requires further investigation. Overall, further advancement and

characterization of mRNA vaccine stabilization, potency and

durability is necessary, particularly for purposes of distribution

and application to individuals with impaired vaccine responses like

the elderly.
DNA vaccine mechanism and design

DNA-based vaccines are a third-generation vaccine platform

that relies on the use of artificially synthesized plasmids encoding an

antigen of interest to be transfected within cells of the body for

subsequent production of antigen in vivo. Beginning in the 1990s, it

was found that intramuscular injection of plasmid DNA could be

performed to induce protein expression and that most of the DNA

could be taken up into the nucleus of cells without specialized

delivery methods (131). Since this study, investigations of

genetically engineered DNA plasmids for vaccine use have

expanded, showing the scalable and stable nature of this platform.

DNA vaccines are designed to encode an antigen of interest, ranging
TABLE 1 List of completed and ongoing clinical trials of mRNA and DNA
vaccines involving aged individuals.

NCT
Number:

Conditions: Sponsor: Phases:

mRNA Vaccine Trials

NCT05829356 Influenza
Sanofi Pasteur, a
Sanofi Company

PHASE1

NCT05446740 Influenza GlaxoSmithKline PHASE1

NCT05426174 Influenza
Sanofi Pasteur, a
Sanofi Company

PHASE1

NCT05252338 Influenza CureVac PHASE1

NCT04528719
Respiratory
Syncytial Virus

ModernaTX, Inc. PHASE1

NCT06431607 Influenza GlaxoSmithKline PHASE2

NCT06374394
Respiratory
Syncytial Virus

GlaxoSmithKline PHASE3

NCT06237296
Respiratory Syncytial
Virus and/
or Metapneumovirus

Sanofi Pasteur, a
Sanofi Company

PHASE1

NCT06125691 Influenza
Arcturus
Therapeutics, Inc.

PHASE1

NCT05823974 Influenza GlaxoSmithKline
PHASE1/
PHASE2

DNA Vaccine Trials

NCT04336410 SARS-CoV-2
lnovio
Pharmaceuticals

PHASE1

NCT04915989 SARS-CoV-2 Genexine, Inc. PHASE1

NCT04742842 SARS-CoV-2
University
of Sydney

PHASE1

NCT00300417 West Nile Virus NIAID PHASE1

NCT01587131 Influenza
University
of Manitoba

PHASE1

NCT05163223 HER2 Low Breast Cancer Aston Sci. Inc. PHASE2

NCT00436254

HER-2 Positive
Stage III-IV
Breast Cancer or
Ovarian Cancer

University
of Washington

PHASE1

NCT05904054 SARS-CoV-2
lmmuno Cure
3 Limited

PHASE2
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from cancer-specific molecules to proteins from infectious

organisms, that can subsequently induce antigen-specific immune

responses. To effectively induce transcription and translation of a

DNA vaccine, a delivery system is used to enable the plasmid to

enter the nucleus of cells within the body.

Several routes of administration and delivery systems have been

investigated over the past several decades. DNA vaccines can be

delivered through the skin (intradermal, intramuscular,

intravenous, subcutaneous), nasally, orally, or rectally. Depending

on the administration method used, injection devices, nanocarriers,

or external stimulation can be applied to facilitate DNA delivery to

cells. In terms of injection devices, traditional needles and

microneedles enable penetration of the epidermis. Microneedles

prepared as adhesive patches facilitate delivery to the interstitial

fluid. This delivery method was shown to improve DNA vaccine

immunogenicity in an influenza model by inducing potent humoral

and cellular responses compared to traditional intramuscular

injection (132). Tattooing represents a unique method for

intradermal vaccine delivery by introducing numerous skin

perforations in seconds with controlled vaccine release over a

larger area than traditional needles or micropatches. Improved

tattooing methods in Ebola and HIV DNA vaccine models show

superior T and B cell responses compared to intradermal and

intramuscular delivery across several animal species, including

mice, rabbits, and non-human primates (133). Needle-free

methods for DNA vaccine delivery have also been explored. Jet

injection, such as the Biojector (134), is an injection device that

forces microdroplets carrying the vaccine of choice into the skin

using high pressure for subcutaneous, intradermal, or

intramuscular delivery (135). Separately, the gene gun enables

gold microparticles to be coated with a DNA vaccine and

delivered directly into intradermal or mucosal cells with

compressed helium gas (136). In an HPV DNA vaccine model,

the gene gun was shown to induce potent CD8+ T cell responses

comparable to electroporation (137).

A variety of nanocarriers have been evaluated for DNA vaccine

delivery. Nanocarriers are capable of improving antigen delivery by

protecting mRNA from degradation and promoting cellular uptake

and antigen presentation. They can also be prepared with innate-

stimulating properties such as TLR agonists and designed to induce

specific cytokine responses. Such carriers include viral vectors (138),

exosomes (139), liposomes (140), PLGA (141), PEI (142), and

chitosan (143) particles. While each nanocarrier offers different

benefits for DNA vaccine delivery, collectively, they enable the

protection of DNA plasmids from degradation, increase circulation

stability, and offer targeted tissue delivery (136). Finally, external

stimulation represents a commonly used form of DNA vaccine

delivery. Electroporation applies electrical impulses to transiently

permeabilize cellular and nuclear membranes to deliver DNA

plasmids to the nucleus of cells for transcription and translation.

This method is common for intramuscular DNA vaccination,

allowing for versatile delivery of naked DNA or nanocarriers in

addition to self-adjuvating properties by inducing minor

inflammation and trafficking of APCs and lymphocytes to the site

of vaccination (144). Similarly, sonoporation (145), photoporation
Frontiers in Immunology 10
(146), and hydrodynamic delivery (147) of DNA vaccines use

ultrasound waves, lasers, and capillary pressure, respectively, to

create small pores in cellular membranes for DNA entry. Although

many delivery methods exist for DNA vaccination, the cancer or

infectious agent of interest must be considered before vaccine

design to ensure optimal immune responses are achieved.
Pre-clinical testing of DNA vaccines related
to aging

While several pre-clinical studies of DNA vaccines exist,

examination of these vaccines in aging models can help provide

evidence for the potential of this platform’s immunostimulatory

capabilities and areas for improvement. Few pre-clinical DNA

vaccines have been tested in models of aging, possibly in part due

to the expense of aged animals. However, those that exist improve

our understanding of the benefits and shortcomings of DNA

vaccine formulations and, therefore, will be discussed for this

review. In the context of infectious diseases, DNA vaccines have

shown promising results in aged models. Starting with a current and

clinically relevant viral target, the recent COVID-19 pandemic

sparked interest in DNA vaccines targeting SARS-CoV-2, which

has proven particularly threatening to the aged population (148). In

one study of a DNA vaccine encoding chimeric SARS-CoV-2 S1

spike protein fused to a trimerization transmembrane region, aged

mice were vaccinated in a two-dose regimen for subsequent analysis

of antigen-specific adaptive immune responses (149). Cui et al.

found two doses induced strong humoral responses with

neutralizing capacity to both Wuhan and Delta spike variants,

while a third booster dose after 6 months significantly boosted

the magnitude of these responses in aged C57BL/6 mice like young

mice. Similarly, spike-specific T cell TNFa responses were induced

in aged mice, although to a lesser extent compared to young. In a

separate study, DNA vaccines against Influenza A haemagglutinin

(HA) and nucleoprotein (NP), another clinically relevant viral

pathogen disproportionately impacting elderly populations, were

tested in young and aged BALB/c mice (150). Both HA- and NP-

DNA plasmids induced antibody responses in aged mice, though to

a lesser extent than observed in young mice. Notably, the NP-DNA

vaccine induced similar cytotoxic CD8+ T lymphocyte activity in

both age groups and protected against low-dose intranasal challenge

based on weight loss recovery. However, aged mice were not

protected against high-dose A/HR/68 (H3N2) challenge,

suggesting vaccine alterations to target improved antibody

neutralization capacity in aged mice is necessary. In contrast,

investigation of a DNA vaccine targeting the thrombocytopenia

syndrome virus (SFTSV) showed that aged ferrets developed strong

T cell and antibody responses to SFTSV and were completely

protected from lethal challenge (151). Beyond these viral targets,

aged models of DNA vaccination have also been tested in the

context of malaria. Using a plasmid encoding the circumsporozoite

protein of the Plasmodiumyoelii malaria parasite, Klinman et al.

found vaccinated aged BALB/c mice exhibited lower humoral and

CD8+ T cell responses compared to young mice, with an overall
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40% protection from challenge compared to 80% in young mice

(152). It should be noted that the aged mice used in this study were

of extreme age (26 months compared to standard 18–24 months

used for aged models), but these findings, along with the previously

described viral DNA vaccine models, indicate improvements can be

made to induce greater immunogenicity in aged individuals.

Besides infectious diseases, cancer, autoimmune disorders, and

neurodegenerative diseases represent attractive targets for DNA

vaccines, particularly in the context of aging. For example, breast

cancer is one of many cancers that are significantly more common

with increased age. In an attempt to target a tumor antigen

commonly detected in metastatic breast cancer, young and aged

mice were vaccinated with a plasmid encoding Mage-b

intramuscularly followed by challenge with mild (4TO7cg) and

aggressive (4T1) syngeneic metastatic mouse breast tumor models

(153). Aged mice exhibited lower IL-2 and IFNg levels in the

draining lymph nodes and spleen, along with a reduced frequency

of Mage-b-specific CD8+ T cells, compared to young mice. These

immunological deficits correlated with a diminished protective

response against tumor challenge. These results suggest that there

is room for improvement, and tailoring DNA vaccination to

improve cytokine and CD8+ T cell responses could enhance

cancer vaccination efficacy in aged models. For example,

electroporation following intramuscular delivery can improve

immune responses, as demonstrated by a pre-clinical study

investigating a DNA vaccine against the HER-2/neu antigen

expressed in many breast tumors and adenocarcinomas (154).

Compared to intramuscular delivery alone, electroporation

significantly improved humoral and cellular responses to HER-2/

neu and induced complete protection (40% increase) against HER-

2/neu overexpressing cancer cell line challenge in aged mice.

Beyond cancer, neurodegenerative diseases such as Alzheimer’s

disease (AD) heavily impact aged individuals. As a result, studies

investigating DNA vaccines targeting amyloid-b (Ab) plaques that
accumulate in the brain of Alzheimer’s patients have been of

interest. In one study, DNA immunizations with the amino-

terminal Ab (1-11) fragment exposed on the surface of HBsAg

particles resulted in high anti-Ab antibody titers, reduced Ab
plaques, and reduced cognitive impairments in an aged transgenic

mouse model of AD (155). In a separate study, DNA vaccination

against recombinant Ab3–10 similarly reduced Ab plaques,

synaptic and neuron loss, and memory impairment in aged

transgenic mice (156). These studies exemplify the promise of

DNA vaccines in aged individuals beyond infectious disease targets.
Clinical testing of DNA vaccines related to
aging

While pre-clinical evaluations of DNA vaccines in aging models

are sparse, fewer clinical trials in elderly humans exist (Table 1). In a

more recent clinical trial for the SARS-CoV-2 DNA vaccine INO-

4800 (NCT04336410), a 2.0 mg dose induced strong and durable

humoral responses in all age groups, including those >65 years,

although IFNg ELISpot and CD8+ T cell analyses suggested poorer,
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but detectable, T cell cytokine responses to vaccination (157). In a

promising clinical trial for a West Nile Virus (WNV) DNA vaccine

(NCT00300417), subjects aged 18–50 years and 51–65 years were

vaccinated against the premembrane protein and the E

glycoproteins of the NY99 strain (158). Following a three-dose

regimen, the majority of subjects in both age groups exhibited T cell

responses, and the older age group demonstrated antibody

responses with similar frequency, magnitude, and durability as

those observed in the younger participants. With no licensed

vaccine against WNV available for use in humans, this trial

indicated promising results for eliciting protection against WNV

in young and older individuals using next-generation vaccine

platforms where traditional platforms have failed. Furthermore, a

phase 1 clinical trial evaluating Inovio’s H1N1 Influenza A DNA

vaccine in healthy elderly subjects (NCT01587131) found a single

dose in conjugation with the seasonal flu vaccine induced protective

immune responses in 40% of subjects compared to 20% in those

who received the seasonal flu vaccine alone (159). These results

indicated the potential for this DNA platform to promote potent,

protective immune responses against influenza, particularly for at-

risk elderly populations, which current flu vaccines have failed

to achieve.

As previously mentioned for pre-clinical vaccines, DNA

vaccines for cancer have also reached the clinical trial phases. In a

phase 1 trial for a DNA vaccine encoding HER-2/neu for advanced-

stage ERBB2-positive breast cancer (NCT00436254), participants

aged 34–77 years were immunized three times with one of three

dosages (50, 100, or 500ug) (160). Most subjects developed HER-2-

postive Th1 T cell responses with minimal toxicity, and the 100ug

dose has progressed to phase 2 trials (NCT05163223). While these

studies include elderly participants, details on age-dependent

variations in vaccine responses were not evaluated. Similarly,

although other cancer DNA vaccines are in clinical trials, age-

associated responses have not been examined. Further analyses of

DNA vaccine immunogenicity and efficacy in aged participants are

necessary and could aid in the optimization of vaccine formulations

and delivery for the elderly.
Advantages and disadvantages of DNA
vaccines

The DNA vaccine platform offers its own unique set of

advantages and disadvantages. Beyond the advantages of low

manufacturing costs and rapid production shared between mRNA

and DNA vaccines, DNA vaccines offer several additional

advantages including stability, safety, flexibility in design, and the

ability to induce robust immune responses. The high stability of

DNA vaccines makes them convenient to store, transport, and

distribute. Furthermore, DNA offers no safety risk of viral

transformation like that associated with live attenuated vaccines

or other side effects associated with inactivated cell vaccines. In

terms of vector design, DNA vaccines are flexible and easily

manipulated and offer the potential to encode one or multiple

antigens of interest for protection against one or multiple diseases in
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a single plasmid. Beyond the ability to encode multiple antigens,

DNA vaccines enable host cells to produce antigens with the post-

translational modifications necessary for the native-like structure

(161). Lastly, DNA vaccines can elicit a broad spectrum of immune

responses, including humoral and cellular immunity.

Unfortunately, concerns surrounding the use of DNA in vaccine

design have prevented widespread development and use clinically.

Integration into the host genome is of paramount concern,

particularly in the public eye, despite DNA exhibiting a low

tendency to integrate when circular in a plasmid (160, 162).

Additionally, the amount of DNA necessary for vaccination is

small, further lowering risk of integration. Nonetheless,

administration of a DNA vaccine, in rare cases, could result in

insertional mutagenesis potentially resulting in gene malfunction,

inactivation, or even upregulation of gene expression. To help

decrease risk for such insertions, the FDA has offered

recommendations to increase plasmid DNA supercoiling to greater

than 80% and keep the DNA copies administered below 10,000 (163).

In addition to DNA integration, another major safety concern of

DNA vaccines is the induction of autoimmunity. By injecting foreign

DNA encoding an antigen of interest, DNA vaccines have the

potential to elicit anti-DNA humoral responses. Although an early

animal study suggested DNA immunization induced anti-DNA

antibodies in mice (164), other work suggests there is little to no

risk for autoimmunity development, particularly when using non-

viral delivery methods (165, 166). Other disadvantages also exist. For

example, delivery methods such as electroporation can cause

discomfort not associated with other vaccine platforms. Further

work on DNA vaccine design and delivery, particularly in the field

of nanocarriers, may promote the development and distribution of

this platform in the future. However, addressing the risk for DNA

integration and autoimmunity is paramount for the progression of

DNA vaccines to widespread use.
The role of adjuvants in enhancing
nucleic acid vaccine responses

Adjuvants represent a critical component of vaccine

formulations necessary for enhancing antigen-specific immune

responses. Particularly for individuals with impaired immune

functions, such as the elderly, adjuvants are necessary to elicit

protective immune responses to vaccination. As the number of

vaccine adjuvants has grown, their diversity has expanded to

include natural extracts, synthetic compounds, oil-in-water

emulsions, and more. The discovery of adjuvants and their

application to boost vaccine responses first occurred in the 1920s

when the immune-enhancing properties of aluminum salts were

observed when co-formulated with vaccine antigens (167). After

successfully translating aluminum as an adjuvant to human

vaccinations in the 1930s, it remained the only licensed vaccine

adjuvant for roughly seven decades. Since then, many new

adjuvants have been discovered, and their applications to specific

vaccine platforms and pathogen types have been investigated

closely. For example, aluminum does not function well for
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vaccine-induced immune responses to intracellular pathogens

(168). Importantly, in the context of nucleic acid-based vaccines,

the choice of adjuvants varies. For both mRNA (Table 2) and DNA

(Table 3) vaccines, these adjuvants can be broken down into three

overarching categories, including (1) self-adjuvant (2), delivery

system components, and (3) exogenous adjuvants.
Self-adjuvant properties

Both mRNA and DNA vaccine platforms can exhibit self-

adjuvating properties without the presence of additional

mediators. mRNA alone has the capability of acting as an

immunostimulatory molecule. The innate immune system is

equipped with pattern recognition receptors that can bind foreign

or host RNA and elicit responses. For example, TLR3 and TLR7/8

recognize double-stranded and single-stranded unmodified mRNA,

respectively. Detection of poly uracil (U) and short double-stranded

RNA with 5’ triphosphate can activate RIG-1 and TLR3, leading to

the induction of pro-inflammatory cytokines TNFa, IL-6, IL-1b,
and more without impeding the expression of the encoded antigens

(234, 235). Although these responses can act to potentially enhance

vaccine responses, excessive inflammation from unmodified mRNA

can also promote RNA degradation (236). To overcome this,

nucleoside-modified mRNAs, including pseudouridine

incorporation, can help overcome such excessive responses and

are commonly used in mRNA vaccine development (237). Further

work is needed to determine the optimal balance of the intrinsic

ability of vaccine mRNA to act as an adjuvant.

Similarly, DNA plasmids used in vaccine design have their own

adjuvant-like capabilities through the activation of innate immune

system DNA sensors. DNA plasmids used in these vaccines to

encode an antigen of interest are derived from bacterial species.

This bacterial DNA contains unmethylated CpG dinucleotide

motifs bordered by two 3’ pyrimidines and 5’ purines, which can

trigger the innate immune receptor TLR9 to activate the MyD88

signaling pathway resulting in pro-inflammatory cytokine release

(238). As a result, when these plasmids are used for DNA

vaccination, innate responses from APCs and other cells that take

up the plasmid result in IL-6, IL-12, and IFNg production. These

responses were shown to be a significant factor in promoting DNA

vaccine immunogenicity in vivo, indicating the advantageous self-

adjuvating properties of DNA vaccines (239).
Delivery system components

The second category of mRNA vaccine adjuvants includes the

delivery system components. Because mRNA on its own is

susceptible to extracellular degradation within the body and is

unable to efficiently enter cells due to its negatively charged

backbone, specific delivery systems are necessary. As the most

used and optimal delivery platform for mRNA vaccines, lipid

nanoparticles (LNPs) have been widely investigated for their

immunostimulatory properties to enhance antigen-specific
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responses. Briefly, LNP-encapsulated mRNA is produced through

the combination of cationic and structural lipids that complex with

negatively charged mRNAmolecules (240). Depending on the LNP,

certain lipid components with adjuvating properties can be

incorporated. The ionizable cationic lipid DLinDMA, for

example, can be incorporated to induce potent germinal center

Tfh and B cell responses to an mRNA-encoded antigen, leading to

the production of neutralizing antibodies (169, 170, 241). As these

responses are impaired in the elderly, targeted enhancement of GC

Tfh and B cell responses offers an encouraging approach for

enhancing aged vaccine responses. Additionally, a lipid-coated

calcium phosphate nanoparticle can be applied to induce CD80/

86 upregulation for enhanced DC maturation, further promoting
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TABLE 3 List of delivery component and exogenous adjuvants for DNA
vaccine formulations.

DNA Vaccine Adjuvants

Delivery Components

Adjuvant: Modulatory
action

References:

Electroporation

↑APC and T cell
trafficking to

vaccination site
↑TNFa and IL-1b

release
↑Response duration

(144, 186–190)

Gene gun
↑Th2-

biased responses
(191, 192)

Chitosan

↑Humoral/cellular
responses

↑IFNg production
↑Macrophage

activation

(193–196)

PLGA

↑MHCI antigen
presentation

↑T cell
cytokine

production

(197, 198)

PEI

↑T cell activation/
proliferation
↑Humoral
responses

↑APC activation

(199–202)

Liposomes
↑Humoral/

cellular responses
(203–206)

Exosomes ↑DC activation (207)

Exogenous Adjuvants

Encoded cytokines and chemokines
(IL-2, IL-6, IL-7, IL-8, IL-12, IL-15,

GM-CSF, MCP-1, MIP-1a, RANTES,
CCL28, CCR10L)

↑T cell activation
↑APC recruitment

and activation
(183, 208–219)

Encoded PD-1
↑CD8+ T

cell responses
(220, 221)

Encoded adenosine deaminase-1

↑Antibody
neutralization

↑T cell cytokine
responses

↑Tfh-
inducing cytokines

(222–225)

AS03
↑Antigen-specific

Th1/Th2 responses
(184)

Alum

↑NLRP3 activation
and IL-1b
production

↑DC activation
↑Antigen-specific

Th2-
biased responses

(226)

CpG motifs ↑TLR9 activation (227)

(Continued)
TABLE 2 List of delivery component and exogenous adjuvants for mRNA
vaccine formulations.

mRNA Vaccine Adjuvants

Delivery Components

Adjuvant: Modulatory action References:

DLinDMA
↑Germinal center Tfh and B cell

responses
↑Antibody neutralization

(169–171)

LCP/Calcium Phosphate
↑CD80/86 expression and

DC maturation
(172)

DDA ↑Th1 responses (173)

DOTMA/DOPE
↑NLRP3 activation and IL-1b

production
(174)

C1
↑TLR4 and DC activation

↑IL-6 and IL-12p70 production
(175)

A2
↑STING activation

↑CXCL10, IFNg
↑Antigen-specific CTL responses

(86)

C12-TLRa ↑TLR7/8 activation (176)

SAL12
↑STING activation and IL-1b

production
(177)

Exogenous Adjuvants

Cationic peptide DP7
↑CD103+ DC maturation and

antigen presentation
(178)

Arginine-rich
protamine peptides

↑TLR7/8 activation
↑B and T cell-

dependent responses

(108, 179)

Active STING
↑Type I IFN production

↑Antigen-specific T cell responses
(180)

R848 ↑TLR7/8 activation (169, 181)

a-GC
↑NKT cell activation

↑Anti-tumoral responses
(182)

IL-12p70
↑Cellular and humoral responses

in aged mice
(181, 183)

AS03
↑Antigen-specific Th1/

Th2 responses
(184, 185)
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improved antigen-specific responses following mRNA vaccination

(172). Separately, the quaternary ammonium lipid DDA can be

incorporated to enhance innate immunity and Th1 cell responses to

vaccination when tested in a rabies mRNA vaccine model (173). At

a higher level, the impact of the LNP component from SARS-CoV-2

mRNA vaccines was investigated in cells from young and aged

individuals using an empty LNP (eLNP) (242). eLNP was found to

induce maturation of monocyte derived DCs and upregulated CD40

and cytokine production (e.g. IFNg) from DC and monocyte subsets

in cells from both age groups, although to a lesser extent in cells

from aged donors. Interestingly, eLNP was able to rescue phagocytic

capacity in aged DCs. The aforementioned lipid components of

LNPs for mRNA vaccine delivery represent only a fraction of the

many components currently being investigated for adjuvant-like

properties and offer promising directions for improving mRNA

vaccine-elicited responses in elderly populations.

In the context of DNA vaccines, the diverse range of delivery

systems includes many adjuvant-like properties. As previously

discussed, external stimulation methods for DNA vaccine delivery

largely stimulate immune responses through inflammatory induction

to improve immunogenicity. For example, electroporation sends

electrical pulses that induce danger signals from localized cell death

and tissue damage, attracting APCs and lymphocytes to the site of

vaccination for effective induction of the immune response,

particularly in T cells, against the antigen of interest (186, 187).

These local inflammatory responses recruit APCs and T cells through

pro-inflammatory cytokine release, including TNFa and IL-1b (144).

Electroporation not only improves cellular immune responses but

can also lengthen the duration and array of responses to plasmid-

encoded antigens (188). Studies have shown electroporation alone

can increase immune responses to vaccination by 10- to 1000-fold

(189, 190). Delivery devices can also stimulate the immunogenicity of

DNA vaccines. The gene gun promotes a more specific Th2-biased

response, but inferior cell-mediated immunity and limited capacity of

DNA carried on the gold particles has resulted in its limited use (191,

192). Needle-free injections with next-generation jet injection devices

have also shown to elicit dose-sparing vaccine responses, indicating

improved immunogenicity; however, the specific causes of this have

not been fully elucidated (243, 244).

Furthermore, like emerging formulations of mRNA vaccines,

nanoparticles for DNA vaccine delivery have shown great potential

for adjuvant capabilities outside of their function in DNA delivery.

Chitosan, a cationic polymer that can form a protective
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nanoparticle around DNA vaccine plasmids, can enhance

humoral and cellular responses to vaccination (193, 194) in

addition to cytokine production (IFNg), macrophage activation,

and T cell responses (245). PLGA, another polymer used in DNA

vaccine nanocarriers, has been found to improve MHC-I antigen

presentation and T cell cytokine production (246). Additionally,

studies of exosomes for DNA delivery have found the potential for

deriving cell type-specific exosomes, such as DCs and other

immune cells, to elicit intrinsic adjuvant effects following DNA

vaccination (247).
Exogenous adjuvants

Lastly, exogenous adjuvants for mRNA-based vaccines represent

another method to boost vaccine responses. For example, arginine-

rich protamine peptides can be applied to form a complex with

mRNA to enhance TLR7/8 activation and promote B and T cell

responses in a young and aged mouse model as well as in humans

(108, 179). The use of the cholesterol-modified cationic peptide DP7

was found to enhance CD103+ DC maturation for heightened

antigen presentation in mice (178). Exogenous adjuvants can also

be delivered by encoding them in separate mRNA molecules

administered during vaccination. In a proof-of-concept study, mice

vaccinated against mRNA-encoded HPV E6 and E7 oncoproteins in

combination with mRNA-encoded constitutively active STING

showed reduced HPV+ TC-1 tumor growth and extended survival.

This was linked to STING-mediated activation of type I interferon

responses and enhanced antigen-specific T cell responses (180).

Beyond these adjuvants, investigations into encoding additional

proteins that are separate or linked to the encoded antigen show

promising immunostimulatory properties. For example, the

conjugation of human Fc to the receptor binding domain of

SARS-CoV-2 encoded within a single mRNA molecule can

promote recognition by Fc receptors on APCs to elicit enhanced

vaccine responses (248). Interestingly, a more recent study that

included mRNA-encoded IL-12p70 in a COVID-19 mRNA

vaccine formulation found that the addition of the encoded

cytokine significantly improved both humoral and cellular

responses in aged mice, comparable to those seen in young (183).

Such modifications offer promising new directions for enhancing the

adjuvant-like properties of mRNA and their encoded antigens to

improve protective responses to mRNA-based vaccines for

vulnerable populations, such as the elderly.

Several adjuvants are available for use in both mRNA and DNA

vaccine formulations. AS03 is a commercially available oil-in-water

emulsion adjuvant that promotes both Th1 and Th2 responses for

DNA and mRNA vaccinations (184, 249). Conversely, aluminum

salts, or alum, can also be applied to these nucleic acid vaccine

platforms for Th2-biased responses by enhancing antigen

presentation through the absorption of antigens on their surface,

activation of the NLRP3 inflammasome to generate IL-1b and IL-

18, and activation of DCs through cytotoxic effects (226).

Both mRNA and DNA vaccines further enable adjuvants, such

as cytokines, to be encoded along with the antigen of interest.

Depending on the disease of interest, specific cytokines may be
TABLE 3 Continued

Exogenous Adjuvants

Adjuvant: Modulatory
action

References:

Monophosphoryl lipid A
↑TLR4 activation

↑Humoral and
Th1 responses

(228, 229)

Enterotoxins/Toxin derivatives

↑APC antigen
presentation
↑Th1/Th2

cytokine responses

(230–233)
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chosen to direct responses. For example, cell-mediated responses

may be targeted by encoding IL-2, IL-12, IL-15, IL-18, or IFNg (208,
209, 250). In the context of DNA vaccines, investigation into

chemokines such as IL-8 (210), MIP-1a (251, 252), CCL28 (211),

CCR10L (212), and others have shown to aid in DNA vaccine

effectiveness in vivo. Other plasmid-encoded mediators like PD-1

have been used to promote CD8+ T cell responses to vaccination

(220, 221). Beyond this, more recent investigations into plasmid-

encoded adenosine deaminase-1 as a molecular adjuvant revealed

improved antibody neutralization and durability, antigen-specific T

cell cytokine production and polyfunctionality, and induction of

Tfh-inducing cytokines, including IL-6 (222–225). While the list of

molecular adjuvants for mRNA and DNA vaccines continues to

expand, the ease of incorporating and investigating new adjuvants

in nucleic acid vaccines highlights the potential for enhancing

targeted immune responses to improve protection, particularly in

immunocompromised individuals like the elderly. The selection of

adjuvants enables the tailoring of immune responses to meet

therapeutic requirements for the disease of interest.

Vaccine adjuvants are particularly critical to induce protective

immune responses in elderly populations, and although several have

been investigated in the context of aging including AS01 and MF59,

many of these adjuvants have not been applied to nucleic acid vaccine

platforms. With limited work on vaccine adjuvants in this context, it

is evident that extensive work remains to be done on mRNA and

DNA vaccine adjuvant efficacy and development in the aged.
Future directions of nucleic acid-
based vaccines

Further investigations into pre-clinical mRNA and DNA vaccines

currently lacking aged models are still necessary to guide vaccine

development for the elderly. In the rapidly growing field of mRNA

vaccines, there remain several infectious agents not previously

discussed that are being targeted in early investigations. The

University of Pennsylvania, widely known for its role in successfully

developing the first clinically used mRNA vaccine against COVID-19,

is at the forefront for many new mRNA vaccine formulations that are

undergoing investigation. Although they remain to be tested in aging

models, infectious diseases that disproportionately impact elderly

individuals including Avian Bird Flu (253), Clostridioides difficile

(254), Norovirus, and Tuberculosis are being targeted with novel

mRNA formulations (255). Similarly, DNA vaccines targeting C.

difficile (256, 257), Streptococcus pneumoniae (258), and RSV (259)

exist but have not been tested in aging. Incorporation of aged models,

particularly for pathogens that significantly impact elderly

populations, could provide insight into the potential for nucleic acid

vaccines to induce protective immune responses against targets where

previously tested vaccines have fallen short.

Newer developments in self-amplifying mRNA (saRNA) are also

paving the way for the future of nucleic acid vaccine design. Despite

first being described in 2012 (260), saRNA has gained more attention

since the implementation of the COVID-19 mRNA vaccine. This

emerging mRNA technology, unlike conventional mRNA vaccines,
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incorporates encoded viral replicase genes in addition to the antigen

of interest to promote self-amplification of the mRNA, thereby

rapidly increasing production of antigen. This self-amplifying

property overcomes obstacles observed in conventional mRNA

vaccines including balancing high doses with adverse side effects,

stability, and the need for multiple boosting vaccinations. Based on

their potent induction of immune responses at lower vaccination

doses (261), saRNA vaccine technology is primed for investigation

aging models. In fact, recent approval of the first saRNA vaccine in

Japan, which targets COVID-19, highlights the potential of this new

mRNA vaccine technology and the need for evaluation of immune

responses elicited in elderly populations (262).

Finally, this review highlights the shortcomings of clinical trials

examining the efficacy of nucleic acid vaccines and adjuvants in aged

individuals. A greater focus on age-related deficits following nucleic

acid vaccination are critically needed to identify and correct vaccine

design for improved responses in this susceptible population.
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