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Integrating pathomics and deep
learning for subtyping uveal
melanoma: identifying high-risk
immune infiltration profiles
Qi Wan, Ran Wei, Hongbo Yin, Jing Tang, Ying-ping Deng
and Ke Ma*

Department of Ophthalmology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
Purpose: Uveal melanoma (UVM) is the most common primary intraocular

malignancy in adults, characterized by high mortality despite its relatively low

incidence. This study aimed to utilize unsupervised learning techniques to

identify a high immune infiltration subtype of UVM and improve patient

stratification based on mortality risk.

Methods: A total of 70 hematoxylin and eosin (H&E) stained whole-slide images

(WSIs) of UVM were collected from the Genomic Data Commons (GDC) data

portal, along with genomic and clinical data. An additional validation cohort of 68

UVM patients from West China Hospital was included. Pathomic features were

extracted using CellProfiler software, and deep learning models were

constructed for classification and survival prediction. Unsupervised clustering

was performed to identify critical regions for prognosis prediction and patient

classification. The relationship between histopathological features and genomics

was explored.

Results: The study achieved accurate prediction and classification of UVM

patients using deep learning models and machine learning techniques. A high

immune infiltration subtype of UVM was identified, which showed prognostic

relevance. Unsupervised clustering categorized UVM patients into three distinct

subgroups. The developed deep learning model based on the Inception-V3

architecture demonstrated promising results in survival prediction.

Conclusion: This study demonstrates the potential of unsupervised learning and

deep learning techniques in identifying a high immune infiltration subtype of

UVM and improving patient stratification based on mortality risk. This research

contributes to the field of computational pathology and highlights the potential

of utilizing histopathological images, genomic data, and deep learning models in

enhancing the management of UVM patients.
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unsupervised learning, uveal melanoma, immune infiltration, pathomics features,
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1 Background

Uveal melanoma (UVM) is the most common intraocular

malignancy in adults and the most frequent type of non-

cutaneous melanoma. It is also the primary lethal ocular disease

in adults. In the United States, the annual incidence of UVM is

reported to be 5.2 cases per million (per year) (1, 2). Based on the

cytological morphology of tumor tissues, three subtypes of UVM

can be distinguished: spindle, epithelioid, and mixed cell types.

Epithelioid cell type has the worst prognosis, accounting for

approximately 3-5% of all UVM cases, while spindle cell type has

the best prognosis, accounting for over 40% of all UVM cases. The

remaining 50% of UVM patients belong to the mixed cell type (3).

The tumor cells of UVM originate from melanocytes with

pigmentation in the uvea, with 90% of tumors originating from

the choroid, approximately 6% from the ciliary body, and 4% from

the iris (4). Since UVM is a very diverse tumor, chromosomal

changes and gene mutations are thought to be the primary factors

for it to arise and spread (5). At present, brachytherapy, proton

therapy, enucleation, and stereotactic radiation are the primary

approaches used to treat UVM. However, patients diagnosed with

UM often face a dismal prognosis primarily due to the high

likelihood of metastasis, particularly to the liver, which

significantly diminishes survival rates. While local recurrence is

not directly linked to poor prognosis, it increases the risk of distant

metastases, a major cause of mortality in UVM. Additionally,

metastatic UVM cells frequently exhibit resistance to existing

therapeutic options, including chemotherapy and targeted

treatments, further complicating disease management. Over 50%

of primary UVM patients eventually develop distant metastases,

with the liver being affected in up to 90% of cases. Typically, the

median survival period after metastasis is 10–13 months (6).

Patients with uveal melanoma who get early identification and

surgical therapy for metastatic UVM may have better overall

survival (OS) and progression-free survival. Consequently,

prompt diagnosis and therapy are useful steps to enhance the

clinical outcome of UVM.

The diagnostic results of pathology directly influence the

selection of treatment plans and the prediction of prognosis.

Currently, the most frequently employed in clinical practice is the

hematoxylin and eosin (H&E) staining of histopathological sections,

which is simple, cost-effective, and the preferred auxiliary

examination for clinicians (7). In addition, numerous clinical

organizations are producing more whole-slide images (WSIs) as a

result of developments in scanning equipment, imagingmethods, and

storage devices. AI and deep learning (DL) methods can be used to

examine these images (8). AI-assisted detection and automatic

categorization of H&E-stained whole slide images, for example, can

aid in identifying the main lesion of malignancies that are unknown

in origin (9), grade prostate cancer to a standard that is equivalent to
Abbreviations: AUC, The area under the curve; CIC, Clinical impact curve; DL,

Deep learning; DCA, decision curve analysis; ROCs, receiver operating

characteristic curves (ROCs); TF-IDF, Term frequency-inverse document

frequency; UVM, Uveal melanoma; WSI, Whole-slide image.
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that of skilled pathologists (10), more accurate than conventional

cancer staging at predicting the prognosis of patients with colorectal

cancer (11), and identify breast cancer’s lymph node metastases (12).

Furthermore, our previous studies have demonstrated the accurate

prediction and classification of UVM patients using deep learning

models and machine learning techniques via WSIs, with an accuracy

rate of over 90% in predicting patients’ survival prognosis (13).

Although DL frameworks have achieved impressive performance

in segmentation and classification tasks, they still require supervision

from pathologists, and the annotation process still demands significant

resources (14). To address this limitation, we utilized CellProfiler

software for the extraction of pathomics in tumor areas. Pathomics is

a new research method that enables automated processing and analysis

of a large number of pathological images (15). It calculates features

such as cell nucleus and cytoplasmmorphology, tissue spatial structure,

and extracts valuable information to assist in pathological diagnosis

and support disease research (16–18). Due to the presence of different

disease subtypes and varying degrees of disease progression, there is

evident heterogeneity between cell tissues. The application

development of pathomics can be used to explore heterogeneity

within tumors, diagnose clinical outcomes, and predict treatment

responses (19, 20).

Additionally, through unsupervised clustering, we identified

critical regions to predict the prognosis and classification of UVM

patients. Additionally, we explored the relationship between

histopathological features and genomics in an exploratory

manner. We believe that mutations in oncogenes and long-term

abnormal expression contribute to the pathological process of

transitioning from quantitative to qualitative changes in tissue

pathology, and our research aims to provide evidence for

this process.
2 Materials and methods

2.1 Data collection

This study gathered 70 WSIs of uveal melanoma (TCGA-UVM)

stained with H&E from the Genomic Data Commons (GDC) data

portal, in addition to pertinent genomic information and clinical

features such as age, gender, tumor stage, histological type, and

metastasis status. Additionally, a validation cohort (WCH-UVM)

comprising 68 UVM patients from West China Hospital in

Chengdu, China, were included, involving the collection of H&E-

stained UVM samples and corresponding clinical data. This study was

conducted in accordance with the Declaration of Helsinki. The

agreement and written informed consent of WCH-UVM were

acquired. The research protocol was reviewed and approved by the

Ethics Committee of West China Hospital, Sichuan University

(Approval No. 20242000). These WSIs served as the basis for

exploring pathomic features and deep-learning features in uveal

melanoma patients. The simplified flow diagram for the Study

design is illustrated in Figure 1A. The work has been reported in line

with the REMARK (Reporting recommendations for tumor marker

prognostic studies) criteria (21).
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To expand the scope of the investigation, additional genomic

data from open-access resources (ArrayExpress databases and the

Gene Expression Omnibus) were collected. The selection process

for appropriate cohorts involved specific criteria: 1) samples

originated from human subjects, 2) cohorts included survival

data, and 3) cohorts derived from independent studies. Using

these criteria, the study incorporated 250 samples from five UVM

cohorts (E-MTAB-4097, GSE22138, GSE27831, GSE44295,

and GSE84976).
2.2 Data processing

First, using Qupath software (v.0.2.3) to achieve accurate

identification and delineation of tumor regions within WSIs and

ensuring annotation quality, followed by manual review of the WSIs

and careful annotation of tumor areas while excluding regions with

excessive background or no tissue; subsequently, the WSIs were

divided into non-overlapping tiles of 1024x1024 pixels, and

pathomics feature extraction as well as deep-learning network

construction was based on selecting tiles with a tumor mask

overlap of more than 50%; furthermore, the raw RNA-seq data

underwent preprocessing steps including probe set conversion,

determination of gene expression values, and log2 + 1

transformation for standardization and normalization, thereby

providing a standardized foundation for bioinformatic analysis

aimed at identifying gene biomarkers.
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2.3 Pathomics feature extraction

The CellProfiler software is widely used in pathology image

analysis, offering automated processing and analysis capabilities for

large quantities of pathology images (22, 23). We used CellProfiler

(version 4.2.6) to extract quantitative pathomics features of tiles

from all tumor regions. Firstly, employ the “UnmixColors” module

to separate H&E-stained images into hematoxylin and eosin-

stained images. Then, convert the H&E-stained images into

grayscale using the “ColorToGray” module, and evaluate image

quality features of grayscale H&E, hematoxylin, and eosin images

using the “MeasureImageQuality” and “MeasureImageIntensity”

modules. Automatically calculate thresholds for each image using

the Otsu algorithm to identify tissue foreground from unstained

background and extract threshold features. Next, utilize the

“MeasureColocalization” module to compute pixel-wise intensity

colocalization and correlation between each eosin-stained image

and hematoxylin-stained image. Lastly, respectively assess

granularity and texture features of each image using the

“MeasureGranularity” and “MeasureTexture” modules, outputting

a size measurement spectrum for the textures in the image, with the

granularity spectrum ranging as specified (15).
2.4 Tiles clustering and annotation

Firstly, following previously published protocols and RNA-seq

data, we calculated eight indices related to stemness and the
FIGURE 1

The overall study diagram for the current study. (A) The detail flow work for the whole design of study. (B) The detail steps of data processing,
pathomics analysis and deep-learning network construction.
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microenvironment in Uveal melanoma (24–27). These indices

include stemness-related indices (mDNAsi and mRNAsi) and

microenvironment-associated indices (DNA methylation of

tumor-infiltrating lymphocytes (MeTILs) and the Cancer-

associated fibroblasts (CAFs), stromal, immune, tumor purity,

and estimate scores). Secondly, we utilized the K-Nearest

Neighbor (KNN) algorithm to partition the tiles into eight

clusters and employed correlation analysis to annotate the

attributes of these clusters. Besides, pseudo-trajectory analysis was

performed to compare the similarity of tile clusters between TCGA-

UVM and WCH-UVM cohorts.
2.5 Unsupervised subtyping

Based on the classification results obtained through the KNN

algorithm, we computed the proportions of each cluster in the UVM

samples. Kaplan-Meier (K-M) survival analysis was then performed

to find clusters that had prognostic importance. Additionally, we

employed the “ConsensusClusterPlus(v.1.62.0)” program to

categorize UVM patients into three distinct subgroups. This

program utilized the unsupervised clustering method “Pam”, with a

maximum number of clusters set to maxK=4. The clustering process

was performed over 1,000 iterations using Euclidean distance and

Ward’s linkage for consistent and reproducible classification.
2.6 Ensemble deep learning for multi-task

The tiles in survival-related clusters were selected for deep-

learning construction. Two independent datasets were randomly

selected from the TCGA-UVM cohort: a train dataset (70%) and a

test dataset (30%). The train dataset was utilized to create the model

and fine-tune the hyperparameters, while the testing dataset and

WCH-UVM dataset were employed for model evaluation. To

enhance the diversity and quality of training data, data

normalization and augmentation techniques were employed,

including horizontal flip, vertical flip, random rotation, etc.

Combined with the implementation of a weakly supervised

method and subtypes for supervision, an Inception-V3 model was

trained over 30 epochs, utilizing the SGD optimizer with a learning

rate of 10–2 and L2 regularization with a weight decay of 10-5.

Subsequently, a classifier based on the Inception-V3 deep-learning

architecture was employed to assign labels to all tiles within each

WSI, resulting in the generation of a heatmap depicting the

probability prediction for each tile. Considering the large number

of tiles within the WSIs, these probability tiles were combined to

create a heatmap representing the probability distribution across

the entire WSI. The Bag-of-Words (BoW) algorithm was applied to

calculate term frequency-inverse document frequency (TF-IDF)

features from the probabilities. The TF-IDF features (defined as

DL features) were further analyzed to conduct multi-task at the

WSI-level via machine learning.
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2.7 Pathomics and deep-learning -features
risk models

Pathomics and DL risk models were constructed to predict

patient prognosis using DL-features and clustering proportions.

Initially, the candidate whole WSI-level DL features were obtained

through lasso regression. These features were then utilized as inputs

for the Cox regression model implemented in the “survival”

package of R software. The Cox model was employed to calculate

the DL risk scores for each patient. Additionally, survival-related

clusters were incorporated into another Cox regression model to

estimate the pathological risk scores for each patient.
2.8 RNA-features construction

On the basis of cluster proportions, UVM patients were divided

into three categories. To find differentially expressed genes (DEGs)

connected to these subgroups, we used the “limma” approach and

set a significance threshold of p < 0.05 and |log2FC| ≥ 2. To further

explore the biological mechanisms between different subtypes, we

performed Reactome pathway enrichment analysis. Additionally,

we used Cox regression to identify prognostic-related DEGs and

applied unsupervised clustering to classify UVM patients. The genes

positively and negatively correlated with genomic clustering were

defined as signature genes p and n, respectively. Next, we utilized

the Boruta algorithm to identify important gene subsets within

features p and n, followed by performing PCA calculations on these

subsets. Finally, we extracted the first principal component (PC1) as

the RNA-features. The RNA-features score in UVM samples was

calculated as the sum of PC1(p) minus the sum of PC1(n) using the

formula: ∑PC1(p) - ∑PC1(n). To assess the predictive capability of

the RNA-features, the RNA-features scores of UVM patients were

independently examined in six distinct UVM cohorts (TCGA-

UVM, E-MTAB-4097, GSE22138, GSE27831, GSE44295, and

GSE84976). Each patient was classified as either high-risk or low-

risk based on the optimal cutoff score, and the disparity in survival

outcomes between the two groups was analyzed using Kaplan-

Meier curves and log-rank tests. Additionally, we conducted a meta-

analysis to integrate and comprehensively evaluate the risk ratios

and survival outcomes across different cohorts.
2.9 Statistical analysis

In this study, we utilized Python (v.3.8.0) and R (v.4.2.2)

alongside relevant packages to perform various statistical analyses.

The proposed deep learning model was implemented using PyTorch,

utilizing a GPU (Nvidia GeForce RTX-3080 with 10 GB memory).

Machine learning algorithms were executed using the “sklearn”

package in Python. K-M and receiver operating characteristic

curves (ROCs) were visualized using the “survminer” and

“survivalROC” packages, respectively in R. The best cutoff value
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was decided upon the “survminer” package, while the Pearson test

was used to evaluate the association. For comparisons between

groups, the Wilcoxon test, and chi-square test were employed.

Hazard ratios (HR) and 95% confidence intervals (CI) were

computed using Cox regression analysis, with a p-value threshold

of less than 0.05 being used to evaluate statistical significance.
3 Results

3.1 Participants characteristics

This study included two whole slide image (WSI) cohorts and

three datasets: the training dataset consisted of 42 consecutive UVM

patients from the TCGA-UVM cohort, the testing dataset

comprised 42 consecutive UVM patients from the TCGA-UVM

cohort, and the validation dataset contained 68 consecutive patients

from the WCH-UVM cohort. Statistical analysis of clinical and

pathological features revealed no significant differences between the

training and testing datasets. However, there were significant

differences observed among the three datasets regarding overall

survival (OS) time, age, and histological type. The average OS time

was 864.12 ± 573.36 days in the training dataset, 704.68 ± 471.53
Frontiers in Immunology 05
days in the testing dataset, and 1439.56 ± 973.42 days in the

validation dataset. The mean age in the training and testing

datasets was 60.40 ± 13.59 years and 64.91 ± 15.11 years,

respectively, while the mean age in the validation dataset was

50.81 ± 12.47 years. Furthermore, the proportion of the

epithelioid histological type in the three datasets was 16.7%,

18.2%, and 36.8%, respectively (Table 1).
3.2 Pathomics feature extraction

As shown in step 1 at Figure 1B, the WSIs underwent cropping

and filtering processes. In the TCGA-UVM cohort, we obtained a

total of 30,875 qualified tiles, and in the WCH-UVM cohort, we

obtained 18,179 valid tiles. These tiles were then subjected to

analysis using CellProfiler, resulting in a final set of 180

quantitative pathomics features available for each tile.
3.3 Tiles clustering and annotation

To select a more distinctive subset of tiles from the WSI, we

performed clustering on the tiles based on their histopathological
TABLE 1 Clinical features of train, test and validate datasets.

Variables Level Train Test Validate P Sig

n 48 22 68

Overall Survival.time 864.12 ± 573.36 704.68 ± 471.53 1439.56 ± 973.42 <0.001 **

Vital.status 0.33 ± 0.48 0.27 ± 0.46 0.25 ± 0.44 0.634

MetStatus Metastatic 17 (35.4) 8 (36.4) 19 (27.9) 0.617

Non_metastatic 31 (64.6) 14 (63.6) 49 (72.1)

Age 60.40 ± 13.59 64.91 ± 15.11 50.81 ± 12.47 <0.001 **

Gender female 19 (39.6) 10 (45.5) 31 (45.6) 0.797

male 29 (60.4) 12 (54.5) 37 (54.4)

Histological type epithelioid 8 (16.7) 4 (18.2) 25 (36.8) 0.006 **

mixed 24 (50.0) 9 (40.9) 13 (19.1)

spindle 16 (33.3) 9 (40.9) 30 (44.1)

SF3B1 mutant 12 (25.0) 4 (18.2) 26 (38.2) 0.123

wildtype 36 (75.0) 18 (81.8) 42 (61.8)

GNAQ mutant 24 (50.0) 9 (40.9) 32 (47.1) 0.779

wildtype 24 (50.0) 13 (59.1) 36 (52.9)

GNA11 mutant 21 (43.8) 12 (54.5) 24 (35.3) 0.256

wildtype 27 (56.2) 10 (45.5) 44 (64.7)

EIF1AX mutant 5 (10.4) 3 (13.6) 5 ( 7.4) 0.531

wildtype 43 (89.6) 19 (86.4) 63 (92.6)

Subtype High_infiltration 15 (31.2) 6 (27.3) 23 (33.8) 0.843

Low_infiltration 33 (68.8) 16 (72.7) 45 (66.2)
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features and identified ones with greater discriminatory power. This

pipeline consisted of four steps: tiles clustering analysis, calculation

of tile category proportions, annotation of tiles, and pseudo

trajectory analysis of tiles, as illustrated in step 3 at Figure 1B.

Using the KNN algorithm, all 30,875 tiles from the TCGA-

UVM cohort were partitioned into eight clusters (Figure 2A).

Similarly, the 18,179 tiles from the WCH-UVM cohort were also

clustered into eight clusters (Figure 2B). The proportions of tiles

clustering categories in each UVM sample were calculated, and the

visualization of the proportions for the eight clusters in the TCGA-

UVM cohort and WCH-UVM cohort samples was presented in

Figures 2C, D, respectively. A correlation analysis heatmap revealed

that Cluster0 had a positive correlation with MeTILs, immune

scores, and estimate scores, while exhibiting a negative correlation

with tumor purity (Figure 2E). Furthermore, we incorporated the

cluster proportion scores as variables along with patient survival

information and performed Kaplan-Meier analysis. In the TCGA-

UVM cohort, we found that Cluster0, Cluster1, and Cluster3 were

associated with UVM prognosis. Cluster0 had a hazard ratio (HR)

of 2.46, indicating a survival risk factor, whereas Cluster1 and

Cluster3 had HRs of 0.29 and 0.18, respectively, indicating
Frontiers in Immunology 06
protective factors for UVM survival (Figure 2F). Similarly, in the

WCH-UVM cohort, we observed that Cluster3, Cluster4, and

Cluster5 were associated with UVM prognosis. Cluster3 had an

HR of 4.48, indicating a survival risk factor, while Cluster4

(HR=0.3) and Cluster5 (HR=0.017) were identified as protective

factors for UVM survival (Figure 2G).

Pseudo trajectory analysis revealed that Cluster0 in the TCGA-

UVM cohort (Figure 3A) and Cluster 3 in the WCH-UVM cohort

(Figure 3B) are both distributed on the inner side of the trajectory. On

the other hand, Cluster1 and Cluster3 in the TCGA-UVM (Figure 3A),

as well as Cluster4 and Cluster5 in the WCH-UVM (Figure 3B), were

distributed on the outer side of the trajectory. Additionally, the

dendrogram tree also indicates that these clusters exhibit similar

distribution characteristics. To further validate the consistency of the

identified categories in both cohorts, we visualized a sample from each

dataset separately. Figure 3C represents a complete WSI from the

TCGA-UVM dataset, and the clustered and stitched heatmap was

shown in Figure 3D. The pie chart in Figure 3E illustrates the relative

proportions of Cluster0, Cluster1, and Cluster3. By overlaying the

category heatmap with the original image, tile images corresponding to

each cluster were identified (Figure 3F). Additionally, Figure 3G
FIGURE 2

Tiles clustering and annotation. (A) Visual representation of the eight clusters of the 30,875 tiles from the TCGA-UVM cohort. (B) Visualization of the
eight clusters of the18,179 tiles from the WCH-UVM cohort. (C) The relative proportions of the eight clusters in the TCGA-UVM cohort. (D) The
relative proportions of the eight clusters in the WCH-UVM cohort. (E) The correlation heatmap of eight clusters and eight indices which included
stemness-related indices (mDNAsi and mRNAsi) and microenvironment-associated indices (DNA methylation of tumor-infiltrating lymphocytes
(MeTILs) and The Cancer associated fibroblasts (CAFs), stromal, immune, tumor purity, and estimate scores). (F) Kaplan–Meier (K-M) curves for
survival analysis of Cluster0, Cluster1 and Cluster3 in TCGA-UVM cohort. (G) K-M curves of Cluster3, Cluster4 and Cluster5 in WCH-UVM cohort.
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FIGURE 3

Pseudo trajectory analysis and clusters display. (A) The pseudo trajectory and dendrogram tree of Cluster0, Cluster1 and Cluster3 in TCGA-UVM
cohort. (B) The pseudo trajectory and dendrogram tree of Cluster3, Cluster4 and Cluster5 in WCH-UVM cohort. (C) One representative whole-slide
image (WSI) in TCGA-UVM cohort. (D) Cluster heatmap for WSI-level. (E) The relative proportions of the eight clusters in WSI-level. (F) The tile
clustering and tiles selection for Cluster0, Cluster1 and Cluster3 in representative WSI. (G) One example of whole-slide image (WSI) in WCH-UVM
cohort. (H) Cluster heatmap for WSI-level. (I) The relative proportions of the eight clusters in WSI-level. (J) The tile clustering and tiles selection for
Cluster3, Cluster4 and Cluster5 in example of WSI.
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depicted a complete WSI from the WCH-UVM cohort, and the

clustered and stitched heatmap was shown in Figure 3H. The pie

chart in Figure 3I illustrates the relative proportions of Cluster3,

Cluster4, and Cluster5. Similarly, by overlaying the category heatmap

with the original image, tile images corresponding to each cluster were

identified (Figure 3J).
3.4 Unsupervised subtyping

Based on survival analysis, we included Cluster0, Cluster1, and

Cluster3 from TCGA-UVM, and Cluster3, Cluster4, and Cluster5

from WCH-UVM in the unsupervised clustering analysis. By

considering the similarity in cluster proportions, we further

separated UVM patients into subgroups. Stable clustering was

indicated by a continuous rise in the values of the cumulative

distribution function (CDF). Ultimately, through unsupervised

clustering (k=3), we identified three stable subtypes. In TCGA-

UVM, these subtypes included subtype 1 (9 UVMs), subtype 2 (21
Frontiers in Immunology 08
UVMs), and subtype 3 (40 UVMs). Similarly, the WCH-UVM

dataset was also divided into three subtypes: subtype 1 (26 UVMs),

subtype 2 (19 UVMs), and subtype 3 (23 UVMs). Furthermore, to

investigate the connection between subtypes and clinical

characteristics, the complete heatmaps of TCGA-UVM and WCH-

UVM datasets were displayed in Figures 4A, B. K-M survival curve

analysis revealed that subtype 2 in TCGA-UVM out of the three

subtypes had the poorest prognosis (Figure 4C, log-rank p=0.035),

while subtype 3 inWCH-UVM had the shortest survival time among

the three subtypes (Figure 4D, log-rank p=0.041). Reactome pathway

enrichment analysis showed that differentially expressed genes in

subtype 2 of TCGA-UVM were mainly enriched in immune-related

pathways, such as Interferon alpha/beta signaling (Figure 4E). In

addition, boxplot analysis revealed that immune scores and estimated

scores of subtype 2 were significantly higher than those of subtype 1

and subtype 3, while tumor purity was significantly lower than that of

subtype 1 and subtype 3 (Figure 4F). Therefore, we defined subtype 2

in TCGA-UVM and subtype 3 inWCH-UVM as the high-infiltration

subtype, and subtype 1 and subtype 3 in TCGA-UVM, as well as
FIGURE 4

Unsupervised subtyping. (A) Subtyping of proportions of the three clusters in TCGA-UVM cohort by an unsupervised clustering method. Proportions
of Cluster0, Cluster1 and Cluster3 are shown by rows, and UVM samples are represented by columns. (B) Unsupervised Subtyping of proportions of
the three clusters in WCH-UVM cohort. Proportions of Cluster3, Cluster4 and Cluster5 are shown by rows, and UVM samples are represented by
columns. (C) K-M curves for survival analysis of three subgroups of UVM patients in TCGA-UVM cohort. (D) K-M curves of three subgroups in
WCH-UVM cohort. (E) The Reactome pathway enrichment analysis of differentially expressed genes among subgroups. (F) Box plots of eight
indices in three subgroups. *means p<0.05. mDNAsi and mRNAsi: The stemness-related indices; MeTILs, DNA methylation of tumor-infiltrating
lymphocytes; CAFs, The Cancer associated fibroblasts.
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subtype 1 and subtype 2 in WCH-UVM, as the low-infiltration

subtype. The different clinical features between high- and low-

infiltration subtypes were listed in Table 2.
3.5 Ensemble deep-learning for multi-task

The subtype classifier for diagnosing high-infiltration in uveal

melanoma patients underwent rigorous validation using both the

TCGA-UVM dataset and the WCH-UVM cohort. The classifier

involved two crucial steps: tile-level prediction and WSI-

level prediction.

For tile-level prediction, 20,689 tiles from survival-related

clusters were selected to construct a deep learning model.

Subsequently, we randomly split the dataset of 20,689 tiles into

training and validation sets at a 1:1 ratio. The performance of the

Inception-V3 deep learning model was rigorously evaluated using

ROC curves, precision-recall curves, and confusion matrices to

ensure a reliable and robust assessment. The specific metrics and

detailed performance results of the model are provided in

Supplementary Figure S1. The convergence of accuracy and loss

curves indicated that as the training epoch increased, accuracy

approached 100% and loss approached 0% (Figure 5A). At the WSI

level, multiple probable tiles were combined to create a

comprehensive heatmap and corresponding histogram

(Figure 5B). The entire slide was assessed using the Bag-of-Words
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(BoW) algorithm, extracting 101 deep learning (DL) features from

the histogram of tile probabilities. After adjusting for false discovery

rate (FDR) using the Wilcoxon test, 52 DL features showed

significant differences with a p-value < 0.05. These features were

then utilized in Lasso regression for dimensionality reduction

(Figure 5C). The optimal lambda value was determined through

10-fold cross-validation (CV) (Figure 5D), leading to the

identification of five DL features with coefficients > 0 as

significant candidate variables (Figure 5E). These five features

were employed in ten machine learning algorithms, and the

Support Vector Machine (SVM) classifier was selected for high

infiltration prediction based on the distribution of accuracy results

(Figure 5F). The ROCs in the train, test, and validation datasets

were 1.00, 1.00, and 0.975, respectively (Figure 5G). Subsequently,

the five DL features were used as inputs for the Cox regression

model to calculate risk scores for each patient. High- and low-risk

groups of UVM patients were created by using an ideal cutoff value.

In the TCGA-UVM dataset (Figure 5H, log-rank p < 0.0001) and

the WCH-UVM cohort (Figure 5I, log-rank p < 0.0001), K-M

survival analysis showed a poorer prognosis for high-risk patients.

In UVM patients, the most common gene mutations include

EIF1AX, GNAQ, GNA11, SF3B1, and so on. Previous studies have

shown that these mutations result in abnormal activation of cellular

signaling pathways, promoting the proliferation and metastasis of

melanoma cells. Therefore, the use of DL features to predict gene

mutations would be beneficial for the treatment and management of
TABLE 2 The different clinical features between high- and low- infiltration subtypes.

Variables Level High infiltration Low infiltration P Sig

n 44 94

Overall Survival.time 800.23 ± 765.41 1272.99 ± 839.84 0.001 **

Vital.status 0.43 ± 0.50 0.21 ± 0.41 0.014 **

MetStatus Metastatic 18 (40.9) 26 (27.7) 0.174

Non_metastatic 26 (59.1) 68 (72.3)

Age 58.16 ± 13.73 55.56 ± 14.69 0.314

Gender female 17 (38.6) 43 (45.7) 0.548

male 27 (61.4) 51 (54.3)

Histological type epithelioid 13 (29.5) 24 (25.5) 0.099

mied 19 (43.2) 27 (28.7)

spindle 12 (27.3) 43 (45.7)

SF3B1 mutant 8 (18.2) 34 (36.2) 0.05 *

wildtype 36 (81.8) 60 (63.8)

GNAQ mutant 21 (47.7) 44 (46.8) 1.000

wildtype 23 (52.3) 50 (53.2)

GNA11 mutant 21 (47.7) 36 (38.3) 0.388

wildtype 23 (52.3) 58 (61.7)

EIF1A mutant 5 (11.4) 8 ( 8.5) 0.755

wildtype 39 (88.6) 86 (91.5)
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FIGURE 5

Features selection and diagnosis for high-infiltration subtype at WSI-level. (A) The training convergence for Inception-V3: loss curve and accuracy
curve. (B) An example of probable heatmap and histogram of probability. (C) The coefficient profiles of DL features in Lasso regression. (D) The
distribution of mean squared error with the corresponding l-logarithm value in 10-fold cross-validation using Lasso regression. (E) The selected DL
features with coefficients > 0. (F) The accuracy distribution of ten machine learning algorithms for classify of subtype. (G) The ROC curves of SVM
model for prediction of high-infiltration subtype in train, test and validate datasets. (H) K-M survival analysis of High- and low-risk groups of UVM
patients in TCGA-UVM cohort. (I) K-M curves of High- and low-risk groups in WCH-UVM cohort.
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UVM patients. Firstly, we employed the Wilcoxon test and FDR

adjustment with a significance level of p < 0.05 to select DL features

that exhibited differential gene mutations. Subsequently, we utilized

ten machine learning algorithms to evaluate the accuracy of the

predictions. The distribution of accuracy results indicated that

RandomForest had the highest accuracy for predicting EIF1AX

mutation (Figure 6A). The ROCs in the train, test, and validation

datasets were 0.843, 0.800, and 0.783, respectively (Figure 6B). For

the prediction of GNA11 mutation, XGBoost performed relatively

better than other algorithms (Figure 6C). The AUCs were 0.613,

0.644, and 0.496 in the train, test, and validation datasets

(Figure 6D). Regarding the prediction of GNAQ (Figure 6E) and

SF3B1 mutations (Figure 6G), AdaBoost outperformed other

algorithms. The AUCs of AdaBoost for GNA11 mutation were

0.857, 0.712, and 0.588 in the train, test, and validation datasets

(Figure 6F). In predicting SF3B1 mutation, the AUCs of AdaBoost

in the train, test, and validation datasets were 0.802, 0.806, and

0.618, respectively (Figure 6H).
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3.6 RNA-features construction

The development of RNA risk features is of significant

importance for understanding the prognosis and potential

therapeutic strategies of UVM. We utilized the TCGA-UVM

cohort as a train set and employed five external validation sets

(GSE84976, GSE27831, GSE22138, GSE44295, and E-MTAB-4097)

to ensure the robustness of the study results. Firstly, in the TCGA-

UVM cohort, we identified 457 differentially expressed genes

(DEGs) based on different subgroups. Subsequently, using

survival information and univariate Cox analysis, we identified 21

survival-associated DEGs. Based on these 21 genes, UVM samples

were classified into three gene-related clusters. The feature p gene

set consisted of 12 DEGs positively correlated with the gene clusters,

while the feature n comprised 9 DEGs negatively correlated with the

gene clusters. A visual heatmap was generated to illustrate the

relationship between gene-related clusters and clinical features

(Figure 7A). The log-rank test revealed that Cluster C exhibited a
FIGURE 6

Prediction of gene mutation at WSI-level. (A) The accuracy distribution of ten machine learning algorithms for predicting mutation of EIF1AX. (B) The
ROC curves of RandomForest model for predicting mutation of EIF1AX in train, test and validate datasets. (C) The distribution of accuracy for
predicting GNA11 mutation. (D) The XGBoost model’s ROC curves for GNA11 mutation prediction in train, test, and validate datasets. (E) The
distribution of accuracy for predicting GNAQ mutation. (F) The AdaBoost model’s ROC curves for GNAQ mutation prediction in train, test, and
validate datasets. (G) The distribution of accuracy for predicting mutation of SF3B1. (H) The ROC curves for prediction of SF3B1 mutation via
AdaBoost model in train, test, and validate datasets.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1585097
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wan et al. 10.3389/fimmu.2025.1585097
better survival prognosis (Figure 7B). We then used feature n and

feature p, respectively, to further identify significant gene sets using

the Boruta technique. Ultimately, the JUP gene was selected from

feature p, and the UFC1 gene was selected from feature n for PCA

calculations. Based on the formula, we obtained RNA-features

scores for each UVM patient. The boxplot showed that scores of

Cluster C were significantly lower than Cluster A and B (Figure 7C).

Subsequently, using an optimal cutoff value, UVM patients were

divided into high-score and low-score subgroups. The Log-rank test

in the K-M curve demonstrated that patients with high scores had a

poor overall survival than those with low scores (Figure 7D).

Finally, a meta-analysis of all cohort results confirmed that RNA-

features are an important risk factor influencing UVM survival,

with a hazard ratio of 3.66 (Figure 7E). The funnel plot displayed a

symmetric distribution on both sides of the centerline, indicating a

low publication bias in the meta-analysis (Figure 7F).

3.7 Nomogram construction

To provide a comprehensive and accurate prognostic prediction

method for UVM, we developed a comprehensive nomogrammodel.

First, univariate Cox analysis revealed that DL-features, Cluster-

features, RNA-features, age, stage, histological type, metastasis

status, and SF3B1 mutation were correlated with overall survival
Frontiers in Immunology 12
(OS) (Figure 8A). However, in the multivariate Cox analysis, only age,

gender, histological type, metastasis status, and DL-features were

significantly associated with OS in UVM patients (Figure 8B).

Therefore, we constructed a comprehensive nomogram model

incorporating age, gender, histological type, metastasis status, and

DL-feature to estimate the probabilities of 3 years and 5 years OS

(Figure 8C). In the TCGA-UVM and WCH-UVM cohorts, the 3

years and 5 years nomogram calibration curves showed a significant

degree of overlap between the actual and anticipated survival rates,

demonstrating good predictive value (Figure 8D). Time-dependent

ROC curves were used to assess the accuracy of the nomogram, and

the AUC values for 1 year, 3 years, and 5 years predictions were all

greater than 0.9, indicating good sensitivity and specificity of the

nomogram (Figure 8E). Additionally, decision curve analysis (DCA)

revealed that our nomogram model, which integrates pathomics

features with traditional clinical features such as histological type

and metastasis status, yielded higher net benefits compared to models

relying solely on clinical features (Figure 8F). To assess the

nomogram’s clinical usefulness, we further generated a clinical

impact curve (CIC) using the DCA data. The nomogram’s higher

overall net benefit within a broad and useful range of threshold

probabilities was intuitively shown by the CIC, which also impacted

prediction accuracy and showed the model’s strong predictive

value (Figure 8G).
FIGURE 7

Gene cluster and RNA-features construction. (A) Unsupervised clustering of three subtypes (Cluster A to C) based on the expression of differentially
expressed genes (DEGs). (B) K-M curves of three gene clusters in TCGA-UVM cohort. (C) The distribution of RNA-features scores among three gene
clusters. (D) K-M curves of high- and low-score groups of UVM patients in six independent cohorts (TCGA-UVM GSE22138, GSE27831, GSE44295,
GSE84976, and E-MTAB-4097). (E) Meta-analysis of hazard ratios for RNA-features scores among six independent UVM cohorts. (F) The funnel plot
of meta-analysis. * P<0.05; ***P<0.001.
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4 Discussion

Traditional pathological examinations are conducted by

experienced pathologists who assess tumor cell characteristics

under multiple magnifications. However, pathologists typically do

not provide detailed quantitative information for every region of a

whole-slide image, and variability in pathological classification and

diagnosis can occur due to the heterogeneity of histological

subtypes and differences in individual interpretation. Therefore,

pathomics can be used as a useful adjunct to more conventional

pathological assessments. Our results demonstrate that, without any

supervised information, important subregions of each WSI can be

identified and objectively quantified through pathomics features.

Additionally, by combining genomic information, we can effectively

define the cellular biological characteristics of different subregions.

Consequently, based on the relative proportions of these three

subregions, we successfully distinguished three tumor subtypes

(Subtype 1-3) and identified a high-infiltration subtype for UVM
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patients. We found that UVM patients in the high-infiltration

subtype had higher immune scores, estimate scores, and MeTILs

compared to the low-infiltration subtype, which correlated with

poorer survival outcomes. These observations are consistent with

previous research (28, 29). For instance, Narasimhaiah et al (30),

have demonstrated that increased infiltration of immune cells,

particularly T lymphocytes and macrophages, is linked to

metastatic progression in UM and associated with poor

prognosis. The eye is an immune-privileged organ, characterized

by numerous immunosuppressive elements that prevent robust

immune responses. This immune privilege is maintained by

mechanisms that hinder the trafficking of activated T cells into

tumor tissues and promote T cell exhaustion. As a result, the

phenotype of infiltrated immune cells is often altered, converting

their anti-tumor functions into pro-tumor roles. Extensive evidence

suggests that immune cells linked with tumors in the UVM

microenvironment stimulate both immune evasion and

immunological repression (31, 32). Tumor-infi l trating
frontiersin.or
IGURE 8F

Comprehensive nomogram construction. (A) The forest plots present the results of univariate Cox regression analyses for clinical parameters,
RNA-features, Cluster-features and DL-features. (B) The forest plots of results from multivariate Cox regression of clinical parameters, RNA-features,
Cluster-features and DL-features. (C) A comprehensive nomogram is used to predict the 3- and 5-year overall survival time for patients in the
TCGA-UVM cohort, incorporating DL-features, age, gender, histological type, and metastasis status. (D) The 3- and 5-year of calibration curves for
overall survival prediction in TCGA-UVM and WCH-UVM cohorts. (E) The ROC curves of nomogram model for survival prediction in TCGA-UVM
and WCH-UVM cohorts. (F) The decision curves of nomogram, histological type, and metastasis for comparison of net benefit. (G) The clinical
impact curve of the nomogram for risk prediction in TCGA-UVM and WCH-UVM cohorts.
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lymphocytes (TILs) include CD8+ T cells and CD4+ T cells, for

example, are unique independent prognostic markers for UVM

patients and play essential roles in tumor recurrence, metastasis,

dissemination, and responsiveness to immunotherapy (33–35). In

general, our research indicates a potential close relationship

between the histomorphology and underlying molecular

composition of tumors.

Furthermore, our study is the first to apply integrated deep

learning (DL) networks to learn from the entire WSI for diagnosing

the immune infiltration subtypes of UVM patients and predicting

their common gene mutation information. Our approach has two

prominent advantages. First, it analyzes a collection of patches

clusters automatically selected from several important subregions

associated with prognosis, avoiding any manual annotation.

Second, it assigns labels to each patch image through weakly

supervised methods and aggregates local features using multiple

instance learning to achieve global diagnosis. This approach

eliminates the need for manual annotation to describe cancerous

regions at the pixel level. Our study demonstrates that the

integrated DL network we constructed achieves a significant

accuracy rate of over 95% in predicting immune subtypes at the

tile level and WSI level. Additionally, our model performs well in

predicting SF3B1 and EIF1AX gene mutations. Previous studies

have found a close association between SF3B1 and EIF1AX gene

mutations and tumor metastasis, with most UVM patients with

SF3B1mutations eventually developing metastasis (36). However, it

is rare for UVM patients carrying only EIF1AX gene mutations to

experience metastasis (37). Moreover, the Cox survival model

constructed using DL features can effectively distinguish high-risk

and low-risk groups. Therefore, this model has broad clinical

applications, enabling patients to obtain accurate predictions of

metastasis and prognosis while receiving pathological diagnoses.

However, in clinical practice, it is insufficient to evaluate the

progression and prognosis of UVM solely based on one data type.

Therefore, based on the genomic data of different subtypes,

differential expression genes (DEGs) were identified among these

subtypes. Subsequently, we created a predictive gene signature in

the TCGA-UVM cohort based on these DEGs, and we verified the

prognostic significance of this signature in many separate datasets.

The JUP and UFC1 genes are included in this gene signature.

Junction plakoglobin (JUP) is an important cell-cell adhesion

protein. JUP has been identified as a protein with great potential

as a biomarker and therapeutic target for UVM (38). Recent studies

have found that deregulation of JUP leads to the occurrence and

progression of various malignancies (39). Hu et al. found that JUP

can regulate the expression of Anterior Gradient 2 (AGR2)/LY6/

PLAUR Domain Containing 3 (LYPD3) and mediate an

immunosuppressive microenvironment in melanoma (40).

Additionally, numerous studies have discovered a link between

tumor invasion and elevated expression of the long noncoding RNA

UFC1. Certain cancer cells’ ability to proliferate, migrate, and

invade can be inhibited by knocking down UFC1, whereas cell

cycle arrest and death are encouraged (41–44). Therefore, the gene

signature identified through histopathological analysis can serve as
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a predictive biomarker in future clinical research. Finally, we

combined traditional clinical features, histopathological cluster

features, DL features, and RNA features for univariate and

multivariate Cox regression analysis. We found that DL features,

along with age, gender, histological type, and metastasis status, can

serve as independent prognostic factors for UVM. Therefore, we

integrated these features to construct a comprehensive nomogram

model. The model has been demonstrated to have high predictive

ability and net benefits in clinical practice, guiding physicians in the

rational management of patients.

In summary, our work has several advantages compared to

previous studies in computational pathology. Firstly, it addresses

several key challenges: (1) It does not require annotation by

pathologists but uses histopathological features for unsupervised

clustering to identify important subregions within WSIs and

perform subtyping analysis of tumor patients. (2) The deep-

learning algorithm does not require pixel-level or patch-level

annotations because it is trained using simply tumor type as a

weak supervisory label. (3) By combining deep learning and multi-

omics data, we provide a modern framework for understanding

tumor heterogeneity and prognostication in UM. However, despite

including samples from 318 patients from different countries and

hospitals, future international multicenter and multiethnic datasets

are desirable.

In addition, we acknowledge the limitations of our WSI (whole

slide imaging) dataset, as the number of slides used in this study was

relatively small, and the slide scanners employed were largely

uniform. To address these limitations, we plan to conduct future

studies with a larger WSI dataset collected from multiple scanners,

aiming to investigate the influence of scanner variability and

develop a more robust classifier suitable for clinical application.

Furthermore, due to the loss of original tissue blocks, we were

unable to perform additional immunohistochemical (IHC) staining

to validate the identity of certain cells or explore specific

inflammatory phenotypes. Another limitation lies in the absence

of BAP1 mutation data in our WCH cohort, which prevented us

from conducting analyses or predictions specifically related to

BAP1 mutational status, despite its well-established role as a key

driver of aggressive tumor behavior and metastatic potential in

uveal melanoma. These constraints highlight the need for future

investigations that incorporate a more comprehensive dataset,

including molecular data and preserved tissue samples, to further

validate and expand upon our findings.

In conclusion, our study reveals a potential close relationship

between the histopathological morphology of tumors and their

underlying molecular composition. By analyzing UVM

histopathology images, high-performance automated diagnosis,

subtyping, and prediction may be achievable, offering significant

potential to improve UVM patient diagnosis, prognosis, and

therapeutic strategies. Although our findings demonstrate the

promise of these models in aiding clinical decision-making,

further validation and integration into clinical workflows are

required before they can directly guide individualized treatment

plans and improve patient outcomes.
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