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Identification of CTSC-driven 
progression in ESCC by 
single-cell sequencing and 
experimental validation 
Xin Sui, Yongxu Jia, Jing Li, Jiayao Xu, Wenjia Wang 
and Yanru Qin* 

Department of Clinical Oncology, The First Affiliated Hospital Zhengzhou University, Zhengzhou, 
Henan, China 
Background: The progression of cancer cells is influenced by the tumor 
microenvironment (TME); however, the molecular mechanisms driving the 
progression of esophageal squamous cell carcinoma (ESCC) remain unclear. 
Therefore, we aimed to investigate the TME of ESCC and construct a risk 
signature based on apoptosis-related genes to identify prognosis-related 
genes in ESCC. 

Methods: We integrated a total of 92,714 cells from 18 samples across three 
single-cell datasets to analyze the differences in cellular landscapes between 
primary tumor tissues and adjacent normal tissues. Subsequently, univariate COX 
regression analysis was employed to construct an apoptosis-related prognostic 
risk model. The expression of key risk genes was elucidated using 
immunohistochemistry (IHC). Additionally, the effects of CTSC knockdown on 
ESCC cell behavior were validated through in vitro and in vivo experiments. 

Results: We identified three malignant cell subtypes (Malig1, Malig2, and Malig4) 
associated with worse prognosis, which were enriched in apoptosis-related 
pathways. Pseudotime analysis revealed that the expression scores of 
apoptosis-related pathways increased along the inferred pseudotime, 
indicating that apoptosis plays a critical regulatory role in the differentiation of 
malignant epithelial cells. Furthermore, analysis of the TME demonstrated that 
immune cells and cancer-associated fibroblasts (CAFs) were significantly more 
abundant in tumor tissues compared to non-tumor tissues. Additionally, we 
identified eight apoptosis-related genes associated with prognosis, among which 
the expression of CTSC was closely correlated with resistance outcomes in 
patients receiving neoadjuvant immunotherapy. In vitro experiments showed 
that knockdown of CTSC inhibited the proliferation, migration, and other 
processes of ESCC cells. In vitro experiments showed that knockdown of 
CTSC inhibited tumor growth and expression of fibroblast markers. 
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Conclusions: CTSC plays a crucial role in driving TME remodeling and the 
progression of drug resistance in ESCC, making it a potential target for 
clinical therapy. 
KEYWORDS 

esophageal squamous cell carcinoma, tumor microenvironment, single cell RNA 
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1 Introduction 

Esophageal cancer (EC) is the eighth leading cause of cancer-
related deaths worldwide (1). Approximately 85% of EC cases are 
classified as squamous cell carcinoma of the esophagus, which 
accounts for nearly 300,000 deaths annually due to its extreme 
aggressiveness (2, 3). Currently, the standard treatments for EC 
include surgery, chemotherapy, radiotherapy, and immunotherapy 
(4). Unfortunately, despite advancements in treatment strategies for 
ESCC, some patients experience worse clinical outcomes, with 5
year survival rates of less than 25% (5). In recent years, immune 
checkpoint blockade therapy has demonstrated promising efficacy 
in patients with metastatic advanced ESCC (6–8). However, some 
patients do not respond to immune checkpoint blockade therapy, 
which may be attributed to the heterogeneity of individual tumor 
immune cell composition (9). There is currently no effective 
strategy to analyze the relationship between the diversity of the 
ESCC microenvironment and the malignant phenotype and drug 
resistance of ESCC, which impedes the development of precision 
therapeutic immunotherapies for ESCC patients. 

The tumor microenvironment (TME) is a multicellular context 
characterized by complex interactions between stroma and tumor 
cells (10). Aberrant tumor proliferation, angiogenesis, inhibition of 
apoptosis, mechanisms of drug resistance, and evasion of immune 
surveillance are all intrinsically linked to the TME (11, 12). Previous 
studies have demonstrated that stromal cells, including T cells, 
macrophages, and fibroblasts, as well as malignant cells, exhibited 
significant heterogeneity within the TME of ESCC (13). 
Furthermore, genomic alterations in both immune and stromal 
cells may influence their interactions with cancer cells, thereby 
affecting tumor progression and responses to anticancer therapies 
(14–16). For instance, Ren et al. identified nine genes that were 
differentially expressed in cancer-associated fibroblasts (CAFs) in 
ESCC, which were prognostically significant and could serve as 
independent prognostic factors for ESCC (17). Additionally, the 
failure of anti-angiogenic drug therapies was believed to result from 
metabolic adaptation and reprogramming of cancer cells, as well as 
abnormalities in endothelial cells and their interactions with 
pericytes (18). 

In recent years, single-cell RNA sequencing (scRNA-seq) 
technology has revolutionized the study of cancer progression 
and drug resistance by providing novel insights into complex 
02 
cellular heterogeneity (19, 20). Analyzing gene expression 
networks at the single-cell level enables high-resolution 
characterization of cellular heterogeneity, as well as the 
development and differentiation status in diverse systems (13). In 
this study, we explored the cellular landscape of ESCC based on 
scRNA-seq datasets. The TME remodeling during ESCC malignant 
progression was comprehensively characterized. Additionally, we 
identified eight apoptosis-related genes associated with prognosis, 
among which the expression of CTSC was closely linked to drug 
resistance outcomes of patients treated with neoadjuvant 
immunotherapy.  Furthermore,  CTSC  promoted  tumor  
progression in ESCC. Accordingly, CTSC plays a crucial role in 
driving TME remodeling and the progression of resistance in ESCC, 
making it a potential target for clinical treatment. 
2 Materials and methods 

2.1 scRNA-seq data collection 

The GSE196756, GSE188900, GSE221561 and GSE203115 
datasets were downloaded from the Gene Expression Omnibus 
(GEO, https://www.ncbi.nlm.nih/). The GSE196756 dataset 
comprised 6 samples in total: 3 tumor samples from 3 treatment-

naïve ESCC patients and 3 paired adjacent normal samples, all of 
which were included in our analysis. The GSE188900 dataset 
included 8 samples: 7 tumor samples from 5 treatment-naïve 
ESCC patients and 1 distal normal sample, all incorporated into 
this study. The GSE221561 dataset contained 11 samples: 7 tumor 
samples from 7 ESCC patients who received neoadjuvant therapy, 
plus 2 tumor samples and 2 paired adjacent normal samples from 2 
ESCC patients undergoing surgery alone. For this study, we 
specifically selected only the 2 tumor samples and 2 paired 
adjacent normal samples from the surgery-only patients. 
2.2 General transcriptome data collection 

Transcriptome expression matrices for a total of 102 ESCC 
patient samples were downloaded from The Cancer Genome Atlas 
(TCGA, https://portal.gdc.cancer.gov/). Among them, 99 ESCC 
tumor samples have complete prognostic information. 
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The GSE75241 dataset was downloaded from the GEO dataset 
(https://www.ncbi.nlm.nih.gov/geo/) and contains the complete 
transcriptome sequencing results from 15 ESCC tumor samples 
and their matched noncancerous mucosal samples. 
 

2.3 scRNA-seq data processing and cellular 
annotation 

The single-cell RNA sequencing data were downloaded from 
GEO database in preprocessed matrix format. These data had 
already undergone alignment to the human reference genome 
(GRCh38) and gene expression quantification using Cell Ranger 
(v6.1.2). We therefore performed downstream analysis directly 
using these preprocessed expression matrices. The scRNA-seq 
data were then converted to Seurat objects using the Seurat 
package (v4.1.1) of the R software. First, Seurat objects were 
created using the CreateSeuratObject function and the parameter 
min.cells was set to 3 to remove genes expressed in fewer than 3 
cells. The cell data is then further filtered, including removing cells 
with less than 200 or more than 5000 genes, and cells with more 
than 20% of mitochondrial genes or 5% of hemoglobin genes. No 
further filtering of genes was performed in this step. 

To eliminate the effect of doublet cells, the doubletFinder_v3 
function from the DoubletFinder package was used for doublet 
filtering. The main parameters were set to PCs = 1:20 and pN = 0.25, 
i.e., based on 20 principal components (PCA), the simulated 
probability of each cell being labeled as two-cell was 0.25. The 
filtered data was normalized to the raw counts using the 
LogNormalize method, which normalizes the total gene 
expression per cell to 10,000. Next, 2000 highly variable genes 
were extracted by the FindVariableFeatures function and 
normalized using the ScaleData function to reduce the effect of 
technical noise. Subsequently, the data were downscaled by 
RunPCA and the top 20 principal components were selected for 
subsequent processing. 

For correction of batch effects for multi-sample data, integration 
was performed using the RunHarmony function from the Harmony 
package. Using samples as grouping variables (group.by.vars = 
“sample”), we set the integration strength parameter lambda = 1 
and the clustering penalty parameter theta = 2. The Harmony 
method is based on PCA, which removes systematic biases specific 
to the dataset through embedding and iterative algorithms to realize 
batch effect correction, and ultimately the cells of different samples 
can be well aggregated after integration. After the integration, the cells 
from different samples can be well aggregated. The ‘umap-learn’ 
algorithm in RunUMAP was used to perform umap dimensionality 
reduction of the data to facilitate subsequent visualization. After the 
batch effect correction was completed, the FindNeighbors function 
was used to calculate the distance between cells and construct the 
shared nearest neighbor (SNN) graph; subsequently, the cells were 
clustered based on Louvain’s algorithm by the FindClusters function, 
and the resolution parameter was set to 0.6 in order to identify the 
subpopulations of cells. 
Frontiers in Immunology 03 
For cell annotation, we used the cellmark2.0 database to 
annotate cell subgroups based on common cell mark genes. 
2.4 Functional enrichment analysis 

We identified differentially expressed genes (DEGs) (|logFC| 
>0.25; P<0.05) for each cluster using the FindMarkers function in 
Seurat. Only up-regulated DEGs were obtained for further analysis. 
GeneID conversion of up-regulated DEGs between populations was 
performed using the ClusterProfiler function package (v 4.8.2) in R, 
and enrichment analysis was performed (21). The enrichment 
analysis included Gene Ontology (GO) and Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analysis. 
2.5 Recognizing malignant and non
malignant epithelial cells 

The initial copy number variation (CNV) of each cell was 
estimated using the Infercnvpy package (v0.4.4; https:// 
github.com/icbi-lab/infercnvpy) to  distinguish  malignant

epithelial cells (mECs) from non-malignant epithelial cells (ECs) 
(22). The algorithm was executed with T cells serving as the normal 
reference and using default parameters. Subsequently, CNV scores 
for each cell were calculated using the infercnvpy.tl.cnv_score 
function (Supplementary Table S1). 
2.6 Identification of prognosis-associated 
cell subtypes 

We employed a computational tool for identifying phenotype-
associated cell subpopulations (Scissor) algorithm (v2.0.0) to 
correlate bulk RNA-seq survival data from TCGA-ESCC with 
single-cell transcriptomic profiles (23). Patient survival status in 
TCGA was determined based on clinical follow-up data, where 
deceased patients (OS event = death) were classified as “worse 
prognosis”, while surviving patients (OS event = alive) were 
designated as “good prognosis”. he Scissor analysis was 
performed specifically on epithelial cells using the following 
parameters: alpha=0.003, family= “cox”. Scissor+ cells were 
associated with worse prognosis, while Scissor- cells were 
associated with good prognosis. 
2.7 Transcription factor analysis 

We utilized the pySCENIC Python package (v0.12.1) algorithm 
to calculate regulon activity scores for malignant epithelial cells 
(24). First, co-expression modules between transcription factors 
(TFs) and candidate target genes were inferred using GRNBoost2. 
Then, genes in each co-expression module were analyzed using 
RcisTarget to identify enriched motifs (a transcription factor and its 
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potential direct target gene were defined as a regulator). Finally, the 
activity of each regulator in each cell was assessed using AUCell. 
 

2.8 Trajectory analysis 

Monocle (v2.28.0) was used to construct pseudotemporal 
trajectories based on gene expression profiles of malignant 
epithelial cells (25). After downscaling and cell sorting, all 
malignant epithelial cells were projected and sorted into 
trajectories with different branches, and cells within the same 
branch were considered to have the same cellular state. Branched 
Expression Analysis Modeling (BEAM) was further performed to 
identify genes exhibiting branch-dependent expression patterns, 
where cell fate 1 corresponds  to  state 2 and  cell  fate  2
corresponds to state 1. 
 

2.9 Analysis of cellular interactions 

We utilized the CellChat (v 1.6.1) algorithm to investigate 
potential interactions between different cell types (26). Among 
them, a merged Seurat object containing epithelial cells and other 
cell types in the tumor microenvironment (TME) was used as input 
to the algorithm. After creating the CellChat objects, we built a 
reference database using the secretory signaling pathways. Specific 
receptor-ligand interactions and communication probabilities 
between  different  cel l  types  were  inferred  using  the  
computeCommunProb and computeCommunProbPathway 
functions, respectively. 
2.10 Univariate Cox regression survival 
analysis 

The effect of apoptosis-related genes (Supplementary Table S2) 
on patients’ survival risk was assessed using univariate Cox regression 
survival analysis. We performed multiple testing correction by 
applying the false discovery rate (FDR) adjustment (Benjamini-

Hochberg method) to the univariate Cox regression results. p 
adj<0.05, HR≠1 was the threshold to screen for genes associated 
with prognosis. “surv_cutpoint” was obtained to bestcutoff threshold 
to divide the samples into CTSC high expression group and CTSC 
low expression group. The survival curves were fitted using the 
Kaplan-Meier method in the R survival package and visualized 
using the ggsurvplot function in the survminer package. 
2.11 Tissue specimen collection 

Tumor samples and adjacent normal tissues were surgically 
resected from 12 patients diagnosed with ESCC at The First 
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Affiliated Hospital Zhengzhou University. The study protocol was 
reviewed and approved by the Committees for Ethical Review of 
Research at Zhengzhou University (2022-KY-0149). Written 
informed consent was obtained from all patients in accordance 
with the requirements of the Declaration of Helsinki. 
2.12 Immunohistochemistry 

Human tumor or adjacent normal tissues specimens were fixed 
in 4% formaldehyde, embedded in paraffin, and sliced into 5 µm 
thick sections using a microtome. After deparaffinization with 
xylene, the tissue sections were hydrated using ethanol solutions 
of varying concentrations for antigen retrieval. Subsequently, the 
sections were treated with a citric acid repair solution (Fuzhou 
Maixin Biotechnology Development Co., Ltd., China). Next, an 
appropriate amount of endogenous peroxidase blocker (Beijing 
Zhongshan Jinqiao Biotechnology Co., Ltd., China) was added, 
and the sections were incubated for 10 minutes at room 
temperature. Following this, the sections were washed three times 
with PBS solution, with each wash lasting 3 minutes. The sections 
were then blocked with 10% goat serum and incubated with anti-
CTSC  antibody  (1:100; #sc-74590, Santa  Cruz, USA)  at 4°C

overnight. After washing three times with PBS solution, the 
sections were incubated with a secondary antibody for 30 minutes 
at 25°C, followed by color development using DAB for 10 minutes. 
Finally, the sections were counterstained with hematoxylin for 2 
minutes to visualize the nuclei and were observed under a 
microscope (Zeiss, Germany). 
2.13 Cell culture 

ESCC cell line KYSE520 was purchased from American Type 
Culture Collection (ATCC, USA). Subsequently, cells were cultured 
in 1640 medium supplemented with penicillin/streptomycin (100 
mg/mL) and 10% fetal bovine serum (FBS; Gibco; USA). These cells 
were incubated at 37°C in 5% CO2. 
2.14 Cell transfection 

We performed experiments when KYSE520 cells were grown 
logarithmically. For transfection, we followed the manufacturer’s 
instructions and transfected Lipofectamine 3000 Transfection 
Reagent (Invitrogen, USA) with 5 nmol of siRNA fragments (si
CTSC-1 and si-CTSC-2) targeting CTSC and a negative control (si-
NC) (GenePharma, China), into approximately 4×105 KYSE520 
cells. The transfection efficiency was subsequently assessed by 
quantitative reverse transcription-polymerase chain reaction 
(qRT-PCR). The relevant sequences are listed in Supplementary 
Table S3. 
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2.15 Quantitative real-time PCR 

Total RNA was isolated from KYSE520 cells using Trizol reagent 
(Thermo Fisher Scientific, USA) following the manufacturer’s 
instructions. Subsequently, reverse transcription was performed 
using the PrimeScript™ RT kit (Takara, Japan). Next, qRT-PCR 
was performed using HiScript II Q RT SuperMix for qPCR (TRANS, 
AU341). GAPDH was used as an internal reference gene for 
normalization. Relative gene expression was quantitated using the 
2- (△Ct sample  △Ct control) method. The sequences of primers used in 
this study are shown in Supplementary Table S4. 
2.16 Cell counting kit-8 

After KYSE520 cells were cultured to good condition, they were 
incubated under optimal conditions and laid in 96-well plates for 
CCK8 kit (#KGA317, KeyGEN Bio, China) to detect cell 
proliferation. siRNA transfection was carried out when the cells 
were grown to 70% density, and CCK8 experiments were performed 
48 hours after transfection. 10 µL of CCK8 reagent was added to 
each well and incubated for 2 h. After incubation, the 96-well plate 
was transferred to an enzyme labeling instrument for detection. The 
absorbance value (OD value) of each well was measured at 450 nm 
and used to assess cell viability. 
 

2.17 5-ethynyl-2’deoxyuridine detection 
assay to assess cell proliferation 

A 10 mM EdU solution (Elab Fluor® 647, elabscience, China) 
was diluted into cell culture medium to prepare a 2× EdU working 
solution (20 µM), which was then added to a 6-well plate to achieve 
a final concentration of 1×. After incubating the cells for 18 hours, 
they were digested and fixed with fixation/permeabilization buffer 
for 15 minutes. Subsequently, the cells were washed with washing 
buffer, followed by the addition of Click reaction solution 
containing Click Reaction Buffer I, CuSO4, Click  Additive
Solution, and Elab Fluor® 647. The cells were incubated at room 
temperature in the dark for 30 minutes. Finally, the cells were 
resuspended in PBS and analyzed using a flow cytometer 
(NovoCyte 2060R, ACEA Biosciences, China). 
2.18 Transwell assays and wound healing 
assays 

We further investigated the invasive and migratory capabilities 
of cells through Transwell assays and wound healing assays, 
respectively. For the Transwell assay, cells were cultured in 
serum-free medium for 24 hours. Subsequently, the cells were 
resuspended in serum-free medium and adjusted to a density of 
1×104 cells/mL. A total of 500 µL of medium containing 15% fetal 
bovine serum (FBS) was added to each well of a 24-well plate, 
followed by the addition of 200 µL of cell suspension into the 
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Transwell insert. The insert was then placed into the 24-well plate 
containing complete medium. The cells were incubated in a cell 
culture incubator for 48 hours. After incubation, the cells in the 
insert were removed, and any remaining cells were gently wiped off 
using a PBS-moistened cotton swab. The cells were fixed with 10% 
methanol for 30 seconds and stained with 0.1% crystal violet for 20 
minutes, followed by rinsing with tap water until the background 
was clear. Finally, 3–5 random fields of view were selected under an 
optical microscope to count the number of cells that had migrated 
through the membrane, and images were captured and quantified 
using Image J software. 

For scratch experiments, cells were inoculated in 6-well plates 
for culture. When the cell confluence reached 90%, a vertical scratch 
was made in the cell monolayer with a 200 µL pipette tip. After 
washing 3 times with PBS to remove the scratched cells, serum-free 
medium was added. Cells were continued to be cultured for 24 h in 
an incubator at 37°C, 5% CO2. Images were taken and recorded at 0 
h and 24 h, respectively. 
2.19 Apoptosis rate was measured by flow 
cytometry 

Cells were transfected with siRNA and cultured for 48 hours. 
Subsequently, Annexin V-FITC/PI reagent (#C1062, Beyotime, 
China) was used for cell staining. The results were detected by 
flow cytometry and analyzed using FlowJo software. 
2.20 Western blotting analysis 

We examined protein expression in ESCC cells using WB. 
Specifically, cells were lysed using cell lysate and protein 
concentrations were measured using the BCA protein assay kit 
(#BL521A, Biosharp, China). The proteins were then separated 
using a 10% SDS polyacrylamide gel and transferred to a PVDF 
membrane, which was subsequently soaked in 5% skimmed milk 
for 2 hours at room temperature, followed by the use of b-actin 
(1:50,00; #20536-1-AP, Proteintech, China), Caspase-3 (1:800; 
#24232, CST, China), cleaved-caspase-3 (1:3000; #68773-1, 
proteintech, China) to the membrane for 1 hour. Subsequently, 
the membrane was washed three times and then incubated with an 
HRP-conjugated secondary antibody at room temperature for one 
hour. The target protein bands were detected using Western 
blotting detection system (Tanon, China). 
2.21 Animal experiments 

Experiments have been conducted according to the ethical 
standards, the Declaration of Helsinki, and national and 
international guidelines. All animal research was conducted 
according to the ARRIVE (Animal Research: Reporting of In Vivo 
Experiments) guidelines and the AVMA (the American Veterinary 
Medical Association) guidelines on euthanasia and was approved by 
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the Committees for Animal Ethical Review of Research at 
Zhengzhou University. 
2.22 Tumor formation assay 

Female BALB/c nude mice of 4–5 weeks old (Shanghai Model 
Organisms Center, Inc., China) were maintained at SPF conditions, 
and given a subcutaneous injection of 5 × 106 cells (groups: sh-NC, 
sh-CTSC) into the right flank, respectively (5 mice/group). Then the 
subcutaneous xenografts were observed every two days. Tumor 
volume was measured using calipers and calculated according to the 
formula: V = length × width2/2. After 28 days, the mice were 
euthanized and the formed tumors were isolated and weighed 
then processed into paraffin-embedded tissue samples for 
further analyses. 
2.23 Multicolor immunofluorescence 

Paraffin-embedded tissue samples were cut into 5-mm sections. 
Immunofluorescence staining of all slides was performed according 
to standard protocols using CTSC (#sc-74590, Santa Cruz, USA) 
and a-SMA (ab5694, abcam, USA) antibodies. The fluorescence 
intensity of CTSC and a-SMA was measured using Fiji software. 
2.24 Statistical analysis 

We applied the independent samples Mann-Whitney U test for 
comparison between two groups of samples for continuous 
variables. The Kruskal-Wallis test was applied for the comparison 
of samples between the three groups. The chi-square test was 
applied to categorical variables for comparison between the two 
groups. The statistical analysis of this study was executed through R 
v4.0.5 software. A two-tailed P value less than 0.05 was considered 
statistically significant. 
3 Results 

3.1 Identification of cell populations in 
ESCC tissues based on scRNA-seq 

To elucidate the cellular composition within esophageal 
squamous cell carcinoma (ESCC) tumors, we downloaded 
scRNA-seq data that included tumor tissue from 12 ESCC tumors 
and 6 paraneoplastic tissue samples from the Gene Expression 
Omnibus (GEO) database (GSE196756, GSE188900, GSE221561) 
(Figures 1A, B). After conducting quality control and eliminating 
batch effects, we obtained a total of 92,714 cells from the primary 
tumors. Subsequently, based on the expression of cell marker genes, 
we identified 12 major cell populations: T cells, macrophages, B 
cells, fibroblasts, epithelial cells, mast cells, proliferative cells, 
monocytes, endothelial cells, plasma B, DCs and pericytes 
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(Figures 1C, D). Subsequently, inferCNV was employed to 
identify malignant cells, resulting in the identification of a total of 
5,355 malignant cells, and there was a large range of copy number 
variation (CNV) in the epithelial cells (ECs) (Figure 1E). This result 
suggested that the majority of epithelial cells were malignant. 
Additionally, we compared the composition of cell types in tumor 
samples with that in normal samples and found that endothelial 
cells, macrophages, and T cells were more prevalent in the tumor 
samples (Figure 1F). 
3.2 Integration of phenotype-related bulk 
data reveals malignant cell subtypes 

To compare the distribution of malignant cell subclusters in the 
two samples, we reclustered the malignant cells in the samples to 
obtain a total of 6 malignant cell subclusters (Figures 2A, B). After 
integrating common transcriptome prognosis-related phenotypic 
correlation analysis by Scissor, we identified 444 cells as worse 
prognosis-related subclusters, and the remaining cells were 
categorized as good prognosis-related subclusters (Figure 2C). 
The malignant cells associated with a worse prognosis were 
primarily composed of the following subtypes: C1 - Malig1 (128 
cells, 28.8% of 444), C2 - Malig2 (147 cells, 33.1%), and C4 - Malig4 
(96 cells, 21.6%) (Figure 2D). Correlation analysis indicated that 
Malig1 and Malig2 cells exhibited greater similarity (Figure 2E). 
Furthermore, KEGG enrichment analysis revealed that upregulated 
genes specific to the Malig1, Malig2, and Malig4 subtypes, as well as 
worse prognosis-related subclusters, were significantly enriched in 
the apoptotic pathway (Figures 2F–I; Supplementary Figure S1). 
Additionally, we found that worse prognosis-related malignant cells 
were enriched in the transcription factors, such as IRF1, FOS, 
EGR1, and JUN, all of which are known regulators of 
apoptosis (Figure 2J). 
3.3 Dynamics of malignant epithelial cells 

To understand the dynamics of malignant epithelial cells, we 
constructed a cellular trajectory to infer differentiation relationships 
among worse prognosis-related subclusters. Among the six epithelial 
cell subtypes, we identified three distinct states, with state 1 
considered a potential starting point (Figures 3A, B). Notably, good 
survival -related subclusters were predominantly located in state 1, 
while worse prognosis-related subclusters were primarily found in 
state 2 and state 3 (Figure 3C). Through branching expression 
analysis modeling (BEAM), we identified 58 branching-dependent 
genes that may regulate the differentiation process from pre-
branching (state 1) to post-branching (state 2 and state 3) 
(Figure 3D). These genes were categorized into six modules 
(clusters) based on expression similarity, with genes in clusters 1 
and 2 significantly enriched in the apoptotic pathway (Figures 3E, F). 
This finding demonstrated that apoptosis played a crucial regulatory 
role in the differentiation process of malignant epithelial cells. 
Furthermore, the results of pathway enrichment analysis revealed 
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that the apoptotic pathway exhibited an increase in expression scores	 
along the inferred pseudo-time (Figure 3G).	 
3.4 Remodeling of the immune 
microenvironment in ESCC 

The development of ESCC is closely associated with the tumor 
microenvironment (TME). Single-cell analysis revealed an accumulation 
of fibroblasts and T cells in the tumor tissues (Figure 1F). Consequently, 
we conducted an unsupervised cluster analysis of T cells.  This  analysis  
Frontiers in Immunology 07	 
identified 12 distinct clusters, including one initial T-cell cluster (naïve T 
cells), two natural killer (NK) cell clusters, five CD4+ T-cell clusters, and 
four CD8+ T-cell clusters (Figures 4A, B).  All T-cell clusters were present  
in both primary tumor tissues and normal tissues; however, they 
exhibited heterogeneous cell ratios (Figures 4B, C). Notably, NK cells 
demonstrated enrichment in tumor tissues (Figure 4C), while CD8+ T 
cells were enriched in normal tissues (Figure 4C). Although the overall 
cell ratio did not change significantly, CD4+ T cells showed upregulation 
of exhaustion markers in tumor tissues (Figure 4D). Additionally, NK 
cells and CD8+ T cells exhibited significant upregulation of cytotoxic 
markers in tumor samples (Figure 4D). 
FIGURE 1 

Identification of cell populations in ESCC tissues based on scRNA-seq. UMAP visualization technology performed unsupervised clustering analysis on 
cells. Each point represents a single cell. (A) UMAP visualization is colored according to the sample number. (B) UMAP visualization is colored 
according to the sample grouping. (C) UMAP visualization is colored according to the cell type. (D) The heat map shows the average expression of 
typical marker genes of 12 cell types. (E) Hierarchical heatmap showing a wide range of copy number variations (CNVs) in epithelial cells (ECs) to 
identify malignant cells. (F) Histogram of cell proportions. 
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Next, fibroblasts were analyzed through subclustering. We found 
that these clusters were categorized into three cancer-associated 
fibroblast (CAF) cell clusters: stromal CAFs (mCAFs), 
inflammatory CAFs (iCAFs), and antigen-presenting CAFs 
(apCAFs) (Figures 4E, F). Notably, tumor tissues displayed 
significantly higher ratios of mCAFs and apCAFs, along with lower 
ratios of iCAFs, compared to normal tissues (Figure 4G). This 
observation suggests a crucial role for CAFs in cancer development. 
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3.5 Cellular communication analysis 
between ESCC and normal samples 

To elucidate the crosstalk among cellular components in the TME, 
we constructed cellular interaction networks of potential receptor-ligand 
in normal and tumor tissues (Figures 5A, B).  Our analysis revealed that  
communication between different cellular components was significantly 
more variable in tumor tissue samples compared to normal tissues. In 
FIGURE 2
 

Re-clustering analysis of malignant epithelial cells. (A) UMAP plot showing the distribution of 5355 malignant epithelial cells, colored by cluster.
 
(B) The heatmap shows the expression of marker genes in malignant cell subtypes. (C) UMAP plot showing the distribution of malignant epithelial 
cells screened by the Scissor algorithm, classified by prognostic risk and protection. Red and blue dots represent cells associated with good and 
worse prognosis phenotypes, respectively. (D) Bar graph showing the proportion of each subtypes of malignant cells in cells associated with 
prognostic phenotypes. (E) Heat map showing the correlation of each subtypes of malignant cells. (F–H) Bar graph showing the results of KEGG 
enrichment analysis of differentially expressed genes in malignant cell subtypes 1 (F), 2  (G), and 4 (H, I) Bar graph showing the results of KEGG 
enrichment analysis of differentially expressed genes in malignant cells with worse prognosis. (J) Scatter plot showing regulon specificity score (RSS) 
in malignant cells with worse prognosis. The top five regulons are highlighted in the figure. 
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particular, there was an exchange of signals between mCAFs and 
epithelial cells. In contrast, crosstalk between iCAFs and T cells was 
diminished in cancer tissue samples. 

Furthermore, we found that, compared to tumor tissues, T cell 
subsets in normal tissues were more regulated by iCAFs and apCAFs 
through pathways such as CXCL12-CXCR4 and MIF-(CD74+CXCR4) 
(Figure 5C). Additionally, worse prognosis-related malignant epithelial 
cells in tumor samples were also influenced by mCAFs through 
multiple receptor-ligand pairs, including MDK-SDC1 and MDK

SDC4 (Supplementary Figure S1). Notably, mCAFs in tumor 
samples exhibited specific interactions with worse prognosis-related 
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malignant epithelial cells through MIF-ACKR3, MDK-LRP1, and 
FGF7-FGFR2 (Supplementary Figure S2). 

Our analysis revealed enhanced PDGFA-PDGFRA regulatory activity 
in worse prognosis cells compared to their good prognosis counterparts 
(Figure 5D). Specifically, worse prognosis-related cells exhibited 
upregulated expression of PDGFA genes (Supplementary Figure S3A). 
Further investigation demonstrated that differentially upregulated genes in 
tumor-associated mCAFs (matrix-associated cancer-associated fibroblasts) 
were significantly enriched in the PI3K pathway (Supplementary Figure 
S3B, C), suggesting that CTSC-high cells promote mCAF proliferation 
through PDGFA ligand-mediated regulation. 
FIGURE 3 

Trajectory analysis of malignant epithelial cell subtypes. Sequential analysis of malignant epithelial cell subtypes by Monocle. (A) Colors represent 
pseudo-time order. (B) Cell state trajectory (colors represent different differentiation states). (C) The trajectory plot shows the locations of different 
types of malignant cells, and illustrates the distribution of malignant cells across different trajectory branches using pie charts. (D) Heat map showing 
the dynamic changes of gene expression along pseudo-time. (E, F) KEGG enrichment results of cluster1 (E) and cluster2 (F) genes. (G) Two-
dimensional graph showing the changes of expression scores of apoptosis-related genes in malignant cell subtypes along pseudo-time. 
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FIGURE 4 

Remodeling of ESCC microenvironment. (A) UMAP plot shows the distribution of T cell subtypes in normal tissues and tumor tissues. (B) Heat map 
shows the average expression levels of typical marker genes of T cell subtypes. The bar graph above the heat map shows the relative proportions of 
T cell clusters in normal tissues and tumor tissues. (C) Scatter plot shows the relative proportions of four T cell subtypes in normal tissues and tumor 
tissues. Wilcoxon rank sum test was applied to determine statistical significance. Each dot represents a sample. (D) Bubble plot shows the expression 
patterns of characteristic genes of four T cell subtypes in normal tissues and tumor tissues. The size of each bubble represents the proportion of T 
cell subtypes expressing the gene. The color intensity of the bubble represents the normalized value of gene expression level. (E) UMAP plot shows 
the distribution of fibroblast subtypes in normal tissues and tumor tissues. (F) Bubble plot shows the expression patterns of characteristic genes of 
three fibroblast subtypes in normal tissues and tumor tissues. The size of each bubble represents the proportion of T cell subtypes expressing the 
gene. The color intensity of the bubble represents the normalized value of gene expression level. (G) Histogram showing the difference in the 
proportion of specific cell subtypes in normal tissues and tumor tissues. 
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3.6 Apoptosis-related gene CTSC affected 
ESCC prognosis and drug resistance 

Subsequently, we analyzed apoptosis-related genes and their 
prognostic correlations using the TCGA-ESCC dataset. We identified 
a total of eight prognosis-related genes: IL3RA, CTSC, CTSL, CTSS, 
TNFSF10, LMNB2, TNFRSF10B, and TNFRSF10A. Among these, 
IL3RA, CTSC, CTSL, CTSS, and TNFSF10 were identified as 
prognostic risk genes (P<0.05, HR ≠1; Figure 6A). We then 
compared the expression levels of IL3RA, CTSC, and CTSL in 
malignant cells and found that CTSC exhibited the highest expression 
Frontiers in Immunology 11 
in worse prognosis-related malignant cells, as indicated by scRNA-seq 
data (Figure 6B). We downloaded single-cell sequencing data from Ji 
et al.’s study (DOI: 10.1186/s13073-024-01320-9). The single-cell 
sequencing samples containing 15 tumors, and 7 paracancerous 
tissues were analyzed, and a total of 108,699 cells were obtained after 
data filtering, annotated as 8 types of cells, which were epithelial cells, 
macrophages, endothelial cells, fibroblasts, plasma cells, T cells, Mural 
cells, and Mast cells. Subsequently, we analyzed the expression of CTSC 
in epithelial cells of tumor and normal samples. The results revealed that 
CTSC was significantly highly expressed in the epithelial cells of tumor 
samples (Supplementary Figure S4, P<0.001). Based on the TCGA 
FIGURE 5 

Cellular interactions in the microenvironment of ESCC. (A, B) Heat maps show the overall interaction strength between specific cell subtypes in 
normal (A) and tumor (B) tissues. (C) Bubble plots show the differences in specific ligand-receptor interactions between normal and tumor tissues 
from apCAFs, iCAFs subtypes to T cell subsets. (D) Bubble plots show the differences in specific ligand-receptor interactions between good 
prognosis and worse prognosis-related cells. 
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database, we observed that CTSC expression was also significantly 
elevated in ESCC tumor samples (Figure 6C). Furthermore, CTSC 
was markedly overexpressed in tumor samples compared to normal 
tissues (Figures 6D, E). The prognosis for samples with high CTSC 
expression was significantly worse (Figure 6F). Additionally, we found 
that CTSC expression levels are closely associated with immunotherapy 
resistance. (Figures 6G–I; Supplementary Figure S5). These results 
suggest that high CTSC expression was closely associated with worse 
prognosis and drug resistance in ESCC, and the role of CTSC in ESCC 
warranted further investigation. 
3.7 CTSC was abnormally highly expressed 
in ESCC tissues 

To validate the expression of CTSC in ESCC using the TCGA 
database, we enrolled ESCC patients and collected both tumor 
Frontiers in Immunology 12 
tissues and adjacent normal tissues. Immunohistochemical analysis 
revealed that the expression of CTSC was significantly higher in 
ESCC tissues compared to adjacent normal tissues (P<0.05) 
(Figures 7A, B). This finding was consistent with the predictions 
from the TCGA database, both indicating elevated levels of CTSC 
expression in ESCC. Consequently, we hypothesize that CTSC may 
function as an oncogenic driver, promoting the progression 
of ESCC. 
3.8 Knockdown of CTSC suppressed ESCC 
cell proliferation and migration and 
promoted apoptosis 

To investigate whether CTSC exerts oncogenic effects in 
KYSE520 cells, we designed two siRNAs (si-CTSC-1 and si
CTSC-2) and transfected them into KYSE520 cells to establish 
FIGURE 6 

CTSC affects prognosis and drug resistance. (A) Univariate Cox regression analysis of apoptosis-related genes. (B) Expression of IL3RA, CTSC, and 
CTSL in epithelial cells associated with worse prognosis in scRNA-seq data. (C) Expression of IL3RA, CTSC, and CTSL in TCGA dataset. (D, E) CTSC is 
significantly overexpressed in TCGA (D) and GSE75241 (E) tumor samples. (F) In the TCGA dataset, high-level expression of the CTSC gene indicates 
a worse prognosis. The P-value of the Log-rank test is less than 0.05 and is considered statistically significant. (G, H) A total of 11 types of cells were 
identified in the GSE203115 dataset, (H) involving 2 groups. (I) CTSC is significantly overexpressed in malignant cells of non-responder samples. 
** p<0.01; **** p<0.0001. 
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CTSC knockdown cell models. The results demonstrated that 
transfection with si-CTSC-1 and si-CTSC-2 significantly 
downregulated the mRNA expression of CTSC, indicating 
successful silencing of CTSC expression in KYSE520 cells 
(Figure 8A). CCK8 assays revealed that CTSC knockdown 
markedly inhibited the viability of KYSE520 cells (P<0.05) 
(Figure 8B). Additionally, the number of EdU-positive cells was 
significantly reduced following CTSC knockdown (P<0.05) 
(Figure 8C). Furthermore, CTSC knockdown suppressed cell 
migration and invasion (Figures 8D–F). Subsequently, flow 
cytometry was employed to assess cell apoptosis, and the results 
showed that CTSC knockdown promoted the apoptosis rate 
(Figure 8G). Concurrently, CTSC knockdown significantly 
increased the expression of apoptosis markers, caspase 3 and 
cleaved caspase 3 (Figure 8H). In summary, these findings 
demonstrated that CTSC functions as an oncogenic factor, 
driving cancer cell proliferation and migration while inhibiting 
apoptosis in ESCC. 
3.9 Knockdown of CTSC suppressed ESCC 
progression in vivo 

To evaluate the impact of CTSC on ESCC progression in vivo, 
we established subcutaneous tumor models in BALB/c nude mice. 
As shown in Figure 9A, the tumor volume and tumor weight of 
mice in the sh-CTSC group were significantly lower than those in 
the group with sh-NC (negative control), suggesting that 
knockdown of CTSC could effectively inhibit tumor growth. In 
addition, multicolor immunofluorescence (mIF) analysis of tumor 
tissues showed that the protein levels of CTSC as well as the protein 
level of fibroblast marker a-SMA were significantly lower in the sh-
CTSC group compared with the sh-NC group (Figures 9B, C). And 
the spatial locations of cancer cells and fibroblasts (a-SMA+) 
expressing CTSC were close to each other (Figure 9B). Taken 
together these findings, the results suggest that deprivation of 
CTSC can inhibit the progression of ESCC. 
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4 Discussion 

In this study, we compared the cellular landscape characteristics 
of primary tumor tissues and adjacent non-cancerous tissues in 
ESCC. We identified six subtypes of malignant epithelial cells that 
exhibit mechanisms of deterioration, encompassing distinct 
transcriptional regulatory networks, coordinated cellular 
differentiation, and intercellular communication. Additionally, we 
analyzed the tumor microenvironment (TME) and found that 
tumor tissues were significantly enriched in immune cells and 
cancer-associated fibroblasts (CAFs) compared to non-tumor 
cells. Furthermore, we identified eight apoptosis-related genes 
associated with prognosis, among which the expression of CTSC 
was strongly correlated with drug-resistant outcomes in patients 
undergoing neoadjuvant immunotherapy. Moreover, CTSC was 
found to promote tumor progression in ESCC. Consequently, 
CTSC plays a crucial role in driving TME remodeling and the 
progression of drug resistance in ESCC, making it a potential target 
for clinical therapy. 

It is well known that the tumor microenvironment comprises 
noncancerous cells and components within the tumor, as well as the 
molecules they produce and release (27). In this study, we identified 
92,714 single cells through scRNA-seq data, which can be 
categorized into 11 cell clusters. Among these, endothelial cells, 
macrophages, and T cells are more prevalent in tumor samples. 
Endothelial cells play a crucial role in tumor angiogenesis. 
Compared to normal tissues, endothelial cells in tumor tissues 
undergo metabolic remodeling, including abnormal glucose 
metabolism, amino acid metabolism, and fatty acid metabolism 
(28). These metabolic abnormalities not only meet the energy 
demands of endothelial cells for their proliferation and migration 
but also provide the necessary metabolic substrates and regulatory 
signals for tumor angiogenesis (29, 30). In ESCC, an enrichment of 
specific endothelial cell subtypes has been observed (31). ESCC cells 
can stimulate the angiogenesis of endothelial cells, thereby 
promoting tumor migration (32). Macrophages are a crucial 
component of the mononuclear phagocyte system and play 
FIGURE 7 

CTSC gene was highly expressed in cancer tissues. (A) Representative immunohistochemistry (IHC) staining images of CTSC in adjacent tissues and 
ESCC tissues. (B) Expression of CTSC protein in adjacent tissues and ESCC tissues. Scale bar: 100 mm. ****p < 0.0001. 
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significant roles in immune system regulation and angiogenesis 
(33). Additionally, macrophages are closely associated with tumors. 
Under the influence of various cytokines, macrophages can polarize 
into two distinct functional forms: pro-inflammatory, tumor-
Frontiers in Immunology 14 
suppressive M1 macrophages and anti-inflammatory, tumor

supportive M2 macrophages (33). Macrophages that infiltrate the 
tumor microenvironment (TME) are referred to as tumor-

associated macrophages (TAMs). TAMs are typically M2-like 
FIGURE 8 

Knockdown of CTSC suppressed ESCC cell proliferation and migration and promoted apoptosis. We designed two siRNAs (si-CTSC-1 and si-CTSC-2) 
and transfected them into KYSE520 cells to establish CTSC knockdown cell models. (A) CTSC mRNA expression was analyzed by RT-qPCR. (B) Cell 
viability was analyzed by CCK8. (C) The number of EdU-positive cells was analyzed by flow cytometry. (D, E) Cell migration (D) and invasion (E) ability 
were evaluated by Transwell. (F) Cell migration ability was evaluated by wound healing assays. (G) Cell apoptosis was analyzed by flow cytometry. 
(H) caspase 3 and cleaved caspase 3 protein expression was analyzed by WB. **p < 0.01; ***p<0.001; ****p < 0.0001. 
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anti-inflammatory immune cells that are linked to malignant 
disease progression, drug resistance, and worse prognosis. For 
instance, CCL22 secreted by TAMs contributed to cisplatin 
resistance in ESCC cells (34). The infiltration of M2 macrophages 
promoted the progression of ECC (35). Previous studies have also 
found that T cells were present in large numbers in ESCC tissues 
(36). Additionally, T cell infiltration in human cancers should be 
considered as a true regulator of cancer growth (37)). Combined 
with the results of the present study, these insights emphasize that 
endothelial, macrophage, and T-cell cells play important roles in 
TME and drive ESCC progression. In this study, we observed that 
CD4+ T cells in tumor tissues exhibited upregulation of exhaustion-
related molecular markers, while CD8+ T cells were predominantly 
expressed in adjacent normal tissues. These findings suggest that the 
infiltration of CD4+ T cells is associated with carcinogenesis, 
whereas the absence of CD8+ T cells is linked to tumor 
immune evasion. 

Malignant epithelial cells were also identified in this study, and 
according to the Scissor algorithm, relevant cell populations with worse 
prognosis were identified. Worse prognosis-related malignant cells 
were enriched in apoptosis-related transcription factors, such as 
IRF1, FOS, EGR1, and JUN. Among these, IRF1 exerts its tumor-

suppressive effects by promoting ferroptosis and apoptosis, thereby 
inducing tumor cell death (38). In contrast, FOS, EGR1, and JUN 
inhibit apoptosis, exacerbating cancer progression (39–41). In addition, 
this study also found that the apoptotic pathway exhibited elevated 
Frontiers in Immunology 15 
expression scores along the extrapolated pseudo-times, which also 
suggests that apoptosis played a key regulatory role in malignant 
epithelial cell differentiation. 

Subsequently, this study analyzed the correlation between 
apoptosis-related genes and prognosis using TCGA-ESCC data. 
Through univariate Cox regression analysis, eight prognosis-related 
genes were identified: IL3RA, CTSC, CTSL, CTSS, TNFSF10, LMNB2, 
TNFRSF10B, and TNFRSF10A. Among these, IL3RA, CTSC, CTSL, 
CTSS, and TNFSF10 were identified as risk genes for worse prognosis 
(HR>1). Notably, we found that CTSC exhibited the highest expression 
in malignant cells with worse prognosis in scRNA-seq data, and its 
expression was also the highest in TCGA tumor samples. Previous 
studies have also demonstrated that CTSC was aberrantly expressed in 
various tumors, such as glioma, colorectal cancer, and liver cancer, and 
was closely associated with worse patient prognosis (42–44). These 
findings are consistent with the results of the present study, suggesting 
that CTSC may be a key gene driving worse prognosis in ESCC. In 
addition, CTSC has been reported to be involved in the process of 
immune evasion. Dang et al. found that CTSC overexpression 
promoted the recruitment of myeloid-derived suppressor cells 
(MDSCs) and tumor-associated macrophages (TAMs) through the 
CSF1/CSF1R axis, facilitating immune evasion and thereby enhancing 
cancer cell resistance to immunotherapy (43). Interestingly, this study 
also observed that CTSC was significantly highly expressed in 
malignant epithelial cells of patients who did not respond to 
neoadjuvant immunotherapy. Combined with previous findings, 
FIGURE 9 

Knockdown of CTSC suppressed ESCC progression in vivo. KYSE520 cells transfected with sh-CTSC (n=5) or sh-NC (n=5) were injected 
subcutaneously into nude mice to construct xenograft tumor models. (A) Measurement of tumor volume and tumor weight. (B) Multicolor 
immunofluorescence (mIF) was employed to analyze the spatial location between CTSC+ cancer cells and a-SMA+ fibroblasts. (C) The expression of 
CTSC and a-SMA proteins in tumor tissues. ****p < 0.0001. 
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these results suggest that CTSC may promote resistance to 
immunotherapy in ESCC. 

However, the role of CTSC in ESCC remains unclear. Therefore, 
we investigated the specific functions of CTSC through in vitro 
experiments. The results revealed that, on one hand, knockdown of 
CTSC inhibited the proliferation and migration of ESCC cells; on 
the other hand, as an apoptosis-related gene, knockdown of CTSC 
promoted caspase 3-mediated apoptosis. These findings are 
consistent with previous studies. Wang et al. demonstrated that 
overexpression of CTSC significantly enhanced cancer cell viability, 
proliferation, migration, and invasion, whereas inhibition of CTSC 
expression suppressed these biological phenotypes (45). In addition, 
this study also validated the function of CTSC in vivo. The results 
showed that knockdown of CTSC inhibited tumor growth in vivo 
and reduced the protein of the fibroblast marker a-SMA. The above 
results, suggest that knockdown of CTSC can inhibit the 
progression of ESCC. These results confirm that CTSC functions 
as an oncogenic factor, driving tumor progression. 

Although  this  study  comprehensively  explored  the  
characteristics of the TME in ESCC and identified prognostic risk 
genes associated with ESCC malignancy, there are still limitations. 
On one hand, due to the limited availability of non-responsive 
ESCC specimens following NAT, this study could not clinically 
validate the association between CTSC expression and NAT 
treatment efficacy. Future multicenter, multi-platform studies 
should be conducted to recruit larger cohorts of NAT-resistant 
ESCC patients, which would enable definitive demonstration of the 
relationship between CTSC overexpression and NAT resistance. 
Additionally, the molecular mechanisms by which CTSC drives 
ESCC progression need to be elucidated in subsequent studies. 
Additionally, future studies should incorporate rescue experiments 
(e.g., CTSC overexpression) and pharmacological inhibition (using 
CTSC-specific inhibitors such as E64) to comprehensively 
characterize CTSC’s functional role, thereby strengthening the 
causal evidence and excluding potential off-target effects. 

In summary, this study comprehensively compared the cellular 
landscape characteristics between primary tumor tissues and 
adjacent non-cancerous tissues in ESCC. Additionally, we 
identified eight apoptosis-related genes associated with prognosis, 
among which the expression of CTSC was closely correlated with 
resistance  outcomes  in  patients  receiving  neoadjuvant  
immunotherapy. In vitro studies revealed that CTSC promotes 
tumor progression in ESCC. Therefore, CTSC plays a crucial role 
in driving TME remodeling and the progression of drug resistance 
in ESCC, making it a potential target for clinical therapy. 
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SUPPLEMENTARY FIGURE 1 

The apoptosis pathway scores of malignant cell subpopulations. 
SUPPLEMENTARY FIGURE 2 

Bubble plots show the differences in specific ligand-receptor interactions 
between normal and tumor tissues from mCAFs to epithelial cell subtypes. 
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SUPPLEMENTARY FIGURE 3 

(A) Violin plot showing the expression of PDGFA between good prognosis and 
worse prognosis-related cells. (B) Volcano plot was used to display the 
differentially expressed genes of mCAFs between the two groups. (C) Dot 
plot was used to show that the upregulated genes of mCAFs in the tumor 
group were significantly enriched in the PI3K pathway. 

SUPPLEMENTARY FIGURE 4 

(A) UMAP shows the cell types identified in 15 tumors and 7 paracancerous 
tissues. (B)The dot plot displays the expression of marker genes across 
different cells. (C) The violin plot illustrates the expression of CTSC in 
epithelial cells from tumor and paracancerous tissues. 

SUPPLEMENTARY FIGURE 5 

T cells were co-cultured with tumor cells and treated with a combination of 
drugs. The viability of tumor cells was measured at different time points. 
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