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Systemic Lupus Erythematosus (SLE) is a multifaceted autoimmune disorder

characterized by widespread inflammation and immune dysregulation,

impacting various organ systems and generating autoantibodies. Oral lesions

are a common and distressing manifestation of SLE, significantly affecting

patients’ quality of life. Cytokines, key mediators of immune responses, play a

crucial role in the pathogenesis of both systemic and oral manifestations of SLE.

This review sheds the light on current research on the involvement of various

cytokines, including interleukins different interferon types, and growth factors in

SLE. The intricate interplay between pro-inflammatory and anti-inflammatory

cytokines contributes to the disease’s initiation, progression, and diverse clinical

presentations. Elevated levels of pro-inflammatory cytokines exacerbate

inflammation, promote apoptosis, and drive autoantibody production.

Understanding the specific roles of these cytokines offers potential therapeutic

targets for managing SLE and improving patient outcomes.
KEYWORDS
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1 Introduction

Systemic Lupus Erythematosus (SLE) is a complex autoimmune disease that affects

multiple organ systems, including the skin, kidneys, and joints. The systemic nature of SLE

arises from widespread immune system dysfunction, leading to autoimmunity against

nucleic acids and their associated proteins, along with tissue-damaging inflammation.

Among its numerous manifestations, oral lesions are a significant concern for patients,

often resulting in pain, discomfort, and diminished quality of life. The pathogenesis of these

oral manifestations is multifactorial, with cytokines playing a pivotal role. Recent literature

has increasingly highlighted the importance of cytokines in the development and

progression of oral lesions in SLE (1). This review aims to synthesize current findings on

the role of cytokines in SLE’s systemic and oral manifestations and explore their therapeutic

implications. Although genetic susceptibility and environmental factors, such as microbial
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infections, create a predisposition for SLE, specific triggers of

immune activation are necessary to initiate the production of type

1 interferons and the generation of autoantibodies targeting self-

antigens (2).

In SLE patients, elevated levels of various cytokines were

detected throughout the disease course, appearing in circulation,

saliva, urine, and affected tissues such as the skin, kidneys, and

synovia (3). While most of these cytokines exhibit pro-

inflammatory properties, some play immunomodulatory or anti-

inflammatory roles (4).

Notably, multiple immunological abnormalities play a role in

the breakdown of self-tolerance and the persistence of autoimmune

responses in SLE. In particular, defects in apoptotic cell clearance—

such as impaired phagocytosis and complement activation—lead to

the accumulation of self-antigens. Dysregulated innate immune

responses further drive adaptive immune activation, intensifying

the inflammatory cascade (5). For instance, plasmacytoid dendritic

cells (pDCs), myeloid dendritic cells (mDCs), monocytes and

macrophages are key contributors to the inflammatory cascade in

SLE through their enhanced antigen-presenting capacity and

increased production of proinflammatory cytokines such as type I

interferons and TNF-a. These cells exhibit an activated phenotype

in SLE patients, promoting T cell activation and perpetuating

autoimmunity (6–10). Additionally, abnormalities in B cell

development, activation, and differentiation promote the

production of autoreactive antibodies, which target self-antigens

and form immune complexes that contribute to tissue damage and

inflammation. Consistently, disturbances in T cell compartments,

dysfunctional regulatory T cells (Tregs), and altered cytokine

production further exacerbate tissue damage in this disease. B

cells are central to SLE pathogenesis as the overexpression of B

lymphocyte stimulator (BLyS) significantly contributes to disease

progression (Figure 1). BLyS enhances B-cell survival by inhibiting

apoptosis and promoting proliferation and differentiation. This

process ultimately leads to increased autoantibody production, a

hallmark of SLE (11).
2 Cytokines involvement in the
pathophysiology of lupus
erythematosus

SLE is characterized by an aberrant immune system that

generates autoantibodies and induces widespread inflammation,

affecting various tissues. As shown in Figure 1, this immune

dysregulation involves the activation of both innate and adaptive

immune systems including B and T cells, leading to the formation of

immune complexes, and the production of pro-inflammatory

cytokines (12, 13). Excessive or insufficient cytokine production

can contribute to the pathogenesis of several diseases (14). An

imbalance between pro-inflammatory and anti-inflammatory

cytokines is a well-recognized feature of SLE. Numerous studies

suggest that cytokine levels play a role in SLE, with an elevation of

pro-inflammatory cytokines , potent ia l ly exacerbat ing

inflammation, promoting apoptosis, and driving autoantibody
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production, thus contributing to disease initiation and

progression (15, 16). These cytokines contribute to the diverse

clinical manifestations of lupus, including oral lesions and

systemic features. Interleukins, including IL-1, IL-6, IL-10, IL-17,

along with interferon-alpha (IFN-a) and tumor necrosis factor-

alpha (TNF-a), are key cytokines that serve as biomarkers for

assessing disease activity and severity. Therefore, modulating these

cytokines could be a therapeutic approach towards the management

of SLE (17, 18).
2.1 Interferons

2.1.1 Type I interferons
Type I IFNs, particularly IFN-a, are the predominant cytokines

of this category and have been extensively studied in the context of

SLE (19, 20). Also, IFN-k signaling via the type I interferon receptor

modulates the expression and release of cytokines from monocytes

(21, 22). All type I IFNs transmit signals through the same receptor

complex, composed of IFNAR1 and IFNAR2 (23). Elevated IFN

activity has been associated with greater disease severity in SLE

patients (24–26). Circulating IFN-a levels have been shown to

correlate with disease activity, as measured by the SLEDAI score, as

well as with anti-dsDNA antibody titers and complement activity.

This suggests that IFN-a quantification could serve as a potential

biomarker for disease monitoring (4). Specific autoantibody

profiles, including anti-dsDNA, anti-RNP, anti-Sm, and anti-Ro,

have been linked to heightened IFN activity (26–28). Multiple

studies have demonstrated that between 50% and 75% of adults

and up to 90% of children with SLE exhibit heightened expression

of type I IFN-regulated genes, a phenomenon known as the IFN

signature (29–32). Notably, younger patients display more

pronounced IFN activity compared to older individuals, and SLE

disease activity has been found to correlate with IFN-a levels and

the intensity of the IFN signature (30, 33–35).

In patients with SLE, pDCs are reduced in circulation but can be

identified in inflamed tissues such as the skin and kidneys, where

they appear to be activated (36–38). These cells play a central role in

sustaining IFN production in SLE. Hence, targeting pDCs in SLE

patients was found to reduce the expression of IFN response genes

in the blood, decrease immune cell infiltration in the skin, and

ameliorate cutaneous lesions (39). This approach was done using

the monoclonal antibody targeting blood DC antigen 2 (BDCA2),

BIIB059, a known pDC-specific receptor that inhibits the

production of type I IFNs (39). However, recent research

indicated that BDCA2 is not exclusive to pDCs and is also

expressed on differentiated monocytes. Consequently, BIIB059

may exert effects on broader myeloid populations, which could

have an impact on the safety and expanded therapeutic applications

in SLE (40, 41).

On the other hand, other studies demonstrated that pDCs in

both preclinical autoimmunity and established SLE are functionally

impaired, showing signs of stress, senescence, and reduced cytokine

and T cell activation capacity. Instead, non-hematopoietic cells,

particularly keratinocytes producing interferon-k, could drive early
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interferon responses in the skin, implicating them as key sources of

IFN prior to clinical disease onset (42). Also, another study on

discoid lupus and cutaneous lupus erythematosus (CLE) identified

that pDCs are not major producers of type I interferons, as they

exhibit markedly reduced IFN-a production upon toll like receptor

7 (TLR7) stimulation (43).

Neutrophils also possess the capacity to produce type I IFN, and

bone marrow-derived neutrophils from SLE patients have been

shown to generate IFN-a (44, 45). This IFN production appears

to drive alterations in B-cell development, leading to a reduction in
Frontiers in Immunology 03
pro/pre-B cells while expanding transitional B-cell populations. Such

changes may represent early events in the disruption of immune

tolerance and the initiation of autoimmunity, culminating in

autoantibody production. A study by Klein B et al. identified Z-

DNA binding protein 1 (ZBP1) as a key mediator of UVB-induced

inflammation in autoimmune photosensitivity by stabilizing cytosolic

Z-DNA derived from oxidized mitochondrial DNA. Moreover, ZBP1

was found to be elevated in lupus keratinocytes, where it enhances

type I IFN production via cGAS-STING signaling, highlighting its

central role in priming cutaneous inflammation (46).
FIGURE 1

Innate and adaptive immune players with their respective cytokine involvement in SLE pathogenesis. In the innate phase, type I interferons, cell
apoptosis and other early signaling pathways initiate activation of basophils, neutrophils, monocytes, macrophages, myeloid and plasmacytoid
dendritic cells. The adaptive phase involves an imbalance among T helper cell subsets, their interaction with B cells, perpetuating autoantibody
production and tissue damage. BAFF, B-cell-activating factor of the tumor-necrosis-factor family; IFN, interferon; IL, interleukin; PGD2, prostaglandin
D2; TNF, tumor necrosis factor.
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Besides, IFN-k is constitutively and highly expressed in

keratinocytes (21). In patients with SLE, keratinocytes contribute

to skin injury pathogenesis by undergoing apoptosis or necrosis,

leading to the release of autoantigens (47). IFN-k was previously

investigated in SLE where it was found to be elevated in the skin

lesions of cutaneous lupus erythematosus (48). Further, IFN-k was

found to amplify and accelerate responsiveness of epithelia to IFN-

a and increase keratinocyte sensitivity to UV irradiation (48). This

indicated that IFN-k could be a potential novel target for ultraviolet

B prophylaxis and cutaneous lupus erythematosus-directed therapy

(48). The IFN score was identified to be markedly enriched in the

skin of SLE patients, even in the absence of clinical inflammation or

in ANA positive individuals (42). Furthermore, IFN-k was diffusely

expressed not only in the epidermis of lesional skin from SLE

patients, but also in non-lesional epidermis of ANA+ individuals

with elevated systemic IFN activity (42). On another note, IFN-k
functions as an interferon-stimulated gene (ISG) that is regulated in

an IFN-b–dependent manner. While IFN-b is produced rapidly and
transiently in response to stimulation, IFN-k expression is

upregulated later and sustained, suggesting a potential role in

maintaining more prolonged or chronic type I IFN responses

(49). This could be the explanation to the elevated levels of IFN-k
in autoimmune diseases such as SLE. Furthermore, the study by Xu

B. et al. suggests a mechanistic model in keratinocytes whereby

IRF3-activating stimuli rapidly induce IFN-b leading to the

subsequent upregulation of IFN-k via IFN-b–mediated STAT1

activation. Further investigation into these pathways may uncover

novel therapeutic targets for chronic IFN-driven inflammation in

cutaneous lupus (49).

2.1.2 Type II interferons
In contrast, type II IFN consists of a single cytokine, IFN-g,

which is primarily secreted by CD4+ and CD8+ Th1 lymphocytes, as

well as by NK cells, B cells, and professional antigen-presenting

cells. IFN-g signaling occurs through a receptor complex consisting

of IFNGR1 and IFNGR2 subunits (20). Activated NK cells in SLE

exhibit increased secretion of IFN-g, while peripheral blood

leukocytes from SLE patients have been found to express

detectable levels of IFN-l transcripts, although the precise cellular

source remains uncertain (50). A crucial observation is that several

activated immune cell types can further stimulate pDCs to enhance

IFN production. Notably, NK cells, B cells, and T cells have all been

shown to amplify IFN secretion when pDCs are exposed to nucleic

acid–containing immune complexes (51, 52). Interleukin-12,

alongside IFN-g, drives T-cell differentiation toward a Th1

immune response. SLE patients exhibited an increase in the

circulating levels of the IL-12p40 subunit, which correlates

positively with disease activity and inversely with complement C3

levels (53, 54).

2.1.3 Type III interferons
In established SLE, there is a production of type III IFNs (IFN-

l) in the skin. This type of IFNs engages signaling pathways and

elicit cellular effects similar to type I interferons (55). Notably,

studies using the SLE animal model (MRL/lpr), reported that
Frontiers in Immunology 04
deletion of the IFN-l receptor leads to reduced skin

inflammation, highlighting its functional relevance (56).

Additionally, loss of IFNB1 (gene for IFN-b1) in keratinocytes

significantly diminished IFNL1 (gene for IFN-L1) expression,

mirroring the pattern seen with IFN-k. In contrast, IFNL3

remained strongly and rapidly induced even in the absence of

IFNB. These findings underscore the complex interplay between

type I and type III interferons in the epidermis, warranting

further investigation.
2.2 Growth factors

Increasing evidence suggests that TNF-a plays a complex role

in the pathogenesis of SLE (57). This cytokine appears to have dual

and sometimes opposing functions, making its role in the disease a

subject of ongoing debate. On one hand, TNF-a contributes to

immune regulation by supporting the development, differentiation,

and maintenance of immune cells, acting as a crucial component of

immunosuppressive mechanisms. On the other hand, it can serve as

a potent proinflammatory agent, being released in affected tissues

during active disease and potentially exacerbating inflammation

(58–60).

Also, studies have shown that individuals with active SLE tend

to exhibit elevated serum levels of TNF-a and its soluble receptors

(TNFR1 and THFR2) compared to those with inactive disease (57,

61–63). A study by Zhu et al. revealed that SLE patients exhibited

significantly reduced expression of key TNF adaptor proteins

including TNF receptor-associated death domain (TRADD), Fas-

associated death domain (FADD), TRAF2, and receptor-interacting

protein kinase 1 (RIPK1) in their peripheral blood mononuclear

cells. Furthermore, these diminished protein levels were found to

correlate inversely with disease activity, suggesting a potential link

between impaired TNF signaling and SLE progression (64).

However, conflicting findings suggest that TNF-a levels may be

lower in certain SLE patients, particularly those experiencing severe

disease manifestations. Interestingly, some research indicates that

TNF-a concentrations are higher in individuals with inactive SLE

than in both those with highly active disease and healthy controls

(57, 58, 65). This paradoxical pattern has led to speculation that

TNF-a may also play a protective role in certain contexts,

potentially contributing to immune regulation in SLE.

Both the transmembrane and soluble form of TNF interact with

the two known receptors of TNF, TNF receptor 1 (TNFR1), and

TNFR2 (66). They play distinct yet complementary roles in immune

regulation and inflammation (67). TNFR1 (p55), is ubiquitously

expressed on most cell types and mediates the majority of pro-

inflammatory and apoptotic effects of TNF-a through activation of

NF-kB, MAPK, and caspase pathways. In contrast, TNFR2 (p75) is

primarily expressed on immune cells, including Tregs, endothelial

cells, and certain neuronal populations, and is associated with tissue

regeneration, immune modulation, and cell survival via alternative

NF-kB and PI3K/Akt signaling pathways (68, 69). Overactivation of

TNFR1 contributes to heightened inflammation, apoptosis of key

immune and tissue cells, and amplification of the autoimmune
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response. Meanwhile, dysregulation or insufficient activation of

TNFR2 may impair Treg function and tissue repair mechanisms,

exacerbating disease progression in SLE (70). Emerging studies

suggest that selective modulation of TNFR2 could restore immune

tolerance without triggering widespread inflammation, offering a

promising therapeutic strategy for SLE and other autoimmune

diseases (71).

CD40, a transmembrane receptor of the TNF family, is broadly

expressed on immune and non-immune cells and plays a pivotal

role in regulating both humoral and cellular immunity through its

interaction with CD40 ligand (CD40L) (72–74). This pathway is

essential for dendritic cell/T-cell and T-cell/B-cell communication,

promoting B cell proliferation, differentiation, and immunoglobulin

production (73, 75). In SLE, CD40 signaling contributes to disease

pathology by as its activation upregulates CD40L, which in turn

further engages CD40 on B cells (76). Additionally, CD40-induced

telomerase activity supports long-lived B cell memory, perpetuating

chronic inflammation and autoantibody generation (77).
2.3 Interleukins

2.3.1 Interleukins belonging to IL-1 family
The cytokine interleukin-1 superfamily comprises IL-1a, IL-1b,

IL-18, IL-33, and IL-38, all of which contribute to innate immunity

and are regulated by inflammasome activation as an early pathogen

response. Some studies reported that peripheral IL-1a levels in SLE

patients were comparable to those of controls, while other studies

indicated elevated IL-1a levels in individuals with renal and joint

manifestations in SLE (78). Additionally, increased tissue IL-1b
levels have been observed in skin lesions triggered by

photoprovocation in CLE, accompanied by heightened TNF-a
expression (79). In SLE, opsonized red blood cells retaining

mitochondria (Mito+ RBCs) stimulate monocytes to co-produce

type I interferons and mature IL-1b. This response is driven by

cyclic GMP-AMP synthase (cGAS) and RIG-I-like receptors

detecting mitochondrial DNA and RNA from Mito+ RBCs,

activating both interferons signaling and inflammasome

pathways. Notably, IL-1b secretion occurs through the activation

of an IFN-inducible myxovirus-resistant protein 1 (MxA) and

trans-Golgi network dependent mechanisms that are independent

of gasdermin D or pyroptosis. This sheds the light on a subset of

monocytes that express IFN-stimulated genes (ISGs) and released

IL-1b and are enriched in patients with active SLE (8).

IL-18 is secreted by macrophages and plays a crucial role in

promoting IFN-g production by Th1 cells and splenocytes, often

acting synergistically with IL-12 (80). Elevated serum IL-18 levels

are commonly observed in SLE patients, particularly in those with

active renal disease who exhibit an increased risk of developing

kidney damage over time (81). Additionally, high IL-18 expression

has been detected in cutaneous lupus erythematosus (CLE) lesions

(82). IL-18 is identified as a potential biomarker for active SLE,

whereas blocking IL-18 was found to delay the onset of SLE-like

autoimmunity (80, 83).
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2.3.2 Interleukins belonging to Type I cytokine
family

Elevated plasma IL-6 levels have been detected in patients with

renal impairment and are a key mediator in lupus nephritis (78, 84,

85). Urinary IL-6 levels have been proposed as a potential

biomarker for the condition (86, 87). Additionally, SLE has been

linked to impaired IL-2 production, with IL-2 deficiency associated

with renal dysfunction (88). Notably, some SLE patients develop

anti-IL-2 autoantibodies, which have been correlated with disease

activity (89). IL-21 is an autocrine cytokine primarily produced by

follicular helper T (Tfh) cells and Th17 cells, playing a key role in

their development. It also facilitates B-cell differentiation into

plasma cells through various signaling pathways, including JAK/

STAT (90). IL-21 may contribute to the expansion of autoreactive B

cells, further driving disease pathology (91). Genetic variations in

IL-21 and its receptor (IL-21R) have been linked to increased

susceptibility to SLE. There are controversial reports regarding

the expression of IL-21 where some studies found elevated levels

of IL-21-producing cells in the circulation of SLE patients (92),

while others have found reduced circulating IL-21 levels in affected

individuals (93).

2.3.3 Interleukins belonging to Type II cytokine
family

Despite its anti-inflammatory functions, IL-10 can have pro-

inflammatory effects, potentially influenced by type I IFNs (94). The

genetic variations in the IL-10 gene are linked to increased SLE

susceptibility (95, 96). Plasma IL-10 concentrations were elevated in

SLE patients compared to healthy controls, and there was an

association between IL-10 levels, disease activity, and anti-dsDNA

antibody titers (78).

2.3.4 Interleukins belonging to IL-17 family
Another proinflammatory cytokine is IL-17 which plays a key

role in the pathogenesis of autoimmune rheumatic diseases,

including SLE (18). Its involvement in SLE development and

disease activity is supported by findings that SLE patients exhibit

significantly higher circulating IL-17 levels compared to healthy

individuals, with its levels correlating positively with disease severity

(97). Beyond driving inflammation, IL-17 also contributes to the

progression of SLE-related comorbidities (98). The differentiation

of naïve T cells into Th17 cells is driven by the combined effects of

TGF-b and IL-6, while IL-23 is essential for the maturation and

activation of pathogenic Th17 cells. IL-6 plays a crucial role in the

differentiation of Th17 cells, and its inhibition may help mitigate

SLE activity by indirectly suppressing IL-17-driven inflammation

(99). IL-17, either alone or in conjunction with B-cell activating

factor (BAFF), regulates B-cell survival, proliferation, and

differentiation into immunoglobulin-secreting cells (97). By

promoting B-cell expansion, IL-17 enhances autoantibody

synthesis, which in turn facilitates immune complex formation,

complement activation, and subsequent tissue damage in target

organs. Additionally, these immune complexes activate

plasmacytoid dendritic cells (pDCs), further fueling inflammation
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(100). The IL-23/IL-17 axis plays a central role in inflammation,

coordinating Th17 cell differentiation and function, thereby

perpetuating immune dysregulation in SLE (11). IL-17 interacts

with other cytokines such as IL-23, IL-17F, and IL-21 to form a

complex proinflammatory network that drives tissue damage and

inflammation in SLE. It also amplifies the inflammatory cascade by

inducing the release of other cytokines, such as IL-1 and IL-6. IL-21

plays a crucial role in maintaining the balance between Th17 and

Treg cells, while IL-10, a member of the IL-2 cytokine family, is

linked to chronic inflammation (97, 100).

Higher plasma IL-17 levels and an increased presence of

circulating Th17 cells were reported in SLE patients (101–104).

Multiple investigations have shown that serum IL-17A levels are

markedly higher in patients with active SLE than in healthy

individuals (105–107). Furthermore, IL-17 concentrations have

been positively correlated with SLE disease activity index

(SLEDAI) scores, indicating a direct link between IL-17

expression and disease severity (101, 108, 109). In newly

diagnosed SLE patients, IL-17A levels were also found to be

strongly associated with RORgt mRNA expression, erythrocyte

sedimentation rate, and immunoglobulin levels (IgG and IgA),

further emphasizing the crucial role of the Th17–IL-17 axis in

SLE pathogenesis (110).
3 Oral manifestations of lupus
erythematosus

Oral manifestations of SLE are common and range from non-

specific findings such as xerostomia (dry mouth) and ulcers to more

specific lesions like oral lichen planus and candidiasis (111). Oral

manifestations of SLE can provide valuable clues for diagnosis and

management. These manifestations can include oral ulcers, lupus

cheilitis, discoid lupus erythematosus (DLE), dry mouth

(xerostomia), gingival inflammation, periodontal disease, pale

mucosa, oral candidiasis, telangiectasia (dilated blood vessels),

and altered taste (dysgeusia) (112).

Aphthous-like ulcers are painful, round, or oval lesions often

found on the hard palate, buccal mucosa, and tongue. These are

similar to typical aphthous ulcers but can occur in a variety of sizes.

Painless or painful ulcerations may appear as shallow, necrotic, and

have a raised border (112).

Lupus cheilitis is characterized by red, scaly, or fissured lips. The

lower lip is often more affected. This may resemble a form of

cheilitis, with dry, cracked, and inflamed lips. DLE may present as

localized lesions on the face, scalp, or mucous membranes,

including the oral cavity. White, lacy lesions can be seen on the

buccal mucosa and palate, and they may be accompanied by

erythema or ulceration. These lesions are often referred to as

lichen planus-like lesions.

Due to autoimmune damage to salivary glands, SLE can result

in decreased saliva production, leading to a sensation of dryness in

the mouth, difficulty swallowing, and increased risk of dental caries

and oral infections. Gingivitis may be present, characterized by

redness, swelling, and bleeding of the gums, often exacerbated by
Frontiers in Immunology 06
the systemic inflammation associated with SLE. Moreover, SLE

patients may be at an increased risk for periodontal disease due to

both autoimmune factors and dry mouth (xerostomia), which can

lead to a higher incidence of plaque accumulation and bacterial

growth. In addition, immunosuppression due to SLE or its

treatment (such as corticosteroids) can increase the risk of

opportunistic infections like oral thrush (candidiasis).

Occasionally, visible dilated blood vessels may appear on the hard

and soft palate. Some patients may experience changes in their sense

of taste, which can be related to the disease or its treatment. Further,

mucosal tissues can appear pale due to anemia, a common

complication of SLE, reflecting the decreased red blood cell count.
3.1 Role of cytokines in oral manifestations
of SLE

The relationship between cytokines and oral lesions in lupus

suggests that these cytokines may not only reflect disease activity

but also contribute to the inflammation and tissue damage observed

in the oral mucosa (113).

Type I interferons, particularly IFN-a and IFN-b, play a crucial
role in the immunopathogenesis of lupus and its related oral lesions.

These cytokines enhance antigen presentation and promote the

activation of autoreactive immune cells, contributing to ongoing

inflammation. Elevated levels of IFN-a have been observed in lupus

patients with oral manifestations, correlating with increased

mucosal damage and immune dysregulation (114). Additionally,

type I interferons stimulate the production of other inflammatory

mediators, reinforcing the chronic immune activation observed in

the oral mucosa (115).

TNF-a is a significant cytokine involved in lupus oral

pathology. It promotes the apoptosis of keratinocytes, resulting in

ulcer formation and destruction of mucosal tissue. Studies have

shown significantly elevated levels of TNF-a in saliva and serum

samples from lupus patients with oral lesions, indicating its role in

amplifying inflammatory responses in the oral mucosa (116).

Targeting TNF-a with biologic therapies has been investigated as

a potential strategy for alleviating both oral and systemic lupus

symptoms (117).

IL-6 is a critical cytokine involved in the chronic inflammation

associated with lupus oral lesions. It drives B-cell hyperactivity and

promotes autoantibody production, exacerbating immune-

mediated tissue damage. Salivary and tissue samples from lupus

patients show elevated IL-6 levels, further highlighting its

contribution to disease progression (118). This cytokine also

interacts with type I interferons, creating an inflammatory loop

that sustains mucosal lesions (119). IL-8, a potent chemoattractant

for neutrophils, plays a crucial role in the chronic inflammatory

process associated with lupus oral lesions. Its overexpression in oral

mucosal tissues has been linked to excessive infiltration of immune

cells and prolonged persistence of lesions (117). IL-8 recruits

neutrophils and monocytes to the affected tissues, exacerbating

tissue damage and further sustaining the inflammatory

environment (120).
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IL-1 is a key mediator of inflammation and has been implicated

in the pathogenesis of oral lesions in lupus. It exists in two primary

forms, IL-1a and IL-1b, both of which enhance immune cell

activation and amplify the release of inflammatory cytokines. IL-1

has been shown to potentiate the effects of TNF-a and IL-6,

worsening mucosal tissue damage in lupus patients (121). The

elevated levels of IL-1 in saliva and oral biopsies support its role

in promoting ulceration and chronic inflammation (122). IL-18 is

recognized as a crucial cytokine that influences the severity of oral

lesions in lupus. IL-18 promotes the production of IFN-g, leading to
increased immune activation and progressive tissue destruction

(123). Elevated IL-18 levels in lupus patients correlate with the

severity of oral lesions, underscoring its potential as a biomarker for

disease monitoring (124).

IFN-g serves as a key regulator of Th1-mediated immune

responses in lupus. It promotes macrophage activation and

elevates the expression of adhesion molecules that facilitate

immune cell infiltration into oral tissues. The increased levels of

IFN-g in lupus oral lesions indicate its role in sustaining chronic

inflammation and immune dysfunction (125). Additionally, IFN-g
works in synergy with type I interferons, establishing a self-

sustaining inflammatory cascade that contributes to the

persistence of oral lesions (126). Furthermore, IL-17 contributes

to the recruitment of neutrophils and macrophages, sustaining

chronic inflammation and tissue destruction in the oral mucosa

(127). Elevated levels of IL-17 in lupus patients have been linked to

disease severity and increased lesion persistence, making it an

emerging therapeutic target (128).

Macrophage inflammatory protein-1 alpha (MIP-1a), also
known as CCL3, plays a significant role in the recruitment of

immune cells and the inflammation associated with lupus oral

lesions. Its elevated expression correlates with increased leukocyte

infiltration and persistent mucosal inflammation (117). By

promoting the migration of immune cells to inflamed oral tissues,

MIP-1a aids in the maintenance of chronic immune activation

(129). These cytokines work together to contribute to the complex

immunopathology of oral lupus lesions by sustaining chronic

inflammation, disrupting mucosal homeostasis, and driving

disease progression. Understanding their roles offers insight into

potential therapeutic strategies to alleviate oral manifestations in

lupus patients.
4 Systemic manifestations of lupus
erythematosus

SLE is characterized by widespread organ involvement, primarily

driven by cytokine dysregulation. Key cytokines, including TNF-a, IL-
6, IL-17, and type I interferons (particularly IFN-a), contribute to

immune complex deposition, chronic inflammation, and tissue injury

across multiple systems. In musculoskeletal tissues, these cytokines

promote synovitis, joint inflammation, and cartilage degradation (130,

131). Similarly, renal involvement is mediated by glomerular immune

complex deposition and cytokine-driven mesangial proliferation,

ultimately contributing to lupus nephritis (132, 133). In parallel,
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within the skin, cytokines induce keratinocyte apoptosis and sustain

cutaneous inflammation (134–136). Moreover, cardiovascular

complications arise from cytokine-mediated endothelial dysfunction,

which promotes the development of atherosclerosis and thrombosis

(137, 138). Likewise, pulmonary manifestations reflect cytokine-

induced interstitial inflammation, fibrosis, and vascular remodeling

(139, 140). In addition, gastrointestinal features include mesenteric

vasculitis and mucosal inflammation (141, 142), whereas hematologic

abnormalities result from bone marrow suppression and an increased

thrombotic risk (143, 144). Finally, Neuropsychiatric symptoms are

associated with blood-brain barrier disruption, neuroinflammation,

and cerebrovascular damage, which are linked to elevated cytokine

levels (145, 146). Altogether, understanding these cytokine-mediated

mechanisms provides the basis for targeted therapeutic interventions

across the diverse systemic manifestations of SLE.
5 Therapeutic targeting of cytokines
in SLE

The significant role of cytokines in the pathogenesis of

SLE’s systemic and oral manifestations opens up potential

therapeutic strategies targeting specific cytokines. Their inhibition

has been investigated in preclinical models and targeted biologic

therapies have been developed and assessed in clinical trials.

While current treatments for lupus, such as hydroxychloroquine

and immunosuppressants, aim to reduce systemic inflammation,

biologic therapies that target cytokines have shown promise in

treating both systemic and oral manifestations (3). Table 1

summarizes the key cytokine-targeted biologics in SLE with their

mechanisms and clinical applications. Cytokine-targeted therapies,

particularly IL-1 blockers (e.g., anakinra), and TNF-a inhibitors,

represent a promising approach for reducing the severity of oral

lesions and improving the oral health of lupus patients (147). A

major challenge in SLE clinical trials has been the inclusion of

heterogeneous patient populations, which may obscure treatment

effects. To address this, it has been suggested that patients be

stratified based on clinical and genetic phenotypes or cytokine

profiles before trial enrollment (24, 148).

Guselkumab is a monoclonal antibody that binds with high

affinity to human IL-23, preventing its interaction with the cell

surface receptor. By blocking IL-23-mediated signaling, guselkumab

inhibits the activation and cytokine production associated with this

pathway. This is being explored in a phase 2 clinical trial

(NCT04376827) by evaluating the safety and efficacy of

guselkumab in combination with standard-of-care therapy,

compared to a placebo plus standard-of-care (149). Ustekinumab,

which targets the p40 subunit shared by IL-12 and IL-23, was

evaluated in a phase 2 trial as an add-on therapy to standard SLE

treatment. The study demonstrated positive effects on both clinical

and laboratory markers, particularly in improving cutaneous

and articular manifestations, while maintaining a favorable

safety profile. Responders showed a decline in IFN-g levels (150).

Furthermore, ustekinumab suppresses both the Th1 and

Th17 pathways (11). Emerging evidence supports the potential of
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IL-17A as a therapeutic target for SLE, particularly in patients

whose disease is primarily driven by IL-17 (99). This was tried

directly in the SELUNE study (NCT04181762), a randomized,

double-blind trial designed to assess the efficacy and safety of

secukinumab (Cosentyx), an anti-IL-17A monoclonal antibody, in

combination with standard-of-care therapy for patients with active

lupus nephritis (151). Another approach to indirectly target IL-17

involves inhibiting the synthesis of Th17 cells. Specifically, blocking

cytokine pathways such as IL-6, IL-1, or IL-23 can interfere with

Th17 cell development, thereby reducing IL-17 levels (99).

Tocilizumab, a monoclonal antibody that inhibits IL-6 signaling,

was first evaluated for its efficacy in SLE patients in 2010 (152, 153).

While it may be beneficial for certain patient subgroups with high

inflammatory activity, caution is necessary, as higher doses can lead to

immunosuppression (153). Targeting IL-6 with agents such as

tocilizumab may help alleviate chronic oral inflammation and

promote mucosal healing. Sirukumab is another human monoclonal

antibody designed to selectively and effectively target IL-6. By inhibiting

STAT-3 phosphorylation, it neutralizes IL-6 activity and mitigates its

biological effects (154). To date, no IL-6-targeting therapies have

received approval for SLE treatment. On the other hand, clinical

trials investigating an anti-IL-10 monoclonal antibody showed a

reduction in disease activity among SLE patients. However, the

development of anti-drug antibodies raises concerns, and further

studies are needed to assess long-term treatment feasibility (155).

The potential of anti-TNF-amonoclonal antibodies to suppress

immune mechanisms initially suggested they could be beneficial for

SLE treatment. While some studies yielded less promising results,

early expectations remained optimistic (59). Studies have

demonstrated the effectiveness of anti-TNF-a therapies in

treating connective tissue diseases (CTD) (156), particularly SLE

and cutaneous lupus erythematosus (CLE) (157). Among the most
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extensively studied TNF-a inhibitors are infliximab and etanercept

(59). Infliximab, due to its chimeric nature, has the highest

immunogenicity among anti-TNF-a agents. However, research

indicates that infliximab maintains a favorable safety and

tolerability profile in SLE patients. Notably, short-term induction

therapy with infliximab, in combination with azathioprine or

methotrexate, led to sustained improvement in lupus nephritis

(57, 158, 159). Moreover, drugs such as etanercept, which target

TNF-a, have been shown to reduce oral ulcers and improve overall

oral health in lupus patients (160).

Etanercept has also been evaluated in several clinical trials for lupus

nephritis treatment (NCT00447265) and discoid lupus erythematosus

(DLE) (NCT02656082 and NCT00797784). An observational study

found long-term etanercept therapy to be relatively safe and effective

for refractory lupus arthritis (57). A separate study investigating SLE

patients treated with adalimumab and etanercept revealed a significant

reduction in themedian prednisone dose, from 15mg/day to 5mg/day,

during the observation period (59, 161). These findings support the

notion that anti-TNF-a therapies may play a role in managing

refractory lupus arthritis (59).

Etanercept has also shown efficacy in treating rhupus, a

condition that exhibits features of both rheumatoid arthritis (RA)

and SLE (162). Additionally, a combination of etanercept,

plasmapheresis, and high-dose intravenous gamma globulin has

been successfully used to manage severe diffuse proliferative

nephritis in pregnant SLE patients (57, 163). Furthermore, a case

report highlighted that etanercept could alleviate clinical symptoms

and enhance overall quality of life in individuals with subacute

cutaneous lupus erythematosus (SCLE) (164).

TNF-a inhibitors have been linked to the development of ANA

and anti-dsDNA antibodies, potentially leading to clinical

manifestations resembling idiopathic lupus. When this occurs, the
frontiersin.or
TABLE 1 Cytokine-targeted biologics in lupus erythematosus: mechanisms and clinical applications.

Therapy/biologic
Target cytokine/

pathway
Mechanism of action

Clinical application
in lupus

Relevance to oral/
mucocutaneous

features

Belimumab BAFF (B-cell
activating factor)

Inhibits B-cell survival
and differentiation

Approved for systemic lupus;
effective in reducing flares

May reduce mucocutaneous
activity indirectly

Anifrolumab Type I
Interferon receptor

Blocks type I IFN signaling, a key
inflammatory driver

Approved for moderate-to-
severe SLE

Shown to improve
mucocutaneous manifestations

Tocilizumab IL-6 Blocks IL-6 receptor,
reducing inflammation

Investigational for SLE and
lupus nephritis

Potential benefit in refractory
oral ulcers

Ustekinumab IL-12/IL-23 Inhibits Th1 and Th17 pathways Investigational; used in SLE with
cutaneous and joint involvement

May improve oral and skin lesions

Rituximab CD20 (B cells) Depletes B cells, reducing
autoantibody production

Off-label for refractory SLE Indirect benefit to oral ulcers via
systemic disease control

Anakinra IL-1 IL-1 receptor antagonist Limited use in SLE; considered for
inflammatory syndromes

Possible role in severe
mucosal inflammation

TNF-a inhibitors TNF-a Neutralize TNF-a to
reduce inflammation

Rarely used due to lupus-like
reactions; may benefit arthritis

Not typically used due to
paradoxical lupus risk

IFN-g blocking agents Interferon-gamma Reduces Th1-driven
inflammation

Investigational stage Theoretical benefit in mucosal
lesions, under study
g
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condition is referred to as anti-TNF-a-induced lupus (ATIL) (59). This
condition, also known as anti-TNF-a-induced lupus erythematosus

(ATIL), is typically diagnosed based on a distinct temporal association

between symptom onset and the initiation or dosage escalation of anti-

TNF-a therapy (57, 157). Picardo et al. conducted a study to evaluate
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the incidence and clinical-serological features of ATIL in patients

undergoing anti-TNF-a treatment. Their findings indicated a higher

prevalence of ATIL among patients treated with infliximab compared

to those receiving adalimumab (165). Current TNF-a blockers

contribute to these side effects by blocking TNF-a interaction with
TABLE 2 Organ system manifestations and treatments in lupus erythematosus with immunological focus.

Organ
system

Common manifestations Standard treatments
Immune-modulating therapies

(cytokine-targeted)

Oral/
Mucocutaneous

Oral ulcers, lichenoid lesions,
erythema, cheilitis

Topical corticosteroids, antimalarials Anti-TNF agents,
IL-6 inhibitors (e.g., tocilizumab, in severe cases)

Skin Malar rash, discoid
lesions, photosensitivity

Sunscreens, corticosteroids, antimalarials Type I IFN blockers (e.g., anifrolumab),
Anti-IL-12/23 (ustekinumab)

Musculoskeletal Arthralgia, arthritis, myositis NSAIDs, corticosteroids, methotrexate IL-6 inhibitors, anti-TNF therapies

Renal Lupus nephritis (proteinuria, hematuria,
renal dysfunction)

Immunosuppressants (MMF,
cyclophosphamide), corticosteroids

Anti-IFN-a (anifrolumab), BAFF
inhibitors (belimumab)

Cardiovascular Pericarditis, myocarditis, increased
atherosclerosis risk

NSAIDs, corticosteroids, statins Anti-IFN agents, IL-1 inhibitors (e.g., anakinra, in
refractory cases)

Pulmonary Pleuritis, interstitial lung disease Corticosteroids, immunosuppressants Anti-IL-6, anti-IFN therapies (investigational)

Hematologic Anemia, leukopenia, thrombocytopenia Corticosteroids, IVIG, rituximab BAFF inhibitors, anti-TNF (in selected cases)

Neuropsychiatric Seizures, psychosis, cognitive dysfunction Immunosuppressants,
antiepileptics, corticosteroids

Anti-IFN agents, anti-cytokine biologics (case-based)

Gastrointestinal Abdominal pain, mesenteric vasculitis,
lupus hepatitis

Corticosteroids, immunosuppressants Limited cytokine-targeted therapies; under study
FIGURE 2

Cytokine-mediated immune mechanisms in SLE manifestations including oral and systemic compartments.
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both its regulatory receptor (TNFR2) and its pro-inflammatory/pro-

apoptotic receptor (TNFR1) (57).

Rontalizumab and anifrolumab, which block type I interferons,

have shown potential in reducing both systemic and oral

manifestations of lupus (2).

Clinical trials targeting IFN-g have begun to yield promising

results in SLE treatment. AMG 811, a fully human IgG1 monoclonal

antibody against IFN-g, has exhibited good tolerability in patients

with mild to moderate SLE. A single dose of AMG 811 has been

shown to normalize IFN-regulated gene expression and induce a

dose-dependent decrease in serum CXCL10 levels (166, 167). While

AMG 811 effectively modulated IFN-g-associated biomarkers and

maintained a favorable safety profile, it did not produce significant

clinical benefits for patients with DLE (168). However, encouraging

results from phase Ib trials suggest that inhibiting the IFN-g
pathway may hold therapeutic potential for extrarenal

manifestations of lupus (169). Given IFN-g’s critical role in LN,

further exploration of its inhibition in this context is warranted,

especially considering the tolerability of its targeted blockade. Two

completed studies registered as NCT00818948 and NCT02291588,

have evaluated the safety of AMG 811 in SLE treatment.

It is worth mentioning that many other targeted therapies have

been used or investigated in SLE treatment. These include targeting

CD20, BAFF and cytokine downstream signaling molecules that

play a role in the pathogenesis of SLE (149).
6 Conclusion

In summary, cytokines exert a profound influence on the

pathogenesis of SLE, affecting both systemic and oral

manifestations (Table 2, Figure 2). The imbalance between pro-

inflammatory and anti-inflammatory cytokines, particularly the

elevation of IFN-a, IL-6, IL-17, and TNF-a, contributes

significantly to the disease’s progression and severity. Further

research into the precise mechanisms of cytokine involvement is

crucial for developing targeted therapeutic strategies. Modulating

cytokine activity holds promise for improving the management of
Frontiers in Immunology 10
SLE, alleviating symptoms, and ultimately enhancing the quality of

life for individuals affected by this complex autoimmune disease.
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randomized, placebo-controlled study of belimumab, a monoclonal antibody that
inhibits B lymphocyte stimulator, in patients with systemic lupus erythematosus.
Arthritis Rheumatism. (2011) 63:3918–30. doi: 10.1002/art.30613

88. Shao M, He J, Zhang R, Zhang X, Yang Y, Li C, et al. Interleukin-2 deficiency
associated with renal impairment in systemic lupus erythematosus. J Interferon
Cytokine Res. (2019) 39:117–24. doi: 10.1089/jir.2018.0016

89. Shao M, Sun X-L, Sun H, He J, Zhang R-J, Zhang X, et al. Clinical relevance of
autoantibodies against interleukin-2 in patients with systemic lupus erythematosus.
Chin Med J. (2018) 131:1520–6. doi: 10.4103/0366-6999.235114

90. Long D, Chen Y,Wu H, ZhaoM, Lu Q. Clinical significance and immunobiology
of IL-21 in autoimmunity. J Autoimmun. (2019) 99:1–14. doi: 10.1016/
j.jaut.2019.01.013

91. Wang S, Wang J, Kumar V, Karnell JL, Naiman B, Gross PS, et al. IL-21 drives
expansion and plasma cell differentiation of autoreactive CD11chiT-bet+ B cells in SLE.
Nat Commun. (2018) 9:1758. doi: 10.1038/s41467-018-03750-7

92. Nakou M, Papadimitraki ED, Fanouriakis A, Bertsias GK, Choulaki C,
Goulidaki N, et al. Interleukin-21 is increased in active systemic lupus
erythematosus patients and contributes to the generation of plasma B cells. Clin
Exp Rheumatol. (2013) 31:172–9.

93. Pan HF, Wu GC, Fan YG, Leng RX, Peng H, Zhou M, et al. Decreased serum
level of IL-21 in new-onset systemic lupus erythematosus patients. Rheumatol Int.
(2013) 33:2337–42. doi: 10.1007/s00296-013-2724-1

94. Sharif MN, Tassiulas I, Hu Y, Mecklenbräuker I, Tarakhovsky A, Ivashkiv LB.
IFN-alpha priming results in a gain of proinflammatory function by IL-10: implications
for systemic lupus erythematosus pathogenesis. J Immunol. (2004) 172:6476–81.
doi: 10.4049/jimmunol.172.10.6476

95. Peng H, Wang W, Zhou M, Li R, Pan H-F, Ye D-Q. Role of interleukin-10 and
interleukin-10 receptor in systemic lupus erythematosus. Clin Rheumatol. (2013)
32:1255–66. doi: 10.1007/s10067-013-2294-3

96. Rönnblom L, Elkon KB. Cytokines as therapeutic targets in SLE. Nat Rev
Rheumatol. (2010) 6:339–47. doi: 10.1038/nrrheum.2010.64

97. Yin R, Xu R, Ding L, Sui W, Niu M, Wang M, et al. Circulating IL-17 level is
positively associated with disease activity in patients with systemic lupus
erythematosus: A systematic review and meta-analysis. BioMed Res Int. (2021)
2021:9952463. doi: 10.1155/2021/9952463

98. Qian W, La Cava A. IL-17 in systemic lupus erythematosus. Clin Invest. (2012)
2:417–21. doi: 10.4155/cli.12.21

99. Robert M, Miossec P. Interleukin-17 and lupus: enough to be a target? For which
patients? Lupus. (2020) 29:6–14. doi: 10.1177/0961203319891243

100. Tabarkiewicz J, Pogoda K, Karczmarczyk A, Pozarowski P, Giannopoulos K.
The role of IL-17 and th17 lymphocytes in autoimmune diseases. Arch Immunol Ther
Exp (Warsz). (2015) 63:435–49. doi: 10.1007/s00005-015-0344-z

101. Wong CK, Lit LC, Tam LS, Li EK, Wong PT, Lam CW. Hyperproduction of IL-
23 and IL-17 in patients with systemic lupus erythematosus: implications for Th17-
mediated inflammation in auto-immunity. Clin Immunol. (2008) 127:385–93.
doi: 10.1016/j.clim.2008.01.019

102. Lopez P, Rodriguez-Carrio J, Caminal-Montero L, Mozo L, Suarez A. A
pathogenic IFNalpha, BLyS and IL-17 axis in Systemic Lupus Erythematosus
patients. Sci Rep. (2016) 6:20651. doi: 10.1038/srep20651

103. Henriques A, Ines L, Couto M, Pedreiro S, Santos C, Magalhaes M, et al.
Frequency and functional activity of Th17, Tc17 and other T-cell subsets in Systemic
Lupus Erythematosus. Cell Immunol . (2010) 264:97–103. doi: 10.1016/
j.cellimm.2010.05.004
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