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Background: Lung adenocarcinoma (LUAD) is a common and aggressive

subtype of lung cancer associated with poor clinical outcomes. The role of

mitochondrial dynamics (MD)-related genes in tumor progression and immune

regulation remains poorly understood.

Methods: Data from public databases were integrated, and subtypes were

classified based on 23 MD-related genes. A five-gene prognostic model was

constructed. Associations between the model and immune infiltration, tumor

mutational burden (TMB), tumor stemness, and drug sensitivity were analyzed.

The function of the key gene MTCH2 was validated through in vitro experiments.

Results: Two distinct MD molecular subtypes were identified, exhibiting

significant differences in prognosis and immune characteristics. A

corresponding risk score model was established. Patients in the low-risk group

showed better prognosis and enhanced immune activity, whereas the high-risk

group displayed higher TMB and stemness scores. Drug sensitivity analysis

revealed distinct responses to chemotherapeutic agents such as cisplatin and

docetaxel between risk groups. Functional assays demonstrated that MTCH2

knockout significantly inhibited LUAD cell proliferation, migration, and invasion,

and induced G0/G1 phase arrest, suggesting that MTCH2 may act as a potential

adverse prognostic marker.
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Conclusion:MD-related genes exhibit strong prognostic and immune subtyping

value. The proposed risk model holds clinical potential, and MTCH2 may serve as

a promising target for precision therapy in LUAD.
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Introduction

Lung adenocarcinoma (LUAD), recognized as the most

common subtype of non-small cell lung cancer (NSCLC),

significantly contributes to the global health crisis, accounting for

nearly 40% of all lung cancer incidences (1–4). Despite notable

progress in both diagnostic and therapeutic approaches, the overall

prognosis for LUAD continues to be unfavorable, as evidenced by a

5-year survival rate that falls below 20% (5, 6). Current treatment

options are frequently constrained by issues such as drug resistance

and adverse side effects. Therefore, it is crucial to discover novel

biomarkers and therapeutic targets that may enhance the clinical

outcomes for patients with LUAD.

Mitochondria are incredibly versatile and adaptable organelles

that are essential for cellular metabolism, the response to stress, and

the regulation of homeostasis (7). Mitochondrial dynamics (MD)

are primarily governed by fusion and fission (8), both of which are

essential for maintaining mitochondrial homeostasis (9–11). Fusion

mitigates cellular stress and facilitates functional complementation

by merging partially damaged mitochondrial contents, whereas

fission supports quality control by generating new mitochondria

and isolating damaged ones from healthy counterparts (12, 13). In

mammalian cells, the fusion process of the outer mitochondrial

membrane is orchestrated by mitofusin-1 (MFN1) and mitofusin-2

(MFN2). In contrast, the fusion of the inner mitochondrial

membrane is facilitated by the optic atrophy 1 (Opa1) protein

(14). Mfn1 is predominantly expressed in the pancreas, heart,

adrenal glands, liver, and testis, whereas Mfn2 is mainly

expressed in the brain, skeletal muscle, heart, and brown adipose

tissue (15, 16). OPA1 also exhibits high expression levels in the

brain, retina, liver, heart, testis, and skeletal muscle (17, 18).

Notably, the biology of OPA1 is complex, with eight isoforms

generated in humans through alternative splicing, each exhibiting

distinct functional activities (19). The primary proteins that are

essential for the mitochondrial fission process include

mitochondrial fission 1 protein (Fis1) and dynamin-related

protein 1 (Drp1) (20, 21). Drp1, which possesses GTPase activity,

is primarily localized in the cytoplasm and is widely distributed

across various tissues (22). The equilibrium between mitochondrial

fusion and fission plays a vital role in the bioenergetic functions of

these organelles. This equilibrium can be disrupted by intracellular

stressors or external factors, leading to excessive mitochondrial
02
fission, which is characterized by a marked increase in Drp1

levels (23).

Abnormal expression of mitochondrial dynamin proteins has

been observed in various human cancers, including lung cancer,

bladder cancer, breast cancer, pancreatic cancer, colorectal cancer,

ovarian cancer, and melanoma (24–31). In studies on lung cancer

cells, mitochondrial fragmentation was strongly correlated with

tumor phenotype and was correlated with elevated levels of Drp1

and its hyperactive phosphorylated form, Drp1P616 (24). Notably,

the silencing of Drp1 leads to a decrease in cell proliferation and

triggers apoptosis in lung cancer cells. Conversely, heightened

activity of Drp1 facilitates the transformation of cells driven

by oncogenic Ras (27, 32). Ras activation is further promoted by

the upregulation of mitogen-activated protein kinase (MAPK),

which phosphorylates Drp1 at serine 616. A multitude of

investigations have shown that the modulation of mitochondrial

fusion and fission plays a significant role in influencing tumor

metabolism, cellular proliferation, metastasis, migration, and the

preservation of tumor stem cell populations (33–37). Additionally,

MD has been recognized as a significant contributor to the

emergence of drug resistance in cancerous cells (38–41).

Furthermore, MD profoundly influences immune surveillance

within the tumor microenvironment (TME) (42–46). Therefore,

further investigation into the role of MD in tumors is of

significant importance.

In this study, the RNA expression profiles of MD-related genes

in LUAD were systematically analyzed to investigate their roles in

disease progression. Based on integrated data from public databases,

distinct molecular subtypes were identified, and a prognostic model

comprising five MD-related genes was developed. This model

effectively stratified patients into high- and low-risk groups and

demonstrated strong associations with tumor mutational burden

(TMB), tumor stemness, and levels of immune cell infiltration-

factors closely linked to tumor aggressiveness and therapeutic

resistance. High-risk patients were found to exhibit elevated TMB

and stemness scores, suggesting enhanced immune evasion and

greater treatment challenges. Moreover, significant differences in

drug response were observed between risk groups, indicating

potential clinical relevance. The function of the key MD gene

MTCH2 was further validated through in vitro experiments.

MTCH2 knockdown markedly suppressed LUAD cel l

proliferation, migration, and invasion, and induced G0/G1 phase
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cell cycle arrest, indicating its potential role as a tumor-promoting

gene and unfavorable prognostic factor. In summary, this study

systematically elucidates the relevance of MD-related genes to

LUAD prognosis, immune evasion, and drug resistance. It also

highlights MTCH2 as a promising target for precision therapy,

providing a theoretical foundation and practical direction for future

research on LUAD molecular mechanisms and personalized

treatment strategies.
Materials and methods

Data acquisition

The RNA expression profiles, somatic mutation data, and

clinical characteristics of LUAD were sourced from the The

Cancer Genome Atlas (TCGA) database. Additionally, an

adequate number of samples, accompanied by comprehensive

clinical information, were obtained from the GSE13213 dataset

within the Gene Expression Omnibus (GEO) database. Data from

541 patients diagnosed with LUAD and 59 healthy controls sourced

from the TCGA database were combined with information from

117 LUAD patients in the GSE13213 dataset to construct a detailed

expression matrix. The integration and processing of these datasets

were methodically executed with the aid of Strawberry Perl (version

5.30.0.1). To enhance the robustness and reliability of the analytical

results, potential outliers in the TCGA and GEO datasets were

systematically identified and processed during the data

preprocessing stage. RNA expression data were first standardized

and visualized using principal component analysis (PCA) to detect

samples exhibiting expression patterns that deviated significantly

from the main distribution. Additionally, the ComBat algorithm

was applied to eliminate batch effects, thereby ensuring consistency

of the expression matrix across multiple data sources. Informed by

previous studies (47), 23 genes associated with MD were selected for

analysis (Supplementary Table S1). The study’s methodological

flowchart is presented in Supplementary Figure S1.

In addition, the researchers obtained tissue samples of LUAD

and adjacent non-cancerous tissues from 30 lung cancer patients

undergoing surgical treatment at Fujian Cancer Hospital. The

sample collection process for all participants followed the relevant

regulations of the hospital’s Ethics Committee and was approved by

the hospital’s Ethics Committee (approval number: K2023-417-01).

Prior to sample collection, all patients signed an informed consent

form to ensure that they were fully aware of the purpose, process,

and possible risks of the study.
Consensus clustering analysis

The RNA sequences of MD genes in LUAD patients were

analyzed using consensus clustering. The consensus clustering

algorithm in the R package “ConsensusClusterPlus” (48) was

employed to classify patients into distinct molecular subgroups.

The ideal quantity of subclusters was determined through an
Frontiers in Immunology 03
evaluation of the consensus of the clusters, the cumulative

distribution function (CDF) of the consensus, and the delta area.

PCA was utilized to assess the classification of the subgroups,

providing insight into the variability between them. Based on the

consensus of MD genes, patients with LUAD in the TCGA cohort

were categorized into two distinct clusters. Survival differences

between the subgroups were evaluated using Kaplan-Meier analysis.
Enrichment analysis

The clinical and pathological characteristics distinguishing the

two subgroups of MD were analyzed and illustrated through the

utilization of R packages, specifically “limma”, “pheatmap”, and

“ggpubr”. A comprehensive analysis led to the identification of 217

differentially expressed genes (DEGs) linked to the MD subtypes,

determined by an absolute log-fold change threshold (|log2FC| > 2)

and a significance level with a P-value below 0.001, as detailed in

Supplementary Table S2. Gene Ontology (GO) enrichment analysis

(49) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

pathway analysis (50) were conducted on the DEGs from these

two MD subgroups using the ‘clusterProfiler’ R package (51). Gene

set variation analysis (GSVA) facilitates the comparative analysis of

signaling pathways. Concurrently, to examine the functions and

pathways associated with MTCH2 in LUAD, gene set enrichment

analysis (GSEA) was utilized (52).
Creation and assessment of the prognostic
model

DEGs linked to OS were initially determined through univariate

Cox regression analysis, applying a significance criterion of P < 0.05.

Subsequently, Lasso Cox regression analysis was conducted utilizing

the R package “glmnet” (53), which reduced the number of genes to

12. A subsequent multivariate Cox regression analysis was

conducted, and five genes were selected for the construction of

the prognostic model. To validate the model’s reliability, all LUAD

patients were arbitrarily assigned to either the training or testing

group, with each group containing 312 individuals. Based on the

median risk score, patients were categorized into low-risk and high-

risk groups. The prognostic efficacy of the model was evaluated in

these groups through receiver operating characteristic (ROC)

analysis and Kaplan-Meier survival analysis. To further enhance

the clinical applicability of the model, clinical variables, including

age, gender, N-stage, T-stage, and risk scores, were incorporated

into a comprehensive nomogram, and the model’s predictive

accuracy was assessed using calibration curves.
Assessment of TME

To assess the distribution of stromal and immune cells within

the TME and their potential influence on patient prognosis, the

stromal and immune scores of each individual were determined
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utilizing the ESTIMATE algorithm. Meanwhile, the CIBERSORT

method was used to quantify the infiltration of immune cells in

samples from the low-risk and high-risk groups, thus revealing

differences in the immune microenvironment across risk groups. In

addition, the study further compared the ratios between five

prognostic genes and 19 immune cell types to explore the

correlation between these genes and immune cell infiltration and

to assess their potential impact on patient prognosis.
Analysis of TMB, tumor stemness score,
somatic mutation profile, and drug
sensitivity

Using the R package “maftools” (54), a mutation annotation

format was generated to compare the somatic mutation profiles of

LUAD patients. This analysis provided insights into the mutational

landscape of LUAD and identified key genes potentially associated

with prognosis. Additionally, the correlation between tumor

stemness score, TMB, and risk score was examined to explore the

potential impact of these factors on patient prognosis. To further

evaluate drug sensitivity in LUAD patients, the pRRophetic

software package, based on gene expression data, was employed

to predict the half-maximal inhibitory concentration (IC50) of

relevant drugs. This approach allowed for the quantification of

drug potency and the comparison of drug sensitivity between high-

and low-risk groups.
Cell culture and transfection

BEAS-2, PC9, H1299, and A549 cell lines were obtained from

ProCell (Wuhan, China) and are commonly used in oncology and

immunology research. The cells were cultured under standard

conditions (37°C, 5% CO2, and humidified atmosphere) in

RPMI-1640 medium supplemented with 10% fetal bovine serum

(FBS). To investigate the role of MTCH2, human MTCH2-targeted

small interfering RNAs (siRNAs), designed by Hanbio Co. Ltd

(Shanghai, China), were employed to knock down MTCH2

expression and examine its function in LUAD cells. Transient

transfections were performed using Lipofectamine 3000

(Invitrogen, Carlsbad, CA, USA), following the manufacturer’s

instructions. Cells were harvested 48–72 hours post-transfection.

The siRNA sequences used were as follows: MTCH2si#1: 5’-

GGACUUGUGAUUCCAUCAUA-3’; MTCH2si#2: 5’-GGAUUU

UUUGGCGAUUGAUUG-3’; MTCH2si#3: 5’-CCUUAUCCCCAA

UAUAAUACG-3’; and sicontrol: 5’-UUCUCCGAACGUG

UCACGUTT-3’.
Real-time quantitative reverse transcription
polymerase chain reaction (qRT-PCR)

Total RNA was extracted utilizing the TRIzol reagent

(Invitrogen, USA), followed by the synthesis of complementary
Frontiers in Immunology 04
DNA employing the PrimeScript RT kit (Takara). The qRT-PCR

was performed utilizing the SYBR Green assay from Takara. The

analysis of qRT-PCR data was performed utilizing the 2-DDCt
approach, where b-actin served as the internal control reference.

The specific primers utilized in this study were as follows: MTCH2-

F: 5’-TGGTACAGTTCATTGGCAGAG-3’; MTCH2-R: 5’-GCATA

GGTATTGACGAGGTAGG-3’; b-actin-F: 5’-GAGAAAATC

TGGCACCACACC-3’; and b-actin-R: 5’-GGATAGCACAGCCT
GGATAGCAA-3’.
Western blot

Intracellular proteins were isolated utilizing RIPA lysis buffer,

which was enhanced with phosphatase inhibitor (P1081, Beyotime,

China) and 1% protease inhibitor (P1005, Beyotime, China) to

prevent phosphorylation and protein degradation. The

concentration of protein in the extract was assessed utilizing the

bicinchoninic acid (BCA) assay (Beyotime Biotechnology), based

on the absorbance measurement. Subsequently, the complete cell

lysate underwent separation of proteins based on molecular weight

using 4%–20% gradient sodium dodecyl sulfate-polyacrylamide gel

electrophoresis (SDS-PAGE). Following electrophoresis, the

proteins were moved from the gel to a polyvinylidene fluoride

(PVDF) membrane for immunodetection. In order to prevent the

non-specific binding of antibodies, the membrane was subjected to

incubation at room temperature for a duration of one hour in a

solution of 5% skim milk diluted in TBST buffer. Finally, the

membrane was subjected to an overnight incubation at 4°C with

the primary antibody diluted as per the manufacturer’s guidelines to

guarantee specific interaction with the target protein. Following this

incubation, the membranes were incubated with secondary

antibodies conjugated to horseradish peroxidase (HRP) for one

hour. Visualization of protein bands was achieved using a

chemiluminescent HRP substrate in conjunction with an imaging

system (Chemidoc, Bio-Rad). The primary antibodies employed in

the study, at specified dilutions, included MTCH2 (Cat No: 16888-

1-AP, 1:1000; Proteintech, Wuhan, China) and a-tubulin (Cat No:

11224-1-AP, 1:1000; Proteintech, Wuhan, China).
Cell proliferation and colony formation
assays

In order to evaluate cellular proliferation, a total of 1 × 10^4

cells were introduced into each well of a 24-well plate and

subsequently cultured in RPMI 1640 medium that was enriched

with 10% fetal bovine serum (FBS). The cells were maintained in a

humidified incubator set at 37°C with an atmosphere containing 5%

CO2. Samples of the cells were obtained at 24, 48, and 72 hours

following inoculation, and their optical density (OD) values were

assessed using a cell counting kit (CCK)-8. Changes in absorbance

were used as an indicator of cell proliferation. To further evaluate

the proliferative capacity, a total of 500 cells were seeded into each

well of 6-well plates and incubated for 10 days. During this period,
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the medium was replaced periodically, and the cell growth was

monitored. Upon completion of the culture duration, the cells were

subjected to fixation using formaldehyde to maintain their

morphological characteristics and subsequently stained with a

crystal violet solution (Sigma-Aldrich). Cell counting was then

performed using an inverted microscope, and images were

captured to document cel l growth. To guarantee the

dependability, consistency, and strength of the findings, each

experiment was conducted on three separate occasions.
Wound-healing assay

Cells were plated in 6-well plates at a density of 1 × 10^5 cells

for each well. Subsequently, the cell monolayer was delicately

scraped using the end of a 10 mL pipette tip to create a wound

and simulate a traumatized environment, enabling the observation

of cell migration. The scraping procedure was carried out with

precision to ensure uniformity and consistency in wound width,

which is critical for reproducibility and comparability of the results.

Subsequent to the scraping process, any remaining cellular debris

was eliminated through washing the wells with PBS to reduce its

possible impact on cell migration. Microscopic observations were

conducted at two time points: 0 hours and 24 hours. Images were

captured at both time points, and three replicate wells were included

in each experiment to ensure statistical reliability and data stability.
Transwell assays

To perform the cell migration assay, a total of 2 × 10^4 suspension

cells were initially introduced into the upper chamber of the transwell

apparatus (BD Biosciences, USA), utilizing 200 mL of medium devoid

of serum. For the invasion assay, 50 mL of Matrigel diluted 1:8 was

uniformly applied to the lower chamber and incubated at 37°C for 4

hours to allow the Matrigel to solidify, mimicking the extracellular

matrix environment. Subsequently, a total of 5 × 10^4 cells were

resuspended in 200 mL of serum-free medium and subsequently

introduced into the upper chamber that contained the solidified

Matrigel. To provide adequate nutritional support, a volume of 600

mL of medium, enriched with 10% fetal bovine serum (FBS), was

introduced into the lower chamber to facilitate cell proliferation and

migration. After 24 hours of incubation, cells in the lower chamber

were fixed with formaldehyde and subsequently stained with crystal

violet. The migratory capacity of the cells was assessed by inverted

microscopy, with five randomly selected fields photographed and

analyzed for cell count. Three replicate wells were used for each

experimental condition to ensure the reliability and statistical

significance of the results.
Cell cycle assay

After trypsin digestion and dissociation, the transfected cells (1

× 10^6 cells per well) were fixed in a solution with a concentration
Frontiers in Immunology 05
of 75% ethanol and kept at a temperature of 4°C for an overnight

incubation period. The fixed cells were then centrifuged at 1000

rpm for 5 minutes to remove the ethanol and wash the cells. The

cells were subsequently treated with 5% propidium iodide solution,

which binds to DNA in the nucleus, allowing for the identification

of different cell cycle phases. Following staining, the cells were

resuspended and prepared for analysis via flow cytometry. Cell cycle

distribution was analyzed utilizing a CytoFLEX flow cytometer

(USA), which captures both scatter and fluorescence signals to

accurately differentiate between the G0/G1, S, and G2/M phases.

Three replicate wells were included for each condition to ensure the

reliability and statistical significance of the results.
Statistical analysis

Statistical analyses were conducted using R software (version

4.3.3) and GraphPad Prism 9. Between-group comparisons were

performed using two-tailed unpaired Student’s t-tests. Survival

analyses were carried out using the Kaplan-Meier method, with

statistical significance assessed by the log-rank test. Prognostic

factors were evaluated through univariate and multivariate Cox

proportional hazards regression analyses. For differential expression

and enrichment analyses, P values were adjusted for multiple

comparisons using the Benjamini-Hochberg method to control

the false discovery rate. A P value < 0.05 was considered

statistically significant.
Results

Transcriptional and genetic changes

Figure 1A illustrates the mutation frequency of 23 mitochondrial

dynamic genes in somatic cells, revealing mutations in 75 out of 616

LUAD samples (12.18%). Among these, MIGA1 exhibited the highest

mutation frequency at 2%. The locations of copy number variations

(CNVs) within the mitochondrial dynamic genes were also identified

(Figure 1B). The CNV frequency analysis indicated that DNM1L had

the highest CNV frequency, nearly 9%, primarily manifested as an

increase in copy number (Figure 1C). The chord plot depicted the

interactions between mitochondrial dynamic genes, where the red

chords represent positive correlations, and the blue chords indicate

negative correlations (Figure 1D). The analysis revealed that a

majority of genes linked to MD exhibited markedly elevated

expression levels in tumor tissues in contrast to normal tissues.

Specifically, genes such as ARMC10, DNM1L, MFF, MTFP1,

MTFR1, MTFR2, OMA1, MFN1, MIGA2, MTCH2, OPA1, and

PLD6 exhibited elevated expression levels in tumor tissues.

Conversely, the expression levels of genes including FIS1, MIEF2,

MUL1, SLC25A46, SPIRE1, STX17, ARL2, and MFN2 were

markedly lower in tumor tissues than in normal tissues

(Figure 1E). Kaplan-Meier survival curve analysis further

demonstrated that elevated expression levels of OPA1, MUL1,

MTFR2, MTFR1, MTPP1, MTCH2, MIGA1, MEF1, MFF,
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DNM1L, ARMC10, ARL2, and STX17 were significantly correlated

with reduced patient survival rates, suggesting an association with

poor prognosis (Supplementary Figure S2). In contrast, elevated

expression of the MIGA2 gene was linked to improved survival

outcomes, indicating a potential correlation with favorable prognosis
Frontiers in Immunology 06
in tumor patients (Supplementary Figure S2). These findings

highlight the potential significance of MD-related gene expression

patterns in the advancement of tumors and the prognosis of patients,

underscoring their relevance as potential biomarkers or therapeutic

targets in cancer research.
FIGURE 1

Different mutations, CNV, and expression of MD genes. (A) The frequency of somatic mutations in genes related to MD; (B) The location of CNVs of
MD genes; (C) The CNV frequency of MD genes; (D) An analysis of the correlation among the MD genes; (E) Result of MD genes expression in both
normal and LUAD tissues. p** < 0.01; ***p < 0.001.
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Confirmation of MD subtypes

The interrelationships between mitochondrial kinetic genes and

their significance levels in LUAD samples are illustrated in

Figure 2A. The node sizes correspond to the p-value significance
Frontiers in Immunology 07
from the Cox test, with red circles representing MD genes. Genes

marked with purple fans are identified as risk factors, potentially

associated with poor prognosis, whereas those marked with green

fans are considered favorable factors, likely offering protective

effects. This analysis highlights the distinct biological roles of MD
FIGURE 2

Confirmation of MD subtypes. (A) Network diagram of MD genes and their interactions; (B) Consensus CDF plot for different numbers of clusters;
(C) Delta area representation illustrating the results of consensus clustering; (D) Consensus Matrix for k=2 clusters; (E) PCA of MD clusters; (F)
Kaplan-Meier survival analysis for LUAD patients by MD clusters.
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genes in LUAD patients and their potential association with clinical

prognosis. A consensus clustering algorithm was applied to

categorize LUAD patients according to the expression profiles of

23 MD genes (Supplementary Figure S3). This analysis successfully

categorized the patients into two distinct subtypes: subtype A (n =

328) and subtype B (n = 305). Through multiple iterations, k = 2

was identified as the optimal choice, indicating that LUAD patients

can be stratified into two distinct groups according to their MD

gene expression patterns (Figures 2B–D). PCA further confirmed a

clear separation between subtype A and subtype B, demonstrating

significant differences in gene expression profiles (Figure 2E). The

survival analysis indicated that individuals classified under subtype

B demonstrated a markedly extended overall survival (OS) when

contrasted with those in subtype A, with this disparity reaching

statistical significance (p < 0.001) (Figure 2F). These findings

indicate that the expression pattern of MD genes is closely

associated with the prognosis of LUAD patients, with subtype B

likely representing a more favorable prognosis.
Characteristics of different MD subtypes

Figure 3A illustrates the relationship between subtypes A and B

alongside the clinical characteristics of LUAD, based on data sourced
Frontiers in Immunology 08
from the TCGA and GSE13213 databases. GSVA analysis

demonstrated a substantial enrichment of subtype B in multiple

immune-related pathways, including pathogenic escherichia coli

infection and the P53 signaling pathway (Figure 3B), indicating

that subtype B may play a key role in immune responses and

participate in a variety of immune-related biological processes.

Figure 3C presents the GSVA analysis results of molecular

functions for both subtypes, further supporting the active

involvement of subtype B in immune responses. Among the 23

immune cell subpopulations analyzed, 16 exhibited significant

differences in infiltration between subtypes A and B. Notably, the

majority of immune cells were predominantly enriched in subtype B.

These consisted of activated B cells, activated dendritic cells,

eosinophils, immature B cells, MDSCs, mast cells, macrophages,

natural killer cells, monocytes, plasmacytoid dendritic cells,

follicular helper T cells, T helper type 1 cells, T helper type 17 cells,

and T helper type 2 cells. These findings indicate that the immune

microenvironment of subtype B is more active, with a higher

presence of various immune cell populations that may significantly

influence the immune response and tumor progression. In contrast,

subtype A exhibited a distinct immune cell infiltration pattern,

particularly in the enrichment of gamma delta T cells, activated

CD4 T cells, and type 2 T helper cells. These differences suggest that

the immune response in subtype A is notably different from that in
FIGURE 3

Enrichment analysis of MD subtypes and immune cell infiltration analysis. (A) Heatmap of mitochondrial dynamic gene expression in LUAD patients;
(B) GSVA was conducted to assess the biological pathways across two distinct subtypes; (C) GSVA was utilized to evaluate the molecular functions
between these two distinct subtypes; (D) An analysis was conducted to compare the infiltration of immune cells among the MD clusters. p* < 0.05;
***p < 0.001.
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subtype B (Figure 3D). These immune features may represent

promising targets for immunotherapeutic strategies in LUAD and

provide valuable insights for predicting immune responses and

prognosis across subtypes.
Gene subtypes identification

Through differential expression analysis using the R package

“limma,” 217 DEGs associated with MD subtypes were identified,

with significant expression differences observed across these subtypes

(Supplementary Table S2). In order to explore the biological

functions of these genes more thoroughly, GO analysis was

performed. In terms of biological processes, DEGs exhibited

significant enrichment in processes associated with cytokinesis and

mitosis, such as chromosome segregation, organelle division, and

nuclear division. Regarding cellular components, the DEGs were

predominantly enriched in the spindle and chromosome regions. At

the molecular function level, the DEGs were closely associated with

microtubule binding, tubulin binding, and ATP hydrolytic activity

(Figure 4A). These results indicate that theMD-associated DEGsmay

play a significant role in regulating cell division and the mitotic cycle.

Further analysis using the KEGG pathways identified nine

significantly enriched pathways, including those related to cell

proliferation and division, such as the cell cycle and oocyte meiosis

(Figure 4B). These pathways further support the hypothesis that MD

subtypes are closely linked to cellular proliferation and division

processes. Additionally, based on the gene expression data from

MD subtypes, consensus clustering analysis was utilized to categorize

patients into distinct gene subgroups. The results demonstrated that

the patients were effectively grouped into two subgroups, with

optimal clustering achieved (Supplementary Figure S4). Kaplan-

Meier survival analysis indicated that patients in genome B

exhibited significantly higher survival rates than those in genome

A, exhibiting a statistically significant difference (p < 0.001)

(Figure 4C). This survival disparity suggests that the gene

expression pattern of MD subtypes is essential for forecasting the

clinical outcomes of patients with LUAD. Finally, heatmap analysis

was performed to explore the association between gene clusters and

clinical features (Figure 4D). A comparative analysis of MD gene

expression between the two gene clusters revealed that most MD

genes exhibited significantly different expression levels across the

clusters (Figure 4E). These findings provide important insights for

future functional studies and the clinical application of MD genes

in LUAD.
Development and validation of the
prognostic model

MD subtype-associated DEGs were utilized to establish risk

scores. Through LASSO regression analysis, the number of genes

was reduced to 12 (Figures 5A, B; Supplementary Table S3), and

subsequent multivariate Cox regression analysis identified 5 key
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genes: ECT2, CHIA, CRTAC1, FAM83A, and PRAME. The

calculation of the risk score was performed utilizing the

subsequent formula:

Risk score  =  (0:257871 * ECT2)  +  ( − 0:171908077 * CHIA)  +  

( − 0:090361886 * CRTAC1) 

+  (0:172045837 * FAM83A) 

+  (0:082740792 * PRAME)

A Sankey diagram illustrates the relationships among

MDcluster, geneCluster, risk stratification, and patient survival

status, with streamlines representing the flow of patients between

categories (Figure 5C). The results demonstrated strong

consistency between MDcluster and geneCluster, indicating that

individuals classified within the low-risk category experienced a

greater probability of survival, whereas those identified in the

high-risk group exhibited increased mortality (Figure 5C).

Additionally, Figures 5D, E show that patients in group A

exhibited markedly elevated risk scores within both geneCluster

and MDcluster.

Patients were allocated randomly into two groups: the training

group and the testing group, with each comprising 312 participants.

In the training group, the gene expression heatmap indicated that

high-risk patients classified as high-risk displayed significantly

increased expression of the ECT2, FAM83A, and PRAME genes,

while the CHIA and CRTAC1 genes showed lower expression levels

(Figure 6A). As the risk score increased from left to right, the

proportion of patients who died also increased, indicating that

elevated risk scores correlated with reduced survival durations. This

trend further validated the risk score as an effective prognostic

indicator (Figure 6A). Similar results were observed and confirmed

in the test group (Figure 6B). Survival analysis in the training group

demonstrated that the risk score served as a substantial predictor of

patient outcomes, with low-risk patients showing a substantially

higher survival rate than high-risk patients (p < 0.001) (Figure 6C).

This finding was similarly confirmed in the testing group (p =

0.005) (Figure 6D), indicating that the risk score is effective in

predicting survival across different patient cohorts and holds strong

clinical relevance. Additionally, the area under the curve (AUC) at

1, 3, and 5 years for the training and test groups were 0.767, 0.721,

and 0.744 for the training group (Figure 6E), and 0.690, 0.644, and

0.615 for the test group (Figure 6F), respectively. Despite the

relatively lower AUC values in the test group, it still

demonstrated reliable prognostic predictive capability, further

supporting the accuracy and robustness of the risk score at

various time intervals. Figure 6G depicts the differential

expression of MD genes among different risk score categories. A

notable elevation in the expression levels of the majority of MD

genes was observed in the high-risk cohort compared to the low-

risk cohort. This observation implies that these genes may be crucial

in the risk assessment and prognostic evaluation of patients with

LUAD. These results offer significant support for the clinical

implementation of a risk scoring system based on MD gene

expression to enhance prognostic accuracy for LUAD patients.
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Construction of a nomogram

The nomogram incorporated multiple variables, including age,

gender, N-stage, T-stage, and risk score, into a comprehensive

model for predicting individual patients’ survival probabilities at
Frontiers in Immunology 10
1, 3, and 5 years (Figure 7A). The calibration curves further

validated the model’s predictive accuracy, illustrating a robust

correlation between the survival probabilities estimated by the

nomogram and the outcomes that were actually observed

(Figure 7B). The green, blue, and red curves represent the
FIGURE 4

Classification of gene subtypes derived from DEGs. (A) Go enrichment analysis of DEGs associated with the subtypes of MD; (B) KEGG enrichment analysis
of DEGs associated with MD subtypes; (C) Kaplan-Meier survival analysis of patients stratified by gene clusters A and B.; (D) Heatmap of two gene subtypes
and associated clinical features; (E) Comparison of MD gene expression levels between gene clusters A and B. *p < 0.05; **p < 0.01; ***p < 0.001.
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survival predictions at 1, 3, and 5 years, respectively, emphasizing

the efficacy of the model across various temporal milestones. The

near-diagonal alignment of the calibration curves indicates that the

nomogram accurately reflects patients’ actual survival and

demonstrates excellent predictive power and clinical applicability.

These findings suggest that the nomogram provides reliable,

individualized survival predictions, offering significant potential

for improving patient prognosis and clinical decision-making.
Evaluation of TME

Scatter plots revealed a noteworthy positive association between

the risk score and various immune cell populations, particularly with

the infiltration of T cells CD4memory activated, neutrophils, mast cells

activated, macrophages M0, dendritic cells activated, macrophages M1,

and T cells CD8. Conversely, the risk score exhibited an inverse

relationship with the infiltration levels of NK cells activated, T cells

CD4 memory resting, monocytes, mast cells resting, and dendritic cells

resting (Figure 8A). Furthermore, an analysis of TME scores across

various risk categories showed that stromal and immune scores were
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generally higher in low-risk patients, while these scores were

significantly lower in high-risk patients (Figure 8B). In order to gain

deeper insights into the association between gene expression and the

presence of immune cells, heatmaps were generated to illustrate the

correlation between genes associated with risk scores (ECT2, CHIA,

CRTAC1, FAM83A, and PRAME) and various immune cell types

(Figure 8C). The heatmap revealed significant correlations between

these five genes and most immune cell populations, suggesting that

these genes might significantly influence the formation of the tumor

immune microenvironment.
Analysis of TMB, tumor stemness score,
somatic mutation features and drug
sensitivity

Box plots demonstrated a noteworthy distinction in TMB

between the low-risk and high-risk cohorts, with the high-risk

group exhibiting a substantially higher TMB (p < 4.3e-14)

(Figure 9A). Additionally, the scatter plot demonstrated a

positive correlation between risk score and TMB (r = 0.41, p <
FIGURE 5

The LASSO regression and the creation of risk scores. (A) LASSO regression analysis for feature selection; (B) LASSO coefficient profiles; (C) Sankey
diagram showing the relationships between MDcluster, genecluster, risk, and survival status; (D) Distribution of risk scores by genecluster; (E) Distribution
of risk scores by MDcluster.
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2.2e-16) (Figure 9B). These findings indicate that higher risk

scores are associated with increased mutation burden,

potentially reflecting more aggressive tumor characteristics.

Further analysis revealed a significant positive association

between the risk score and tumor stemness score (r = 0.47, p <
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2.2e-16) (Figure 9C), suggesting that individuals with elevated risk

scores tend to exhibit higher tumor stemness, a factor closely

linked to tumor progression and resistance to treatment. The

findings collectively highlight the promise of risk scores as

biomarkers for assessing tumor biology, including mutation
FIGURE 6

Evaluation of risk scores. The allocation of risk scores, survival outcomes, and prognostic gene expression levels within the training cohort (A) and
testing cohort (B); Kaplan-Meier survival analysis for the training cohort (C) and testing cohort (D); ROC curves for the training cohort (E) and testing
cohort (F, G) Assessment of MD gene expression levels contrasting low-risk and high-risk groups. p* < 0.05; ***p < 0.001.
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burden and stemness, which are critical for comprehending tumor

aggressiveness and therapeutic challenges.

The tumor mutation profiles were compared between the high-

risk and low-risk cohorts (Figures 9D, E). In the cohort identified as

high-risk, 96.14% (249/259) of the samples exhibited mutations,

with TP53 (56%), TTN (54%), and MUC16 (48%) being the most

commonly mutated genes. The TMB was also significantly higher in

this group. Notably, the elevated frequency of TP53 mutations

suggests a more unstable genome in high-risk patients, potentially

contributing to more aggressive tumor characteristics. In contrast,

84.81% (201/237) of the samples in the low-risk cohort showed

mutations, with TP53 (35%), TTN (32%), and MUC16 (31%) being

the most commonly mutated genes. However, both the mutation

frequency and overall TMB were significantly reduced in the low-

risk cohort when juxtaposed with the high-risk cohort. This lower

mutation load and reduced mutation frequency indicate a relatively

stable genome, which correlates with an improved clinical outcome

for these individuals. These results indicate that the tumor genomes

of high-risk patients exhibit greater instability, with a higher

mutational load and frequent alterations in key tumor suppressor

genes, such as TP53. These genetic alterations are likely to drive

tumor progression and negatively impact patient outcomes. In

contrast, the low-risk group demonstrates a more stable genomic

landscape, which correlates with improved prognosis. Collectively,

these analyses underscore the connection between risk scores and

genomic mutational load, offering deeper insights into how risk

stratification is linked to underlying tumor biology.

Further analysis was conducted to investigate the correlation

between risk scores and drug sensitivity, as illustrated in Figure 9F.

The findings indicated that individuals classified within the high-risk

cohort exhibited heightened sensitivity to a range of chemotherapeutic

agents, evidenced by reduced IC50 values for camptothecin, cisplatin,

doxorubicin, docetaxel, etoposide, mitomycin C, paclitaxel,
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gemcitabine, and vinblastine. This suggests that high-risk patients

may experience better efficacy with these drugs. Conversely, the low-

risk group demonstrated lower IC50 values for erlotinib, nilotinib, and

imatinib, indicating higher sensitivity to these specific agents, which

may make them better candidates for treatment with these drugs.

These findings provide personalized treatment strategies based on risk

score and contribute to understanding the connection between drug

sensitivity and tumor biology, thus offering valuable insights for clinical

decision-making.
Expression and prognostic implications of
MTCH2 in LUAD

The analyses presented indicate a significant correlation between

increased MTCH2 expression and unfavorable prognosis.

Nevertheless, as of now, there has been no investigation that has

specifically examined the function of MTCH2 in LUAD. Given the

high incidence of LUAD worldwide and its clinical relevance, this

research aimed to explore the possible involvement of MTCH2 in

LUAD. Further analysis showed that the expression of MTCH2 was

significantly elevated in LUAD specimens (n = 541) compared to

normal samples (n = 59) (Figure 10A). The results of pairwise analysis

also confirmed this finding, indicating a significant disparity in

MTCH2 expression between tumor and normal tissues from the

same patient (Figure 10B). Additionally, the influence of various

clinicopathological characteristics on MTCH2 expression in LUAD

patients was examined. Figure 10C shows that MTCH2 expression is

significantly elevated in T4, N2, and Stage III compared to T1, N0, and

Stage I, respectively. Figure 10D further reveals an association between

high MTCH2 expression and advanced T stage. Overall, these findings

suggest that MTCH2 expression levels are closely linked to N stage, T

stage, and clinical stage.
FIGURE 7

Development of a nomogram. (A) A nomogram designed to forecast OS at the 1, 3, and 5-year marks; (B) Calibration curves associated with the
nomogram that estimate OS. **p < 0.01; ***p < 0.001.
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The results of Kaplan-Meier survival analysis indicated that

individuals exhibiting low expression levels of MTCH2 experienced

significantly prolonged survival durations in comparison to those

with elevated MTCH2 expression (p = 0.027) (Figure 11A). These

findings imply that the expression level of MTCH2 may have a

significant correlation with the prognostic survival outcomes of

patients, with high expression potentially indicating a poorer

prognosis. To further explore the potential involvement of

MTCH2 in oncogenesis, a co-expression analysis was conducted

to pinpoint genes that exhibit a strong correlation with MTCH2
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expression. The analysis indicated that the six genes with the

highest correlation coefficients were RRM1, YWHAQ, API5,

PDHX, EIF3M, and HARB1, while the five genes with the lowest

correlation coefficients were P2RX1, AMPD1, GNG7, TNFRSF13B,

and FAM30A (Figure 11B; Supplementary Figure S5). The co-

expression of these genes may provide insight into the molecular

pathways through which MTCH2 may contribute to tumorigenesis.

Additionally, 918 DEGs were identified between the high and low

MTCH2 expression groups (Supplementary Table S4, FDR < 0.05,

|Log2 FC| > 1, p < 0.05). Of these, 413 genes were upregulated in the
FIGURE 8

Assessment of TME in different risk scors. (A) Connections between immune cell types and risk scores; (B) A comparative assessment of TME scores
was conducted between the groups identified as low risk and high risk; (C) Correlation heatmap between gene expression, risk score, and immune
cell infiltration. *p < 0.05; p** < 0.01; ***p < 0.001.
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FIGURE 9

Analysis of TMB, tumour stemness score and somatic mutation characteristics in different risk scores. (A) Comparison of TMB between groups
classified as low risk and high risk; (B) Association between risk score and TMB; (C) Correlation between risk score and tumor stemness score;
(D, E) Comparison of somatic mutation profiles between high-risk and low-risk cohorts; (F) Relationship between risk scores and drug sensitivity.
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high-expression cohort, while 505 genes were upregulated in the

low-expression cohort, indicating the significant impact of MTCH2

expression on tumor gene expression profiles. A heatmap was

generated to display the top 50 DEGs in each group (Figure 11C),

providing potential targets for further investigation of MTCH2

function. Cox regression analysis confirmed that both MTCH2

expression level and clinical stage were independent prognostic

indicators (Figures 11D, E). In order to further substantiate the

prognostic significance of MTCH2, a nomogram was established

combining gender, age, MTCH2 expression, and clinical stage to

predict the 1-, 3-, and 5-year survival probabilities (Figure 11F). The

accuracy of the model was confirmed through calibration plots,

demonstrating good predictive performance (Figure 11G).
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Enrichment analysis of MTCH2 DEGs,
association of MTCH2 with immune
infiltration and drug sensitivity

An enrichment analysis of DEGs was conducted to compare

groups exhibiting high and low levels of MTCH2 expression. The

results from the GO analysis indicated that these DEGs were mainly

linked to biological processes, including organelle fission, nuclear

division, and chromosome segregation. At the cellular component

level, these genes were principally enriched in chromosome regions and

spindle bodies, while molecular function analysis showed enrichment

in tubulin binding, and DNA-binding transcription activator activity

(Figure 12A). KEGG pathway analysis revealed significant pathways,
FIGURE 10

MTCH2 expression and clinical characterization in LUAD. (A) Comparison of MTCH2 expression in normal versus tumor tissues; (B) Comparative
analysis of MTCH2 expression in matched normal and tumor tissue samples; (C) Association between MTCH2 expression levels and N stage, T stage
and clinical stage; (D) Heatmap illustrating the distribution of MTCH2 expression levels and clinical characteristics, including gender, age, stage, T, M,
and N classifications. *p < 0.05; ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1585505
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wu et al. 10.3389/fimmu.2025.1585505
including neuroactive ligand-receptor interactions, cell cycle regulation,

and motor protein activity (Figure 12B). GSEA further demonstrated

that the group with high expression of MTCH2 exhibited notable

enrichment in the cell cycle pathway (Figures 12C, D). Subsequently,

the TME was examined, demonstrating notably elevated immune,
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stromal, and estimate scores in the group exhibiting low expression of

MTCH2 when contrasted with the group showing high expression

(Figure 12E). Among 22 immune cell types, four showed marked

differences (Figure 12F). Correlation analysis indicated associations

between MTCH2 expression and various immune cell types:
FIGURE 11

Relationship between MTCH2 and prognosis. (A) The Kaplan-Meier survival analysis displays OS rates among patients categorized by high versus low
MTCH2 expression levels; (B) Circos plot showing MTCH2 co-expression with the six most positively and five most negatively correlated genes;
(C) A heatmap represents the top 50 DEGs identified in groups with high and low MTCH2 expression; (D) Univariate Cox regression forest plot for
MTCH2 expression, age, gender, and stage; (E) Multivariate Cox regression forest plot for MTCH2 expression, gender, stage, and age; (F) Nomogram
predicting 1-, 3-, and 5-year survival probabilities; (G) A calibration plot is included, which assesses the nomogram’s predictive accuracy for survival
probabilities at the 1-, 3-, and 5-year marks. ***p < 0.001.
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FIGURE 12

Enrichment analysis of MTCH2 DEGs and correlation of MTCH2 expression with immune infiltration. (A) GO enrichment analysis was conducted on
DEGs; (B) Analysis of the KEGG pathways was performed on DEGs; (C–D) GSEA analysis of MTCH2 DEGs; (E) Comparison of stromal, immune, and
ESTIMATE scores between high and low MTCH2 expression groups; (F) Distribution of 22 immune cell types between high and low MTCH2
expression groups; (G) Connection analysis between MTCH2 expression and various immune cell types; (H) Heatmap showing connection between
MTCH2 expression and immune checkpoint genes; (I) Association between MTCH2 expression and TMB; (J) Connection between MTCH2
expression and immunotherapy. *p < 0.05; p** < 0.01; ***p < 0.001.
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neutrophils (r = 0.16, p = 7e-04), macrophages M2 (r = 0.099,

p = 0.036), activated CD4 memory T cells (r = 0.13, p = 0.0051),

macrophages M1 (r = 0.14, p = 0.0035), and eosinophils (r = 0.11,

p = 0.018) were positively correlated; whereas plasma cells (r = -0.16,

p = 0.00086), regulatory T cells (Tregs) (r = -0.13, p = 0.0078), and

memory B cells (r = -0.11, p = 0.02) showed negative correlations

(Figure 12G and Supplementary Figure S6). Additionally, eight

immune checkpoint (ICP) genes were found to be significantly

correlated with MTCH2 (p < 0.001), with CD276 demonstrating the

strongest correlation (cor = 0.34) (Figure 12H). Analysis of TMB

revealed a positive association with MTCH2 expression (r = 0.22, p <

0.05), where elevatedMTCH2 expression was linked to increased TMB

(Figure 12I). Finally, immunotherapy efficacy was analyzed, showing

that patients with low MTCH2 expression achieved better responses to

programmed cell death protein 1 (PD-1) inhibitors, cytotoxic T-

lymphocyte-associated protein 4 (CTLA-4) inhibitors, as well as to a

combination of both PD-1 and CTLA-4 therapies (Figure 12J).

The correlation between the expression levels of MTCH2 and the

sensitivity to pharmacological agents was investigated in greater detail.

The analysis indicated that individuals displaying elevated MTCH2

expression levels demonstrated reduced IC50 values for drugs such as

5-Fluorouracil, cediranib, cytarabine, telomerase inhibitor IX,

gallibiscoquinazole, savolitinib, and talazoparib, suggesting increased

sensitivity to these agents. Conversely, higher IC50 values were

observed for ribociclib, doramapimod, selumetinib, mitoxantrone,

and entinostat, indicating reduced sensitivity. These findings suggest

a correlation between MTCH2 expression levels and drug sensitivity

(Supplementary Figure S7).
Functional experimental validation

To further investigate the role of MTCH2 in LUAD, several

experiments were conducted. First, the comparative mRNA

expression levels of MTCH2 were examined in the normal lung

cell line BEAS-2B alongside the lung cancer cell lines PC9, A549,

and H1299. The findings revealed a notable increase in MTCH2

expression within the cancer cell lines (PC9, A549, and H1299) in

contrast to the normal cell line (Figure 13A). This observation was

additionally validated through Western blot analysis, revealing a

notable elevation in MTCH2 protein expression within the cancer

cell lines (Figure 13A). Additionally, MTCH2 mRNA expression

was compared between normal and tumor tissue samples from 30

pairs of LUAD patients, revealing a significant upregulation of

MTCH2 expression in the tumor tissues (Figure 13B). In a

subsequent experiment, paired normal (N) and tumor (T)

samples from five LUAD patients were analyzed. The findings

corroborated that the expression levels of the MTCH2 protein

were markedly increased in the tumor tissues (Figure 13C). To

further assess the function of MTCH2 in LUAD, three siRNAs (si-

MTCH2-1, si-MTCH2-2, and si-MTCH2-3) were used to reduce

MTCH2 expression in the H1299 and A549 lung cancer cell lines.

The expression levels of MTCH2 mRNA were markedly diminished

in all groups treated with siRNA when compared to the negative

control (NC) group, with si-MTCH2–2 and si-MTCH2–3
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exhibiting the most effective knockdown (Figure 13D).

Consequently, si-MTCH2–2 and si-MTCH2–3 were selected for

further experimentation. Western blot analysis verified that

MTCH2 protein levels were notably reduced in A549 and H1299

cells following siRNA treatment (Figure 13D). These observations

imply that the expression of MTCH2 is heightened in LUAD and

could be instrumental in the progression of tumorigenesis.

The impact of MTCH2 knockdown on LUAD cell proliferation,

invasion, and cell cycle progression were further evaluated. The

results from the clone formation assay and CCK-8 analysis revealed

that the reduction of MTCH2 expression notably suppressed the

growth of A549 and H1299 cell lines (Figures 14A, D), indicating

that MTCH2 might contribute positively to the proliferation of

LUAD cells. The scratch assay revealed that the migration rate of

A549 and H1299 cells was markedly reduced following MTCH2

knockdown (Figure 14B). A subsequent Transwell assay confirmed

that both migration and invasion capabilities of these cell lines were

markedly suppressed after MTCH2 knockdown (Figure 14C),

indicating that MTCH2 might be essential in the processes of

tumor cell invasion and metastasis. Based on previous KEGG and

GSEA analyses, it was identified that the cell cycle pathway

exhibited significant enrichment in the group with elevated

MTCH2 expression, which prompted further investigation into

cell cycle alterations. Cell cycle analysis revealed that, following

MTCH2 knockdown, there was a marked increase in the percentage

of H1299 cells residing in the G0/G1 phase, concomitantly with a

reduction in the percentage of cells in the S phase. This shift resulted

in a notable arrest in the G0/G1 phase, as illustrated in Figure 14E.
Discussion

LUAD is the most common subtype of NSCLC (55).

Notwithstanding the recent progress in therapeutic approaches,

the outlook for individuals diagnosed with LUAD continues to be

unfavorable (56). Mitochondria, as critical intracellular organelles,

fulfill various essential functions, including calcium homeostasis,

energy metabolism, and apoptosis. These organelles produce ATP

through oxidative phosphorylation and play a regulatory role in

cellular metabolic pathways (57). Prior studies have indicated that

mitochondrial dysfunction and metabolic reprogramming are key

mechanisms that support tumor cell survival and proliferation

(58). Therefore, investigating the relationship between MD and

LUAD is not only vital for understanding the biological

characteristics of the disease but may also inform novel

therapeutic strategies.

In this study, we systematically analyzed transcriptional and

genetic alterations associated with MD in LUAD by integrating

somatic mutation data, RNA expression data, and clinical features

from GEO and TCGA databases. Specifically, we employed

expression data derived from a total of 541 patients diagnosed

with LUAD and 59 normal control individuals retrieved from the

TCGA database. Additionally, we incorporated data from 117

LUAD patients available in the GSE13213 dataset to establish a

thorough expression matrix. Utilizing the expression profiles of 23
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genes associated with MD, LUAD patients were classified into

different molecular subgroups by consensus clustering analysis to

further investigate their roles in tumor biology. In addition, we

identified DEGs and their associated biological pathways by

enrichment analysis, and developed a prognostic model for

evaluating the effects of these key DEGs on patient prognosis,

TME, and drug sensitivity. Meanwhile, the investigation

additionally concentrated on the distinctive function of MTCH2,

a crucial gene associated with MD, in LUAD along with its potential

underlying mechanisms. The outcomes underscore the significant

prognostic value of MD in LUAD, thereby establishing a robust

basis for an enhanced comprehension of the biological processes

and patient outcomes associated with LUAD, while also facilitating

the formulation of targeted therapeutic approaches in the future.
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In this study, LASSO regression was selected as the feature selection

method due to its stability and widespread application in high-

dimensional biological data. Compared with other commonly used

methods, LASSO offers distinct advantages: it produces more stable and

parsimonious models than decision tree algorithms (59, 60); it provides

greater computational efficiency and interpretability than random

forests, particularly in high-dimensional, low-sample-size contexts

(61); and it is less sensitive to parameter tuning than support vector

machines, making it well suited for high-throughput feature selection

and prognostic modeling tasks (62, 63). Therefore, LASSO was deemed

a reasonable and preferred choice in this study, particularly formodeling

linear relationships with strong interpretability.

The analysis of immune cell infiltration in LUAD revealed

significant differences across molecular subgroups, particularly in
FIGURE 13

MTCH2 expression levels in normal and tumor cells and tissues, and the effect of siRNA knockdown of MTCH2. (A) Relative mRNA and protein expression
levels of MTCH2 in normal lung cell line BEAS-2B compared to lung cancer cell lines PC9, A549, and H1299; (B) Comparison of MTCH2 mRNA expression
in 30 paired normal and tumor LUAD tissues; (C) The protein expression of MTCH2 in matched normal (N) and tumor (T) samples obtained from five LUAD
patients; (D) MTCH2 knockdown reduces mRNA and protein levels in A549 and H1299 cells. p** < 0.01; ***p < 0.001; ****p < 0.0001.
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the levels of activated B cells, dendritic cells, and macrophages.

Activated B cells are essential components of the adaptive

immunity, enhancing antitumor responses by producing

antibodies and memory cells. B cell infiltration has been shown to

improve survival prognosis in cancers such as LUAD through T cell

activation and coordination of antitumor responses (64). In this
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study, the elevated level of activated B cells in the B subtype likely

contributes to enhanced overall survival. Dendritic cells, essential

for initiating and regulating immune responses via antigen

presentation, generally indicate active antitumor immunity within

the TME. Research has demonstrated that dendritic cells can

present exogenous antigens to CD8+ T cells through cross-
FIGURE 14

The Impact of MTCH2 knockdown on proliferation, invasion, migration, and cell cycle of LUAD cells. (A) Colony formation assay in H1299 and A549
cells after MTCH2 knockdown; (B) Wound healing assay in H1299 and A549 cells after MTCH2 knockdown. Scale bars, 200 µm; (C) Transwell
migration and invasion assays in H1299 and A549 cells after MTCH2 knockdown. Scale bars, 200 µm; (D) CCK-8 assay in H1299 and A549 cells after
MTCH2 knockdown; (E) Cell cycle analysis of H1299 cells following MTCH2 knockdown. *p < 0.05; p** < 0.01; ***p < 0.001; ****p < 0.0001.
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presentation, a mechanism particularly important for antitumor

immunity (65, 66). The substantial infiltration of activated dendritic

cells in LUAD subtype B suggests a robust antitumor immune

response, reinforcing the association between this subtype and

improved survival. Macrophages, notably the M1 subtype, are

recognized for their proinflammatory properties and ability to

phagocytose tumor cells. The presence of M1 macrophages within

the TME has been associated with improved prognostic outcomes

in multiple cancer types. This correlation is attributed to their

capacity to amplify T cell responses and suppress tumor

proliferation via the secretion of cytokines (67). This study

observed increased macrophage infiltration in the B subtype,

suggesting a protective role of these immune cells in LUAD,

potentially contributing to improved survival in this subgroup.

Enrichment analysis identified significant pathways involved in

the DEGs of MD subtypes in LUAD. Cell cycle pathways are

particularly crucial in the advancement of tumors, as the

improper regulation of cell cycle mechanisms frequently leads to

the unchecked growth and persistence of cancerous cells. The

abnormal expression of cell cycle regulatory proteins, particularly

Cyclin D1 and CDK4/6, has often been linked to the onset of

different types of cancers (68). Additionally, significant enrichment

of the P53 signaling pathway underscores its essential role in

maintaining genomic stability and regulating apoptosis. As the

“guardian of the genome,” P53 is often inactivated in cancer,

contributing to the survival of malignant cells (69). The

enrichment of P53 signaling-related genes in the MD subtype

suggests that these tumors may evade apoptosis via this pathway,

thereby facilitating tumor development.

The predictive model validation demonstrated significant

predictive power for OS in LUAD patients. Through both univariate

and multivariate Cox regression analyses, five essential genes were

identified for the formulation of the risk score. The efficacy of the

model was validated in both training and testing cohorts, with Kaplan-

Meier survival analysis revealing a statistically significant disparity in

survival rates between the low-risk and high-risk groups (p < 0.001).

The AUC values at 1, 3, and 5 years were 0.767, 0.721, and 0.744 for

the training group and 0.690, 0.644, and 0.615 for the testing group,

indicating robust patient risk stratification. Incorporating clinical

variables (age, gender, tumor stage) further enhanced predictive

accuracy, as supported by the calibration curve. Additionally,

connections between the risk score, TMB, and drug sensitivity

underscore its utility in treatment decision-making. Association

between the risk score and TME characteristics, particularly

immune cell infiltration, suggests high-risk patients may exhibit a

more immunosuppressive TME. This observation informs anti-tumor

immunotherapy strategies for high-risk LUAD patients. Overall, these

findings deepen understanding of LUAD’s molecular characteristics

and underscore MD’ critical role in disease progression.

It is noteworthy that patients in the high risk group generally

exhibit poorer survival outcomes, likely due to increased

proliferative capacity, elevated tumor stemness indices, and

greater genomic instability. Furthermore, marked differences in

immune cell infiltration were observed across risk groups, with

the low risk group displaying enhanced immune responsiveness,
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which may contribute to its more favorable prognosis. These

findings highlight the potential prognostic relevance of MD in

LUAD from an immunobiological perspective and provide a

theoretical basis for precise molecular subtyping and the

development of personalized immunotherapeutic strategies.

The role of MTCH2, a key MD gene, was further investigated in

LUAD. Elevated MTCH2 expression in LUAD MD samples, as

compared to normal tissue, indicates its potential involvement in

tumorigenesis. The Kaplan-Meier survival analysis demonstrated a

significant correlation between elevated MTCH2 expression and

unfavorable outcomes in patients with LUAD, highlighting its

prospective utility as a prognostic biomarker. Additionally, the

correlation between MTCH2 expression levels and clinical staging

parameters (N stage, T stage, and overall clinical stage) reinforces its

role in cancer progression. Higher MTCH2 expression was observed in

patients with advanced stages (T4, N2, stage III), suggesting its possible

contribution to tumor aggressiveness and metastatic potential. In vitro

experiments further confirmed thatMTCH2 is significantly upregulated

in LUAD cells and tissues, where it promotes proliferation, migration,

invasion, and cell cycle progression. The results indicate that the

inhibition of MTCH2 may serve as a potentially effective approach

for the creation of innovative treatment options.

Additionally, other MD-related genes play important roles.

MFN2 is critically involved in mitochondrial fusion and cellular

metabolism. Zhang et al. reported that low MFN2 expression in

LUAD is associated with poor clinical outcomes. MFN2 and UCP4

may jointly regulate calcium homeostasis in LUAD and potentially

serve as therapeutic targets (70). These findings suggest that MFN2

may function as a valuable prognostic biomarker and therapeutic

target, as its upregulation may help restore mitochondrial function

and suppress tumor growth. Our results are consistent with

observations in other cancer types. Cheng et al. reported that

MFN2 is downregulated in colorectal cancer and may exert tumor-

suppressive effects by regulating apoptosis and metabolic pathways,

supporting its prognostic and therapeutic relevance (71). Song et al.

demonstrated that MFN1-mediated mitochondrial fusion promotes

tamoxifen resistance by inhibiting apoptosis, underscoring the critical

role of MD-related genes in breast cancer drug resistance.

Collectively, these findings suggest that MD abnormalities may

contribute to malignant progression in various cancers through

metabolic reprogramming and immune modulation.

Although this study identified key MD genes and their

associations with LUAD subtypes, certain limitations remain.

First, functional validation of these genes is limited in both in

vitro and in vivo contexts. While cell line experiments offer

preliminary insights, they do not fully replicate the complexity of

tumor behavior in the human body.
Conclusions

This study performed an in-depth examination of LUAD

utilizing data from the TCGA and GEO databases, integrating

RNA expression, mutation profiles, and clinical attributes.

Findings revealed that significant transcriptional changes in MD
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genes delineated two molecular subtypes linked to survival

outcomes. The constructed prognostic model demonstrated

strong predictive performance in both training and test cohorts.
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