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Background: Wiskott-Aldrich Syndrome (WAS) is a rare and severe X-linked

immunodeficiency disorder characterized by microthrombocytopenia, eczema,

and increased susceptibility to infections, autoimmunity, and malignancies. This

study aims to explore molecular changes in the WAS gene in Brazilian patients

and assess their correlation with clinical manifestations and disease severity.

Methods: Thirty-one patients from 27 families with thrombocytopenia suspected

to have WAS or X-linked thrombocytopenia (XLT) were analyzed. Clinical

evaluation, cell morphology analysis, and flow cytometry (when feasible) were

performed. DNA samples underwent direct sequencing to identify WAS

gene mutations.

Results: Genomic sequencing identified 17 WAS gene variants, 10 of which were

novel, expanding the genetic diversity of the disorder. The most frequent WAS

gene variants were primarily frameshift indels that introduced premature stop

codons, with five localized in exon 10. While thrombocytopenia and small

platelets were prevalent, atypical presentations, including one patient with

normal platelet size, were observed. The correlation between genotype and

phenotype was complex, as some patients harboring similar mutations

demonstrated varying disease severities. Of the 22 confirmed cases, 12

underwent hematopoietic stem cell transplantation (HSCT), while six
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succumbed to severe disease complications, including opportunistic infections

and malignancies.

Conclusions: The study underscores the need for early molecular diagnosis and

tailored treatments, particularly HSCT, which remains the standard curative

therapy. Additionally, the findings emphasize the role of genetic variation in

predicting disease severity, underlining the importance of personalized medical

approaches for WAS patients.
KEYWORDS

Wiskott-Aldrich syndrome, WAS, WASp mutation, thrombocytopenia, inborn errors
of immunity
1 Introduction

Wiskott-Aldrich Syndrome (WAS) is a rare, X-linked recessive

disorder characterized bymicrothrombocytopenia, immunodeficiency,

eczema, and an increased predisposition to autoimmunity and

malignancies (1). The condition is caused by mutations in the

Wiskott-Aldrich syndrome protein (WASp), which is critical in

cytoskeletal regulation and immune cell function. WASp is

predominantly expressed in hematopoietic cells, where it is

essential for actin cytoskeleton remodeling, immune synapse

formation, and effective immune responses (2–4). Defective WASp

function impairs immune signaling, leading to immune dysregulation

and a heightened risk of infections, bleeding disorders, and

inflammatory complications (5, 6).

The clinical presentation typically emerges within the first few

months of life, with affected infants presenting with petechiae, eczema,

and recurrent skin infections (7). The progression of the disease can

include recurrent bacterial infections, like otitis and pneumonia, and an

increased risk of sepsis. Persistent immune dysregulation, along with

elevated gamma globulin levels, further increases the risk of developing

autoimmunity and malignancies (8).

Variations in the WAS gene exhibit significant diversity,

including missense changes, splicing defects, deletions, and

nonsense mutations (9, 10). The phenotypic spectrum of WASp

variation extends beyond classic WAS to milder forms such as X-

linked thrombocytopenia (XLT), with disease severity closely tied to

the nature and location of the mutation (11). The clinical overlap

between WAS and conditions like immune thrombocytopenia

(ITP) can lead to misdiagnosis, making molecular diagnostics

crucial for accurate identification and timely treatment (12). For

instance, a study of 78 children initially diagnosed with ITP found

that 43.6% were later diagnosed with WAS, underscoring the

importance of genetic analysis, particularly for males with early

onset and low mean platelet volume (MPV) (13).

Hematopoietic stem cell transplantation (HSCT) remains the

gold standard for curative treatment of WAS, with the best

outcomes typically observed when the procedure is performed
02
before the age of five, yielding a survival rate of nearly 90% (14–

16). More recently, autologous hematopoietic stem cell (HSC) gene

therapy has emerged as a promising alternative, offering a potential

cure without the need for a matched donor and avoiding the risks

associated with traditional HSCT, such as graft-versus-host disease

(GvHD) (17).

To facilitate diagnosis and clinical decision-making, a

standardized scoring system was initially developed (10) and later

refined (18, 19), providing a consistent approach to assess disease

severity (Supplementary Table S1). Thrombocytopenia is a

hallmark of WAS, and more severe cases often involve

complications such as autoimmunity and malignancy. Recent

studies, including by Albert et al. (2022) (16), have identified a

subgroup of patients with early-onset disease (before age two) who

present with life-threatening symptoms such as severe refractory

thrombocytopenia, emphasizing the need for earlier intervention.

Recent outcome analyses have suggested that the WAS gene

variation class, including the locus and type of variant, may serve as

a predictive biomarker for disease severity and complications (20).

This insight may guide the timely initiation of curative therapies

such as HSCT or HSC gene therapy.

Given the clinical heterogeneity of WAS, integrating molecular

diagnostics with clinical phenotyping is critical to improving patient

outcomes. Identifying novel WASp mutations and their associated

phenotypic presentations will enhance our understanding of

genotype-phenotype correlations in WAS. This study aims to

investigate molecular alterations in patients with suspected WAS

and correlate these findings with clinical manifestations and disease

severity scores.
2 Materials and methods

2.1 Patient selection and data collection

This study included individuals diagnosed with thrombocytopenia,

either characterized by small platelets or associated with recurrent
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infections. All participants were referred to the Hematology Center

(Hemocentro UNICAMP) at the University of Campinas for molecular

analysis of the WAS gene. Additionally, patients referred by the

Brazilian Group for Immunodeficiency (BRAGID) and the Latin

American Society for Immunodeficiencies (LASID) were included.

Only cases with confirmed genetic diagnosis were considered for

inclusion in this study.

In addition to molecular diagnosis, comprehensive clinical data

were collected to facilitate genotype-phenotype correlation. Patients

were assigned a disease severity score based on clinical manifestations,

following previously established criteria (Supplementary Table S1)

(10, 19, 21). All participants and/or their caregivers provided written

informed consent, and the study was conducted in accordance with

ethical guidelines and institutional review board (IRB) approvals. The

study received approval from the University of Campinas Ethics

Committee (CAAE: 24548313.1.0000.5404).
2.2 Nucleic acid isolation and cDNA
synthesis

Genomic DNA (gDNA) was extracted from whole blood by

TKM buffer (Tris-HCL 10 mM pH 7.6; KCL 10 mM; MgCl2–10

mM; EDTA 20 mM) and SDS. Total RNA was extracted by Trizol

(Life Technologies, Grand Island, NY) and then submitted to

reverse transcriptase-polymerase chain reaction (RT-PCR) using

the RevertAid H minus First Strand complementary DNA (cDNA)

Synthesis Kit (Thermo Fisher Scientific, MA, EUA) according to

manufacturer’s instructions.
2.3 Polymerase chain reaction
amplification and sequence analysis

PCR amplification of gDNA or cDNA was performed using

custom-designed primers targeting the WAS gene (RefSeq:

NG_007877.1, NM_000377.3) and the WASP-interacting protein

(WIP) gene (WIPF1, RefSeq: NG_032009.1, NM_001077269.1) as

detailed in Supplementary Table S2. Direct sequencing was

performed using the ABI PRISM® 3500 Genetic Analyzer

(Applied Biosystem, Thermo Fisher Scientific, EUA), and

chromatograms were generated on Chromas®. All patients

underwent sequencing of the WAS gene, and for those without

detectable variations associated with WAS or XLT, sequencing of

the WIPF1 gene was also carried out. The nomenclature of the

identified variants was structured according to HUGO/HGVS

recommendations (22).
2.4 Flow-cytometric analysis of WASp
expression

The procedure was performed according to previously

standardization protocols (23). Intracellular WASp expression was

evaluated in 200 ml peripheral whole blood or peripheral blood
Frontiers in Immunology 03
mononuclear cells (PBMC), using Fix&Perm® Cell Permeabilization

Kit (Becton Dickinson) according to the manufacturer’s

recommendations. Cells were incubated with a mouse anti-WASP

monoclonal antibody (Clone 7B10E4, Thermo Fisher Scientific, MA,

USA), followed by a FITC-conjugated goat anti-mouse IgG secondary

antibody (Thermo Fischer Scientific), diluted 1:1200. Incubation was

carried at room temperature for 15 minutes. Data acquisition was

performed using a FACSCalibur™ flow cytometer, and analysis was

conducted with FlowJo® software (Becton Dickinson).
2.5 Statistical analysis

Descriptive statistical analysis was conducted for nominal

variables. Continuous variables were summarized using median

and range (min-max). Categorical variables were expressed as

percentages. The correlation of numerical variables was assessed

using Spearman’s correlation coefficient, and a significance level of

5% was adopted. All statistical analyses were conducted using

GraphPad Prism 10.4.1 (GraphPad Software, San Diego, CA, USA).
3 Results

In this study, 31 patients from 27 families were screened for

molecular changes in WAS gene. Of those, 22 patients from 17

families received the molecular diagnostic confirmation through

WAS gene DNA-sequencing, and three siblings were diagnosed

post-mortem after confirmation via maternal genotyping (Table 1).

The median age at diagnosis was 16 months (range: 2–271 months).

All patients exhibited moderate to severe thrombocytopenia, with a

median platelet count of 21.5 x 109/L (range: 5 to 120 x 109/L).

Clinical diagnoses were classified as XLT or WAS based on the

correlation between identified WAS gene variants, the patient’s

medical history, and the clinical scores assigned according to

previously established criteria (Supplementary Table S1) (10, 19,

21). The most observed clinical manifestations were eczema

(76.4%), skin bleeding (e.g., petechiae and ecchymosis, 40.9%),

and hematochezia (40.9%), followed by recurrent infections

(41.2%). Detailed clinical information for each individual is

available in Supplementary Tables S3A, B.

Thrombocytopenia was observed in all 31 children enrolled in

the study, including those with a confirmed molecular diagnosis of

WAS/XLT (22 patients) and those with negative WAS gene and

WIPF1 gene sequencing results (9 patients). The presence of small

platelets in peripheral blood (Figure 1A) was confirmed when

samples were available. Among the patients with confirmed

WAS/XLT diagnoses, small platelets were observed in 13 out of

14 children (92.8%) for whom this information was available, while

one patient, P16A (7.2%), had normal platelet size. Additionally,

recurrent infections were reported in 16 out of 22 children (72.7%)

with a confirmed WAS/XLT diagnosis (Supplementary Tables S3A,

B). Detailed clinical manifestations raising suspicion of WAS in the

nine patients with negative molecular diagnoses are provided in

Supplementary Table S4.
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WASp expression in lymphocytes was evaluated by flow

cytometry whenever samples were available prior to patients

undergoing HSCT. Reduced WASp expression was observed in

six patients from different families. Notably, patient P16A, the only

one without detectable small platelets, exhibited a markedly reduced

WASp expression (Supplementary Tables S3A, B). Figures 1B, C

illustrates the difference in WASp expression between three patients

with distinct clinical scores and healthy control.

All identified WAS gene variants are summarized in Table 2.

Among the 17 detected variants, seven had been previously
Frontiers in Immunology 04
reported (24–26), while ten were novel and had not been

described in the literature. The most common variation type was

frameshift indels (n = 14, 63.6%), followed by missense (n = 5,

22.7%), nonsense (n = 2, 9.1%), and a single splice-site (n = 1, 4.5%).

No correlation was observed between WAS gene variant type and

clinical score (Spearman correlation, r = 0.16).

Regarding previously undescribedWAS gene variations, our cohort

included one missense change, p.(Gly3Glu) and nine frameshift indels:

p.(Asn78fs*48), p.(Phe128Cysfs*40), p.(Leu193fs*68), p.(Asp237fs*21),

p.Lys336Argfs*108, p.(Pro344fs*101), p.(Pro385fs*60),

p.(Leu425Argfs*5), and p.(Leu434Alafs*62). As cDNA samples were

not available for several cases, we utilized the ACMG guideline for

clinical interpretation of genetic variants (available at https://

wintervar.wglab.org/evds.php) (27), and the frameshift changes

were classified as pathogenic, as summarized in Supplementary

Table S5.

After identifying the patients’ mutations, molecular analyses

were performed on 14 mothers to determine whether the mutations

were inherited or de novo. All screened mothers, except those of

Patients 8 and 13, were found to be heterozygous for the alteration.

Consequently, Patients 8 and 13 exhibited de novo mutations in

exons 4 and 10, respectively, both involving deletions that led to

premature stop codons.

Regarding patient outcomes, two individuals (9.1%) were

awaiting a matched donor for potential HSCT, including one with

a novel missense mutation (p.Gly3Glu). Twelve patients (54.5%)

underwent HSCT, although one experienced graft failure. Two XLT

patients with Class I WAS gene variants and mild symptoms have

been under follow-up at our center for over 17 years (P4) and 11

years (P5) (Medina et al., 2017). These two patients have decided

not to proceed with HSCT thus far, following a shared decision-

making process involving pediatricians, hematologists, and the

patients and their families. Overall, six fatalities (27.3%) were

reported (Supplementary Tables S3A, B).

In Family 3, post-mortem genetic analysis was performed on

two brothers (Patients 3A and 3B), both children of a non-

consanguineous couple, who died before the age of two. Both

presented with thrombocytopenia, cutaneous and mucosal

bleeding, and severe recurrent infections. The initial healthcare

providers failed to identify the presence of small platelets.

Sequencing of the mother’s DNA revealed a previously

described nonsense mutation in the WAS gene, p.Arg41*

(c.155C>T) (28).

Another fatal case occurred in patient P7, who carried a

previously reported missense variant (p.Tyr107Cys) in exon 3

(18), classified as a Class II WAS gene variant according to recent

classification criteria (20). Initially assigned a clinical score of 3, this

patient developed symptoms at the age of five years, including

epistaxis, ecchymosis, eczema, and recurrent acute otitis media. He

maintained a relatively stable clinical condition until the age of 25

years, when he was diagnosed with lymphoma and, unfortunately,

passed away due to complications related to cancer.

Family 16 also experienced two fatalities (Patients 16A and

16B). The first child died at three months due to severe bleeding but

was not diagnosed at the time. The second child was diagnosed
TABLE 1 Patient’s demographic and clinical characteristics.

Patients’ Characteristics n = 22

Median age at diagnosis, months (min-max) 16 (2-271)

Platelet count (109/L), median (min-max) 20 (5-120)

Mean platelet volume (MPV), median
(min-max)

6.5 (4.3-12.9)

Symptoms, n (%)

Eczema 15 (71.4)

Hematochezia 12 (57.1)

Petechiae/Bruise 12 (57.1)

Epistaxis 9 (42.9)

Recurrent Infections 7 (33.3)

Cutaneous-mucous bleeding 6 (28.6)

Skin infections 6 (28.6)

Respiratory Infection 5 (23.8)

Allergies 4 (19)

Outcome, n (%)

Post-HSCT 12 (54.5)

Death 6 (27.3)

Waiting for HSCT 2 (9.1) *

Follow-up 2 (9.1) **

Clinical Score, n (%)

1-2 (XLT) 2 (9.1)

3 (WAS) 8 (36.4)

4 (WAS) 6 (27.3)

5 (WAS) 6 (27.3)

Variation effect, n (%)

Frameshift 14 (63.6)

Missense 5 (22.7)

Nonsense 2 (9.1)

Splice site 1 (4.5)
*Patients recently diagnosed are currently being prepared for HSCT. **Patients diagnosed
with XLT have, to date, chosen not to proceed with HSCT, following a shared decision-
making process. MVP, mean platelet volume; WAS, Wiskott-Aldrich syndrome; XLT, X-
linked thrombocytopenia; HSCT, hematopoietic stem cell transplantation.
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molecularly after presenting with cutaneous-mucosal bleeding and

autoimmune manifestations, including hemolytic anemia and

immune thrombocytopenic purpura. Subsequently, he developed

a cytomegalovirus (CMV) infection and died from related

complications. Genetic analysis revealed a novel frameshift

mutation in exon 10, p.Leu425Argfs*5, involving the deletion of

46 nucleotides, which impeded the synthesis of the WASp VCA

domain (Figure 2).

In Family 17, one child died in infancy. The first (Patient 17A)

underwent HSCT, while the second (Patient 17B) died at three

months following recurrent infections (including sepsis and upper

airway infections) and hemorrhages, requiring weekly red blood cell

and platelet transfusions. Genetic analysis identified a novel

mutation in exon 10, p.Leu434Alafs*62.
4 Discussion

This study represents the first comprehensive investigation of

WAS-associated molecular changes within the Brazilian population.

It highlights the identification of ten novel variants in the WAS

gene, expanding our understanding of the genetic diversity of this

rare disorder. WAS is a severe immunodeficiency disorder with a
Frontiers in Immunology 05
high risk of mortality. While advances in autologous HSC gene

therapy may offer future treatment options, HSCT remains the only

curative therapy (17, 29), and the long-term prognosis for untreated

patients remains relatively reserved (13, 30).

The clinical-genetic relationship in WAS is complex, with

genotype-phenotype correlations not always being straightforward.

While thrombocytopenia and small platelet size are classically

considered hallmark features of WAS (10, 31), clinical

manifestations can differ significantly in severity. In our cohort,

small platelets were observed in more than 90% of cases with

confirmed molecular diagnosis, consistent with widely accepted

diagnostic criteria for WAS (32). However, emerging studies have

reported cases of WAS patients with normal platelet volume,

highlighting the need for molecular diagnostics to identify atypical

presentations (33–35).

Notably, one patient in our cohort (P16A), who presented with

severe thrombocytopenia, recurrent infections, and autoimmune

manifestations, exhibited normal platelet size despite markedly

reduced WASp expression. Genetic analysis revealed a novel

frameshift mutation in exon 10 (p.Leu425Argfs*5), reinforcing

the complexity of the disease’s presentation. On the other hand,

we also observed cases with milder clinical manifestations, typically

characterized by a reduced or variable platelet count, categorized as
FIGURE 1

Representation of small platelets and lower expression in Wiskott-Aldrich syndrome protein (WASp) from patients with Wiskott-Aldrich syndrome
(WAS) and X-linked thrombocytopenia (XLT). (A) Peripheral blood smear from a patient with WAS (P4) showing marked thrombocytopenia and the
presence of small platelets (arrow). (B) WASp expression analyzed by flow cytometry in lymphocytes. Compared to a normal control (light blue
histogram), an XLT patient with a clinical score of 1 (P5, purple), an XLT patient with a clinical score of 2 (P4, green), and a WAS patient with a score
of 3 (P1, red) exhibited progressively reduced WASp expression in lymphocytes. The histogram is representative of three independent experiments. A
total of six patients were analyzed. (C) Representative dot plot corresponding to (B).
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XLT. These patients are often initially misdiagnosed as having ITP

(13, 18). This underscores the critical importance of genetic testing

in accurately diagnosing WAS/XLT, especially in cases with atypical

or milder phenotypes.

While flow cytometry-based assessment of WASp expression in

leukocytes offers an useful alternative for screening WAS/XLT (36), we

encountered several practical challenges in its application. One major

difficulty is the standardization of the technique, which requires careful
Frontiers in Immunology 06
optimization to ensure consistent and reliable results. Additionally,

samples from very young children are often limited in quantity and

may be unstable, making it difficult to transport them to centralized

laboratories for analysis. A retrospective cohort study onWAS patients

demonstrated variability in WASp expression even among individuals

with identical mutations, with some cases showing reduced or absent

WASp expression despite clinically mild phenotypes (9, 18). In line

with these findings, our flow cytometry analysis revealed reduced
TABLE 2 Molecular characteristics of WAS patients (Ref Seq: NM_000377.3, NG_007877.1).

Family/
patient Gene

location
Nucleotide

Predicted
Effect§

Variation
type

First
literature
report

Class of
WAS
gene
variant¶

Definitive
diagnosis

Clinical
score

Outcome

F1 P1 exon 1 c.42G>A p.(Gly3Glu) missense New variant I WAS 3
Wait

for HSCT

F2 P2 exon 1 c.140_143del p.Phe36* frameshift
Jin et al.,
2004 (26)

II WAS 3 HSCT

F3 P3A exon 1 c.155C>T p.Arg41* nonsense
Wengler
et al.,

1995 (25)
II WAS 5 Death

F3 P3B exon 1 c.155C>T p.Arg41* nonsense
Wengler
et al.,

1995 (28)
II WAS 5 Death

F4 P4 exon 2 c.168C>T p.(Thr45Met) missense
Kwan et al.,
1995 (24)

I XLT 2 Follow-up

F5 P5 exon 2 c.207C>T p.(Pro58Leu) missense
Kwan et al.,
1995 (24)

I XLT 1 Follow-up

F6 P6 exon 2 c.268del p.(Asn78*48) frameshift New variant II WAS 3 HSCT

F7 P7 exon 3 c.354A>G p.(Tyr107Cys) missense
Albert et al.,
2010 (18)

II WAS 5# Death

F8 P8 exon 4 c.417_418del p.(Phe128Cysfs*40) frameshift New variant II WAS 4 HSCT

F9 P9 exon 4 c.431G>A p.(Glu133Lys) missense
Kwan et al.,
1995 (24)

II WAS 4 HSCT

F10 P10A exon 7 c.613del p.(Leu193fs*68) frameshift New variant II WAS 3 HSCT

F10 P10B exon 7 c.613del p.(Leu193fs*68) frameshift New variant II WAS 3 HSCT

F11 P11 exon 7 c.743_746del p.(Asp237fs*21) frameshift New variant II WAS 4 HSCT

F12 P12 intron 8 c.778-2A>G p.Asp259fs*69 splice site
Kwan et al.,
1995 (24)

II WAS 4 HSCT

F13 P13 exon 10 c.1040del p.Lys336Argfs*108 frameshift New variant II WAS 3 HSCT

F14 P14 exon 10 c.1065del p.(Pro344fs*101) frameshift New variant II WAS 5
Wait

for HSCT

F15 P15A exon 10 c.1187del p.(Pro385fs*60) frameshift New variant II WAS 3 HSCT

F15 P15B exon 10 c.1187del p.(Pro385fs*60) frameshift New variant II WAS 3 HSCT

F16 P16A exon 10 c.1306_1353del p.(Leu425Argfs*5) frameshift New variant II WAS 5 Death

F16 P16B exon 10 c.1306_1353del p.(Leu425Argfs*5) frameshift New variant II WAS 5 Death

F17 P17A exon 10 c.1334dup p.(Leu434Alafs*62) frameshift New variant II WAS 4 HSCT

F17 P17B exon 10 c.1334dup p.(Leu434Alafs*62) frameshift New variant II WAS 4 Death
§The predicted effects without parenthesis were validated at the cDNA level in this study. ¶WAS gene variant classification according to Vallée TC, 2024 (20). Class I includes missense mutations
in exons 1 or 2, as well as the c.559 + 5G>A variant. Class II encompasses all other variants of theWAS gene. # Patient P7 was initially assigned a score of 3, presenting symptoms at the age of 5
years. At 25 years old, he developed lymphoma and later succumbed to disease-related complications. Following his death, the score was retrospectively adjusted to 5. XLT, X-linked
thrombocytopenia; WAS, Wiskott-Aldrich syndrome; HSCT, Hematopoietic stem-cell transplantation; NE, not evaluated.
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WASp expression in patients with both severe and mild disease

phenotypes (Figure 1). These challenges highlight the limitations of

flow cytometry as a routine diagnostic tool for WAS, underscoring the

need for complementary diagnostic approaches, such as molecular

genetic testing, to ensure accurate and timely diagnosis.

The structure of WASp, a key protein involved in actin filament

nucleation, is crucial for understanding the pathophysiology of WAS.

Mutations in specific regions of the WAS gene, such as those affecting

the VCA domain, can severely disrupt the function of WASp,

impairing actin dynamics and leading to hallmark immunodeficiency

and platelet abnormalities in WAS patients (37, 38). In our study, the

identification of nine novel frameshift mutations, many located in exon

10, which encodes part of the proline-rich (PPP) region and the VCA

domain (Figure 2). These mutations were associated with more severe

clinical phenotypes, including early mortality in some patients. For

instance, patients from families 16 and 17, both carrying mutations in

exon 10, succumbed to their conditions at an early age due to the

severity of the mutations (39).

The management of WAS patients remains challenging,

particularly when determining the timing of HSCT. Early

transplantation is generally recommended, as older age at

transplantation is a known risk factor for poorer outcomes (16).

However, some studies suggest that the severity of the disease may not

always correlate with the WAS score, especially in patients under two

years of age (21). In our study, two XLT patients with mild symptoms
Frontiers in Immunology 07
and a clinical follow-up of over 10 years have not yet undergone

HSCT. These decisions were influenced by the patients’ initial

presentation, the available clinical data at the time, and the families’

preferences. While current guidelines recommend HSCT before the

age of five, our findings highlight the importance of individualized

treatment plans based on the patient’s unique clinical course and

family considerations. Although post-HSCT complications remain a

concern, overall survival has improved significantly over the past

decades. Nonetheless, careful, individualized monitoring and timely

intervention remain essential for achieving optimal outcomes (40).

Another noteworthy aspect of WAS is its association with an

increased incidence of tumors, particularly lymphoma, in affected

individuals. Studies have shown that WASp functions as a tumor

suppressor in T-cell lymphoma, and its deficiency accelerates

lymphoma development (4, 41). Our study reports one patient (P7)

who, despite presenting with a mild phenotype, developed lymphoma

at a later age, resulting in death due to complications. According to a

recent study by Vallée TC et al. (20), which provides updated guidance

on WAS variant classification and treatment decisions, our patient,

who carries amissense variant in exon 3 (p.Tyr107Cys), a Class IIWAS

gene variant, should ideally be considered for early HSCT. This

emphasizes the critical importance of recent research with larger

WAS cohorts and extended follow-up periods, which could help

refine treatment strategies. Studies such as that by Albert et al. (16)

bring attention to the need for early HSCT consideration, even for
FIGURE 2

Schematic representation of newly identified WASp mutations. Ten unreported mutations in the WAS gene were identified. Gray symbols indicate
previously described WAS variants, while colored symbols represent novel discovered variants. EVH1, Ena/VASP Homology 1; GBD, GTPase-binding
domain; PRR, Proline-Rich Region; VCA, Verprolin-homology, Central, and Acidic region.
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patients with lower clinical scores or milder phenotypes. Indeed, the

growing body of evidence from recent studies calls for refining HSCT

strategies and making individualized treatment decisions based on the

unique clinical course of each patient.

We acknowledge the limitations of our study. Given the rarity of

the disease and the limited sample size, the broader applicability of our

results may be constrained. Additionally, the fact that patients were

referred from multiple centers introduces potential challenges, such as

missing data, and combined with the patients’ age and disease severity,

this restricted the availability of biological samples prior to HSCT.

Furthermore, longitudinal follow-up was not always manageable.

Despite these limitations, our study provides valuable insights into

the genetic diversity and clinical spectrum of WAS in the Brazilian

population, contributing to a better understanding of the disease.

In conclusion, this study provides the first comprehensive

exploration of the genetic and clinical features of WAS in the

Brazilian population, significantly expanding our understanding of

this rare and complex disorder. By identifying ten novel mutations

in the WAS gene, we contribute to the growing body of knowledge

regarding the genetic diversity and phenotypic spectrum of WAS,

highlighting the importance of early molecular diagnosis,

particularly for atypical or milder presentations. Our findings

emphasize that WAS is a multifaceted disease with clinical

manifestations that do not always correlate directly with the

genotype, making accurate diagnosis and timely treatment crucial.
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