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Transcriptomic insights into the
mechanism of action of
telomere-related biomarkers in
rheumatoid arthritis
Lijuan Feng1†, Kaiyong Bai2†, Limeng He1, Hao Wang1*

and Wei Zhang1*

1Department of Nuclear Medicine, Sichuan Provincial People’s Hospital, University of Electronic
Science and Technology of China, Chengdu, Sichuan, China, 2Department of Nuclear Medicine, The
First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
Background: Rheumatoid arthritis (RA) is an autoimmune inflammatory disease.

The mechanism by which telomeres are involved in the development of RA

remains unclear. This study aimed to investigate the relationship between RA

and telomeres.

Methods: In this study, we identified differentially expressed genes (DEGs)

between RA and control samples by analyzing transcriptome data from a

public database. Candidate genes were determined through the intersection of

DEGs and telomere-related genes. Biomarkers were subsequently identified

using machine learning algorithms, receiver operating characteristic analysis,

and expression level comparisons between RA and control samples. Additionally,

a nomogrammodel was employed to predict the diagnostic ability of biomarkers

for RA. Subsequently, the potential mechanisms of these biomarkers in RA were

further explored using gene set enrichment analysis (GSEA), subcellular

localization, chromosome localization, immune infiltration, functional analysis,

molecular regulatory networks, drug prediction, and molecular docking.

Furthermore, the expression of biomarkers between RA and control samples

was validated through in vitro experiments.

Results: ABCC4, S100A8, VAMP2, PIM2, and ISG20 were identified as biomarkers.

These biomarkers demonstrated excellent diagnostic ability for RA through a

nomogram. Most of the biomarkers were found to be enriched in processes

related to allograft rejection and the cell cycle. Subcellular and chromosomal

localization analyses indicated that ABCC4 is localized to the plasma membrane,

ISG20 to the mitochondria, PIM2 and S100A8 to the cytoplasm, and VAMP2 to

the nucleus. Additionally, nine differential immune cells were identified between

RA and control samples, with a strong correlation observed between the

biomarkers and activated CD4 memory T cells. S100A8, PIM2, and VAMP2

exhibited high similarity to other biomarkers. Furthermore, three transcription

factors (TFs), 121 microRNAs (miRNAs), and six long non-coding RNAs (lncRNAs)

were identified as targeted biomarkers. Five drugs—methotrexate, adefovir,

furosemide, azathioprine, and cefmetazole—were also identified as targeted

biomarkers. Notably, ABCC4 interacted with all five drugs and exhibited the

strongest binding energy with methotrexate. The results of the in vitro
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expe r imen t s we re cons i s t en t w i th those ob ta i ned f rom the

bioinformatics analysis.

Conclusion: This study identified five biomarkers—ABCC4, S100A8, VAMP2,

PIM2, and ISG20—and offered new insights into potential therapeutic strategies

for RA.
KEYWORDS

rheumatoid arthritis, autoimmune diseases, telomeres, biomarkers, bioinformatics
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1 Introduction

Rheumatoid arthritis (RA) is a chronic, autoimmune

inflammatory disease typically characterized by persistent

morning stiffness, joint pain, and swelling (1). Severe cases can

lead to destruction of articular cartilage and bone (1). Currently, the

global prevalence of RA has risen to 1.3 percent (2). The etiology

and pathogenesis of RA are complex (3), involving a series of

inflammatory responses in tissues triggered by a combination of

genetic, infectious, and environmental factors (4). The diagnosis of

RA primarily relies on clinical symptoms and physical signs, as well

as laboratory and imaging examinations (5, 6). Consequently, early,

atypical, or inactive RA can easily be overlooked (7). The

therapeutic approach for RA involves disease-modifying

antirheumatic drugs, nonsteroidal anti-inflammatory drugs

(NSAIDs), and biologics (8). Although NSAIDs can alleviate pain

and morning stiffness associated with RA, reduce inflammation,

and prevent disease progression, their efficacy is often limited.

Additionally, NSAIDs may pose risks of gastrointestinal and

cardiac toxicity (9). Therefore, further exploration of the specific

etiology, regulatory molecules, and underlying mechanisms of RA

was essential for improving prevention and treatment strategies.

Telomeres are protein-DNA complexes at the ends of linear

chromosomes in eukaryotic cells, which protect chromosome ends

from illegitimate ligation and resection (10). Telomerase, a

ribonucleoprotein enzyme composed of an RNA template and a

catalytic protein, counteracts telomere shortening by synthesizing

telomeric DNA (11). Leukocyte telomere length in peripheral blood

not only reflects telomere length in other tissues but also indicates

the senescent state of immune-related cells in the circulating

immune system (12, 13). In recent years, the role of telomere

length, telomerase, and its associated protein complexes in the

pathophysiology of autoimmune diseases has become a research

hotspot (14, 15). Multiple studies have demonstrated that telomere

shortening is associated with an increased risk of RA (16). Another

meta-analysis revealed that telomere length in RA patients is

significantly shorter than that in healthy controls. Telomere

shortening was often correlated with increased oxidative stress
02
and an exaggerated inflammatory response, both of which were

critical factors in the progression of RA (17). Research also indicates

that defects in telomerase activity can lead to accelerated telomere

attrition in T-cells, triggering immune dysfunction in RA (15). This

dysfunction may exacerbate autoimmune responses and increase

disease severity. However, the relationship between telomeres and

the onset of RA remains incompletely understood. Therefore,

further investigation into telomeres was expected to provide new

insights into the pathophysiology of RA and offer potential

pathways for its treatment.

In this study, we screened and identified telomere-related genes

(TRGs) associated with RA using public datasets. Machine learning

techniques were employed to identify biomarkers of TRGs in RA,

followed by bioinformatics analyses, including Gene Set Enrichment

Analysis (GSEA), immune infiltration analysis, and molecular

regulatory network analysis. Additionally, we validated the

expression differences of these biomarkers between RA and control

samples through reverse transcription quantitative PCR (RT-qPCR).

This study aims to analyze, screen, and validate the biomarkers of

TRGs associated with RA to enhance the understanding of the

pathophysiology of RA and provide evidence for the development

of new diagnostic or drug treatment targets.
2 Materials and methods

2.1 Data collection

The transcriptome data of RA (GSE89408 and GSE55235) were

downloaded from the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo/). GSE89408 (GPL11154) was

the training set, including 150 RA tissue samples and 28 control

tissue samples; the remaining samples need to be eliminated.

GSE55235 (GPL96) was the validation set, including 10 RA tissue

samples and 10 control tissue samples; the remaining samples also

need to be eliminated. The 2,086 TRGs were downloaded from the

TelNet database (http://www.cancertelsys.org/telnet/) (18)

(Supplementary Table 1).
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2.2 Identification of differentially expressed
genes

The DEGs between RA and control samples in GSE89408 were

obtained via the “DESeq2” package (v 1.42.0) (19) (RA vs. control;adj.P

< 0.05, |log2FC| > 1). The DEGs were displayed by volcano plot and heat

plot. According to the log2FC value, the volcano plot displayed DEGs

via the “ggplot2” package (v 3.5.1) (20), with the top 10 up/down-

regulated genes marked, and the heat plot displayed DEGs between RA

and control samples via the “pheatmap” package (v 1.0.12) (21).
2.3 Identification and function of candidate
genes

The candidate genes were obtained by the intersection of DEGs

and TRGs via the “ggvenn” package (v 0.1.10) (22). The GO and

KEGGwere employed to analyze the pathways and biological functions

involved in candidate genes via the “clusterProfiler” package (v 4.10.1)

(23) (adj.P < 0.05). GO analysis included biological processes (BP),

molecular function (MF), and cellular components (CC). According to

the P-values, which were sorted from smallest to largest, the top 10

pathways of GO analysis and the top 10 pathways of KEGG analysis

results were displayed via the “ggplot2” package (v 3.5.1).
2.4 Gene interaction at the protein level

The PPI network of candidate genes was constructed to explore

candidate gene interactions at the protein level via the STRING

database (https://string-db.org/). The confidence degree was greater

than 0.7. The result was shown via Cytoscape (v 3.10.2) (24).
2.5 Machine learning

The LASSO algorithm and SVM-RFE algorithm were used for

further gene screening based on candidate genes, respectively. In

GSE89408, the “glmnet” package (v 4.1-8) (25) was performed with

the LASSO algorithm to screen candidate genes according to the

minimum lambda value. The “e1071” package (v 1.7-14) (26) was

also performed by the SVM-RFE algorithm to screen candidate

genes based on error rate and accuracy; the genes output at the

lowest error rate were used for subsequent analysis. The genes

obtained by the 2 algorithms were intersected to obtain core genes

via the “ggvenn” package (v 0.1.10).
2.6 Receiver Operating Characteristic
(ROC) analysis and gene expression level
verification

ROC analysis and expression level verification were employed

to obtain biomarkers. In all samples of GSE89408 and GSE55235,
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ROC analysis was performed to explore the ability of core genes to

distinguish RA from control samples via the “pROC” package (v

1.18.5) (27). An AUC value greater than 0.7 indicated that genes

had excellent diagnostic ability. The genes passed ROC analysis

were candidate biomarkers. In all samples of GSE89408 and

GSE55235, expression level verification was performed to explore

the expression difference and tendency of candidate biomarkers in

RA and control samples. The expression difference between RA and

control samples was performed via the Wilcoxon test (P < 0.05).

Genes with significant differences between RA and control samples,

along with and consistent expression trends in both training and

validation sets, were regarded as biomarkers.
2.7 Construction of nomogram

The nomogram was employed to explore the ability of

biomarkers to predict the incidence of RA. In all samples of

GSE89408, the nomogram was constructed based on biomarkers

via the “rms” package (v 6.8-1) (28). According to the nomogram,

biomarkers were pointed separately; each biomarker corresponded

to a point, and the points of each biomarker were added together to

correspond to the total points. The higher the total points, the

higher the risk of RA. The ROC curve was created via the “pROC”

package (v 1.18.5), the calibration curve via the “rms” package (v

6.8-1), and the decision curve via the “rmda” package (v 1.6) (29) to

evaluate the accuracy of the nomogram. AUC > 0.7, calibration

curve slope close to 1, and net benefit > 0 indicated the nomogram

was accurate.
2.8 Gene Set Enrichment Analysis

GSEA was employed to explore the biological functions of

biomarkers for RA. The reference set was “c2.cp.kegg.v7.4.symbols.gmt”

based on the Molecular Signatures Database via the “clusterProfiler”

package (v 4.10.1) (http://www.gseamsigdb). In all RA and control

samples of GSE89408, the Spearman correlation analysis between

each biomarker and all the remaining genes was performed via the

“psych” package (v 2.4.3) (30). After the correlation coefficients

were ranked from greatest to smallest, GSEA was performed, and

the first 5 pathways were presented via the “enrichplot” package (v

1.22.0) (31) (P < 0.05).
2.9 Subcellular and chromosome
localization analyses

Subcellular and chromosome localization analyses were

employed to explore the distribution of biomarkers in protein

subcells and chromosomes. Subcell localization was predicted by

the CELLO v.2.5 database (http://cello.life.nctu.edu.tw/).

Chromosome localization was performed by the “RCircos”

package (v 1.2.2) (32).
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2.10 Immune infiltration analysis

Immune infiltration analysis was performed to explore the

immune cell infiltration in RA. In all samples of GSE89408, the

infiltration abundance of 22 immune cells (33) between RA and

control samples was performed through the CIBERSORT algorithm

and displayed through the “ggplot2” package (v 3.5.1) (P < 0.05). To

obtain differential immune cells between RA and control samples,

the Wilcoxon test was performed, and the result was shown via the

“ggplot2” package (v 3.5.1) (P < 0.05). Spearman correlation

analysis was employed to explore the correlation between

biomarkers and differential immune cells via the “psych” package

(v 2.4.3) (|correlation (cor)| > 0.3, P < 0.05); the result was presented

via the “pheatmap” package (v 1.0.12) and the “ggpubr” package (v

0.6.0) (34).
2.11 GeneMANIA and Friends analysis

GeneMANIA and Friends analysis were employed to explore

the interaction between proteins encoded by biomarkers and other

proteins with related roles and functional similarities between

biomarkers and other genes. GeneMANIA was performed by the

GeneMANIA database (http://www.genemania.org/). Friends

analysis was performed by the “GOSemSim” package (v

2.33.0) (35).
2.12 Construction of molecular regulatory
network

The molecular regulatory network was employed to explore the

regulatory relationship between biomarkers and regulatory molecules

composed of transcription factors (TFs), miRNAs, and lncRNAs. The

TFs-targeted biomarkers were predicted by the TRRUST database

(https://www.grnpedia.org/trrust/). The miRNA-targeted biomarkers

were predicted by the miRmap database (https://mirmap.ezlab.org/

), the DIANA-microT database (http://diana.imis.athena-

innovation.gr/DianaTools/index.php), and the TargetScan

database (http://www.targetscan.org/). The key miRNAs were

obtained by the intersection of 3 databases’ results for subsequent

analysis. The lncRNAs based on the key miRNAs were predicted by

the miRNet database (https://www.mirnet.ca/), the starBase

database (http://starbase.sysu.edu.cn/), and the LncBase v.2

database (https://dianalab.e-ce.uth.gr/html/diana/web/index.php?

r=lncbasev2). The TF-mRNA and mRNA-miRNA-lncRNA

regulatory networks were presented via Cytoscape (v 3.10.2).
2.13 Drug prediction and molecular
docking

To obtain potential drugs targeting biomarkers, the DGIdb

database (https://www.dgidb.org/), the CTD database (https://
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ctdbase.org/), and the DSigDB database (http://dsigdb.tanlab.org/)

were employed to predict drugs. Drugs shared by the 3 databases

were used for subsequent network construction. The drug-

biomarker network was presented via Cytoscape (v 3.10.2).

To explore the binding ability between biomarkers and drugs,

the molecular docking between the biomarkers and the drugs

obtained based on the database was performed. The 3-

dimensional molecular structure formula of the drug was

down loaded f rom the PubChem da taba se (h t tp s : / /

pubchem.ncbi.nlm.nih.gov/). The protein structure of biomarkers

was downloaded from the Protein Data Bank database (http://

www.rcsb.org). AutoDock Vina (v 1.2.5) (36) was employed to

perform molecular docking. The 3 most powerful combinations

were presented by PyMol.
2.14 Clinical sample validation

The biomarker expression difference between the RA and

control samples was verified by RT-qPCR. A total of 5 pairs of

whole blood samples were obtained at Sichuan Provincial People’s

Hospital, University of Electronic Science and Technology of China,

including 5 RA and 5 controls. The informed consent form needed

to be signed and filled out by all participants; approval was obtained

from the institutional review board (No. 2023-287). Firstly, the total

RNA of 5 pairs of whole blood samples was derived by TRIzol

reagent (Ambion, U.S.A.). The RNA concentrations were measured

by the NanoPhotometer N50. Secondly, mRNA was reversely

transcribed into cDNA utilizing the cDNA Synthesis Kit

(Servicebio, Wuhan, China). Finally, the RT-qPCR was

conducted. The reagents, conditions, and primers required for the

experiment were listed in Supplementary Table 2. The expression

levels of biomarkers between RA and control samples were

calculated by 2-DDCt. The internal reference gene was GAPDH,

which was employed to normalize the results.
2.15 Statistical analysis

Bioinformatics analyses were performed utilizing the R

programming language (v 4.3.1). The Wilcoxon test was

performed to compare the differences between 2 groups. P < 0.05

was considered statistically significant. Expression differences

between RA and control samples were measured by t-test in the

RT-qPCR experiment (P < 0.05).
3 Results

3.1 Functional analysis of candidate genes

A total of 5,924 DEGs were obtained in RA, including 2,060 up-

regulated genes and 3,864 down-regulated genes. The volcano plot

labeled the first 10 differentially expressed up/down-regulated genes
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(Figure 1A). The heat plot displayed all differentially expressed up/

down-regulated genes between RA and control groups (Figure 1B).

The 538 candidate genes were obtained by the intersection of DEGs

and TRGs (Figure 1C). GO analysis enriched 706 functions, including

560 BP, 43 CC, and 103 MF (Supplementary Table 3). In GO analysis,

TheMFwas significantly enriched in protein serine kinase activity and

catalytic activity acting on DNA (Figure 1D). The CC significantly

enriched in chromosomal region, nuclear chromosome, and spindle

(Figure 1E). the BP was significantly enriched in telomere

organization, telomere maintenance, and DNA replication

(Figure 1F). KEGG analysis enriched 280 pathways (Supplementary

Table 4), mainly including cell cycle, lysine degradation, and base

excision repair (Figure 1G). The PPI network demonstrated

interactions between candidate genes (Figure 1H).
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3.2 Identification of biomarkers

Next, the 25 genes were obtained by the LASSO algorithm

(lambda. min = 0.005) (Figure 2A), and the 39 genes were obtained

by the SVM-RFE algorithm (Figure 2B), so the 11 core genes were

obtained by the intersection of the LASSO results and SVM-RFE

results (Figure 2C). Whether GSE89408 or GSE55235, the AUC

values of 9 core genes were greater than 0, so 9 core genes were

regarded as candidate biomarkers (Supplementary Figure 1). In

GSE89408, the expression levels of ABCC4, S100A8, PIM2, and

ISG20 in RA samples were significantly higher than those in control

samples, while the expression levels of VAMP2 in RA samples were

significantly lower than those in control samples (Figure 2D). In

GSE55235, the results were consistent with those of GSE89408, so
FIGURE 1

Volcano plot of DEGs between RA and control samples. Red dots represent upregulated genes and green dots represent downregulated genes (A).
Heat map of DEGs between RA and control samples (B). Venn diagram of the intersection of DEGs and TRGs (C). MF of candidate genes in GO
terms, the size of the dots indicates the number of genes enriched with a larger dot indicating higher enrichment, and the color depth indicates the
adj.P value, with darker color signifying a smaller adj.P value, indicating the more significant the enrichment (D). Top 10 CC of DEGs in GO terms (E).
Top 10 BP of DEGs in GO terms (F). Top 10 pathways from the KEGG pathways analysis (G). The PPI network of candidate genes indicated the
interactions among the candidate genes (H).
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ABCC4, S100A8, VAMP2, PIM2, and ISG20 were considered

biomarkers for subsequent analysis (Figure 2E).
3.3 Nomogram model analysis for RA

The nomogram model constructed by biomarkers indicated

biomarkers had a diagnostic ability for RA (Figure 3A). The AUC

value was 0.999, so the model had an excellent ability to predict the

incidence rate for RA (Figure 3B). The calibration curve coincided

with the ideal curve, so the nomogram had excellent diagnostic

ability (Figure 3C). The net benefit of the nomogram model was

greater than those of any single biomarker, so the nomogram model

had an excellent clinical effect (Figure 3D).
3.4 Enrichment pathway of biomarkers

According to GSEA, ABCC4 significantly enriched 38

pathways, including cell cycle, RNA degradation, and systemic

lupus erythematosus (Figure 4A, Supplementary Table 5). ISG20

significantly enriched 63 pathways, including graft versus host

disease, allograft rejection, and cell cycle (Figure 4B,

Supplementary Table 6). PIM2 significantly enriched 58

pathways, including cell cycle, circadian rhythm mammal, and

gap junction (Figure 4C, Supplementary Table 7). S100A8

significantly enriched 54 pathways, including systemic lupus

erythematosus, cell cycle, and allograft rejection (Figure 4D,

Supplementary Table 8). VAMP2 significantly enriched 33

pathways, including allograft rejection, type I diabetes mellitus,

and protein export (Figure 4E, Supplementary Table 9). In
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conclusion, most of the biomarkers were enriched in allograft

rejection and cell cycle.
3.5 Distribution of biomarkers in subcells
and chromosomes

According to subcellular localization analysis, ABCC4 was

highly expressed on the plasma membrane, ISG20 was highly

expressed in the mitochondria, PIM2 and S100A8 were highly

expressed in the cytoplasm, and VAMP2 was highly expressed in

the nucleus (Figures 5A–E). According to the distribution plot of

biomarkers on chromosomes, S100A8 was distributed on

chromosome 1, ABCC4 was distributed on chromosome 13,

ISG20 was distributed on chromosome 15, VAMP2 was

distributed on chromosome 17, and PIM2 was distributed on

chromosome X (Figure 5F).
3.6 Immune cell analysis

The abundance of 22 types of immune cells in RA and control

samples was displayed by the CIBERSORT algorithm (Figure 6A).

There were significant differences in 9 immune cells between RA

and control samples, including M1 macrophages, M2 macrophages,

resting mast cells, neutrophils, activated natural killer (NK) cells,

plasma cells, activated CD4 memory T cells, delta gamma T cells,

and regulatory T cells (Figure 6B). ABCC4 was positively correlated

with activated CD4 memory T cells (cor = 0.40, P < 0.001) and

negatively correlated with M2 macrophages (cor = -0.24, P < 0.001)

(Figure 6C, Supplementary Table 9). ISG20 was positively
FIGURE 2

The screening of candidate genes by the LASSO algorithm (A) and the SVM-RFE algorithm (B). The Venn diagram presents the core genes shared by
LASSO and SVM-RFE (C). The expression levels of core genes between RA and control samples in training (D) and validation (E) sets. *P < 0.05; **P <
0.01; ***P < 0.001; ****P < 0.0001; ns, no significance.
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correlated with activated CD4 memory T cells (cor = 0.66, P <

0.001) and negatively correlated with M2 macrophages (cor = -0.61,

P < 0.001) (Figure 6D, Supplementary Table 10). PIM2 was

positively correlated with plasma cells (cor = 0.69, P < 0.001) and

negatively correlated with M2 macrophages (cor = -0.52, P < 0.001)

(Figure 6E, Supplementary Table 10). S100A8 was positively

correlated with neutrophils (cor = 0.30, P < 0.001) and negatively

correlated with resting mast cells (cor = -0.52, P < 0.001) (Figure 6F,

Supplementary Table 10). VAMP2 was positively correlated with

resting mast cells (cor = 0.33, P < 0.001) and negatively correlated

with activated CD4 memory T cells (cor = -0.37, P < 0.001)

(Figure 6G, Supplementary Table 10).
3.7 Functional analysis of biomarkers

Co-expression networks of biomarkers and other genes were

mainly involved in physical interactions, co-expression, predicted,

co-localization, genetic, interactions pathways, and shared protein

domains (Figure 7A). The functional similarity scores between

S100A8, PIM2, VAMP2, and other biomarkers were greater than

0.4, indicating high functional similarity (Figure 7B). The 3 TFs

were targeted biomarkers, including USF1, SP1, and NR1H4
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(Figure 7C). The 121 miRNAs and 6 lncRNAs were obtained

from the database; VAMP2 targeted more miRNAs and

lncRNAs (Figure 7D).
3.8 Binding energy analysis of biomarkers
and drugs

The 5 drugs were predicted by the database, including

methotrexate, adefovir, furosemide, azathioprine, and cefmetazole

(Figure 8A). ABCC4 interacted with all drugs (Figure 8B). ABCC4

had the strongest binding energy with methotrexate (Figure 8C).

The binding energy of ABCC4 and methotrexate was -6.80 kcal/

mol, the binding energy of S100A8 and methotrexate was -6.60

kcal/mol, and the binding energy of ABCC4 and azathioprine was

-6.50 kcal/mol (Figures 8D–F).
3.9 RT-qPCR results

The expression levels of S100A8, PIM2, and ISG20 in RA

samples were significantly higher than those in the control

samples (P < 0.05). Although the expression level of ABCC4 in
FIGURE 3

Nomogram of biomarkers (A). A ROC curve of the nomogram (B). Calibration curves evaluating the predictive ability of the nomogram (C). DCA is
evaluating the predictive ability of the biomarkers and the nomogram (D).
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RA samples was higher than that in the control samples, the

difference was not significant. Similarly, the expression of VAMP2

in RA samples was lower than that in the control samples, but the

result was also not significant (Figure 9). Compared with the

bioinformatics analysis results, the expression of biomarkers in in

vitro experiments was consistent with the results, which increased

the reliability of bioinformatics analysis results.
4 Discussion

RA is a chronic inflammatory disease with multiple

comorbidities, characterized by synovial hyperplasia, often leading

to irreversible joint erosion and disability (37). Telomere length

shortening has been observed in various diseases, including RA.

Studies have reported premature telomere shortening in

lymphocytes and hematopoietic stem cells of RA patients

compared to healthy controls, which may be associated with

immunosenescence (38). Other research has detected shorter
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telomere lengths and increased oxidative stress in peripheral

blood cells of RA patients (39). However, the relationship

between telomeres and the development of RA is not fully

understood. Studying telomeres may lead to new insights into the

pathophysiology of RA and provide ideas for RA treatment.

In this study, we conducted differential gene analysis on

transcriptome data from RA patients and control samples,

identifying a total of 5,924 DEGs, including 2,060 upregulated

and 3,864 downregulated genes. By intersecting the DEGs with

TRGs, we obtained 538 candidate genes. Through PPI network

analysis, GO enrichment analysis, and KEGG pathway enrichment

analysis, we deeply explored the biological functions and related

pathways of these candidate genes. Subsequently, using machine

learning methods, we selected 11 core genes related to RA and

finally identified five biomarkers (ABCC4, S100A8, VAMP2, PIM2,

and ISG20) through expression verification and ROC analysis. The

nomogram constructed based on these biomarkers showed high

accuracy and clinical benefit in predicting RA. GSEA revealed that

most biomarkers were enriched in pathways related to allograft
FIGURE 4

The GSEA of the biomarkers. The top 5 GSEA-enriched pathways of ABCC4 (A), ISG20 (B), PIM2 (C), S100A8 (D), and VAMP2 (E).
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rejection and the cell cycle. Additionally, transcription factor

regulatory network and molecular regulatory network analyses

were conducted to understand the regulatory relationships among

biomarkers. Subcellular and chromosomal localization analyses

revealed that ABCC4 was localized to the plasma membrane,

ISG20 to mitochondria, PIM2 and S100A8 to the cytoplasm, and

VAMP2 to the nucleus. Immune infiltration analysis identified nine

differentially abundant immune cell types, with most biomarkers

significantly correlated with CD4 memory T cells. Functional

analyses utilizing GeneMANIA, Friends, and molecular regulatory

networks provided further insights into the roles of the biomarkers.

Finally, drug prediction identified five drugs interacting with the

biomarkers. Binding energy analysis revealed strong binding affinity

between ABCC4, S100A8, and ISG20 with methotrexate. The

results of the in vitro experiment were consistent with those of

the bioinformatics analyses, thereby validating the reliability of the

bioinformatics analysis results. Compared to the control samples,

the expression levels of S100A8, PIM2, and ISG20 were significantly

elevated in RA samples, while no significant differences were

observed in the expression levels of ABCC4 and VAMP2, which

may be attributed to inter-sample heterogeneity.

S100A8, also known as a subunit of calprotectin, is a member of

the S100 protein family and is expressed in the cytoplasm and

nucleus of various cells, predominantly localized in the cytoplasm

(40). S100A8 is involved in regulating cell cycle progression and

differentiation, and it plays a key role in innate immune activation.

Elevated levels of calprotectin have been observed in the synovial

fluid, plasma, and serum of patients with RA (41). Recent studies

indicate that calprotectin can serve as a biomarker for RA,

correlating more effectively with active inflammatory disease than

traditional acute phase reactants (42). S100A8 proteins were
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significantly elevated during persistent inflammation, suggesting

their potential as biomarkers of disease activity. Inhibition of

S100A8 has been shown to ameliorate severe inflammation (43),

indicating that the S100A8 protein may be a viable therapeutic

target for RA patients. In addition, S100A8 was found to promote

oxidative stress by regulating neutrophil chemotaxis and activation,

leading to telomere damage in hepatocytes, which accelerated the

progression of liver disease and the formation of hepatocellular

carcinoma (44). Therefore, we hypothesize that the mechanism of

action between S100A8 and telomere damage may similarly affect

the onset and progression of RA.

ISG20 was an RNA exonuclease that belongs to the yeast RNA

exonuclease 4 homolog subfamily. It may affect telomere repair and

maintenance by regulating RNA degradation and the stability of

gene expression. Through its exonuclease activity, ISG20 can

degrade viral RNA, thereby inhibiting viral proliferation (45). It

plays a significant role in the antiviral innate immune response of

host cells (46). In addition, studies have shown that the expression

of ISG20 in synovial macrophages of RA patients is significantly

higher than that in the control group (47), which is consistent with

the findings of this study. Therefore, ISG20 is expected to serve as a

potential biomarker and therapeutic target for RA.

ABCC4, an ATP-binding cassette (ABC) transporter, is

primarily responsible for ATP binding and hydrolysis, as well as

substrate recognition and transport (48). It plays a crucial role in

maintaining intracellular and extracellular balances of drugs and

chemicals, participating in multidrug resistance and detoxification

processes, and is capable of transporting organic anions and other

molecules (49). Inhibition of ABCC4 suppresses the extracellular

transport of cAMP and enhances intracellular PKA activity,

downstream gene expression, and glucocorticoid-induced anti-
FIGURE 5

Subcellular localization analysis of ABCC4 (A), ISG20 (B), PIM2 (C), S100A8 (D), and VAMP2 (E). Chromosomal localization analysis of biomarkers (F).
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inflammatory responses (50). Hence, future research efforts can be

focused on identifying drug targets capable of inhibiting ABCC4

expression, aiming to enhance the efficacy of anti-inflammatory

drugs in the treatment of RA.

VAMP2, also known as synaptobrevin2, is the prototypical v-

SNARE. The v-SNARE consists of a family of proteins known as

VAMPs, which were located on the surface of SVs at nerve

terminals. Notable homologous VAMP isoforms include VAMP1,

VAMP2, VAMP3, VAMP4, VAMP7, and VAMP8 (51). VAMP2

has a well-characterized and conserved role in synaptic function,

primarily involved in the assembly of effective SNARE complexes,
Frontiers in Immunology 10
Ca2+-dependent exocytosis of synaptic vesicles, and rapid

endocytosis at hippocampal synapses (51). VAMP2 is a core

component of the SNARE complex. Strong immunoreactivity of

VAMP2 has been observed in vesicular glutamate transporter-

immunoreactive reticulated nerve endings (52). Although there is

currently no direct evidence linking VAMP2 to RA, considering

that RA patients often suffer from neuropathy and pain symptoms,

the immunoreactivity of VAMP2 at nerve endings and its critical

role in synaptic vesicle trafficking suggest a possible association with

the neuropathological mechanisms of RA. Specifically, VAMP2

may indirectly contribute to pain perception and inflammatory
FIGURE 6

Immune cell abundance histogram of 22 immune cells in the RA and control samples (A). Box plot of differences in immune cell infiltration between
RA and control samples (B). Correlation between ABCC4 (C), ISG20 (D), PIM2 (E), S100A8 (F), VAMP2 (G), and differential immune cells in RA. *P <
0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; ns, no significance.
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responses in RA by influencing signal transduction and immune

reactions at nerve endings. Therefore, exploring the specific

mechanism of VAMP2’s role in RA neuropathy and investigating

its potential as a therapeutic target is of great significance.

PIM2, a proto-oncogene belonging to the serine/threonine

kinase family, was implicated in various intracellular signaling

processes that influence cell growth and division, promoting cell

survival and proliferation (53). This function potentially contributes

to preventing premature telomere damage, thereby playing a crucial

role in maintaining telomere stability. PIM2 also affects the

expression of IL-6, a cytokine central to the pathogenesis of RA.

The overexpression of PIM2 has been shown to enhance IL-1b- and
TNF-a-induced IL-6 expression (54). In summary, these genes were

directly or indirectly related to inflammatory responses, cell

proliferation, and immune regulation in RA; thus, they were

promising as biomarkers and therapeutic targets for RA.

Most biomarkers were found to be enriched in the contexts of

allograft rejection and the cell cycle. Kimura et al. were the first to

propose the significant role of allograft inflammatory factor-1 (AIF-

1) in the development and progression of RA (55). The expression

of AIF-1 was significantly elevated in infiltrating mononuclear cells

and synovial fibroblasts from RA patients (56). AIF-1 induced the
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proliferation of cultured synovial cells, and the production of IL-6

by synovial fibroblasts and blood monocytes increased following

AIF-1 stimulation (55). Research indicates that AIF-1, functioning

as a cytokine, demonstrates early and sustained expression in

chronically rejected allogeneic heart grafts while remaining

unexpressed in both the heart graft and the host heart. AIF-1

may serve as a predictor for allograft rejection and is associated with

a lower risk of rejection (57, 58). It is widely accepted that the

overproliferation and decreased apoptosis of fibroblast-like

synoviocytes can contribute to synovial hyperplasia. Studies have

shown that inhibiting G1/S cell cycle progression can suppress the

proliferation of fibroblast-like synoviocytes in adjuvant-induced

arthritis (59, 60). This suggests that biomarkers, by modulating

pathways such as allograft rejection and the cell cycle, may provide

new paradigms for the treatment of RA. Therefore, further research

is warranted to elucidate the specific mechanisms through which

biomarkers regulate RA via pathways involving allograft rejection

and the cell cycle.

Multiple immune cells infiltrate the local joint microenvironment,

collaborating to promote the progression of RA. The results of

immune infiltration identified nine differentially expressed immune

cell types between RA patients and control subjects. Correlation
FIGURE 7

Co-expression networks of biomarkers (A). Functional similarity analysis of biomarkers (B). The molecular regulatory network between biomarkers
and TFs (C). mRNA-miRNA-lncRNA regulatory network of biomarkers (D).
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analysis revealed that most biomarkers were significantly associated

with activated CD4 memory T cells. T cells were key pathogenic

drivers of RA autoantibody production and were essential for

synoviocyte proliferation, neoangiogenesis, and the erosion of

cartilage and bone (61). Memory CD4 T cells were particularly
Frontiers in Immunology 12
important in the context of autoimmune diseases due to their long-

lived nature, effective response to antigens, and unique capacity to

mediate recurrent autoimmune responses (62). Genetic risk loci

associated with RA were preferentially mapped to enhancers and

promoters that were active in CD4 T cell subsets (63). Aberrant
FIGURE 8

Venn diagram of the intersection of the drugs in the DGIdb, CTD, and DSigDB databases (A). Biomarkers-drug interaction network (B). Binding
energy of molecular docking between drugs and biomarkers (C). Molecular docking between ABCC4 and methotrexate (D), molecular docking
between S100A8 and methotrexate (E), and molecular docking between ABCC4 and azathioprine (F). na, not available.
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activation of memory CD4 T cells plays a crucial role in the initiation

and perpetuation of RA. Activated memory CD4 T cells migrating

between the bloodstream and synovium express cytokines and

activation markers that contribute to tissue damage in RA (64).

Therefore, exploring the changes in the immune microenvironment

of RA, especially the abnormal activation and infiltration of memory

CD4 T cells, is of great significance for untangling the pathophysiology

of RA, identifying new therapeutic targets, and developing treatment

strategies based on immunomodulation.

Methotrexate interacts with biomarkers and exhibits the

strongest binding energy. It inhibits several key enzymes involved

in the synthesis pathways of folate, methionine, adenosine, and de

novo nucleotides. As an antifolate drug, it possesses antiproliferative

and anti-inflammatory effects (47). Methotrexate has been
Frontiers in Immunology 13
established as an effective and fast-acting disease-modifying

antirheumatic drug, widely utilized in the treatment of RA.

S100A8, ABCC4, and ISG20 had strong drug interactions with

methotrexate. S100A8 is secreted locally by phagocytes at

inflammatory sites, where it exerts numerous autocrine and

paracrine pro-inflammatory effects on both phagocytes and

endothelium. S100A8, a calcium-binding protein expressed by

neutrophils, is a component of calprotectin. It may play an

important role in assessing the therapeutic efficacy of

methotrexate and disease activity, and it is more closely related to

the therapeutic response to methotrexate (65). Furthermore,

methotrexate, which targets S100A8, when combined with fluid

resuscitation, significantly reduces the transcription level of S100A8

and inflammatory cytokine content in blood, organ damage, and
FIGURE 9

The expression levels of S100A8 (A), PIM2 (B), ISG20 (C), ABCC4 (D), and VAMP2 (E) in RA and control samples by RT-qPCR. *P < 0.05; ns, no significance.
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mortality in severely burned mice (66). ABCC4, recognized as the

first mammalian nucleotide exporter among ABC transporters,

confers cellular resistance to nucleoside analog antiretroviral

drugs (48). ABC transporters play a crucial role in the efflux of

methotrexate from cells, with approximately 80-90% of the

administered methotrexate dose being excreted through urine

within 48 hours, primarily via the ABCC4 transporter during the

first 8–12 hours (67). Although there is currently no direct research

available on the relationship between ISG20 and methotrexate,

future studies can further explore this connection, providing more

insights for the treatment of RA. Azathioprine, a prodrug of 6-

mercaptopurine, is utilized for the treatment of inflammatory

diseases such as RA, systemic lupus erythematosus, and

inflammatory bowel disease. Research indicates that in the

management of patients with severe ANCA-associated vasculitis,

azathioprine exerts an immunosuppressive effect during induction

of remission, thereby lowering S100A8 and subsequently reducing

the risk of recurrence for patients (68). Therefore, we believe that

these biomarkers have the potential to become new targets for RA

treatment, providing new directions for the development of more

effective RA therapeutics.

This study successfully identified biomarkers of TRGs

associated with RA through transcriptome data analysis and

machine learning algorithms and constructed a predictive model

based on these biomarkers. These biomarkers exhibited excellent

performance in the diagnosis of RA and were closely related to key

pathways such as allograft rejection and cell cycle. Moreover,

molecular docking experiments demonstrated strong binding

affinities between ABCC4, S100A8, ISG20, and methotrexate, as

well as other drugs, suggesting that these biomarkers could be

potential targets for the treatment of RA.

However, there were limitations in this study. For instance, the

research findings heavily rely on data quality, algorithm accuracy,

and assumptions made during analysis, which may lead to data

noise, false positives, and false negatives. Additionally, due to the

complexity of the algorithms, the interpretability of the study may

be somewhat limited. Given the complexity and diversity of

biological systems, this study may not have fully untangled the

actual biological processes. In bioinformatics analyses, ABCC4

interacted with methotrexate, adefovir, furosemide, azathioprine,

and cefmetazole, suggesting its potential as a new therapeutic target

for RA. However, in RT-qPCR experiments, although the

expression level of ABCC4 in RA samples was higher than that in

control samples, the difference was not significant. This may be due

to the high heterogeneity of RA patients, coupled with the small

sample size in this study, which did not cover different subgroups of

RA patients, resulting in the masking of gene expression differences.

Therefore, future research should further explore the specific roles

of these biomarkers in the pathophysiology of RA. The diagnostic

and prognostic value of the target can be verified through cellular

experiments, animal models, and techniques such as gene knockout

and overexpression. Its potential as a therapeutic target can be

further evaluated in larger clinical trials. Moreover, an in-depth
Frontiers in Immunology 14
investigation into the relationship between telomere length and key

phenotypes of RA will provide crucial insights for the development

of novel therapeutic strategies. Observing changes in telomerase

activity through the in vitro cultivation of fibroblast-like

synoviocytes from RA patients may offer further support for

research in this field.
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