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Introduction: Herpes Simplex Virus type 2 or HSV-2 is a major cause of genital

herpes, contributing to increased susceptibility to HIV, encephalitis, and other

severe complications. Despite the availability of antiviral therapies such as

acyclovir, their effectiveness is limited due to resistance and side effects,

emphasizing the urgent need for an effective vaccine.

Methods: This study employed reverse vaccinology and immunoinformatics to

design five multivalent, multiepitope mRNA vaccine constructs targeting HSV-2.

Four key viral proteins—Glycoprotein B (gB), Ribonucleoside-diphosphate

Reductase large subunit (RIR1), Infected Cell Protein 0 (ICP0), and VP23—were

selected based on their roles in viral replication and immune evasion. Epitopes for

Cytotoxic T Lymphocytes (CD8+), Helper T Lymphocytes (CD4+), and B cells were

predicted and rigorously filtered for antigenicity, non-toxicity, and cytokine

induction. Vaccine constructs were designed incorporating 50S ribosomal protein,

Human b-defensin 3, and PADRE as adjuvants to enhance immune responses.

Structural validation, molecular docking, codon optimization, and physiochemical

analysis were performed to assess stability and immunogenic potential.

Results: The vaccine constructs demonstrated favorable physiochemical

properties, structural stability, and high antigenicity. Molecular docking

revealed strong binding affinities between the predicted epitopes and their

respective MHC class I and class II alleles. Proteasomal cleavage analysis

confirmed efficient antigen processing, while codon optimization ensured

compatibility with the human translational machinery. Computational immune

simulations predicted a strong humoral and cellular immune response, including

high IgG and IgM levels, robust CD4+ and CD8+ T-cell activation, and

cytokine production.
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Conclusion: The rationally designed multiepitope mRNA vaccine constructs

exhibit strong antigenic potential, structural stability, and immune-stimulatory

properties, positioning them as promising candidates for HSV-2 vaccine

development. These findings offer a novel, safe, and effective approach to

HSV-2 immunization, warranting further experimental validation and

preclinical studies.
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GRAPHICAL ABSTRACT

Schematic representation of the in silico workflow used for designing multivalent, multiepitope mRNA vaccines (MMEV) against HSV -2.
1 Introduction

Herpes Simplex Virus type 2 (HSV-2), also known as Human

alphaherpesvirus 2 (HHV-2), is a double-stranded DNA virus

belonging to the family Orthoherpesviridae (1). It is a leading

cause of sexually transmitted infections, including genital herpes,

herpes stromal keratitis, encephalitis, and meningitis. Beyond its

direct clinical impact, HSV-2 poses significant public health

challenges by tripling the risk of HIV acquisition and conferring
02
resistance to antiretroviral therapy recommended by the World

Health Organization (WHO) (2). Moreover, HSV-2 infection

increases transmissibility to sexual partners and neonates,

amplifying its societal burden (3). According to WHO estimates,

approximately 491.5 million individuals aged 15 to 49 were living

with HSV-2 globally in 2016, reflecting the widespread prevalence

and enduring threat of this virus (4, 5).

The current treatment landscape relies heavily on antiviral agents

such as acyclovir and its prodrug, valacyclovir, which are
frontiersin.org
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deoxynucleoside analogs effective against HSV-2 in immunocompetent

individuals. However, the emergence of acyclovir-resistant HSV strains,

particularly in immunocompromised populations like those living with

HIV, undermines the efficacy of these treatments (6, 7). Furthermore,

these antivirals are associated with adverse side effects, including nausea,

appetite loss, and neutropenia, and they fail to prevent symptomatic

outbreaks or asymptomatic viral shedding, leading to frequent

recurrences (8, 9). The extensive and prolonged use of these drugs has

further diminished their effectiveness, highlighting the critical need for

alternative strategies, particularly an effective vaccine against HSV-2 (10).

Various vaccine development strategies have been explored for

HSV-2, including live-attenuated, subunit, nucleic acid-based, and

replication-defective virus vaccines; however, none have yet been

licensed for clinical use. While many of these approaches have shown

potential in eliciting immune responses, they face challenges in

achieving durable immunity, complete protection from viral

shedding, and latency reactivation (11). The advent of mRNA

vaccine technology has revolutionized vaccinology, offering a

platform for rapid and safe vaccine development. Since its initial

exploration in 1987 with cationic liposome-basedmRNA transfection

(12), mRNA vaccines have demonstrated remarkable efficacy against

several pathogens, notably with the success of COVID-19 vaccines.

Among the most promising approaches is the design of

multiepitope-based mRNA vaccines, which target multiple antigenic

sites to elicit broad and robust immune responses (13). This strategy is

particularly advantageous for pathogens like HSV-2, which exhibit

high genetic variability and intricate immune evasion mechanisms

(14–16). Compared to single-antigen vaccines, multiepitope vaccines

address the challenges posed by genetic diversity and are safer and

more adaptable. Immunoinformatics has played a pivotal role in

advancing multiepitope vaccine design, enabling the precise

identification and optimization of immunogenic epitopes (17).

In this study, we utilized reverse vaccinology and immunoinformatics

to develop multivalent multiepitope mRNA vaccine candidates

targeting HSV-2. Four viral proteins - Glycoprotein B (gB),

Ribonucleoside-diphosphate Reductase large subunit (RIR1),

Infected Cell Protein 0 (ICP0), and capsid protein VP23 - were

selected for their critical roles in viral replication, immune evasion,

and pathogenesis. Vaccine constructs were designed to incorporate

epitopes from three globally relevant HSV-2 strains: HG52, SD90e,

and S333. The outcomes of this study present promising vaccine

candidates that hold the potential to address the persistent global

burden of HSV-2.
2 Materials and methods

2.1 Sequence retrieval and consensus
sequence generation

Sequences of the HSV-2 viral proteins - gB, RIR1, ICP0, and

VP23 - were obtained from the NCBI Protein database (https://

www.ncbi.nlm.nih.gov/protein/) and UniProt database (https://

www.uniprot.org/) using the accession IDs (Supplementary

Table 1). These sequences were retrieved for three geographically
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diverse HSV-2 strains: HG52 (UK), SD90e (South Africa), and S333

(USA). The consensus sequences for each protein were generated

using the EMBOSS Con tool (https://www.ebi.ac.uk/jdispatcher/

msa/emboss_cons?stype=protein), and these consensus sequences

were subsequently utilized for downstream analyses. The overall

workflow for designing a multivalent multiepitope vaccine against

HSV-2 is illustrated in the Graphical Abstract.
2.2 Prediction and filtration of CD8+

cytotoxic T-lymphocyte epitopes

CTL epitopes were predicted using the Immune Epitope Database

and Analysis Resource (IEDB; https://www.iedb.org/). The MHC-I

binding tool (http://tools.iedb.org/mhci/) was employed to predict

epitopes, using the NetMHCpan-4.1 EL and NetMHCpan-4.1 BA

server, which applies Artificial Neural Networks (ANNs) trained on

experimental data. The protein sequences, formatted in FASTA,

were analyzed with the human MHC source species, and the full

HLA reference set was used with a 9-mer peptide length. The output

included nine variables: allele, sequence length, core peptide, start

and end positions, IC50 value, percentile rank, and binding score.

This data was saved for further analysis.
2.3 Prediction and filtration of CD4+ helper
T-lymphocyte epitopes

Prediction of MHC class II binding epitopes was performed

similarly to the MHC class I analysis. The MHC-II binding tool

(http://tools.iedb.org/mhcii/) was used with the NetMHCIIpan-4.1

server as the prediction method. The full HLA allele reference list

was selected, and the peptide length was set to 15-mer. The resulting

dataset included predicted peptides, their binding HLA alleles,

IC50 values, and percentile ranks, analogous to the MHC-I

binding predictions.
2.4 Prediction and filtration of B-cell
epitopes

Linear B-cell epitopes were predicted using the ABCpred server

(http://crdd.osdd.net/raghava/abcpred/). ABCpred utilizes a

combination of Recurrent Neural Networks and Feed-Forward

Neural Networks to predict linear B-cell epitopes (18). The

threshold was set to 0.51, with all other parameters kept at

default settings.
2.5 Filtering the predicted epitopes

The datasets generated from IEDB were imported into R Studio,

where thresholds were applied to identify the most promising

epitopes. For the Eluted Ligands (EL) datasets of both MHC-I

and MHC-II binding predictions, peptides with a percentile rank of
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≤0.5% for MHC-I and ≤2% for MHC-II were selected as strong

binders (SBs). For the Binding Affinity (BA) datasets, epitopes were

further filtered based on allele-specific IC50 cutoff values, with 500

nM set as the threshold for MHC-II alleles. Subsequently, the

filtered EL and BA datasets were merged, identifying common

peptides suitable for vaccine development (19).
2.6 Validation of epitopes for antigenicity,
allergenicity, toxicity and cytokine
production

All filtered epitopes were first evaluated for antigenicity using the

VaxiJen v2.0 server (https://www.ddg-pharmfac.net/vaxijen/

VaxiJen/VaxiJen.html), which employs an alignment-independent

method to predict antigenicity based on the physiochemical

properties of peptide sequences (20). The epitopes were batch-

submitted in FASTA format with the target organism set to “virus”

and a threshold value of 0.4. Subsequently, allergenicity prediction

was performed using AllerTop v2.0 (https://www.ddg-pharmfac.

net/AllerTOP/), which applies the k-nearest neighbor (kNN)

algorithm for prediction with 85.3% accuracy and five-fold cross-

validation (21).
Frontiers in Immunology 04
To determine whether the sequences were toxic, the ToxinPred

server (https://webs.iiitd.edu.in/raghava/toxinpred/multi_

submit.php) was utilized. Peptides were submitted in FASTA

format using the Support Vector Machine (SVM)-based

prediction method with default parameters. Additionally, the

ability of HTL epitopes to induce IFN-g production was assessed

using the IFNepitope server (http://crdd.osdd.net/raghava/

ifnepitope/predict.php), with sequences submitted in FASTA

format and SVM-based prediction applied. IL4Pred (https://

webs.iiitd.edu.in/raghava/il4pred/multiple_test.php) and IL10Pred

(https://webs.iiitd.edu.in/raghava/il10pred/predict3.php) were also

employed to evaluate the potential of sequences to induce IL-4 and

IL-10 production, respectively. Only epitopes deemed antigenic,

non-allergenic, non-toxic, and capable of inducing cytokine

production were selected as candidates for vaccine construction.
2.7 Assembly of vaccine construct

Epitopes that satisfied the criteria for antigenicity, non-

allergenicity, non-toxicity, and cytokine induction were used to

assemble vaccine constructs using PyCharm. The code for vaccine

assembly is publicly available on GitHub (https://github.com/
FIGURE 1

Schematic representation and sequence of the designed vaccine construct. (A) Structural assembly illustrating the arrangement of adjuvants, linkers,
and epitopes. The 50S ribosomal protein and Human b-defensin 3 are positioned at the N-terminal, linked by EAAAK, while the PADRE sequence is
incorporated at the C-terminal. CTL, HTL, and B-cell epitopes are arranged sequentially. A His-tag is included for purification. (B) Final protein
sequences of the top five vaccine constructs.
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Cerberus35/VaxBuilder/tree/main). Three adjuvants were

incorporated: the 50S ribosomal protein from Mycobacterium

tuberculosis (UniProt ID: G8FRW4), Human b-defensin 3

(GIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRK

CCRRKK), and the PADRE sequence (AKFVAAWTLKAAA). The

first two adjuvants were positioned at the N-terminal and linked

using an EAAAK linker, while the PADRE sequence was added to

the C-terminal, also linked via an EAAAK linker. The constructs

were finalized with a His-tag for purification purposes. The epitopes

were arranged from N-terminal to C-terminal in the following

order: CTL, HTL, and B-cell epitopes. The arrangement of the

vaccine constructs is illustrated in Figure 1.
2.8 Analysis of vaccine antigenicity,
allergenicity, toxicity and other
physiological properties

The antigenicity of the vaccine constructs was assessed using

VaxiJen v2.0, allergenicity was evaluated with AllerTop v2.0, and

toxicity was predicted using ToxinPred, as described earlier. The

sequences, in plain format, were then analyzed for physiochemical

properties using the ExpasyProtParam tool (https://web.expasy.org/

protparam/). Solubility predictions were conducted using the

SOLpro server within the SCRATCH protein prediction suite

(https : / /scratch.proteomics . ics .uci .edu/) . SOLpro is a

computational tool designed to estimate the likelihood of a

protein being soluble upon overexpression in Escherichia coli

solely based on its primary sequence. This tool employs a two-tier

machine learning approach utilizing SVMs to provide solubility

probabilities and binary classifications (soluble or insoluble) based

solely on primary sequence data (22).
2.9 Discontinuous B-cell epitope prediction

Discontinuous B-cell epitopes, formed as a result of protein

folding, are recognized when residues spatially converge due to

tertiary structure formation. These epitopes were predicted using

the ElliPro server (http://tools.iedb.org/ellipro/), which integrates

Thornton’s method with MODELLER for residue clustering

and Jmol for visualization of epitope data (23). The predictions

provided insights into the immunogenic regions of the folded

vaccine constructs.
2.10 Analysis of proteasomal cleavage,
surface accessibility and glycosylation sites

Proteasomal cleavage sites in the vaccine constructs were predicted

using the NetChop 3.1 server (https://services.healthtech.dtu.dk/

services/NetChop-3.1/), which applies a neural network-based

method to identify cleavage sites critical for the generation of

CTL epitopes (24). To assess the surface accessibility of amino

acids in the vaccine constructs, the NetSurfP 3.0 web server (https://
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services.healthtech.dtu.dk/services/NetSurfP-3.0/) was employed.

This tool utilizes a pre-trained ESM-1b language model for

sequence encoding, offering high-speed and accurate predictions of

relative surface accessibility (RSA) and classification of residues as

either buried or exposed (25). NetNGlyc 1.0 Server was used to

predict N-linked glycosylation sites in the vaccine constructs (https://

services.healthtech.dtu.dk/services/NetNGlyc-1.0/). This tool

identifies Asn-Xaa-Ser/Thr motifs (sequons) and evaluates their

likelihood of glycosylation using an artificial neural network (26),

the constructs were submitted in FASTA format, and predictions

were run with the default threshold of 0.5. These properties were

calculated to better understand the structural characteristics and

immunogenic potential of the vaccine constructs.
2.11 Structure prediction of the assembled
vaccine construct

The secondary structure of the constructed protein was predicted

using PSIPRED (http://bioinf.cs.ucl.ac.uk/psipred/) and SOPMA

(https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/

npsa_sopma.html). For ab initio structure prediction, the sequence

was submitted to the Robetta server (https://robetta.bakerlab.org/),

which employs deep learning methods such as trRosetta and

RoseTTAFold for structure prediction (27, 28). The Robetta

pipeline used the ab initio method, which does not rely on

homology modeling but instead predicts structures based on the

physical properties of atoms. Simultaneously, the AlphaFold server

(https://alphafoldserver.com/) was employed to predict the

structure of the designed vaccine candidates. The models

generated by Robetta and AlphaFold were compared and

analyzed using ChimeraX 1.8 matchmaker, and the model with

the lowest Root Mean Square Deviation (RMSD) value was selected

for further validation.
2.12 Validation of vaccine structure

The structural validation of the predicted protein models was

performed using Ramachandran plots generated by the MOLprobity

server (http://molprobity.biochem.duke.edu/). Additionally, the

ProSA-web server (https://prosa.services.came.sbg.ac.at/prosa.php)

was employed to evaluate the model’s energy profile in comparison

with experimentally validated structures from the Protein Data

Bank (PDB). These steps ensured that the predicted protein

structures were biologically and structurally accurate.
2.13 Codon optimization of the protein
construct and mRNA construct assembly

The protein sequence of the vaccine was reverse-translated and

reverse-transcribed into its corresponding DNA sequence followed

by codon optimization using the GenScript codon adaptation tool

(https://www.genscript.com/tools/gensmart-codon-optimization),
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with the target organism set to human. This step optimized the

codons to match the host organism’s codon usage preference. The

resulting DNA sequence was further analyzed using GenRCA

(https://www.genscript.com/tools/rare-codon-analysis) to calculate

the Codon Adaptation Index (CAI), tRNA Adaptation Index (tAI),

and Effective Number of Codons (ENC).

Following codon adaptation, the DNA sequence was transcribed

into RNA using the Biomodel tool (https://biomodel.uah.es/en/lab/

cybertory/analysis/trans.htm). Manual assembly of the mRNA

vaccine construct included the addition of a 5′ cap 1 structure,

also known as trinucleotide cap1 (5′-cap (m7(3′OMeG)(5′)ppp(5′)
(2′OMeA)pG), to ensure ribosomal recruitment and prevent

mRNA degradation (29). The 5′ untranslated region (UTR) was

derived from the human b-globin (HBB) sequence, retrieved from

the UCSC genome browser (ID: ENST00000335295.4), as it is

known to enhance translation efficiency (30). A Kozak sequence

(5′-GCCACC-3′) was incorporated to further optimize translation

initiation (31).

Downstream of the 5′UTR, the start codon was placed, followed

by the mRNA vaccine coding sequence. The 3′UTR region,

retrieved from GitHub repository (https://github.com/NAalytics/

Assemblies-of-putative-SARS-CoV2-spike-encoding-mRNA-

sequences-for-vaccines-BNT-162b2-and-mRNA-1273), was

included to mimic the design of the Moderna mRNA-1273

COVID-19 vaccine (32). Additionally, a segmented poly(A) tail

was incorporated to enhance mRNA stability (33).
2.14 mRNA secondary structure analysis

The mRNA secondary structure was analyzed using the

RNAFold server (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/

RNAfold.cgi), which predicts the minimum free energy (MFE, DG
in kcal/mol) of RNA structures. Lower MFE values indicate greater

stability of the mRNA structure (34). The mRNA-1273 Moderna

vaccine and Pfizer-BNT 162b2, both of which have demonstrated

efficacy, were used as positive controls to benchmark the MFE

values of the designed mRNA constructs.
2.15 Molecular docking

Peptides were constructed using ChimeraX 1.8 and docked with

their corresponding HLA class receptors. Molecular docking

analyses for the predicted epitopes and their corresponding HLA

alleles were performed using the ClusPro 2.0 server (https://

cluspro.bu.edu), which utilizes rigid-body docking via PIPER (35–

39). The PDB structures of the MHC class I and II HLA alleles –

HLA-A* 02:06 (PDB ID: 3OXR), HLA-DRB1* 04:01 (PDB ID:

5NI9), HLA-B* 57:01 (PDB ID: 5VUF), and HLA-B* 44:03 (PDB

ID: 3DX7) - were retrieved from the Protein Data Bank. Ligands

(epitopes) were constructed and refined using UCSF ChimeraX 1.8

(https://www.cgl.ucsf.edu/chimerax/). Protein-protein interaction

studies between the modeled vaccine constructs and TLR4/MD2
Frontiers in Immunology 06
proteins were also conducted using the ClusPro 2.0 pipeline. The

best-docked structures were further analyzed with ChimeraX 1.8.
2.16 Molecular dynamics simulation

Molecular dynamics (MD) simulations were performed for best

docked pose for C5_2769-TLR4/MD2 complex and C4_2607-TLR2

complex after Molecular Docking using the GROMACS

(GROningen Machine for Chemical Simulations) version 2021.3

simulation package (https://ftp.gromacs.org/gromacs/gromacs-

2021.3.tar.gz) to evaluate the structural behavior and stability of

the vaccine constructs in a biological context (40). Ligand

parameters were derived from the CHARMM General Force Field

server (https://cgenff.com/about/) (41). The systems were solvated

in a cuboid box with an explicit TIP3P water model, maintaining a

margin of 15 Å, and neutralized with Na+ and Cl- counter-ions.

Electrostatic and Van der Waals interactions were calculated with a

long-range cutoff of 12 Å. Following solvation and neutralization,

energy minimization was performed for 50,000 steps to relieve any

steric clashes in the system. Equilibration was conducted at 300 K

under the NVT ensemble for 100 ps, followed by pressure coupling

in the NPT ensemble for 1000 ps. Triplicate 100 ns production

simulations were carried out to capture the dynamics of the system.

Root mean square deviations (RMSD), root mean square

fluctuations (RMSF), and Radius of Gyration (Rg) were analyzed

to understand the structural dynamics. Visualization and analysis of

the simulation trajectories were conducted using VMD and

GROMACS. This analysis provided insights into the dynamic

properties and interactions of the vaccine construct and TLR

complexes under simulated physiological conditions.
2.17 Immune simulation

Immune response simulations were conducted using the C-

ImmSim server (http://c-immsim.iac.rm.cnr.it, alias http://

kraken.iac.rm.cnr.it/C-IMMSIM) to assess the immunogenic

potential of the vaccine constructs. Default parameters were

employed, and the reaction volume was set to 10 mL. The

simulation provided detailed predictions of humoral and cellular

immune responses elicited by the vaccine constructs.
3 Results

3.1 Multiple sequence alignment,
physiochemical analysis and consensus
sequence generation for epitope
prediction

The Multiple Sequence Alignment (MSA) results revealed

approximately 99% similarity among the sequences of the four

proteins - gB, RIR1, ICP0, and VP23 - from the three HSV-2 strains
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(HG52, SD90e, and S333), as determined by the percentage

identity matrix generated through Clustalw. The physiochemical

properties of these four HSV proteins were analyzed using the

ExpasyProtParam tool (Figure 2), and their molecular weights are

presented in Supplementary Table 1. The Grand Average of

Hydropathy (GRAVY) values indicated that Glycoprotein B

(-0.461), RIR1 (-0.309), and ICP0 (-0.461) are hydrophilic, while

VP23 (0.286) is hydrophobic (Figure 2A). The instability index

values were 41.21 for Glycoprotein B, 51.3 for RIR1, 60.46 for ICP0,

and 44.82 for VP23, suggesting that ICP0 and RIR1 are the least

stable (Figure 2B). Antigenicity analysis revealed that Glycoprotein

B had the highest score (0.547), followed closely by ICP0 (0.5352)

and VP23 (0.5346), all indicating strong immunogenic potential. In
Frontiers in Immunology 07
contrast, RIR1 exhibited lower antigenicity with a score of 0.4443

(Figure 2C). The aliphatic index values, which indicate thermal

stability, showed VP23 with the highest value (117.45), followed by

RIR1 (73.8), Glycoprotein B (73.6), and ICP0 (57.22) (Figure 2D).

The extinction coefficient values, which reflect protein

concentration in solution, varied significantly: RIR1 (116200),

Glycoprotein B (95870), ICP0 (58440), and VP23 (15930)

(Figure 2E). The theoretical isoelectric point (pI) values suggested

that Glycoprotein B (8.65) and ICP0 (8.27) are basic, whereas

RIR1 (6.14) and VP23 (5.29) are acidic (Figure 2F). These

findings provide critical insights into the stability, solubility, and

immunogenic properties of these viral proteins, informing their

potential as vaccine candidates.
FIGURE 2

Physiochemical properties of HSV-2 proteins analyzed using ExpasyProtParam. (A) Grand Average of Hydropathy (GRAVY) index values indicate that
Glycoprotein B (-0.461), RIR1 (-0.309), and ICP0 (-0.461) are hydrophilic, whereas VP23 (0.286) is hydrophobic. (B) Instability Index values suggest
that RIR1 (51.3) and ICP0 (60.46) are unstable, while Glycoprotein B (41.21) and VP23 (44.82) exhibit borderline stability. (C) Antigenicity scores reveal
strong immunogenic potential for Glycoprotein B (0.547), ICP0 (0.5352), and VP23 (0.5346), whereas RIR1 (0.4443) has a lower antigenicity score.
(D) Aliphatic index values, indicative of thermostability, show VP23 as the most stable (117.45), followed by RIR1 (73.8), Glycoprotein B (73.6), and
ICP0 (57.22). (E) Extinction coefficient values at 280 nm, reflecting protein concentration, are highest for RIR1 (116200), followed by Glycoprotein B
(95870), ICP0 (58440), and VP23 (15930). (F) Theoretical isoelectric point (pI) values classify Glycoprotein B (8.65) and ICP0 (8.27) as basic proteins,
while RIR1 (6.14) and VP23 (5.29) are acidic.
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3.2 Cytotoxic T lymphocyte epitope
prediction and selection

NetMHCpan 4.1 EL and NetMHCpan 4.1 BA predicted 24,165

epitopes for gB, 20,682 for ICP0, 30,618 for RIR1, and 8,370 for

VP23 (Figure 3A). The datasets were processed in R Studio, where

NetMHCpan 4.1 EL data was filtered to select epitopes with a

percentile rank ≤ 0.5%, identifying strong MHC Class I binders.

Similarly, NetMHCpan 4.1 BA data was refined using IC50 values

specific to each MHC allele (19, 42). After merging the EL and BA

datasets, common epitopes were grouped by their corresponding

alleles and converted into FASTA format using PyCharm. The first

filtering phase identified 447 epitopes for gB, 214 for ICP0, 456 for

RIR1, and 136 for VP23. Further refinement confirmed 103, 102,

148, and 46 epitopes for gB, ICP0, RIR1, and VP23, respectively, as

strong MHC Class I binders (Figure 3A). These epitopes were

subsequently analyzed for antigenicity, allergenicity, and toxicity,

yielding 55 antigenic epitopes for gB, 22 for ICP0, 33 for RIR1, and

16 for VP23 (Supplementary Data 1). For vaccine development, the

top five antigenic epitopes from each protein were selected as final
Frontiers in Immunology 08
CTL candidates. A heatmap was generated to illustrate the

distribution of epitope counts across different MHC Class I alleles

for gB, ICP0, RIR1, and VP23, showcasing the immunodominance

of specific proteins across various MHC alleles (Figure 3B).
3.3 Helper T lymphocyte epitope
prediction and selection

Similarly, NetMHCIIpan 4.1 EL and NetMHCIIpan 4.1 BA

predicted 24,003 epitopes for gB, 20,520 for ICP0, 30,456 for RIR1,

and 8,208 for VP23 (Figure 3C). Data processing in R Studio applied

a percentile rank <2% and IC50 values <500 nM as filtering

thresholds to identify strong MHC Class II binders. After initial

filtering, 145 epitopes were identified for gB, 82 for ICP0, 487 for

RIR1, and 111 for VP23. Merging common epitopes from the EL and

BA datasets resulted in 89, 74, 152, and 52 epitopes for gB, ICP0,

RIR1, and VP23, respectively (Figure 3C). Further evaluations for

antigenicity, allergenicity, toxicity, and cytokine induction (IFN-g,
IL-4, IL-10) narrowed the selection to 36 antigenic epitopes for gB, 28
FIGURE 3

Prediction and selection of MHC-I and MHC-II epitopes for Glycoprotein B, ICP0, RIR1, and VP23. The final epitope set comprises strong binders
common to both EL and BA prediction results. (A) Number of predicted MHC-I epitopes after sequential filtering. (B) Heatmap displaying the
distribution of MHC-I epitopes across different alleles, highlighting immunodominance patterns for each viral protein. (C) Number of predicted
MHC-II epitopes following the selection process. (D) Heatmap illustrating the distribution of MHC-II epitopes across various alleles, depicting relative
binding preferences for each viral protein.
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for ICP0, 42 for RIR1, and 24 for VP23 (Supplementary Data 1). A

heatmap illustrating the distribution of epitope counts across

different MHC Class II alleles for gB, ICP0, RIR1, and VP23

highlights the immunodominance of specific proteins across

various MHC alleles (Figure 3D).
3.4 Linear B-cell epitope prediction and
selection

A total of 91 epitopes for gB, 87 for ICP0, 118 for RIR1, and 33

for VP23 were initially predicted (Supplementary Data 1). These

epitopes were then analyzed for antigenicity, allergenicity, toxicity,

and cytokine induction capabilities (IFN-g, IL-4, IL-10). Only those
that were non-toxic, non-allergenic, antigenic, and positive for all

three cytokines induction were selected. This stringent filtering

resulted in one B-cell epitope for gB, one for ICP0, 12 for RIR1, and

two for VP23 (Supplementary Data 1).
3.5 Discontinuous B-cell epitope
prediction

Discontinuous B-cell epitopes for the five vaccine constructs

(C1_753, C2_2625, C3_735, C4_2607, and C5_2769) were

predicted using the ElliPro server (Figure 4). This tool evaluates

epitopes based on protein structure geometry and residue
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clustering, providing scores indicative of epitope protrusion and

solvent accessibility (Supplementary Data 2). For C1_753, five

epitopes were identified with scores ranging from 0.713 (largest

cluster, 87 residues) to 0.739 (smallest cluster, 7 residues). C2_2625

exhibited six epitopes with scores between 0.718 (largest cluster, 57

residues) and 0.747 (smallest cluster, 3 residues). C3_735 had eight

discontinuous epitopes, with scores from 0.722 (largest cluster, 54

residues) to 0.606 (smallest cluster, 3 residues). C4_2607 yielded six

epitopes, ranging from 0.644 (largest cluster, 92 residues) to 0.587

(smallest cluster, 4 residues). C5_2769 produced seven epitopes

with scores between 0.702 (smallest cluster, 5 residues) and 0.723

(largest cluster, 48 residues). Table 1 highlights the top-scoring

epitopes for each construct, emphasizing geometrically protruding

and accessible regions. Figure 4 presents the 3D representation of

the top-scoring epitopes.
3.6 Population coverage analysis

Population coverage analysis was conducted using the IEDB

population coverage tool (http://tools.iedb.org/population/) for the

selected MHC Class I and Class II epitopes (Figure 5). The global

combined coverage for MHC Class I and II epitopes was 88.64%

(Figure 5A). Europe exhibited the highest coverage at 93.92%, with

an average combined hit of 2.02, indicative of broad epitope

representation. North America followed with 91.63% coverage,

while Central America had the lowest combined coverage at
FIGURE 4

3D representation of top-scoring discontinuous B-cell epitopes in the five vaccine constructs. Predicted epitopes (cyan) were identified using ElliPro,
based on structural protrusion and solvent accessibility. The remaining protein structure, representing the B-cell receptor (BCR), is shown in grey.
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20.04%. For MHC Class I, the global coverage was 80.25%, with

Europe achieving the highest coverage at 88.33%, followed by North

America at 83.8%, and Central America showing the lowest at 4.14%.

For MHC Class II, global coverage stood at 42.5%, with North

America (48.03%) and Europe (47.93%) ranking the highest, whereas

South Africa exhibited the lowest coverage at 5.91% (Figure 5B).
3.7 Construction and physiochemical
analysis of vaccine

Vaccine constructs were assembled using PyCharm, employing

various permutations of selected CTL (Table 2), HTL (Table 3), and

linear B-cell epitopes (Supplementary Data 1), yielding 3,456 designs

(Assembly schematic shown in Figure 1A). All constructs were

evaluated for allergenicity, antigenicity, and toxicity, confirming

that they were non-allergenic, antigenic, and non-toxic. The top

five constructs (Figure 1B), selected based on antigenicity thresholds,

underwent further physiochemical analysis using ExpasyProtParam.

The molecular weight of all five constructs was 41.86 kDa, and the

theoretical pI was calculated to be 9.78, classifying them as basic

proteins. The GRAVY index of -0.259 indicated hydrophilic

properties, suggesting high solubility. The instability index of 34.75

classified the vaccine constructs as stable proteins. These findings

support the feasibility of the selected constructs for further evaluation

and development (Supplementary Data 3).
3.8 High helical content, favorable Z-
scores, and stable energetics indicate
robust vaccine constructs

Following assembly, the vaccines were modelled using the ab

initio method via RosettaFold and AlphaFold (Figure 6, left panel).

Secondary structure prediction via PSIPRED and SOPMA revealed
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high alpha-helical content ranging from 51.51% to 57.76%,

signifying stable, ordered structures (Supplementary Table 2). The

constructs were free of transmembrane helices, signal peptides, and

disordered domains (Figure 7A, Supplementary Data 4). The

tertiary structures of the vaccine constructs were modelled as

previously described, and further analyzed for structural accuracy

(43). Structural validation using MOLprobity confirmed that 98%–

99.5% of residues in all constructs were within the favored

Ramachandran plot regions, with 99.7%–100% in allowed regions

(Figure 6, middle panel). No outliers were found in C2_2625 or

C3_735, while C1_753, C4_2607, and C5_2769 each exhibited one

minor outlier (Supplementary Data 5).

Further analysis using ProSA confirmed the structural integrity,

with Z-scores ranging from -5.2 to -7.09, all within the

experimentally validated Protein Data Bank (PDB) distribution

(Figure 6, right panel) (44, 45). Among the constructs, C2_2625

exhibited the most favorable Z-score (-7.09), indicating high stability,

while C4_2607 had the least favorable (-5.2) (Supplementary Data 6).
3.9 Exceptional protein structural integrity
and favorable geometries in vaccine
constructs

Geometric analysis using MOLprobity confirmed high

structural quality across all constructs (46). Rotamer analysis

revealed that over 98% of rotamers in each construct were in the

favored category. Construct C3_735 had 307 favored rotamers

(99.68%), while construct C1_753 contained 306 (99.35%).

Similarly, constructs C4_2607, C2_2625, and C5_2769 exhibited

high percentages of favored rotamers, with C5_2769 showing

98.38% due to a single poor rotamer (0.32%).

Rama-Z scores for all constructs remained within the acceptable

range (<2), confirming favorable geometries: C3_735 (0.71 ± 0.38),

C1_753 (1.94 ± 0.42), C4_2607 (-0.17 ± 0.41), C2_2625 (0.56 ±
frontiersin.or
TABLE 1 Top-scoring discontinuous B-cell epitopes.

Vaccine
Constructs

Top epitopes Score
Cluster
size

(Residues)

C1_735 A:H395, A:H396, A:H397, A:H398 0.994 4

C2_753
A:A377, A:A378, A:K379, A:A380, A:K381, A:F382, A:V383, A:A384, A:A385, A:W386, A:T387, A:L388, A:K389, A:A390,

A:A391, A:A392, A:H393, A:H394, A:H395, A:H396, A:H397, A:H398
0.891 22

C3_2607 A:H395, A:H396, A:H397, A:H398 0.981 4

C4_2625

A:P8, A:L9, A:V10, A:S11, A:S12, A:Q13, A:C14, A:V15, A:M16, A:A17, A:K18, A:L19, A:S20, A:T21, A:D22, A:E23, A:
L24, A:L25, A:D26, A:A27, A:F28, A:K29, A:E30, A:M31, A:T32, A:L33, A:L34, A:E35, A:L36, A:S37, A:D38, A:F39, A:
V40, A:F43, A:C183, A:S184, A:T185, A:R186, A:G187, A:R188, A:C190, A:C191, A:R192, A:R193, A:K194, A:K195,

A:E196

0.776 47

C5_2769
A:K176, A:E177, A:E178, A:Q179, A:I180, A:G181, A:K182, A:C183, A:S184, A:T185, A:R186, A:G187, A:R188, A:P332,
A:G333, A:P334, A:G335, A:P336, A:M348, A:L349, A:A351, A:E352, A:Y353, A:G354, A:P355, A:G356, A:P357, A:G358,

A:G359, A:R360, A:V361, A:V362, A:F363, A:L364, A:P365, A:T366, A:I367, A:R368, A:Q370
0.759 39
g
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0.41), and C5_2769 (1.25 ± 0.42) (Figures 7B–D). No Cb deviations

exceeding 0.25 Å were observed, indicating precise atomic

positioning. Bond and angle deviations were minimal, with the

highest incidence of bad bonds recorded at 0.10% in C2_2625, while

C3_735, C1_753, C4_2607, and C5_2769 had the lowest rate

(0.03%). Bad angles were also infrequent, with C4_2607

exhibiting the highest rate at 0.26% and C5_2769 the lowest at

0.12% (Supplementary Data 5).
3.10 Evaluation of proteasomal cleavage,
surface exposure, solubility, and
glycosylation in mRNA vaccine Candidates

NetChop-3.1 analysis identified proteasomal cleavage sites in all

constructs, ensuring efficient peptide generation for MHC-I

presentation. Constructs C1_753 and C2_2625 contained 133

cleavage sites, C3_735 and C4_2607 had 132, while C5_2769

exhibited 131 (Supplementary Data 7), confirming their suitability
Frontiers in Immunology 11
for effective proteasomal processing. NetSurfP-3.0 predictions

indicated high surface accessibility across all constructs, with

exposed residues comprising 77–79% of the total and buried

residues accounting for 21–23%. Specifically, constructs C1_753,

C2_2625, and C3_735 exhibited exposed residue percentages of

77.14%, 77.89%, and 77.89%, respectively, whereas C4_2607 and

C5_2769 displayed slightly higher values at 79.15% and 77.64%

(Supplementary Data 7).

Potential N-linked glycosylation sites were predicted using the

NetNGlyc 1.0 server. All constructs, each comprising 397 amino

acids, contained the canonical Asn-Xaa-Ser/Thr sequon. A

conserved glycosylation site was identified in the “NITM” motif

across all constructs. In constructs C1_753 and C3_735, this site

was located at position 204, while in C2_2625, C4_2607, and

C5_2769, it appeared at position 215. This NITM site exhibited

high glycosylation potential (scores: 0.6417–0.6438), with strong

algorithmic consensus. These findings indicate a single, conserved,

and likely glycosylated site across all constructs (Supplementary

Data 7).
FIGURE 5

Population coverage analysis of selected MHC epitopes. (A) Combined population coverage for MHC Class I and Class II epitopes. (B) Regional
population coverage distribution across different world populations.
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Solubility analysis using SOLpro predicted all constructs to be

soluble, with solubility probabilities surpassing the threshold value

of 0.45. Each construct attained a solubility score above 0.660,

confirming their favorable solubility profiles for experimental

applications (Supplementary Data 8).
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3.11 Evaluation of codon optimization and
mRNA vaccine stability analysis

All vaccine constructs were 1,149 bp in length, with a GC content

of approximately 60%. Codon Adaptation Index (CAI) values ranged
FIGURE 6

Structural validation of the vaccine constructs. Left panel: Predicted tertiary structures of the top five vaccine constructs. Middle panel:
Ramachandran plots illustrating residue distribution, with 98–99.5% of residues in favored regions and 100% in allowed regions. Right panel: ProSA
Z-score plots confirming structural integrity, with all constructs falling within the range of experimentally validated protein structures.
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from 0.92 to 0.93 after optimization, indicating a strong alignment

with the host organism’s preferred codon usage (47). Among the

constructs, C753 and C2625 exhibited the highest CAI scores (0.93),

reflecting optimal codon adaptation. Effective Number of Codons

(ENC) values ranged from 31.83 to 32.66, demonstrating a high

degree of codon bias (48). The tRNA Adaptation Index (tAI), which

evaluates how a gene’s codon usage corresponds to the availability of

tRNAs in the host cell (49, 50), was consistently measured at

0.41 across all constructs, suggesting efficient codon utilization
Frontiers in Immunology 13
and compatibility with the host’s translational machinery

(Supplementary Table 3, Supplementary Data 9).

The secondary structures of the mRNA constructs were

predicted and analyzed after assembling the mRNA with Cap’1,

Poly-A tail, and UTRs (Figure 8A) using Vienna RNAFold

(Figure 8B and Supplementary Data 10) (34, 51). Minimum Free

Energy (MFE) values were normalized using Adjusted Minimum

Free Energy (AMFE) to enable comparisons between constructs of

varying lengths (52). Benchmarking against Pfizer’s BNT162b2 and
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FIGURE 7

Structural geometry and quality assessment of vaccine constructs. (A) PSIPRED secondary structure prediction of construct C2_2625, representative
of the five constructs. (B) Box plot of Rama-Z scores for helix-forming residues across all constructs, confirming favorable geometry. (C) Distribution
of Rama-Z scores in loop regions, indicating minimal deviations. (D) Rama-Z scores for sheet regions, demonstrating overall structural stability.
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Moderna’s mRNA-1273 vaccines, which exhibited AMFE values of

-35.71 kcal/mol and -36.76 kcal/mol, respectively (53, 54),

confirmed the structural stability of the designed constructs. The

AMFE values for the vaccine constructs ranged from -34.39 kcal/

mol (C2_2625) to -36.49 kcal/mol (C3_735), indicating a stability

profile comparable to the benchmark vaccines (Figure 8C). Among

all constructs, C3_735 demonstrated the highest stability.
3.12 Molecular docking between Epitopes
and their corresponding HLA class alleles

Molecular docking analysis demonstrated strong binding

interactions between the selected epitopes and their respective HLA

class alleles. Docking of HLA-B44:03 (PDB ID: 3DX7) with the epitope
Frontiers in Immunology 14
KEVDLDFGL resulted in a cluster comprising 232 members, with a

representative weighted score of -469.3 and the lowest energy score of

-545.7. Similarly, HLA-B57:01 (PDB ID: 5VUF) docked with the

epitope RTAPRSLSL formed a cluster with 539 members, achieving

a representative weighted score of -584.7 and the lowest energy score of

-677.4. The interaction between HLA-A 02:06 (PDB ID: 3OXR) and

the epitope FIDLNITML produced a cluster of 816 members, with a

representative weighted score of -581.5 and the lowest energy score of

-702.6. Likewise, docking of HLA-DRB1*04:01 (PDB ID: 5NI9) with

the epitope AVDFIWTGNQRTAPR yielded a cluster of 173 members,

with a representative weighted score of -779.9 and the lowest energy

score of -811.5 (Supplementary Data 11).

The 3D structures of the docked poses, shown in Figure 9,

provide insights into the spatial arrangements and binding

orientations of the epitopes within the HLA binding grooves.
Trinucleotide Cap1 5’UTR Coding sequence 3’UTR Poly(A)Tail5’ 3’
A
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-36.76
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FIGURE 8

mRNA stability and secondary structure analysis. (A) Schematic representation of mRNA vaccine assembly. (B) Predicted mRNA secondary structure
of construct C3_735, with corresponding mountain plot visualization, representative of the five constructs. (C) Adjusted Minimum Free Energy
(AMFE) comparison of the five vaccine constructs, benchmarked against mRNA-1273 and BNT162b2, demonstrating comparable stability. AMFE
normalizes MFE to account for sequence length differences.
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Further analysis of protein-ligand interactions using PDBsum,

along with detailed LIGPLOT representations (Supplementary

Data 12), confirmed the robustness of these interactions and

underscored the immunogenic potential of the selected epitopes.
3.13 Molecular docking between vaccine
constructs and TLR2 and TLR4/MD2
complex

The molecular docking analysis demonstrated significant

binding interactions between the vaccine constructs and the TLR2

and TLR4/MD2 complexes (Figures 10A, B). For TLR2, docking

with the C3_735 construct resulted in a cluster of 202 members,

with a representative weighted score of -1126.1 and the lowest

energy score of -1443.1. Similarly, TLR2 docked with C1_753

formed a cluster with 81 members, yielding a representative

weighted score of -875.4 and the lowest energy score of -946.1.

The largest cluster size was observed for TLR2 with C4_2607,

comprising 277 members, with a representative weighted score of

-1268.6 and the lowest energy score of -1568.9. Additionally, TLR2

docking with C2_2625 produced a cluster of 140 members,

achieving a representative weighted score of -1018.0 and the

lowest energy score of -1039.3, while TLR2 docked with C5_2769
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resulted in a cluster of 141 members, with a representative weighted

score of -1093.1 and the lowest energy score of -1336.4.

For TLR4, docking with C3_735 identified a cluster of 127

members, with a representative weighted score of -912.5 and the

lowest energy score of -1157.8. Similarly, TLR4 with C1_753 formed

a cluster of 45 members, yielding a representative weighted score of

-808.0 and the lowest energy score of -914.6. Docking of TLR4 with

C4_2607 generated a cluster with 140 members, a representative

weighted score of -958.1, and the lowest energy score of -1204.2.

TLR4 interaction with C2_2625 produced a cluster of 57 members,

with a representative weighted score of -972.1 and the lowest energy

score of -1131.2, while TLR4 docked with C5_2769 resulted in a

cluster of 57 members, achieving a representative weighted score of

-1111.8 and the lowest energy score of -1176.2.

These docking results highlight strong binding interactions across

all vaccine constructs with both TLR2 and TLR4, reinforcing their

potential to effectively stimulate innate immune responses.
3.14 Molecular dynamics simulation

Molecular dynamics (MD) simulations were conducted to

evaluate the structural stability and dynamic behavior of the

C5_2769-TLR4/MD2 and C4_2607-TLR2 complexes (Figure 11).
A

C

B

D

FIGURE 9

3D structures of the best-docked poses of selected epitopes with their corresponding HLA alleles. (A) HLA-B44:03 bound to KEVDLDFGL, (B) HLA-
B57:01 bound to RTAPRSLSL, (C) HLA-A02:06 bound to FIDLNITML, and (D) HLA-DRB104:01 bound to AVDFIWTGNQRTAPR. Docking interactions
were visualized and analyzed using UCSF ChimeraX 1.8.
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The average root mean square deviation (RMSD) values for the

C5_2769-TLR4/MD2 complex were 0.480 nm, 0.417 nm and 0.527

nm for replicates 1, 2 and 3, respectively (Figure 11A). Similarly, the

C4_2607-TLR2 complex exhibited RMSD values of 0.551 nm, 0.448

nm, and 0.515 nm across the three replicates (Figure 11B),

indicating stable conformational dynamics throughout the

simulation. Root mean square fluctuations (RMSF) analysis

highlighted minimal residue flexibility in both complexes, with

slightly higher fluctuations observed in loop regions and terminal

residues, which is expected due to their inherent flexibility

(Figures 11C, D). These results further confirm the overall

structural stability of both complexes over the 100 ns simulation

period. To evaluate the overall compactness of the complexes, the

radius of gyration (Rg) was analyzed. The average Rg values for the

C5_2769-TLR4/MD2 complex were 3.858 nm, 3.847 nm, and 3.809

nm across replicates 1, 2, and 3, respectively (Figure 11E). For the

C4_2607-TLR2 complex, the average Rg values were 3.809 nm,

3.843 nm, and 3.857 nm across the three replicates (Figure 11F).
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These findings suggest that both complexes maintained stable

structural integrity throughout the simulation.
3.15 Immune simulation reveals strong
antibody and T-cell responses to vaccine
constructs

The immune responses elicited by the five vaccine constructs

were assessed using the C-ImmSim simulation tool, which has been

validated against clinical data (55, 56). Antigen (Ag) levels rapidly

exceeded 600,000 counts/mL following administration, with

constructs C2_2625 and C5_2769 exhibiting the highest levels

(>650,000 counts/mL), indicating strong initial immune

activation. Peak IgM and IgG responses were observed between

10 and 15 days post-vaccination, with construct C5_2769 eliciting

the highest combined antibody response (>10,000 counts/mL),

closely followed by C2_2625. Isolated IgM responses ranged
A

B

FIGURE 10

3D docked poses and protein-protein interactions of vaccine constructs with immune receptors. (A) TLR2 (Chain A) complexed with C4_2607
(Chain B) and (B) TLR4 complexed with C5_2769. These models are shown as representatives of the five designed vaccine constructs.
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between 5,000 and 8,000 counts/mL, while IgG1 and IgG2

levels reached approximately 2,000 counts/mL by days 15–20,

demonstrating a potent humoral response.

Memory B cells (B-mem, y2) exceeded 200 cells/mm³ across all

constructs by day 5 and remained at this level throughout the

observation period, suggesting a sustained immunological memory.

B cell population dynamics revealed distinct trends, with presenting

B cells (y2) peaking at >350 cells/mm³ by day 5 before declining to 0

by days 9–10, marking a transition to active B cell states. Active B

cells initially declined below 100 cells/mm³ between days 0–5,

followed by a peak of >300–400 cells/mm³ between days 5–10,

stabilizing thereafter. Plasma B lymphocytes showed construct-

dependent variations, with IgM-producing plasma cells peaking at

6–9 cells/mm³ between days 5–10 before declining to undetectable

levels by days 25–30. Similarly, IgG1-producing plasma cells peaked

at >2 cells/mm³ between days 5–10 and decreased to zero after day

25, indicating a transient yet strong humoral response.
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CD4+ T helper (TH) cells exhibited exponential memory

expansion, stabilizing at >300–350 cells/mm³ across all constructs.

Non-memory CD4+ cells increased from baseline levels (1,000–

1,500 cells/mm³) to peaks exceeding 4,000 cells/mm³ between days

5–10 before gradually declining after day 15. CD8+ cytotoxic T cells

displayed a rapid increase, reaching 1,150 cells/mm³ between days

10–15, followed by a slight decline while remaining above baseline

levels through day 35.

Dendritic cells (DCs) in the presenting-2 state peaked at 50

cells/mm³ by day 5 before declining, while presenting-1 DCs

remained stable at baseline levels. Macrophage (MA) populations

exhibited dynamic behavior, with presenting-2 macrophages

increasing to >100 cells/mm³, while resting macrophages initially

dropped to near zero between days 0–5 before recovering post-

day 5.

Cytokine analysis indicated significant immune activation.

Interferon-gamma (IFN-g) levels peaked above 400,000 ng/mL
A

B

C

A

B

C F

E

D

FIGURE 11

Structural dynamics of the TLR4/MD2-C5_2769 or TLR2-C4_2607 complexes. Root Mean Square Deviation (RMSD) plot showing the structural
stability of the (A) TLR4/MD2-C5_2769 and (B) TLR2-C4_2607 complexes over a 100 ns simulation. Root Mean Square Fluctuation (RMSF) plots
illustrating the flexibility of individual residues in the (C) TLR4/MD2-C5_2769 and (D) TLR2-C4_2607 complexes. Radius of Gyration (Rg) plots
depicting the compactness of the (E) TLR4/MD2-C5_2769 and (F) TLR2-C4_2607 complexes, indicating their structural integrity throughout the 100
ns (100,000 ps) simulation.
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between days 10–15, reflecting heightened immune stimulation

before gradually decreasing. Transforming growth factor-beta

(TGF-b) levels increased to >50,000 ng/mL between days 0–5

before declining. Interleukin-2 (IL-2) levels surged sharply to

200,000–250,000 ng/mL by day 5, returning to baseline levels

between days 15–20. Collectively, these findings highlight the

robust and well-coordinated immune responses induced by the

vaccine constructs (Figure 12).
4 Discussion

HSV-2 poses a significant public health challenge as a leading

cause of genital infections and a gateway virus to other sexually

transmitted diseases. Despite its widespread prevalence, there is

currently no licensed vaccine available for HSV-2 (57). The

development of an effective vaccine against HSV-2 remains a

formidable challenge due to several intrinsic features of the virus’s
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biology and its sophisticated immune evasion strategies. One of the

key mechanisms is the downregulation of MHC class I molecules,

which impairs the activation of CD8⁺ cytotoxic T lymphocytes and

compromises the host’s capacity to generate a robust and sustained

immune response (58). Additionally, HSV-2 establishes latency in

the nervous system and undergoes periodic reactivation, further

complicating vaccine design. The virus also exhibits considerable

genetic variability, with a mutation rate higher than that of many

other DNA viruses, posing significant obstacles to the development

of a broadly protective and universally effective vaccine.

Several HSV-2 vaccine candidates, such as Herpevac (gD2),

GEN-003, VCL-HB01, and the Chiron recombinant gB2/gD2

vaccine initially showed promise but ultimately failed to

demonstrate significant protection or meet efficacy benchmarks in

clinical trials. These shortcomings were largely attributed to limited

immunogenicity and a narrow antigenic focus (11, 59–61). These

failures highlight the urgent need for vaccine strategies capable of

eliciting broader and more robust immune responses. In response,
FIGURE 12

Immune response profile of vaccine construct C3_735. The immune response dynamics induced by C3_735 are shown as a representative of the
five designed vaccine constructs. Antigen (Ag) levels exceeded 600,000 counts/mL, indicating strong initial activation. IgM and IgG responses
peaked between days 10–15, with IgG1 and IgG2 reaching approximately 2,000 counts/mL. Memory B cells (B-mem) maintained levels above 200
cells/mm³, ensuring long-term immune protection. CD4+ T helper cells exhibited exponential growth, stabilizing at >300–350 cells/mm³, while CD8
+ cytotoxic T cells peaked at 1,150 cells/mm³ between days 10–15. Cytokine responses included IFN-g levels surpassing 400,000 ng/mL and IL-2
peaking at 250,000 ng/mL, indicating a robust immune activation.
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current efforts have pivoted toward next-generation platforms,

particularly mRNA-based vaccines. Moderna’s mRNA-1608 (a

monovalent vaccine targeting a single glycoprotein) and

BioNTech’s BNT163 (a trivalent vaccine encoding three

glycoproteins) are both in preclinical or early clinical evaluation,

alongside five additional vaccine candidates utilizing diverse

technological platforms (62).

The use of multivalent multiepitope mRNA vaccines has

emerged as a promising strategy. These vaccines combine the

ability to encode multiple epitopes within a single construct to

activate robust humoral and cellular immune responses (17, 63, 64).

This study employed a reverse vaccinology approach to design and

develop five multivalent multiepitope mRNA vaccines targeting

HSV-2. Four viral proteins—Glycoprotein B, ICP0, RIR1, and VP23

—were selected as targets for vaccine development based on their

essential roles in viral replication, immune evasion, and persistence

(65–68). In contrast to earlier strategies that primarily focused on

single antigens or limited epitope selections (such as glycoprotein

D-based vaccines), our multiepitope design aims to elicit a broader

and potentially cross-protective immune response. To enhance the

global applicability of the vaccine constructs, we incorporated

sequence data from three geographically diverse and prevalent

HSV-2 strains.
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Extensive predictions using NetMHCpan 4.1 identified

thousands of potential Cytotoxic T Lymphocyte (CD8+) epitopes.

Rigorous filtering reduced these to 55 epitopes for Glycoprotein B,

22 for ICP0, 33 for RIR1, and 16 for VP23, demonstrating strong

binding capabilities. Similarly, Helper T Lymphocyte (CD4+)

epitope predictions underwent stringent analysis, resulting in 36

epitopes for Glycoprotein B, 28 for ICP0, 42 for RIR1, and 24 for

VP23 after evaluations for antigenicity, allergenicity, toxicity, and

cytokine induction. Linear B-cell epitope predictions were refined to

one epitope each for Glycoprotein B and ICP0, 12 for RIR1, and 2

for VP23. Discontinuous B-cell epitope predictions via ElliPro

identified high-quality epitopes characterized by geometric

protrusion and solvent accessibility, supported by 3D structural

visualizations. Population coverage analysis revealed combined

Class I and II coverage of 88.64%, with higher representation in

Europe and North America, confirming the constructs’ broad

applicability across different populations (69).

Vaccine assembly yielded 3,456 constructs based on various

permutations and combinations. Three adjuvants—50S ribosomal

protein from Mycobacterium tuberculosis (UniProt ID: G8FRW4),

Human b-defensin 3 (GIINTLQKYYCRVRGGRCAVLSCLPKEE

QIGKCSTRGRKCCRRKK), and PADRE sequence (AKFVAA

WTLKAAA)—were incorporated to enhance immune responses.
TABLE 2 Top selected CTL epitopes selected for vaccine construction based on top antigenicity score.

Viral
Protein

CTL
epitopes
(Start-end)

Interacting MHC-
class I alleles

from
NetMHCIPan-

4.1 EL

IEDB
score

Interacting MHC-
class I alleles

from
NetMHCIPan-

4.1 BA

IC50
(Nm)

Antigenicity
score

Allergenicity
class

Toxicity
class

gB
FIDLNITML
(666-674)

HLA-A*02:06 0.760108 HLA-A*02:06 37.59

2.0483 Non-allergen Non-toxic
HLA-A*02:01 0.714389 HLA-A*02:01 63.76

HLA-A*02:03 0.360524 HLA-A*02:03 189.29

HLA-B*08:01 0.236097 - -

RIR1
KEVDLDFGL
(454-462)

HLA-B*40:01 0.940433 HLA-B*40:01 14.3

3.0403 Non-allergen Non-toxicHLA-B*44:03 0.390784 HLA-B*44:03 585.68

HLA-B*44:02 0.227882 - -

ICP0
RTAPRSLSL
(217-225)

HLA-A*32:01 0.853665 HLA-A*30:01 27.84

1.3656 Non-allergen Non-toxic

HLA-A*30:01 0.793404 HLA-A*32:01 31.69

HLA-B*07:02 0.774316 HLA-B*07:02 32.09

HLA-B*57:01 0.684753 HLA-B*58:01 223.96

HLA-B*58:01 0.606154 HLA-B*08:01 385

HLA-B*08:01 0.491403 HLA-B*15:01 464.79

HLA-A*02:06 0.379616 HLA-B*57:01 580.76

HLA-A*30:02 0.34412 HLA-A*30:02 874.73

VP23
TLGLLLAYR

(60-68)

HLA-A*33:01 0.296143 HLA-A*31:01 53.4

1.3897 Non-allergen Non-toxic- - HLA-A*68:01 87.66

- - HLA-A*33:01 95.81
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These adjuvants have been shown to promote dendritic cell

maturation, T-cell-mediated cytotoxicity, and Th1 polarization

(70–72). The vaccine constructs were linked using EAAKK, KK,

AAY, and GPGPG linkers as previously described (73). The final

constructs consisted of 396 amino acid residues and exhibited

favorable physiochemical properties, including molecular weights

of approximately 41.86 kDa, theoretical pI values suggesting basic

protein types, and hydrophilic GRAVY index values. Stability

analysis revealed low instability indices and positive solubility

predictions, indicating potential suitability for vaccine development.

Secondary structure predictions using PSIPRED and SOPMA

showed a predominance of a-helices, indicating structural stability

(74). Tertiary structure evaluations with MOLprobity revealed high-

quality structures, with 99.2% to 100% of residues falling within

favored and allowed regions on the Ramachandran plot. All

constructs displayed acceptable Rama-Z scores and favorable Z-

scores, confirming structural integrity and low-energy conformations

(75, 76). Geometric analyses highlighted minimal bond and angle

deviations, further supporting the constructs’ stability and accuracy.

Proteasomal cleavage is vital for triggering a CD8+ T cell

response, as it processes antigens into fragments for MHC class I

presentation in the endoplasmic reticulum (77). Using NetChop 3.1,
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we verified that all five vaccine constructs could generate peptides

suitable for MHC-I presentation. The analysis revealed 133 cleavage

sites in constructs C1_753 and C2_2625, 132 in C3_735 and

C4_2607, and 131 in C5_2769, confirming their ability to elicit a

cytotoxic T-cell response. The surface accessibility of protein

residues plays a critical role in antigenicity, as exposed regions are

more likely to interact with immune components like antibodies.

Antigenic determinants often coincide with surface regions

accessible to large probes, such as antibody domains (78). The

surface accessibility predictions, indicated that 77-79% of the

residues were exposed, reinforced the constructs’ ability to be

recognized by the immune system. Moreover, the solubility

predictions confirmed that all constructs would remain stable in

physiological conditions, further supporting their potential for

vaccine development.

Codon optimization analysis revealed high compatibility with the

host organism, with all constructs exhibiting high Codon Adaptation

Index (CAI) values (0.92-0.93). The stability of the mRNA vaccine

constructs were benchmarked with established vaccines, such as those

developed by Pfizer and Moderna based on the Adjusted Minimum

Free Energy (AMFE) value (53, 54), further indicating the feasibility

of developing an mRNA-based vaccine using these constructs.
TABLE 3 Top selected HTL epitopes selected for vaccine construction based on top antigenicity score.

Viral
Protein

HTL
epitopes
(Start-end)

Interacting
MHC-class I
alleles from

NetMHCIIPan-
4.1 EL

IEDB
score

Interacting
MHC-class I
alleles from

NetMHCIIPan-
4.1 BA

IC50
(Nm)

Antigenicity
score

Allergenicity
class

Toxicity
class

gB
TNMVLRKR
NKARYSP
(876-890)

HLA-DRB1*13:02 0.6768

HLA-DRB1*11:01 68.45

1.0582 Non-allergen Non-toxic
HLA-DRB5*01:01 131.34

HLA-DRB1*13:02 198.46

HLA-DRB4*01:01 276.84

RIR1
RAGRFHWER

FSNASP
(931-945)

HLA-DPA1*02:01/
DPB1*05:01

0.3744
HLA-DPA1*02:01/

DPB1*01:01
37.4

0.7292 Non-allergen Non-toxic

HLA-DPA1*02:01/
DPB1*01:01

0.5265
HLA-DPA1*01:03/

DPB1*04:01
20.51

HLA-
DPA1*03:01/
DPB1*04:02

0.7566
HLA-DPA1*01:03/

DPB1*02:01
19.46

HLA-DPA1*01:03/
DPB1*04:01

0.8902
HLA-DPA1*03:01/

DPB1*04:02
37.38

HLA-DPA1*01:03/
DPB1*02:01

0.9322
HLA-DPA1*02:01/

DPB1*05:01
229.9

ICP0
AVDFIWTGN

QRTAPR
(207-221)

HLA-DRB1*07:01 0.7357

HLA-DRB1*04:01 46.79 1.0626 Non-allergen Non-toxicHLA-DRB1*04:01 0.7536

HLA-DRB3*02:02 0.4018

VP23
AYRRRFPAV

ITRVLP
(66-80)

HLA-DPA1*02:01/
DPB1*14:01

0.1371

HLA-DPA1*02:01/
DPB1*14:01

106.33

0.5913 Non-allergen Non-toxic
HLA-DQA1*04:01/

DQB1*04:02
50.72
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The molecular docking studies between epitopes and their

corresponding Class I and II HLA alleles demonstrated strong

binding affinities, highlighting the immunogenic potential of the

selected epitopes. Molecular docking between vaccine constructs

with TLR2 and TLR4/MD2 complex exhibited significant binding

energies, which suggests strong interactions with immune receptors.

All five potential vaccine constructs developed against HSV-2

demonstrate good metrics in terms of antigenicity, immune

profiles, and protein and mRNA stability. These findings show

the potential of these constructs as candidates for further

development of effective vaccines against HSV-2. The MD

simulations provided critical insights into the stability and

dynamic behavior of the vaccine constructs in complex with TLR

receptors. The low RMSD values, stable Rg measurements, and

minimal RMSF fluctuations collectively indicate that the vaccine

constructs C4_2607 and C5_2769 forms a stable interaction with

TLR2 and TLR4/MD2, respectively. These findings support the

structural viability of the designed constructs, highlighting their

potential for further in vitro and in vivo evaluations.

The limitation of this study is the reliance on in silico predictions

for epitope identification and vaccine construct design, which may

not fully account for the complexity of immune responses in vitro and

in vivo. While the stability and antigenicity of the vaccine constructs

were evaluated computationally, further experimental validation

through immunological assays and animal model testing is needed

to confirm their efficacy and safety. Additionally, the population

coverage analysis revealed the lowest coverage in Central America,

which could be addressed by incorporating epitopes that bind toHLA

alleles more commonly expressed in this population. Although the

mRNA constructs demonstrated good stability, they may be detected

by pathogen recognition receptors such as TLR3 and RLRs, and this

can be mitigated by substituting all uridine in the mRNA constructs

with N1-methylpseudouridine (m1y), which has been shown to

reduce mRNA-induced immunogenicity which is a critical factor in

mRNA vaccine design and also to enhance translation efficiency

(79, 80).

In conclusion, the five multivalent multiepitope mRNA vaccine

constructs developed against HSV-2 in this study exhibits favorable

antigenicity, strong immune profiles, and excellent protein and

mRNA stability. These promising characteristics position them as

strong candidates for further development, offering potential for

effective HSV-2 vaccination strategies.
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