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Single-cell transcriptomics in
colorectal cancer uncover the
potential of metastasis and
immune dysregulation of a cell
cluster overexpressed PRSS22
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1School of Medicine, Tongji University, Shanghai, China, 2The Department of Cardiology, Shanghai
Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine,
Shanghai, China, 3Department of Oncology, WeiFang People’s Hospital, Shandong Second Medical
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Background: Colorectal cancer (CRC) is one of the most common malignancies

worldwide, and its complex pathogenesis and significant tumor cell

heterogeneity remain major challenges. With the rapid development of single-

cell sequencing technology, we can now delve deeper into the cellular

composition and dynamic changes within the tumor microenvironment,

revealing cellular interactions and their potential roles in tumorigenesis.

Method: In this study, we systematically analyzed comprehensive single-cell RNA

sequencing data from 25 colorectal cancer and 10 adjacent normal tissue samples.

We explored the characteristics and biological significance of tumor cell

subpopulations, performed quality control, dimensionality reduction, and cell type

identification, and further investigated epithelial cell copy number variations, cell

communication, and pseudotime analysis. Subsequently, Boruta feature selection

algorithm was combined to identify prognosis related genes. The expression

patterns, clinical significance and biological effects of PRSS22were validated in vitro.

Results: Our analysis found an epithelial cell subcluster with high expression of

PRSS22 exhibited high proliferation and migration abilities, and it was also

associated with the dysregulated immune microenvironment. After further

experimental verification, we proved the high expression patterns and clinical

significance of PRSS22. Downregulation of PRSS22 in CRC cells resulted in a

reduction of proliferation, migration and invasion.

Conclusion: Our study has identified a cell subcluster that is closely linked to

progression, immune dysregulation and prognosis in CRC, and we have also

identified PRSS22 as its hub gene that has great potential to become a new

immunotherapeutic targets target for CRC.
KEYWORDS

colorectal cancer, single-cell sequencing, PRSS22, prognosis, metastasis,
immune dysregulation
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1 Introduction

Colorectal cancer (CRC) is acknowledged as the third most

prevalent cancer worldwide and significantly contributes to cancer-

associated deaths. Although the conventional treatment strategy

involves surgical excision along with chemotherapy, nearly one-

third of individuals undergoing this regimen face a recurrence of

the disease (1, 2). Although immune checkpoint inhibitors have

demonstrated substantial effectiveness in tumors characterized by

high microsatellite instability (MSI), and the combination of EGFR/

BRAF inhibitors has yielded positive outcomes in CRC) with BRAF

V600E mutations, it is important to note that these therapeutic

strategies are limited to particular subsets of patients (3–5). Large-

scale gene expression studies have established molecular classification

systems for CRC, most notably the Consensus Molecular Subtypes

(CMS), which categorizes CRC into four subtypes: CMS1–4 (6).

However, these classifications, which are primarily based on bulk

sequencing data, cannot precisely resolve the complex cellular

heterogeneity within the tumor microenvironment.

The development of CRC involves the accumulation of

mutations in multiple oncogenes and tumor suppressor genes

(such as APC, KRAS, and PIK3CA) and microsatellite instability

caused by DNA mismatch repair gene dysfunction (3, 7). Although

high tumor mutational burden (TMB) and MSI status can predict

the response to immune checkpoint inhibitor therapy, only a

minority of patients respond to PD-1 inhibitor treatment (8, 9).

The complex molecular heterogeneity and microenvironmental

characteristics of CRC not only influence disease progression but

also present significant challenges for precision medicine,

highlighting the importance of understanding the CRC

microenvironment in detail. To date, there has not been a

comprehensive and systematic characterization of how tumor and

TME cells shape the tumoral, stromal, and immune landscapes to

form specific CRC subtypes.

Recent single-cell studies have revealed cellular heterogeneity in

the CRC microenvironment and identified multiple functionally

important specific cell subgroups (10–13). While these studies have

provided new perspectives for understanding tumor progression

mechanisms and immune evasion, their geographical limitations

and sample sizes make fully characterizing the shared mechanisms

within the CRC microenvironment difficult. Cross-study

comparisons are also challenging due to varying cell annotation

methods across different studies. PRSS22, also known as BSSP4, has
Abbreviations: CRC, Colorectal cancer; MSI, microsatellite instability; CMS,

Consensus Molecular Subtypes; TMB, tumor mutational burden; sc-seq, single-

cell sequencing; QC, quality control; PCA, principal component analysis; CNVs,

copy number variations; DEGs, differentially expressed genes; GO, Gene

Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; CCK-8, Cell

Counting Kit-8; OS, overall survival; Disease Specific Survival: DSS, Progression

free interval: PFI, scRNA-seq: single-cell RNA sequencing; NM, normal epithelial

cells; TME, tumor microenvironment.
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been the subject of very limited research to date. Regarding its

association with cancer, several studies have reported its oncogenic

role in liver cancer. However, in colorectal cancer and breast cancer,

only a few isolated reports exist, and there is currently no research

on its involvement in other types of cancer (14–17). This study

further revealed the heterogeneity of CRC through single-cell

sequencing (sc-seq) and explore the interactions between the

TME from a precision medicine perspective, identifying PRSS22

as new therapeutic targets, optimizing treatment strategies, and

ultimately improving the prognosis of CRC patients.
2 Materials and methods

2.1 Data acquisition and quality control

Single-cell RNA sequencing data used in this study were

obtained from GEO database (accession number: GSE132465),

which includes 25 colorectal cancer samples and 10 adjacent non-

tumor control samples, consisting of 33,694 genes and 63,689 cells

in total. Basic quality control (QC) was performed to ensure

accuracy and reliability in the analysis. The quality control

criteria were as follows: nFeatureRNA was between 300 and 5000,

mitochondrial gene expression percentage (percent_mito) was less

than 20%, ribosomal gene expression percentage (percent_ribo) was

greater than 1%, and each gene was expressed in at least three cells.

After applying these standards, a total of 25,051 genes and 60,883

cells were retained for further analysis. The results are shown in

Supplementary Figure S1.
2.2 Data integration, dimensionality
reduction, and clustering

We integrated the filtered count matrices from 35 samples using

the R package harmony (v1.0) approach to correct for batch effects

and integration. After integration, principal component analysis

(PCA) was performed on the integrated data followed by

embedding into low-dimensional space with Uniform Manifold

Approximation and Projection (UMAP) based on the top 15

dimensions. Clusters were generated by graph-based method

using the FindClusters function from the Seurat package (v4.3.0)

and assigned to cell types by consulting the expression of known

marker genes and automatic annotation from the SingleR

package (2.8.0).
2.3 Estimation of chromosomal copy
number variations

Chromosomal copy number variations (CNVs) were estimated

using R package “inferCNV” (v1.22.0). B cells, T cells, myeloid cells

and benign epithelial cells were used as references. The CNV score

was obtained by summing the CNV levels of cells within each
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subcluster. The threshold parameter for ‘inferCNV’ was set at 0.1,

with all other parameters at their default values. We used a five-

category classification method for CNV assessment in this study.

We assigned one point for gain or loss of a single copy number and

two points for gain or loss of two or more copy numbers. These

points were then summed to obtain the total CNV score.
2.4 Differential expression analysis and
Boruta feature selection process

Pseudo-bulk differential expression analysis between primary

and metastatic samples was performed using R package ‘DESeq2’

(v1.46.0). Genes with absolute log2 fold changes >1 and adjusted p-

values <0.01 were considered as differentially expressed genes

(DEGs) (18). Additionally, Boruta is a feature selection algorithm

that systematically introduces random perturbations to each actual

feature, assesses their significance, and iteratively eliminates those

with low correlation to identify the most relevant variables. In this

study, the Boruta package (version 7.0.0) was employed for

feature selection.
2.5 Gene set functional analysis

Gene set functional analyses were performed using R packages

‘clusterProfiler’ (v4.14.4) and ‘GSVA’ (v2.0.5). The GSVA analysis

utilized Gene Ontology (GO), Kyoto Encyclopedia of Genes and

Genomes (KEGG), and Reactome pathway databases. Hallmark

gene sets and Reactome gene sets were sourced from the R package

‘msigdbr’. Additionally, we performed Gene Set Enrichment

Analysis (GSEA) to further understand the pathways in the high

and low PRSS22 expression group by GSEA 4.1 software.
2.6 Cell–cell communication analysis

Cell–cell communication analysis was conducted using R

package ‘CellChat’ (v1.1.3). For the analysis, 500 cells from each

cell subcluster were randomly selected using the ‘subset’ function.

The ligand-receptor interaction database including ‘Secreted

Signaling’, ‘ECM-Receptor’ and ‘Cell–Cell Contact’ pathways,

were used for the analysis. A minimum cell count of 10 was set as

the filtering threshold (19).
2.7 Pseudotime analysis

Pseudotime analysis was performed using R package ‘SlingShot’

(v2.14.0) to construct a single-cell pseudotime trajectory.

Dimensionality reduction was achieved using the UMAP method,

and the ‘plot_cells’ function was used for visualization.

Differentially expressed genes (DEGs) were identified using the

‘associationTest’ function and decreasingly sorted by their q-value.
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2.8 Immunological correlation evaluation

CIBERSORT, a deconvolution algorithm, was utilized to

estimate the proportions of tumor-infiltrating immune cells in

tumor tissues with mixed cell types. ESTIMATE was used to

estimate stromal and immune cells in malignant tumors, as well

as calculate tumor purity, stromal score, immune score, and

ESTIMATE score. Additionally, the ssGSEA algorithm was

employed to evaluate immune cell infiltration and immune-

related functions.
2.9 Patients and clinical samples

Fifty-five pairs of cancer tissues were collected from patients

who underwent colorectal cancer surgery at Yangpu Hospital (35

pairs of rectal cancer and 20 pairs of colon cancer) at Tongji

University between November 2018 and November 2020. This

study was approved by the Ethics Committee of Yangpu Hospital

(LL-2023-LW-012). Colorectal cancer (CRC) tissues and adjacent

non-cancerous tissues were obtained during surgery and

immediately frozen in liquid nitrogen for subsequent analysis of

specific gene and protein expression.
2.10 Quantitative real-time PCR and
western blotting

Total RNA was extracted from paired colorectal cancer tissues.

The RNA was then reverse transcribed into cDNA using a kit

(Takara, Dalian, China) and amplified. The primer sequences are

as follows:
PRSS22 :5 ’-TGTCTCGGCACCTTCACCT-3 ’ and 5 ’-

GAATACACAGGGTGGGGCT C-3’.

GAPDH :5 ’-ACACCCACTCCTCCACCTTT-3 ’and 5 ’-

TTACTCCTTGGAGGCCATG T-3’.
Total cellular protein from clinical samples was extracted using

RIPA lysis buffer (Solarbio, China), with the addition of a protease

inhibitor at a 1:100 ratio (Thermo Scientific, USA).

The primary antibodies used were:
PRSS22 (1:1,000, HUABIO, ER60535); b-actin (1:4,000, Santa,

sc-47778).
Human colorectal cancer (CRC) cell lines (HCT15, RKO) were

obtained from the Shanghai Institute of Biochemistry and Cell

Biology. All cell lines were cultured in DMEM medium (Gibco,

Carlsbad, CA, USA) supplemented with 10% fetal bovine serum

(FBS; Gibco) at 37°C with 5% CO2.

To investigate the role of PRSS22, small interfering RNA

(siRNA) targeting PRSS22 was designed and synthesized by

Shanghai Ruimian Biotechnology Co, Ltd. The siRNA was
frontiersin.org
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transfected into HCT15 and RKO cells using Lipofectamine 3000

reagent (Invitrogen, Carlsbad, CA, USA) for PRSS22 knockdown.

The siRNA sequences were:
Fron
siPRSS22-1: GGAUCGUGAGCAUCCAGAATT.

siPRSS22-2: UCUAUCCACCUCCCUCCAATT.
2.11 Immunohistochemistry

For immunohistochemistry assay, 25 pairs of clinical specimens

were fixed in paraffin and cut into 4 µm tissue slices. After being

dewaxed and dehydrated, the tissue sections were subjected to

antigen retrieval using the thermal method for 30 minutes. The

samples were then incubated with 3% hydrogen peroxide for 20

minutes, followed by 5% BSA for 40 minutes. Afterward, they were

incubated with the appropriate antibodies. The information of

p r ima ry an t i body wa s a s f o l l ows : PRSS22 ( 1 : 1 00 ,

HUABIO, ER60535).
2.12 Cell proliferation assay

Cell proliferation was assessed using the Cell Counting Kit-8

(CCK-8) assay. Transfected cells were seeded into a 96-well plate at

a density of 3,000 cells per well. Cell viability was measured using

the CCK-8 system (Beyotime Institute of Biotechnology, China),

and absorbance at 450 nm was recorded using a microplate reader

(SpectraMax i5x, Molecular Devices).
2.13 Colony formation assay

Approximately 1,000 cells were seeded in each well of a 6-well

plate and cultured for 7–14 days until visible colonies formed. The

cells were fixed with 4% paraformaldehyde for 15 minutes and

stained with 0.1% crystal violet (Sangon Biotech) for 30 minutes at

room temperature. Colonies were imaged using a light microscope

at ×100 magnification (Nikon Corporation, Japan). The number of

colonies in five random, non-overlapping fields of view was counted

and averaged.
2.14 Transwell assays and wound healing
assay

Cells were suspended in 250 mL of serum-free medium and

seeded into the upper chamber of a 24-well Transwell plate (Nest,

China). The lower chamber was filled with culture medium

containing 10% FBS. For invasion assays, the Transwell chambers

were coated with Matrigel (2 mg/mL) and DMEM, whereas for

migration assays, they were left uncoated. After 24 hours of

i n cuba t i on , th e invaded ce l l s we r e fixed w i th 4%

paraformaldehyde for 30 minutes and stained with crystal violet
tiers in Immunology 04
for 10 additional minutes, both at room temperature. Cells were

counted in five random optical fields of view under a light

microscope (Nikon Corporation, Japan).

For the wound healing assay, cells were cultured without FBS in

6-well plates for 24 hours. Linear wounds were created by

scratching with a 10 mL pipette tip. Wound closure was

monitored and photographed at 0 and 24 hours using a

microscope (Nikon Corporation, Japan).
2.15 Statistical analysis

All statistical analyses and data visualizations were performed

using R software (version 4.2.1). For quantitative data, a two-tailed

unpaired Student’s t-test or one-way analysis of variance (ANOVA)

with Tukey’s multiple comparison test was performed to compare

values between subgroups. When multiple comparisons were

conducted, p-values were adjusted using the Benjamini-Hochberg

(BH) method to control the false discovery rate (FDR). A p-value or

adjusted p-value < 0.05 was considered statistically significant.
3 Result

3.1 Preliminary annotation and
identification of cancer cell subtypes

By analyzing the single-cell sequencing results of 25 tumor

patients and 10 healthy individuals, and after integration and batch

correction, we have obtained a total of 60,883 sequenced cells that

met quality control metrics (Supplementary Figure S1). The

flowchart of the analysis was shown in Figure 1. Firstly, we found

that there was a strong heterogeneity within different tumor

patients (Figures 2A, B), which may also partly explain why

different cancer patients have different treatment methods,

strategies, and outcomes. To accurately classify the cell types

obtained from UMAP embedding analysis, we examined the

differentially expressed gene signatures of each cluster and cross-

referenced them with known markers. Based on classical cell

markers, 6 distinct cell types were identified and classified as

follows: epithelial cells, stromal cells, myeloid cells, T cells, B cells,

and mast cells (Figures 2C, D). Further distribution of cell

proportions (Figure 2E) revealed a significant increase in the

proportion of epithelial cells in tumor samples, indicating a

correlation between tumor development and increased

heterogeneity of epithelial cells. After extracting the epithelial

cells, the R package Harmony was used to correct for batch

effects, and secondary dimensionality reduction and clustering

analysis were performed. The epithelial cells were divided into 8

clusters (Figure 2F). Copy number variation (CNV) analysis was

then performed on the epithelial cells using R package ‘inferCNV’ to

assess CNV levels and heterogeneity among different epithelial cells.

Based on the CNV levels, the 8 subpopulations were identified as

normal epithelial cells (including goblet cells and intestinal

epithelial cells, marked as NM) and 4 categories of cancerous
frontiersin.org
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epithelial cells (E1-E4) (Figure 2G). Cells with high copy-variation

level were defined as malignant cells. The copy number variation

levels of each subgroup are shown in (Figure 2H). The results

indicate that the copy number variation levels of the tumor

subgroups E1 to E4 are higher than those of the NM group, with

subgroup E4 showing the highest level of copy number variation. It

is therefore hypothesized that tumor subgroup E4 may possess

higher individualized potential. The cell proportion analysis

(Figure 2I) showed that E2 was more abundant in adjacent non-

tumor tissues, while E1, E3, and E4 were enriched in tumor tissues.

Notably, E4 was a tumor-specific subgroup. On the one hand, this

reflects the high heterogeneity of the tumor; on the other hand, we

speculate that E2 may represent an intermediate state in the

transition from normal to malignant cells and include early-stage

tumor cells, whereas E4 likely corresponds to highly malignant, late-

stage tumor cells.

We further analyzed the gene expression differences between

tumor cells and normal epithelial cells using a heatmap (Figure 2J)

and a volcano plot (Supplementary Figure S2). In the C1 cluster

(ribosomal small subunit assembly), genes such as RPS27 and

RPL36 were significantly upregulated, indicating enhanced

protein synthesis in tumor cells, which supports rapid

proliferation. The C2 cluster (heat shock proteins and molecular

chaperones) showed high expression of HSPA1B and DNAJB1,

suggesting that tumor cells experience high biological stress and

rely on these proteins to maintain protein folding homeostasis (20).

The C3 cluster was associated with immune gene rearrangement

and DNA repair. The C4 cluster was linked to humoral immune

response and chemokine-mediated immune responses. In the C4
Frontiers in Immunology 05
cluster, E4 cells showed increased expression of immune evasion

genes such as CXCL8, which may help contribute to tumor growth

by escaping from evade immune surveillance, enhancing immune

resistance and angiogenesis ability (Figure 2J) (21–23).

In the C5 cluster (intestinal barrier maintenance), REG1A and

TFF1 were highly expressed in normal epithelial cells, indicating

their role in maintaining epithelial integrity. However, these genes

were significantly downregulated in tumor cells, which may lead to

barrier dysfunction and promote tumor invasion and metastasis.

The C6 cluster (metabolic reprogramming) included chloride

transport-related genes such as SLC26A3, which were specifically

expressed in normal epithelial cells. The volcano plot

(Supplementary Figure S2) showed high expression of tumor

markers such as SLC2A1 and BCL2L1 in E4, suggesting a strong

proliferative advantage and anti-apoptotic ability in tumor

progression (24, 25).
3.2 Survival analysis and cell chat analysis
of the subclusters

Based on the above analysis, the characteristic marker genes of

each subgroup were obtained, and the set of these characteristic

genes was used as the signature. Each subgroup corresponds to its

own signature, and the GSVA algorithm was used to calculate the

level of signature in the TCGA cohort. Finally, each patient

obtained the signature value of E1-E4 and NM cells and was

divided into high expression group and low expression group for

survival analysis according to Figures 3A-F.
FIGURE 1

Flowchart of the manuscript.
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The Kaplan-Meier survival curves have shown that high

expression of NM (enterocytes) was associated with good

prognosis (P=0.045) (Figure 3A), while E4 was associated

with poor prognosis (P=0.0047) (Figure 3F) in the TCGA
Frontiers in Immunology 06
dataset. This also indicates the clinical significance of the

E4 subtype.

Since cell−cell interactions always influenced cellular behaviors

and fates, the potential interactions of the heterogeneity of different
FIGURE 2

Preliminary annotation and identification of subtypes of cancer cells. (A-C) UMAP visualization of colorectal cancer (n=25) and paired normal
mucosa (n=10). (D) Expression of marker genes used for the identification of each cluster. (E) Bar plot showed the cell proportion among tissue
types. (F) UMAP showing subtypes of epithelial cells. (G) Chromosomal landscape of inferred CNVs among cancer cell subclusters. (H) Violin plot
demonstrated the difference in CNV scores among benign and malignant cell subclusters. (I) Stacked bar plot represented the proportional
distribution of cell types across different groups. (J) Heatmap shows markers and enriched gene ontology pathways among subtypes of
epithelial cells.
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subpopulations were investigated (Figure 3). The different

characteristics of signal input and output across various cell types

are shown in Figure 3G. Tumor cells (E2-E4) exhibit strong input

and output signals, especially E4, whose signal output and input

intensities are most pronounced, indicating that these tumor cells
Frontiers in Immunology 07
are in an actively regulated state, which is crucial for tumor growth

and immune escape. Next, we analyzed the interactions between

different ligands and receptors in various cell types (Figure 3H), E4

subpopulation exhibited relatively unique interactions between

receptors and ligands compared to other cells. For example, E4
FIGURE 3

Kaplan-Meier curves and CellChat analysis reveals the prognosis and diverse crosstalk between different subtypes of cancer and tumor
microenvironment cells. (A-F) K-M curves of different subclusters. (G) Heatmap plots showing the incoming and outgoing signal strength of cell
subtypes in tumor and normal groups, illustrating the roles of each subtype in the signaling network. (H) Bubble plots showing the details of ligands
and receptors expression.
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group interacts with the NAMPT signal from immune cells.

Previous studies have shown that NAMPT plays a crucial role in

promoting the progression of colorectal cancer and is associated

with patient prognosis (26–28). Additionally, as a rate-limiting

enzyme in NADPH metabolism, it can directly activate PD1,

thereby evading immune surveillance (29). Besides, the EGFR

signaling pathway is a highly classical pathway in tumor

immunity, closely associated with various forms of immune

dysregulation in multiple types of cancer (30–34). This strongly

suggests that immune dysfunction in the CRC microenvironment

may be related to the interactions between the E4 subgroup and

stromal cells.
3.4 Pseudotime analysis using slingshot
reveals the lineage of epithelial cell
transition

In the malignant transformation process of colorectal cancer,

the dynamic evolution of epithelial-derived cells plays a crucial

biological role. This UMAP plot illustrates the gene expression

patterns of Lineage3 lineage cells, with cell populations distributed

according to their gene expression levels (Figure 4A). The colors

range from blue to red, representing a gradient from low to high

gene expression, reflecting the characteristics of cells at different

stages of transformation (Figure 4B). The plot shows several cell

subtypes, including E1, E2, E3, and E4, each of which plays a

progressively changing role in the tumor progression. E1 cells

represent the early stage of tumor development or normal cells,

with low gene expression, typically in the early stages of

development or differentiation. These cells might be tumor-

initiating cells, exhibiting a more stable or less active state. E2

cells are in the middle phase of transformation, with an increase in

gene expression and displaying some tumor characteristics. These

cells could represent a key stage in the transition from normal to

cancerous cells. E3 cells are in the later phase of tumor

transformation, with higher gene expression, showing increased

cell proliferation and invasive features, indicating further malignant

progression of the tumor. These cells display strong adaptability,

maintaining growth and expansion within the TME. E4 cells,

located at the end of the transformation trajectory, have the

highest gene expression levels, representing the late-stage tumor

cells and the final phase of malignant transformation. While normal

cells (NM) are not involved in cell trajectory differentiation. By

analyzing these cell subtypes, we can observe that cells undergo

different stages of differentiation and transformation during tumor

progression, from early normal or early tumor cells to potentially

late-stage malignant tumor cells, revealing the dynamic process of

tumor progression from low to high malignancy.

Subsequently, we identified 45 high-variation genes by

intersecting the results from differential analysis of E4 (100 genes)

and pseudotime analysis (500 genes) (Figure 4C). These genes

ranked highly in both analyses, demonstrating their consistency

and significance across different methods. Next, we employed the

Boruta algorithm of the 45 genes and identified 35 prognosis-
Frontiers in Immunology 08
related genes. Genes of the red box were rejected (Figure 4D,

Supplementary Table 1). Notably, the PRSS22 gene was among

the top-ranked genes in all sets and its expression pattern was also

consistent with the transition trajectory (Figures 4E, F), which led

us to select it as the primary subject for further investigation. The

detailed results of the differential expression analysis, pseudotime

analysis were provided in Additional file 1-2.

The E4 cell population is primarily located in the C5 and C6

Clusters. GO function analysis revealed that its functions covered

various biological processes particularly in tumor metastasis and

immune regulation, such as wound healing, humoral immunity,

MHC (Figure 4G). KEGG pathway analysis identified the

coagulation response in the complement pathway and the NF-kB
signaling pathway as key processes, especially playing an important

role in the transformation trajectories of tumor progression

(Figure 4H). The NF-kB signaling pathway, as one of the most

famous immune related pathways, was closely related to tumor cell

survival, proliferation, metastasis, and it also remodels the

immunosuppressive microenvironment, promoting immune

escape and resistance to immunotherapy (35–38), which also

confirms our previous analysis. In the C5 Cluster, the gene

expression pattern of E4 cells is enriched in key genes such as

C4BPB, CD55, and CEACAM1. In the C6 Cluster, E4 cells exhibit

significant antigen-presenting functions, especially with the high

expression of MHC II-related genes (such as HLA-DRB1

and CD74).

Based on these findings, we hypothesize that biological

processes such as wound healing and the NF-kB signaling

pathway play critical roles in promoting cancer cell progression,

enhancing invasiveness , and modulating the immune

microenv ironment , e spec ia l ly dur ing the mal ignant

transformation of colorectal cancer. The impact of wound healing

on tumor progression lies in the chronic involvement of various

aspects of the healing process induced by inflammation and

immune signals from tumor cells, disrupting this interaction and

forming an uncontrolled positive feedback loop that profoundly

impacts the spread of metastasis, immune surveillance, and

proliferation, thereby promoting cancer progression. Equally

important, cancer progression can occur through the loss of

negative feedback control, such as in the apoptotic pathway and

immune checkpoints, which means halting the regenerative

pathways and resolving the wound healing process (39–41).

Furthermore, the dysregulation of the NF-kB signaling pathway

may provide conditions for immune escape which disrupted the

immune microenvironment, thereby promoting further malignant

transformation of the tumor (42, 43). Through these mechanisms,

E4 cells may play a key role in the progression of tumors.
3.5 Biological function enrichment and
immune infiltration analysis of PRSS22

Based on the expression level of PRSS22, we divided the TCGA

dataset into high-expression and low-expression groups. We then

performed differential expression analysis between the two groups
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(log2FC > 1, adjusted p < 0.05). Subsequently, the top 100

upregulated and top 100 downregulated genes were combined for

GO and KEGG enrichment analyses (Figures 5A, B). The results

showed that the differentially expressed genes were primarily

enriched in biological processes related to immune system
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processes, cell killing, macrophage activation, as well as pathways

such as the JAK-STAT signaling pathway, PI3K-AKT signaling

pathway, and focal adhesion. Furthermore, we performed GSEA

enrichment analysis on the differential genes using the KEGG, Biocarta,

and Reactome databases (Figures 5C-E). The analysis revealed that the
FIGURE 4

Pseudotime analysis based on Slingshot reveals the lineage of epithelial cell transition. (A) Trajectory of epithelial cells transition from E1 to E4. (B)
UMAP visualization colored by pseudotime in lineage 3. (C) Venn Diagram obtains the intersected genes. (D) 35 genes were accepted as prognosis
genes by Boruta algorithm (E) PRSS22 expression is consistent with the transition trajectory. (F) UMAP visualization of PRSS22 expression level in all
epithelial cells. (G, H) Heatmap reveals the functional and pathway changes during the transition process.
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genes were mainly enriched in interleukin-related pathways, epithelial–

mesenchymal transition, PI3K-AKT signaling, and EGFR signaling

pathways, with an overall upregulation trend in these pathways. In

contrast, pathways such as NF-kB signaling showed a downregulation

trend. This also suggests that PRSS22 may promote cell proliferation,

migration, and immunemicroenvironment dysregulation through these

pathways, which is consistent with our previous analysis. Finally, we

analyzed immune infiltration in the tumor microenvironment using the
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CIBERSORT, ESTIMATE, and ssGSEA algorithms (Figures 5F-H). The

results revealed significant differences in the infiltration of various

immune cells, including B cells, macrophages, and dendritic cells,

between the high and low PRSS22 expression groups, suggesting

distinct immune microenvironment profiles. Additionally, the high-

expression group exhibited significantly higher stromal scores, immune

scores, and ESTIMATE scores compared to the low-expression group,

indicating lower tumor purity and a potentially poorer prognosis (17).
FIGURE 5

Functional enrichment analysis, immune status and tumor microenvironment of PRSS22. (A, B) GO and KEGG enrichment analyses of PRSS22. (C-E)
GSEA analysis results of PRSS22 in Biocarat, KEGG, and Reactome databases. (F-H) Immune infiltration analysis of Cibersort, Estimate and ssGSEA of
PRSS22. *, P<0.05, **, P<0.01, ***, P<0.001.
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3.6 Upregulation of PRSS22 and its
correlation with clinical parameters

The expression of PRSS22 in pan-cancer from TCGA database

is shown in Figure 6A. The results showed that PRSS22 was

upregulated in breast invasive carcinoma (BRCA), colon

adenocarcinoma (COAD), lung adenocarcinoma (LUAD), lung

squamous cell carcinoma (LUSC), rectum adenocarcinoma

(READ), uterine corpus endometrial carcinoma (UCEC), and
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thyroid carcinoma (THCA), while it was downregulated in kidney

chromophobe (KICH), kidney renal clear cell carcinoma (KIRC),

kidney renal papillary cell carcinoma (KIRP), and liver

hepatocellular carcinoma (LIHC). This suggests the abnormal

expression of PRSS22 in various types of cancer. Subsequently, we

selected 55 pairs of clinical samples for RT-qPCR (Figure 6B),

Western blotting (Figure 6C, Supplementary Figure 3) and IHC

(Figure 6D), which confirmed the upregulation of PRSS22

expression in cancer tissues at both the mRNA and protein levels.
FIGURE 6

Upregulation of PRSS22 and its clinical significance. (A) The expression of PRSS22 in pan-cancer from TCGA database. (B-D) The expression of
PRSS22 in CRC cancer tissue was detected by RT-qPCR (n=55), western blotting (n=24) and IHC (n=25). (E) The ROC curve of PRSS22. (F) The
correlation between PRSS22 expression and the N stage of colon and rectal patients. (G) Expression levels of PRSS22 in colon (n=20) and rectal
(n=35) patients of different N stages at Yangpu Central Hospital. (H) OS, DSS and PFI in TCGA cohort. (I) OS were worse in subgroups of CRC with
higher PRSS22 expression. (J) Survival analysis of PRSS22 in 55 patients with CRC from Yangpu hospital. CRC, colorectal cancer; OS, overall survival;
DSS, disease specific survival; PFI, progression free interval; IHC, immunohistochemistry. *, P<0.05, **, P<0.01, ***, P<0.001.
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PRSS22 might serve as a potential diagnostic biomarker, as

indicated by an AUC of 0.976 (Figure 6E). It was worth noting

that there was a correlation between PRSS22 expression and the N

stage only in rectal cancer (Figure 6F), which has also been

confirmed in the cohort of our Yangpu Hospital (Figure 6G).

Then, Kaplan–Meier curve analysis showed that PRSS22

expression was associated with OS (overall survival), DSS

(Disease Specific Survival), PFI (Progression free interval) in CRC

patients (Figure 6H). In subgroups with and without peripheral

nerve invasion, age > 65 years, pathological grades II&III&IV, no

lymph node metastasis, and T3&T4 staging, increased PRSS22

expression was associated with poor overall survival (Figure 6I).

Finally, Kaplan-Meier analysis showed that the patients in Yangpu

hospital with high PRSS22 expression had poorer overall survival

than those with low PRSS22 expression (n=55) (Figure 6J).
3.7 PRSS22 Knockdown inhibits cell
migration and proliferation in CRC

In order to explore the functions of PRSS22 in CRC, PRSS22 was

knocked down by siRNA in HCT15 and RKO, and the efficiency

was verified by RT-qPCR and western blotting (Figure 7A). The

wound healing assay showed a marked decrease in cell migration
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following PRSS22 knockdown (Figure 7B). Consistent with the

results, transwell assays verified that PRSS22 knockdown inhibited

RKO and HCT15 cells invasion and migration (Figure 7C). In

addition, we detected the viability of RKO and HCT15 with PRSS22

knockdown, the results showed that PRSS22 knockdown

significantly reduced the ability of proliferation and colony

formation (Figures 7D, E).
4 Discussion

This study employs single-cell RNA sequencing (scRNA-seq)

and bioinformatics analysis to reveal the heterogeneity of colorectal

cancer (CRC) epithelial cells and their critical role in tumor

progression. We identified multiple epithelial cell subpopulations

and explored the expression pattern of PRSS22, a highly expressed

gene in E4 cells, along with its potential role in CRC. The

heterogeneity of colorectal cancer cells is a key feature of

tumor progression.

The heterogeneity of CRC cells plays a crucial role in tumor

progression. Through UMAP dimensionality reduction and

clustering analysis, we classified epithelial cells into eight

subpopula t ions , inc luding four cancerous epi the l ia l

subpopulations (E1–E4) and normal epithelial cells (NM). CNV
FIGURE 7

Knockdown of PRSS22 Inhibits Migration, Invasion, and Proliferation in CRC. (A) RT-qPCR and western blotting were used to determine the
expression of PRSS22 in RKO and HCT15 transfected with siRNA. (B) Wound healing assay to evaluate the migration of RKO and HCT15 cells with or
without PRSS22 knockdown. (C) Transwell assays assessing migration and invasion of RKO and HCT15 cells with or without PRSS22 knockdown.
(D, E) CCK-8, Colony formation assays were used to assess cell viability of RKO and HCT15 cells with or without PRSS22 knockdown. ***, P<0.001.
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analysis revealed significant differences between the four cancerous

epithelial subpopulations (E1–E4) and normal epithelial cells (NM).

Among them, the CNV levels of E1–E4 were generally higher than

those of NM, with the highest levels observed in E4, suggesting that

E4 may represent a highly invasive cancer cell subpopulation. Our

findings are consistent with the study by Soulafa Mamlouk et al.,

which demonstrated through three-dimensional morphological-

molecular reconstruction that DNA copy number variation

(CNV) is a major source of CRC tumor heterogeneity, with

different clusters exhibiting distinct CNV aberrations along the

proximal-distal axis (44). In our study, tumor cell gene expression

analysis showed that different clusters were associated with protein

synthesis (C1), stress response (C2), immune response (C4), and

barrier function (C5), with the E4 subpopulation enriched for

immune evasion genes and exhibiting strong invasiveness.

Further cell proportion analysis revealed that E2 was more

prevalent in adjacent non-tumor tissues, whereas E1, E3, and E4

were primarily enriched in tumor tissues, with E4 being a tumor-

specific subpopulation.

Moreover, tumor heterogeneity is not only reflected in gene

expression differences but is also closely related to prognosis and

intercellular interactions. Survival analysis revealed cancerous

epithelial marker genes, particularly those in E4, were linked to

poorer survival outcomes. Cell communication analysis revealed

that E2–E4 tumor cells exhibited enhanced interactions with other

cells, with E4 demonstrating the strongest signal input-output

capacity. At the same time, The E4 subpopulation exhibits unique

ligand-receptor interactions compared to other subgroups, such as

the NAMPT ligand-receptor interaction with T cells and the EGFR

ligand-receptor interaction with stromal cells. NAMPT exhibits

anti-apoptotic properties and is highly expressed across various

tumor types. Moreover, in advanced and metastatic tumors, the

proportion of tumors with high NAMPT levels is also significantly

elevated. Additionally, elevated NAMPT expression is associated

with poor patient prognosis but is independent of tumor staging

(45, 46). Additionally, NAMPT has been shown to be associated

with dysregulation of the tumor immune microenvironment,

including immune surveillance evasion, immunosuppression, and

immune tolerance (24, 25).

Cancer cells recruit supportive stromal cells from the

surrounding endogenous tissue stroma to promote tumor

formation. Consequently, stromal cells constitute a crucial

component of the tumor microenvironment (47–49). Studies have

shown that in colorectal cancer, subtypes with higher stromal

infiltration exhibit poorer prognosis and distinct immune escape

mechanisms (50). Our results suggest that the E4 subpopulation

may promote tumor progression through EGFR ligand-receptor

interactions with stromal cells, potentially facilitating tumor

immune evasion. Our findings align with the study by Yihao Mao

et al., which classified CRC samples into three immune phenotypes

with distinct TME cell infiltration patterns and immune evasion

mechanisms (50).

Additionally, CCL20 and CXCL8 secreted by tumor cells into

the tumor microenvironment (TME) were found to promote the
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recruitment of Treg cells and reduce CD8+ T cell infiltration,

thereby facilitating tumor immune evasion (51, 52). Our study

further demonstrates that the E4 subpopulation promotes tumor

progression and evades immune surveillance by upregulating

immune-related genes such as CXCL8, consistent with previous

research findings. These findings highlight the differential immune

evasion mechanisms among subpopulations and their profound

implications for tumor treatment response.

Our pseudotime analysis revealed E4 cells, located at the end of

the transformation trajectory, had the highest gene expression

levels, representing the late-stage tumor cells and the final phase

of malignant transformation, which was consistent with our

previous analysis. The gene expression pattern of E4 indicates its

pivotal role in tumor progression, particularly through pathways

associated with wound healing and NF-kB signaling. These findings

reveal the dynamic evolution of colorectal cancer from early tumor

cells (E1) to late-stage malignant cells (E4), emphasizing the critical

role of metastasis and immune dysregulation in tumor progression

(42, 43, 53).

Finally, we validated the high expression pattern of the key gene

PRSS22 in the E4 subpopulation and its association with poor

prognosis using public databases and clinical samples. Cell

experiments further confirmed that PRSS22 promotes cell

proliferation and metastasis, which is consistent with our

previous analysis of the E4 subpopulation. Notably, both the

TCGA cohort and our Yangpu District Hospital cohort showed

differential PRSS22 expression across different N stages in colon and

rectal cancer, suggesting potential heterogeneity between these two

similar cancers.

Previously, only a few studies have explored the association

between PRSS22 and cancer. In breast and liver cancer, PRSS22 is

reported to promote tumor progression through the ERK signaling

pathway (15, 54). Recent literature has reported that PRSS22 may

serve as a biomarker for early diagnosis and dynamic monitoring in

ulcerative colitis (55). In colorectal cancer, it is only known that

PRSS22 may exhibit differential mRNA expression levels in the

blood of colorectal cancer patients compared to normal

controls (56).

In conclusion, this study provides an in-depth characterization

of the heterogeneity of colorectal cancer epithelial cells, highlighting

the critical role of the E4 subpopulation in tumor progression, and

immune evasion and prognosis. The high expression of PRSS22 is

not only associated with CRC prognosis but also presents a

potential target for developing tumor biomarkers. By utilizing

single-cell transcriptomic analysis, we have laid the foundation

for further understanding the dynamic changes within the tumor

microenvironment. PRSS22 enrichment in E1 and E4 cells, not all

epithelial cancer cells, suggests it may not have good therapeutic

effects as a single target. Future studies should continue exploring

the mechanisms underlying CRC cell heterogeneity and its

interactions with the tumor microenvironment, particularly

focusing on immune evasion dysregulation mechanisms in the E4

subpopulation, with the goal of identifying novel therapeutic targets

for tumor immunotherapy. Additionally, interventions targeting
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PRSS22 and its downstream pathways may open new avenues for

personalized treatment strategies, promoting advances in early

diagnosis and precision therapy for colorectal cancer. Although

we have explored the changes in the colorectal tumor

microenvironment from computational information, clinical

samples, and cellular experiments, there are still some limitations.

For example, the sample size of the single-cell dataset needs to be

expanded, and the number of tumor clinical samples also requires

further increase.

In conclusion, this study provides new insights into cancer

progression and metastasis. We identified specific cell clusters

associated with high metastatic potential and immune

heterogeneity, and we jointly confirmed their role in the tumor

immune microenvironment at both the bulk transcriptomic and

single-cell transcriptomic levels. Its marker, PRSS22, shows

significant potential as a novel immunotherapeutic target for CRC.
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