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Background: Ewing sarcoma (ES) is a rare and aggressive pediatric bone

malignancy with poor prognosis, driven by therapy-resistant tumor

microenvironments (TME). The TME plays a critical role in tumor progression

through a complex and dynamic network of reciprocal interactions among

immune cells (dysfunctional T cells, immunosuppressive macrophages),

stromal components (cancer-associated fibroblasts), and tumor cells. These

interactions collectively shape the immune landscape, promote immune

evasion, and contribute to therapeutic resistance. Identifying reliable

prognostic markers remains a critical challenge.

Methods: Here we performed an integrated single-cell RNA sequencing,

WGCNA, and bulk RNA-seq analyses to investigate tumor-immune

interactions. Differentially expressed genes (DEGs) intersected with T cell

markers identified a total of 174 T cell-associated genes. Functional

enrichment analysis and molecular subtyping were performed to explore

immune-related pathways. A prognostic model based on CLEC11A, BDP1, and

ID3 was constructed using Cox regression and validated in external datasets.

Immune infiltration was assessed using the CIBERSORT algorithm.

Results: T cell marker analyses revealed key roles in pathways such as PI3K-Akt

signaling and immune modulation. Molecular subtyping identified two clusters

with distinct immune microenvironments: Cluster C1 (immunosuppressive

phenotype and poorer prognosis) and Cluster C2 (functionally active immune

profile associated with better prognosis). The prognostic model demonstrated

high predictive accuracy for 1-, 3-, and 5-year survival (AUC: 0.85, 0.82, 0.78).

Additionally, a higher tumor mutation burden (TMB) with low survival rate has
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been observed in High-risk group. Immune infiltration analysis showed higher

CD8+ T cell and dendritic cell activity and immune checkpoint expression in low-

risk groups. Experimental validation demonstrated that ID3 silencing inhibited

tumor cell proliferation and induced cell cycle arrest in ES cell lines.

Conclusion: Together, our study identified CLEC11A, BDP1, and ID3 as key T cell

associated prognostic markers and developed a validated model to predict

survival outcomes in ES. Insights into T cell markers and tumor-immune

dynamics offer promising advances in prognostic assessment and

immunotherapy for ES. Furthermore, the role of ID3 in immune evasion and

tumor proliferation underscores its potential as a therapeutic target, providing

new avenues for immune checkpoint regulation and personalized

treatment strategies.
KEYWORDS

Ewing sarcoma, T cell associated genes, immune infiltration, prognostic
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Introduction

Ewing sarcoma (ES) is a bone and soft tissue malignant

pediatric tumor. Although a significant progress has been made

in therapeutic approaches in surgery, chemotherapy and radiation

over the past four decades but the five-year survival rate is still less

than 30% with recurrent metastasis (1). This therapy resistance is

driven by tumor microenvironment (TME) which highlights the

urgent need of new therapeutic paradigms to represent unmet need

(2, 3). TME plays a critical role in influencing tumor behavior and

therapeutic outcomes.

Single-cell analysis has revolutionized the understanding of

tumor heterogeneity, offering detailed insights into the cellular

composition and immune dynamics within tumors (3–7). Using

single-cell sequencing data, researchers can model cell

differentiation trajectories and identify genes associated with

specific differentiation stages, creating opportunities to uncover

previously unknown differentiation-related genes. Furthermore,

weighted gene co-expression network analysis (WGCNA)

provides a powerful approach which can analyze the expression

of genes pattern in multiple samples. WGCNA generates different

modules by clustering of genes with same expression profile, it

facilitates the exploration of correlations between these modules

and phenotypic characteristics such as tumor grade (8).

Although immunotherapy has achieved significant success in

hematologic cancers, its effectiveness in solid tumors such as in ES

has been limited (9, 10). This limitation is largely attributed to the

complex and immunosuppressive nature of the TME, which

consists of tumor cells, immune cells, and stromal cells
oenvironments; DEGs,

on burden; WGCNA,
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interacting via a cascade of cytokine and chemokine signaling (11,

12). These interactions regulate tumor progression and contribute

to therapy resistance. Dysfunction in both innate and adaptive

immune responses further exacerbates the immunosuppressive

nature of the TME, enabling tumors to evade immune

surveillance (13, 14).

T cells are the component of adaptive immune response that

particularly plays a significant role in ES (3, 15). Though, prolonged

exposure to tumor antigens often leads to T cell dysfunction,

compromising their ability to execute effective antitumor

responses (16). Emerging evidence suggests that the regulatory

mechanisms underlying T cells disfunction are extremely

conserved, indicating common genetic pathways may drive this

dysfunction across different tumor types, despite tumor-specific

variations (17). Considering the pivotal role of T cells in ES and

their contribution to immune evasion, it is crucial to conduct a

comprehensive investigation into the combined effects of T cell

marker genes in ES.
Materials and methods

Identification of T cell associated gene
using single-cell RNA sequencing data
analysis

A dataset of GSE243347 was used to perform single-cell profiles

analysis. To ensure high-quality single-cell RNA sequencing

(scRNA-seq) data, a rigorous filtering process was applied to the

raw data matrix for each cell. Genes detected in fewer than five cells

were excluded from the analysis. Additionally, cells expressing

fewer than 100 genes or exhibiting mitochondrial gene expression

levels exceeding 5% were also removed to ensure data quality Data
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preprocessing and downstream analyses were performed using the

Seurat R package (18). Normalization was conducted using the

normalize data function with a scale factor of 10,000, employing the

“log normalize” method. The “find variable features” function was

utilized to identify the 1,500 most variable genes. Dimensionality

reduction was performed via principal component analysis (PCA)

using the Run PCA function, with significant principal components

(PCs) determined through the Jack Straw method, based on the

proportion of variance explained. Cell clustering was performed

using the “find neighbors” and “find clusters” functions under

default parameters, while visualization of cell clusters was

achieved with t-distributed stochastic neighbor embedding (t-

SNE) using the Runts NE function. DEGs across cell types were

identified using the “find all markers” function, applying stringent

thresholds for significance (adjusted P-value < 0.05) and effect size

(|log2(fold change) | > 1). Cluster annotation was conducted

through a reference-based approach, leveraging data from the

human primary cell atlas (19) and the single R tool (20) to refine

and validate cluster identities. These comprehensive steps ensured

robust data preprocessing, high-quality clustering, and biologically

meaningful interpretation of the scRNA-seq datasets.
Differential gene analysis

The microarray datasets GSE17679, GSE45544, GSE68776, and

GSE142162 were obtained from the NCBI GEO database

(www.ncbi.nlm.nih.gov/geo/) and generated using the GPL6244,

GPL5175, GPL16311 and GPL570 platforms. To maintain platform

uniformity, 20 samples from the GSE37371 dataset (analyzed on the

GPL96 platform) were excluded. For further analysis, normalized

microarray data from 22 normal muscle samples and 479 tumor

samples were used. The raw data (CEL files) were normalized using

the “Affy tool (version 1.68.0)” in R software (version 4.0.3). Probe-

level data were annotated using microarray annotation files, and for

genes with multiple probes, the expression values were averaged,

with the highest expression value retained for each gene.

Overlapping genes across different platforms were aligned to

create a unified dataset. To address batch effects and ensure

dataset consistency, the “Limma package (version 3.46.0)” was

employed. DEGs between tumor and normal tissues were

identified based on the statistical thresholds of |logFC| > 1 and

adjusted P-value < 0.05.
Weighted correlation network analysis

The combined dataset was then subjected to WGCNA. The

analysis of the structure and function of gene regulatory networks is

made possible by WGCNA, a potent analytical technique that helps

to extract significant insights from high-throughput gene

expression data (8). Identifying gene modules, finding possible

biomarkers, connecting gene modules to clinical traits, carrying

out functional enrichment analysis, and building gene regulatory

networks are the main application of WGCNA.
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Screening and functional annotation of T
cell-related genes

For T cell-associated markers, 174 differentially expressed T cell

marker genes were identified through an intersection analysis of

DEGs and T cell marker genes, integrating single-cell, WGCNA,

and bulk RNA-seq data. The limma R package was used to identify

T cell-related DEGs, with both upregulated and downregulated

genes selected based on the criteria of adjusted p-value < 0.05 and |

log2FC| > 1. To explore the functional implications, enrichment

analyses were performed using the Kyoto encyclopedia of genes and

genomes (KEGG) and gene ontology (GO) databases, facilitated by

the ClusterProfiler R package. Statistical significance for the

enrichment analysis was set at adjusted p-value < 0.05, providing

insights into the biological roles of these marker genes.
Subtype evaluation

T cell associated marker obtained by using the intersection

between DEGs from GEO differential expression analysis and T cell

marker genes from single-cell data were used to identify subtypes.

The “Consensus Cluster Plus” R program identified the molecular

subtypes of ES. Sub-cluster prognostic differences were assessed

using Kaplan–Meier (K–M) analysis. Heatmap was used to

illustrate the connections between subtypes and clinical traits by

employing chi-square tests.
Prognostic signature establishment and
verification using T cell associated genes

For the development of a prognostic signature, we utilized the

ICGC2 dataset comprising 57 ES samples. Independent genes

associated with overall survival (OS) were identified through

multivariate Cox regression analysis using the “coxph” function

from the “survival” R package. This analysis facilitated the

construction of a prognostic model, with gene coefficients

recorded for further reference. The model was established by

combining gene mRNA express ion leve ls with their

corresponding risk coefficients using the formula: Risk score =

coefficient × expression (mRNA). Based on the median risk score,

patients were categorized into low- and high-risk groups. The

predictive performance of the model was evaluated using the area

under the curve (AUC) obtained from the “survival ROC” package,

while Kaplan-Meier (K-M) analysis was employed for survival

analysis. The prognostic model was further validated using

external cohorts from the GSE63157 and GSE17674 datasets. Cox

regression analysis confirmed the signature as an independent risk

factor. Stratified analysis and nomogram construction were

performed following correlation analyses between clinical

characteristics and risk scores. Calibration plots were generated to

compare the predicted 1-, 3-, and 5-year mortality rates with actual

outcomes, ensuring the model’s reliability.
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Immune-related analysis in risk groups

To further explore the relationship between high- and low-risk

groups, immune-related analyses were conducted. The

CIBERSORT algorithm was employed to determine the

composition of immune cell populations within each ES sample.

Single-sample gene set enrichment analysis (ssGSEA) was used to

assess immune cell activity and immune functions across the

samples. Mutation analysis was performed using the “maftools” R

package, and the tumor mutation burden (TMB) was calculated and

compared between the high- and low-risk groups. Additionally,

survival analysis was conducted to evaluate the association between

TMB scores and patient outcomes.
Chemotherapy sensitivity prediction

To assess the potential of the T cell-associated gene score as a

predictive biomarker for chemotherapeutic response in ES patients,

its association with drug sensitivity was analyzed. The half-maximal

inhibitory concentration (IC50) values of commonly used

chemotherapeutic agents were estimated using the “pRRophetic” R

package. This method enabled the evaluation of the gene signature’s

predictive ability in determining chemotherapy sensitivity.
Cell lines and culture

Human ES cell lines A673 (Wuhan Pricella Biotechnology CO.,

Ltd.) and RD-ES (Meisen Chinese Tissue Culture Collections) were

cultured in DMEM or RPMI-1640 medium at 37°C in a humidified

environment with 5% CO2.
ID3 knock down with siRNA

siRNAs were procured from GenePharma (Suzhou, China).

Gene knockdown was performed using siRNA specifically targeting

ID3. A stable non-specific siRNA (siNC) served as the negative

control. Transfection was carried out using the Lipo8000 kit in

accordance with the manufacturer’s protocol. Cells were harvested

48 hours post-transfection for subsequent analysis.
Real-time quantitative reverse transcription
PCR

Total RNA was extracted using VeZol Reagent (Nanjing

Vazyme Biotech Co., Ltd). Purified RNA was reverse-transcribed

into cDNA using HiScript II Q RT SuperMix for qPCR (Nanjing

Vazyme Biotech Co., Ltd). GAPDH was used as an internal control.

All procedures were performed in accordance with the

manufacturer’s instructions.
Frontiers in Immunology 04
Cell proliferation assay

The cell proliferation assay was performed by seeding

transfected cells at a density of 1 × 105 cells per well in a 24-well

plate. Cell counts were assessed under a microscope at 0, 24, 48-, 72-

, 96-, and 120-hours post-seeding to evaluate proliferation

dynamics over time.
Flow cytometry for cell cycle distribution
analysis

48 hours after transfection, cells were harvested, fixed overnight

in 70% ethanol at 4°C, treated with RNase, and then stained with

propidium iodide (PI) in the dark for 30 minutes for cell cycle

analysis. CytoFLEX Flow cytometer (Beckman Coulter, Inc.) was

used to determine the distribution ratio of each phase of the

cell cycle.
Statistical analysis

Statistical analyses were performed using SPSS v.19.0 software

(SPSS; Chicago, IL, USA). Differences between two groups were

assessed using independent samples t-tests. Differences among

three or more groups were analyzed using one-way analysis of

variance (ANOVA). All data are expressed as mean ± standard

deviation. A P-value < 0.05 was considered statistically significant.
Results

Identification of T cell associated genes
expression profiles

Based on single-cell profiles from GSE243347, which included 27

samples, we derived a gene expression matrix encompassing 7,182 cells

and 10,128 features for further analysis. Using the Harmony algorithm

for batch effect correction and dimensionality reduction, we identified

10 distinct clusters (Cluster 0-10) through unsupervised analysis of

single-cell transcriptomic data (Figure 1A). These clusters were defined

based on transcriptional similarity and visualized using t-SNE

projection. To assign biological identity, we annotated the clusters

using established marker genes. The resulting clusters were categorized

into seven major cell types: T cells, smooth muscle cells, tissue stem

cells, endothelial cells, monocyte, chondrocytes and neurons. T cells are

represented by the red-colored cluster (Figure 1B). Notably, the

distribution of T cells varied significantly across ES patient samples,

leading to the identification of 489 ES-associated T cell marker genes

(Supplementary Table S1). This diverse cellular landscape underscores

the complexity of the tissue microenvironment. The “CellChat”

approach revealed substantial connectivity between different cell

types, particularly among T cells, macrophages, and endothelial cells,
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which exhibited high interaction strength and a large number of

interactions. The number of interactions, representing how many

distinct ligand–receptor pairs exist between cell types. In this context,

T cells showed notable but comparatively fewer interactions than
Frontiers in Immunology 05
highly connected cell types such as neurons and chondrocytes, which

formed the most extensive communication network in terms of

interaction count (Figure 1C). In contrast, the weights of

interactions, defined as the mean interaction strength, which reflects
FIGURE 1

Single-cell transcriptomic analysis reveals cellular heterogeneity and intercellular interactions (A, B) t-SNE plots identified various display distinct cell
clusters. (C) Number of ligand-receptor interactions between cell types. T cells show moderate connectivity, interacting most with neurons,
chondrocytes, and tissue stem cells. (D) Mean interaction strength between cell types. T cells, despite fewer interactions, exhibit high signaling
intensity with smooth muscle cells and monocytes, suggesting targeted, functional crosstalk. (E) A heatmap highlights differentially expressed genes
across cell populations, revealing key molecular signatures that may contribute to cell-type-specific functions and interactions.
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the average signaling intensity between cell types. Here, T cells

exhibited strong signaling activity, particularly with smooth muscle

cells and monocytes, despite having fewer total interactions. This

suggests that T cells may engage in functionally potent and selective

signaling, indicating a targeted regulatory role within the tumor

microenvironment (Figure 1D). Furthermore, DEG analysis also

identified the several genes specific to the cell populations (Figure 1E).
Identification of T cell associated genes
and biological enrichment functions

Comparisons between tumor and healthy muscle tissues from the

NCBI database identified 3,365 DEGs (Supplementary Table S2).

WGCNA analysis revealed distinct module-trait relationships in ES

tumors, as depicted in the gene dendrogram and module colors from

the GEO merged dataset (Figure 2A). Among these, the MEblue

module showed a strong positive correlation with tumor traits (r =

0.84, p < 7e−43), whereas the Meturquoise module exhibited a robust

negative correlation (r = −0.97, p < 1e−99) (Figure 2B). These

findings suggest that these modules contain genes likely involved in

key biological functions and disease mechanisms. We merged the

Meblue and Meturquoise module genes and acquired the 2,609 genes

by WGCNA. (Supplementary Tables S3, S4). The intersection of

DEGs, WGCNA genes, with T cell marker genes yielded 174

differential T cell marker genes for downstream analyses

(Figure 2C, Supplementary Table S5).

Pathway enrichment analysis (KEGG) revealed the involvement of

these genes in critical cancer-related pathways, such as those implicated

in bladder cancer, small cell lung cancer, and viral carcinogenesis,

highlighting their potential roles in tumorigenesis and immune

evasion. Signal transduction pathways, including PI3K-Akt and

FoxO signaling, are well-established mediators of cell survival,

proliferation, and apoptosis, and are often dysregulated in cancer

(Supplementary Table S6). Moreover, pathways linked to infectious

diseases, such as human cytomegalovirus infection and Yersinia

infection, point to the dual roles of these genes in infection response

and inflammation. GO analysis of biological processes reveals critical

insights into the functional roles of these cells. In the BP category, key

processes such as the positive regulation of cell projection organization,

modulation of chemical synaptic transmission, and neuron projection

organization were enriched, indicating roles in neural connectivity and

signaling pathways. The CC analysis highlighted critical structural

components, including the cell-substrate junction, focal adhesion,

and collagen-containing extracellular matrix, underscoring their

significance in maintaining cellular architecture and mediating cell-

extracellular matrix interactions. In the MF category, enriched

functions such as actin binding, insulin receptor binding, and

protein-cysteine activity suggest involvement in cytoskeletal

remodeling, signaling, and metabolic regulation (Figure 2E,

Supplementary Table S7). DEGs within the WGCNA (MEblue and

MEturquoise) module were significantly associated with T cell markers,

suggesting their potential involvement in modulating immune cell

functions such as antigen recognition and effector responses. These

results collectively reveal the interplay between genetic regulation,
Frontiers in Immunology 06
immune function, and disease processes, offering a comprehensive

understanding of the biological significance of these gene clusters.
Molecular subtypes association with tumor
immunological grades

Using DEGs of T cell marker genes, we performed molecular

subtyping, optimally clustering ES patients into two subgroups with

high internal coherence (Figures 3A, B). Survival analysis indicates that

patients in cluster C2 have a significantly better prognosis compared to

those in cluster C1 (p < 0.038) (Figure 3C). The heatmap differentiates

the distinct clusters, C1 and C2, based on their clinical features and

expression profiles. Cluster C1, which includes a larger number of

patients, is predominantly associated with metastatic disease, disease

progression, and poor survival outcomes, indicating its potential link to

an aggressive disease phenotype. In contrast, cluster C2 patients have

non-metastatic and remission statuses, suggesting a less severe disease

profile (Figure 3D). The analysis highlights distinct tumor biology and

immune microenvironments between clusters C1 and C2. Moreover,

Cluster C2 exhibited significantly higher tumor purity, indicating a

denser tumor cell population (Figure 4A). In contrast, Cluster C1

showed significantly higher Immune Score, Stromal Score, and

ESTIMATE Score compared to C2 (Figures 4B–D). Despite this

elevated immune presence, Cluster C1 did not appear to mount an

effective antitumor immune response. Immune cell profiling revealed

that C1 was predominantly infiltrated by immunosuppressive cell

populations, such as M2 macrophages and monocytes, which are

known to inhibit cytotoxic immune activity and support tumor

progression. Conversely, Cluster C2 displayed higher proportions of

gd T cells, CD4+ naïve T cells and activated mast cells, these cell types

associated with innate immune activation, antitumor priming, and

immune surveillance (Figure 4E). Similarly, at the molecular level,

Cluster C1 exhibited increased expression of immunosuppressive

checkpoint molecules, including LAG3 and HAVCR2 (TIM-3), both

of which are canonical markers of T cell exhaustion and dysfunction.

Although CD8A expression was also significantly elevated in C1,

indicating the presence of cytotoxic T cells, this was likely offset by

the high expression of inhibitory receptors and the presence of

suppressive immune subsets, leading to functionally impaired

immune responses. In contrast, Cluster C2, despite lower immune

and stromal infiltration, showed significantly higher expression of

IFNG, PDCD1 (PD-1), and JAK1 (Figure 4F). These markers are

indicative of active interferon signaling, T cell receptor activation, and

immune co-stimulation, suggesting that the immune cells present in

C2 retain their functionality and responsiveness. Although CD8A levels

were lower in C2, the expression profile supports a more immune-

permissive and responsive microenvironment.

These differential gene expression patterns suggest that Cluster

C1 represents an immune-infiltrated but immunosuppressive

phenotype, with immune dysfunction likely driven by chronic

antigen stimulation and elevated inhibitory signaling. In contrast,

Cluster C2 reflects an immune-functional phenotype, characterized

by more effective immune components, potentially conducive to

better immunological control of tumor growth.
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Construction of T cell marker signature

To increase the specificity of candidate genes, we conducted K-

M plot and univariate Cox analysis, identifying 1,746 prognostic-

associated genes using the ICGC dataset, which were significantly

associated with patient outcomes in the cohort (Figure 5A,

Supplementary Table S8). Furthermore, by intersecting the set of

these prognostic-associated genes with the set of 174 genes, we
Frontiers in Immunology 07
identified 7 key prognostic-associated genes crucial for subsequent

analyses. We then performed a multivariate Cox regression analysis

to construct the model, selecting three key genes: CLEC11A, BDP1,

and ID3. The hazard ratios for these genes were calculated, and they

were identified as significant in the survival analysis. CLEC11A and

BDP1 were shown to be protective factors, with hazard ratios of 0.70

(95% CI: 0.52–0.93, p = 0.013) and 0.77 (95% CI: 0.63–0.93, p =

0.006), respectively, indicating that higher expression of these genes
FIGURE 2

Identification of T cells associated genes and enriched pathways. (A) Gene dendrogram with module colors from the GEO dataset. (B) Module-trait
relationships showing correlations and significance. (C) Overlap of DEGs, T cell markers, and WGCNA-identified genes, emphasizing immune and
structural gene associations. (D) KEGG pathway analysis highlighting PI3K-Akt signaling, focal adhesion, and viral carcinogenesis. (E) GO enrichment
of biological processes, cellular components, and molecular functions. Color represents the adjusted p-value (red = higher significance; blue =
lower significance). Dot size reflects the gene ratio (proportion of genes enriched in each pathway).
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is associated with better survival outcomes. In contrast, ID3 was

identified as a risk factor with a hazard ratio of 1.36 (95% CI: 1.06–

1.74, p = 0.016), suggesting that its higher expression correlates with

poorer survival (Figure 5B). Patients were stratified into high-risk

and low-risk groups based on their gene expression profiles. The

heatmap of gene expression for the three genes showed distinct

expression patterns between high-risk and low-risk patients. The

risk score distribution and survival status of patients indicated that

those in the high-risk group exhibited poor survival outcomes, as

shown by higher risk scores and increased mortality (Figures 5C,

D). K-M survival curves demonstrated the significance of both risk

groups (p = 5.32e-04) (Figure 5E). Time-dependent ROC curves

were generated to assess the predictive performance of the model,

achieving AUC values of 0.85 for one year, 0.82 for three years, and

0.78 for five years, indicating high predictive accuracy (Figure 5F).

Finally, the overall survival probabilities at 1, 3, and 5 years were
Frontiers in Immunology 08
predicted by the nomogram using the biomarkers ID3, CLEC11A,

and BDP1 expression levels, contributing to the total score. This

demonstrated that patients with a high score had significantly

higher probabilities of survival at 1, 3, and 5 years (Figure 6A).

The nomogram’s performance was evaluated using a calibration

curve, and the predicted OS showed a strong correlation with the

survival rate. These results confirm the nomogram’s reliability and

accuracy in predicting survival outcomes (Figure 6B).
Validation of the T Cell Marker Signature

To further validate the prognostic performance of the model, we

conducted validation by two external datasets GSE63157 and

GSE17674. Subsequently, patients were stratified into high and

low risk groups based on DEG T scores (Figures 6C, D). K-M
FIGURE 3

Consensus clustering and survival analysis of patient subgroups. (A) Cumulative distribution function (CDF) and consensus index plots validating
cluster stability. (B) Clear distribution revealed by Consensus matrix for k=2 between two clusters. (C) Kaplan-Meier survival analysis comparing
Clusters, C1 and C2. (D) Clinical feature distribution across clusters, including gender, survival status, disease status, and metastatic stage.
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analysis revealed that high-risk patients have low survival rate as

compared to low-risk group (Figure 6E) and the model also

exhibited a notably high AUC value in the external validation

using the GSE63157 dataset (Figure 6F). Additionally, calibration
Frontiers in Immunology 09
plot also showed the strong agreement with OS at 1,3 and 5 years

(Figure 6G). Similarly with the consistent our model shows the

accuracy in other datasets of GSE17674. Patients can be observed in

both high and low risk. High-risk patients showed the low survival
frontiersin.or
FIGURE 4

Tumor microenvironment (TME) and immune landscape differences between clusters. (A) Tumor purity differs significantly between C1 and C2.
(B–D) ESTIMATE analysis shows higher immune and stromal scores in one cluster. (E) Immune cell infiltration analysis reveals distinct TME profiles
between clusters. (F) Immune-related gene expression varies, particularly in checkpoint molecules and regulators. * Symbols denotes, A single *
denotes a p-value of less than 0.05, indicating a statistically significant difference. Two ** represent a p-value of less than 0.01, suggesting a highly
significant difference, while three *** indicate a p-value of less than 0.001, reflecting a very highly significant difference.
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rate a with the confirmation of AUC value of one year three years

and five years, indicating the high predictive accuracy. While the

calibration plots demonstrated a strong agreement with the OS at

1,3 and 5 years, further validating the reliability of the model
Frontiers in Immunology 10
(Supplementary Figure S1). The biological relevance of these

findings underscores the potential of these genes as biomarkers

for stratifying patients and tailoring therapeutic approaches based

on genetic risk.
FIGURE 5

Gene based signature for prognosis analysis and risk stratification. (A) Vin diagram represents the genes between common and survival genes.
(B) Forest plot showing hazard ratios (HR) for ID3, BDP1, and CLEC11A (p < 0.05). (B). (C) Heatmap of prognostic genes (D) Risk score distribution
correlates with survival status. (E) Kaplan-Meier curves reveal survival in both risk groups (F) ROC curves show strong predictive accuracy at 1, 3, and
5 years (AUC: 0.77, 0.83, 0.76). Symbols denotes, A single * indicates a p-value < 0.05 statistically significant, while two ** indicate a p-value < 0.01
highly significant.
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FIGURE 6

Nomogram and risk stratification for survival prediction. (A) Nomogram using ID3, CLEC11A, and BDP1 to predict overall survival (OS). (B) Calibration
plots show agreement between predicted and observed OS at 1, 3, and 5 years. (C) Heatmap of prognostic signature genes (D) Risk score distribution
correlates with survival status. (E) Kaplan-Meier curves reveal worse survival in high-risk patients. (F) ROC curves demonstrate predictive accuracy
(AUC: 0.67, 0.72, 0.71 at 1, 3, 5 years). (G) Calibration plots of GSE63157 show agreement between predicted and observed OS at 1, 3, and 5 years.
Symbols denotes, A single * indicates a p-value < 0.05 statistically significant, while two ** indicate a p-value < 0.01 highly significant.
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Assessment of tumor immune cell
infiltration and immune checkpoint
pathways

In order to further investigate the relationship between the risk

and infiltration of immune cells populations within the TME,

CIBERSORT algorithm was used to compare proportion of immune
Frontiers in Immunology 12
cells between high risk and low risk groups. The results showed the

low-risk group had higher infiltration of various immune cell

population, such as B cells, CD8+ T cells, NK cells and dendritic

cells show the greater prevalence of immune response (Figure 7A).We

then investigated the potential association between risk score and the

expression levels of immune checkpoint genes. Results showed that

elevated level of key immune genes, including ADORA2A, CD27 and
FIGURE 7

Immune landscape and survival analysis by TMB and risk groups. (A) Immune cell infiltration scores (e.g., B cells, CD8+ T cells) differ significantly
between risk groups (***p < 0.001, **p < 0.01, *p < 0.05). (B) Differential expression of immune-related genes (e.g., ADORA2A, CD27) across risk
groups. (C) Kaplan-Meier curves show high TMB + low risk correlates with better survival (p < 0.001). (D) Immune pathway activity (e.g., cytolytic
activity, IFN response) varies by risk group.
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HHLA2 which have critical role in immune activity such as T cell

activation and survival (Figure 7B). Furthermore, survival analysis

starfield by TMB which reveals the high TMB with high-risk group

showed the lowest survival rate between all synergistic (Figure 7C). In

addition, specific immune function and their score such as antigen

presenting cells (APC) co-inhibition, APC co-stimulation, cytolytic

activity, and T cell co-stimulation are significantly higher in low-risk

tumors (Figure 7D). This further confirms that immune functions are

more active in low-risk tumors. High-risk tumors, with their lower

immune cell scores and gene expression levels, may evade immune

detection and response, leading to poorer clinical outcomes.

Understanding these differences is vital for developing effective

immunotherapies and improving cancer prognosis. Furthermore, to

determine the T cell associated gene for anticipating chemotherapeutic

responsiveness in ES patients. we assessed the association between our

risk model and sensitivity of prevalent chemotherapeutic agents based

on estimated IC50 values, which revealed significant differences

between the low-risk and high-risk patient groups. Specifically, the

high-risk group exhibited elevated IC50 values across the majority of

chemotherapeutic agents analyzed, indicating lower predicted drug

sensitivity. In contrast, the low-risk group consistently showed lower

IC50 values, suggesting a higher predicted responsiveness to

chemotherapy. These findings imply that patients in the low-risk

group may be more likely to benefit from standard chemotherapeutic

regimens, whereas patients in the high-risk group may require

alternative or combination treatment strategies to achieve

comparable therapeutic outcomes (Supplementary Figure S2).
ID3 suppresses tumor growth and
progression

The expression profiles of BDP1, CLEC11A, and ID3 genes in

cancer cells were detected using qRT-PCR technology

(Supplementary Table S9). Experimental data revealed that,

compared to the hBMSC (control), the expression of BDP1,

CLEC11A, and ID3 was significantly upregulated in the A673 and

RD-ES cell lines (Figure 8A).

To further elucidate the biological functions of the ID3 gene in

ES, RNA interference technology was employed to silence the ID3

gene in A673 cells using three specific small interfering RNAs

(siRNAs) (Supplementary Table S10). qRT-PCR results

demonstrated that one of the siRNAs exhibited the highest

knockdown efficiency for ID3 and was therefore selected for

subsequent experiments (Figure 8B). Gene expression analysis

indicated that the inhibition of ID3 led to a significant increase in

the expression level of the cyclin-dependent kinase (CKD) inhibitor

p21, suggesting that the downregulation of ID3 could induce the

upregulation of p21 in A673 cells (Figure 8C). Concurrently, the

knockdown of ID3 also altered the expression levels of its

downstream target genes, with a notable reduction in the mRNA

level of SIX1 (Figure 8C). This finding aligns with previous research

(21), which confirmed that SIX1 plays a crucial role in inhibiting

cell migration, invasion, and in vivo metastasis, and its protein

expression is regulated by EWS/FLI1. To assess the impact of ID3
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knockdown on the proliferation of ES cells, the study employed a

24-hour interval cell counting method for monitoring. The results

showed that, compared to the control group, ID3 knockdown

significantly inhibited the proliferative capacity of A673 cells

(Figure 8D). Flow cytometry analysis revealed that knockdown of

ID3 induced G2 phase cell cycle arrest in A673 cells (Figures 8E, F).

These experimental results collectively confirm that the gene

silencing of ID3 not only suppresses the proliferative activity of

A673 cells but also significantly alters their cell cycle progression.
Discussion

Ewing sarcoma (ES) is a highly aggressive bone malignancy

with an inaccurate prognosis. Its rarity, with an incidence of fewer

than three cases per million individuals annually, has posed

significant challenges in identifying reliable prognostic markers

(22). Existing studies are often limited by outdated case data,

insufficient adjustment for critical variables, and reliance on

poorly validated models. Consequently, findings from these

studies frequently conflict, underscoring the need for more

rigorous and representative research methodologies. Given the

uniformly poor outcomes associated with ES, there is no globally

recognized risk classification system for patients to date. To address

these challenges, we employed a nomogram (a robust prognostic

model) that incorporates multiple variables to estimate individual

survival probabilities. This model was rigorously validated using an

independent dataset, with variables carefully selected based on prior

research to ensure accuracy and relevance. Addressing these gaps

necessitates an in-depth understanding of tumor-immune

dynamics and the identification of reliable therapeutic targets.

To unravel these tumor-immune interactions, we integrated

single-cell and bulk RNA sequencing data to explore cellular

communication between immune and tumor cells in ES.

Prognostic factors were identified through univariate and

multivariate Cox proportional hazard analyses using T cell-

specific genes, leading to the discovery of three independent

prognostic markers: BDP1, CLEC11A, and ID3. These markers

were used to construct a nomogram for predicting 3- and 5-year

overall survival, providing a valuable tool for clinical decision-

making in ES management. GO analysis revealed enrichment in

biological processes such as positive regulation of cell organization,

synapse organization, neuron projection organization, modulation

of chemical synaptic transmission, regulation of cell cycle activity,

and macrophage-mediated differentiation. These processes

collectively highlight the multifaceted nature of cancer

progression in ES. Further, KEGG enrichment analysis

demonstrated that the identified marker genes are predominantly

involved in key oncogenic pathways, including the PI3K-Akt

signaling pathway, focal adhesion, and regulation of the actin

cytoskeleton. These pathways play crucial roles in the

pathogenesis of ES (23–25), suggesting that targeting them could

enhance the effectiveness of immunotherapeutic strategies. Like

most sarcomas, ES is categorized as an immunologically “cold”

tumor due to its low TMB and limited immunogenicity (26).
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However, our immune infiltration analysis suggests that despite its

“cold” classification, ES can elicit immune responses, as evidenced

by increased infiltration of diverse lymphocyte populations,

including memory and effector T cells, natural killer (NK) cells,

and dendritic cells (DCs). These findings will open new avenues for

leveraging immunotherapies in ES, potentially overcoming the

challenges associated with its low immunogenicity.

Nomograms have emerged as powerful statistical tools for

predicting patient outcomes across various cancers. By integrating
Frontiers in Immunology 14
multiple clinical or molecular variables, nomograms enable

individualized risk stratification and often surpass traditional

stage-based systems in predictive accuracy. Their application

mitigates subjective bias and offers clinical guidance, particularly

in cases where the potential benefit of additional treatment remains

uncertain (27–30).

In recent years, the prognostic value of nomograms has gained

momentum in sarcoma research, including Ewing Sarcoma (ES).

For instance, Hsu et al. developed a nomogram for adult ES patients
FIGURE 8

Effects of ID3 expression and silencing on A673 cells. (A) mRNA levels of BDP1, CLEC11A, and ID3 were higher in A673 and RD-ES cells than in hBMSC
cells. (B) ID3 siRNA transfection reduced ID3 expression in A673 cells, with the most effective siRNA selected for further experiments. (C) ID3 suppression
altered the expression of multiple oncogenesis-associated genes, including p21 and p27. (D) Proliferation analysis showed ID3 silencing reduced A673
cell growth. (E, F) Flow cytometry revealed an increased percentage of A673 cells in the G2 phase following ID3 knockdown. A single* indicates a
p-value < 0.05 statistically significant, two ** indicate p < 0.01 highly significant, three *** indicate p < 0.001 very highly significant, and four **** indicate
p < 0.0001 extremely significant.
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based on SEER data, incorporating age, surgery, chemotherapy, and

TNM stage, with AUC values of 76.4, 77.3, and 76.6 for predicting

3-, 5-, and 10-year overall survival (OS), respectively (31). Similarly,

Wen et al. proposed a multicenter prognostic model for ES

combining age, bone metastasis, tumor size, and chemotherapy,

demonstrating strong discrimination and calibration (32).

Extending these findings, our study introduced and validated a

gene-based nomogram constructed through integrated single-cell

and bulk RNA-seq analyses. This model demonstrated high

predictive performance, with AUC values of 0.85, 0.82, and 0.78

for 1-, 3-, and 5-year OS, respectively, offering both prognostic value

and biological insight.

Furthermore, to determine whether the immune clusters were

associated with patient prognosis, we examined the correlation

between the risk score and the immune subtypes C1 and C2

(Supplementary Figure 3). The analysis revealed no statistically

significant association, indicating that the immune classification

and the prognostic model represent independent dimensions of

tumor characterization. While the immune clusters reflect

variations in the tumor immune microenvironment, the risk score

stratifies patients based on survival-related gene expression. These

findings highlight the distinct roles of each approach and support

their separate use in immune profiling and prognostic evaluation.

We then checked the ID3 risk gene role in ES progression in vitro.

The ID family of proteins (ID1–4), which interact with basic helix-

loop-helix (bHLH) transcription factors to inhibit bHLH-mediated

transcription, are key regulators of differentiation and

chemoresistance in cancer cells originating from diverse cellular

lineages (33–43). Among them, ID1 and ID3, like ID2, are rapidly

degraded via the proteasome and function as oncogenes in certain

tumor types (33, 40). Additionally, ID proteins are frequently co-

expressed and exhibit overlapping roles, particularly in processes

related to differentiation and development (33). In ES, cell lines and

primary tumors have been shown to exhibit elevated levels of ID2,

with evidence that EWS-FLI1 binds to the ID2 promoter to

upregulate its transcription (44–48). Similarly, ID3 is overexpressed

in ES, and it has been hypothesized that this upregulation contributes

to ES progression. To explore this, we investigated downstream genes

of ID3, including P21, ASCL1, TCF3, SIRPA, SIX1, THRA, and SOX8,

in ES cell lines. The results demonstrated that ID3 knockout led to the

upregulation of P21, TCF3, and THRA. The P21 gene encodes a

protein that regulates the cell cycle and has additional functions

beyond CDK activity regulation. It has been previously identified as a

transcriptional target of P53 (49–53). In the context of ES, prior

studies have indicated that P21 may be a direct transcriptional target

of EWS-FLI, although the in vivo binding site remains elusive (54).

Transcription factor 3 (TCF3), which encodes a protein involved in

transcriptional activation and lymphocyte development and

differentiation, has been reported to exhibit low expression in ES,

correlating with poor survival outcomes (55).

To sum up, our study highlighted that T cell modulation and

the development of a robust prognostic model are essential for

improving patient outcomes in ES. Our model, integrating immune

and molecular markers, provides a reliable tool for predicting

patient survival. ID3, in particular, plays a crucial role in immune
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evasion and tumor progression. Its overexpression, influencing key

genes like P21, TCF3, and THRA, highlighting ID3 as a promising

target for future immunotherapies, offering the potential for more

effective treatment strategies in ES.
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