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Background: Septic shock in children is an infectious disease caused by low

immunity, and its mortality is very high. Early prediction of the risk of death in

children with septic shock is helpful for clinicians to judge the severity of the

disease, take active treatment measures, and improve the adverse outcomes of

patients. However, the mechanism of death from sepsis in children remains

unclear. This study aims to use bioinformatics and machine learning algorithms

to identify key genes and pathways associated with fatal sepsis in children, and

provide theoretical basis for rational drug use in follow-up TCM treatment.

Methods: Gene expression profiles were obtained from the GEO database

(GSE4607) for 15 blank patients and 14 children with sepsis death. Differentially

expressed genes (DEGs) were enriched by GO and KEGG pathways. Construct and

visualize protein-protein interaction (PPI) networks to identify candidate genes

responsible for fatal sepsis in children. Three kinds of machine learning models

were established, and the candidate genes were screened by intersection to obtain

the core geneswithdiagnostic value. ROCcurvewas drawn for core genes toclarify

the diagnostic value of genetic markers.

Results: Analysis of differences in the preprocessed dataset identified 83 genes,

including 78 up-regulated genes and 5 down-regulated genes. 17 candidate genes

were screened by protein interaction network analysis. Three machine learning

algorithmsLASSO, randomforest (RF), andsupport vectormachinerecursive feature

elimination (SVM-RFE) were used to finally screen out three core genes: CD163,

MCEMP1 and RETN. CD163, MCEMP1 and RETNmay jointly regulate complement

and coagulation cascades, toll like receptor signaling pathway, graft versus host

disease, type I diabetes mellitus.

Conclusion: In this study, threecoregenes (CD163,MCEMP1andRETN) that lead to

sepsis death in children were screened out, providing a new understanding of the

lethal mechanism of sepsis in children and a promising new therapeutic approach.
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1 Introduction

Septic shock refers to a life-threatening condition of organ

dysfunction. It is triggered by the body’s abnormal response to an

infection, leading to severe circulatory, cellular and metabolic

dysfunction, and is the most serious complication with rapid

progression and high mortality (1, 2). It is estimated that there

were 1.1 million sepsis related deaths worldwide, with a mortality rate

of 148.1/100,000, accounting for 19.7% of the total number of deaths

in that year, among which the mortality rate of children was higher

than that of adults (3). Childhood has the highest lifetime incidence

of sepsis, with an estimated 3 million deaths per year worldwide

between 1990 and 2017 (4). The mortality rate in children with septic

shock is between 17% and 32%. In developed countries, the case

fatality rate of septic shock in children can reach 10% to 13%, in

restricted areas, it can reach 18% to 24%, and in a few countries, it can

even reach 34% to 58% (5). Due to the severe condition and high

fatality rate of septic shock, reducing the fatality rate of septic shock

has been the focus of the research of pediatric intensive care medicine

in the world. Septic shock often leads to rapid deterioration in most

children, and half of the fatalities take place within 48 hours after the

onset (6). These observations suggest the need for early intervention

before onset to reverse septic shock in children (7). In addition,

survivors often suffer severe sequelae that affect long-term health-

related quality of life. Therefore, the need to further investigate the

key expression of septic shock and the importance of identifying

potential biomarkers are becoming more and more obvious.

In the past few years, bioinformatics has emerged as a potent

instrument for gaining a comprehensive understanding of the

molecular mechanisms underlying diseases, as well as for pinpointing

potential biomarkers and therapeutic targets. By comparing gene

expression differences, transcriptional disparities and specific

molecular pathways can be characterized. Gene expression analysis

not only plays a crucial part in the molecular diagnosis of a wide range

of human diseases but also demonstrates remarkable potential in the

analysis of septic shock (8, 9). Machine learning (ML), through

processes such as model training, optimization, and evaluation, has

the ability to predict and identify unknown data. It offers valuable

decision-making support for the research of disease pathogenesis and

the formulation of preventive measures. As a result, it has revealed

significant potential within the realm of bioinformatics. Studies have

shown that ML can predict disease using related genes. However, few

have identified the key gene associated with septic shock. Numerous

studies have integrated bioinformatics analysis and machine learning

algorithms to pinpoint disease - related genes that could potentially be

linked to prognosis. Liang et al. used integrated bioinformatics and

machine learning methods to elucidate 12 key genes related to sepsis

and purine metabolism (10). In addition, Lin et al. suggested that

DNMT1, TP53, and TLR8 might be considered as highly valuable

biomarkers for the purpose of early diagnosis (11). The discovery of

these key genes that contribute to the development of septic shock

could be critical to understanding the factors and mechanisms that

affect the disease. This will provide a basis for future research into the

lethality of septic shock, ultimately reducing the potential risk

of disease.
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In the present study, we methodically employed bioinformatics

tools and machine - learning methods based on a large sample of

data to uncover septic shock-related expression profile data and an

ML algorithm to identify a key septic shock-related gene. Download

a microarray dataset of septic shock from the Gene Expression

Omnibus (GEO). Subsequently, differential expression genes

(DEGs) were analyzed in septic shock patients and control

groups. The infectious shock hub genes screened from the

differential genes were then analyzed by machine learning. The

cross-gene and retrograde function and pathway were analyzed, and

the relationship between proteins was studied. Finally, the key genes

CD163, MCEMP1, and RETN were discovered in septic shock,

which is expected to provide new insights into the pathogenesis of

septic shock.
2 Materials and method

2.1 Screening and acquisition of original
data

We searched for data in NCBI’s GEO database with the

keyword “septic shock” and excluded chip data sets with sample

size <6 using the species “Homo sapiens” as a screening criterion.

The final data included in the analysis is GSE4607 and the platform

number is GPL570. All cases included in the data were children

under 10 years old. Expression data and related annotation files

were collected for this group of data. We used 15 blank data and 14

fatal shock data in this dataset for systematic analysis. These

datasets exhibit excellent data quality control, featuring complete

matrices and comprehensive clinical information. The probes of

these data are publicly accessible, and they also possess matrix

information that can be effectively normalized. For the RNA-seq

data, standard gene expression normalization and log2 conversion

were carried out.
2.2 Screening for differentially expressed
genes

The “Limma” package in R language was used to analyze the

differential expression gene (deg) in the sample data of the blank

group and the lethal shock group (12). A p value <0.05 or p value

itself equal to 0.05 was considered statistically significant. In order

to determine whether there was differential expression of genes, we

adopted LogFC (log fold change) > 1 and adjusted the p0.05

standard. The ‘pheatmap’ and ‘ggplot2’ software packages were

used to generate volcano maps and heat maps of differentially

expressed genes (DEGs).
2.3 Data set path analysis

We analyze the pathway of differentially expressed genes

analyzed from the blank group and septic shock group in the
frontiersin.org
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GSE4607 dataset. Use R language to draw the top 5 path maps

for ascending and descending rankings, as well as path

mountain maps.
2.4 GO and KEGG enrichment analysis

To explore the biological mechanism of the genes related to

lethal septic shock, GO and KEGG enrichment analyses were

conducted on all the selected differential genes (13). Subsequently,

functional associations were established to gain a better

understanding of the role played by the hub genes. It should be

noted that items with P values less than 0.05 were regarded as

significantly enriched. The final results were presented in the forms

of bubble maps and heat maps.
2.5 Differential gene protein interaction
network analysis and key core gene
screening

The analysis of Protein-protein interaction (PPI) among

Differentially Expressed Genes (DEGs) is grounded in the

STRING database (https://cn.string-db.org/) (14). This database

enables the search for relationships between proteins of interest.

These relationships can include direct binding interactions or the

co-existence within upstream and downstream regulatory

pathways, facilitating the construction of a PPI network with

intricate regulatory connections. The minimum required

interaction score parameter is set at 0.04. Subsequently, the PPI

network is visualized using Cytoscape (http://www.cytoscape.org).
2.6 Selection biomarkers by machine
learning methods

In order to more accurately identify the characteristics that can

be used as biomarkers for the diagnosis of infection shock, after

preliminary screening of differentially expressed genes, we resorted

to three machine learning algorithms: LASSO, random forest (RF),

and support vector machine recursive feature elimination (SVM-

RFE) (15, 16). These were employed to identify biomarkers

originating from DEGs related to the diagnosis of septic shock.

Specifically, the LASSO algorithm was implemented using the

“glmnet” package, with the response type configured as a

binomial and the regularization parameter (a) set to 1. In order

to optimize the penalty parameter, cross-validation was performed

tenfold in model training. The latter is carried out using the R

software package “SVM-RFE”, with penalty parameter adjustment

determined by 10x cross validation and minimum classification

error. The default parameters were used in this script (cost = 10,

cachesize = 500, scale = false, type = “C-classification,” kernel =

“linear”). The Random Forest model was constructed using the

‘RandomForest’ (Version 4.7–1.1) package in R with 10-replicated

tenfold cross-validation. As a randomization-based algorithm, it
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aims to avoid overfitting of a single decision tree and improves the

overall model performance by utilizing multiple related decision

trees generated from the same training set. In the context of this

study, the genes selected as features were the top 30 genes.
2.7 Enrichment analysis of key gene sets

Gene Set Enrichment Analysis (GSEA) is carried out for the

genes under consideration. The objective is to uncover the

biological importance of the genes that can distinguish between

different conditions or groups. In order to obtain a standardized

enrichment score for each analysis, 1,000 different genome

arrangements must be completed. To assess which KEGG

pathways are significant, it is assumed that FDR <0.05 indicates

substantial enrichment.
3 Results

3.1 Analysis of differential expression

A large amount of RNA-seq data from sample GSE4607 was

analyzed with limma and DESeq2 R package for septic shock and

normal tissue differential expression gene analysis. There were 78

up-regulated genes and 5 down-regulated genes in GSE4607

(adjusted p value < 0.05 & |logFC| | 1) (Figures 1A, B).
3.2 Data set path analysis

Gene Set Enrichment Analysis (GSEA) is able to reveal the

hidden biological pathways of complex diseases. We performed

GSEA analysis on genes in the GSE4607 dataset, expecting to show

a key pathway of significant enrichment in the septic shock context.

Figure 2 shows the top 10 pathways that show notable enrichment

in genes in the GSE4607 dataset. To provide a detailed and

comprehensive overview, we use KEGG analysis, a reliable

resource for classifying and annotating biological pathways based

on related gene and molecular interaction systems. Figure 2A shows

the most abundant pathways among the genes identified in our

study. It is worth noting that complement and coagulation cascades,

Fatty acid biosynthesis, Fructose and mannose metabolism,

Nitrogen metabolism, Starch and sucrose metabolism showed

significant upregulation. These findings reveal the fundamental

biological processes and molecular mechanisms that drive the

occurrence and development of septic shock. Our GSEA also

reveals interesting insights into the down-regulated pathway

associated with septic shock. Inflammatory bowel disease,

Leishmaniasis, Nucleotide excision repair, T cell receptor

signaling pathway, and Viral life are shown the cycle-HIV−1

pathways, which show significant downregulation. To provide a

comprehensive breakdown of gene enrichment pathways, we found

that 18 pathways were positively correlated with gene expression

and 12 pathways were negatively correlated with gene expression
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(Figure 2B). This visual depiction enabled us to obtain crucial

insights into the particular genes underpinning each enrichment

pathway. It unveiled the intricate network of molecular interactions

responsible for the dysregulation witnessed in septic shock. These

results offer additional clues regarding the dysregulated molecular

cascade and abnormal cellular processes that play a role in the

development of septic shock.
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3.3 Differential gene enrichment pathway
analysis

83 differential genes were subjected to Gene Ontology (GO)

enrichment analysis, including BP, MF, and CC. First, biological

processes (BP) of the screened genes were analyzed (Figure 3A). BP

includes negative regulation of cytokine production, defense
FIGURE 2

GSEA analyses result of the data set GSE4607. (A) Upregulated and Downregulated KEGG signaling pathways of the top 10 routes. (B) A GSEA
investigation of each and every pathway.
FIGURE 1

Differential gene study between blank group and sepsis death group in GSE4607 dataset. (A) Heatmap displaying the top fifty DEGs. (B) Volcano
plots of DEG distributions.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1586584
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Guo et al. 10.3389/fimmu.2025.1586584
response to bacterium, leukocyte mediated immunity, myeloid

leukocyte activation, humoral immune response, defense response

to fungus, response to fungus, interleukin−1 production, regulation

of interleukin−1 production, acute inflammatory response,

neutrophil mediated immunity, synapse pruning. With that, We

performed cellular components (CC) analysis on the screened genes

(Figure 3B). CCs includes specific granule, tertiary granule,

secretory granule lumen, cytoplasmic vesicle lumen, vesicle

lumen, and specific granule lumen, secretory granule membrane,

tertiary granule lumen, specific granule membrane, tertiary granule

membrane, primary lysosome, azurophil granule. These molecular

locations highlight the complex interplay between cellular structure

and dysregulated gene expression patterns observed in septic shock,

providing valuable insights into the underlying mechanisms. Next,

we focus on molecular functions of differential gene enrichment

(MFs) (Figure 3C). MF Includes immune receptor activity, serine

−type endopeptidase activity, serine−type peptidase activity, and

serine hydrolase activity, calcium−dependent protein binding,

hydrolase activity, acting on carbon−nitrogen (but not peptide)

bonds, cysteine−type endopeptidase inhibitor activity, pattern

recognition receptor activity, hydrolase activity, acting on carbon

−nitrogen (but not peptide) bonds, in linear amidines, D−glucose

binding, macrolide binding and carbohydrate kinase activity.

In addition, using KEGG pathway analysis for 83 hypothetical

targets, we generate a bubble map (Figure 3D) of the top 15 most

abundant KEGG signaling pathways in descending order of FDR

values to briefly illustrate the interaction of these KEGG signaling

pathways and highlight their significance in the onset and

progression of septic shock. These targets are significantly enriched

in pathways associated with pathogenic infectious diseases, immune

system diseases and intestinal inflammatory diseases.
3.4 PPI network analysis and identification
of hub genes

Taking full advantage of the potential of the STRING website, we

carefully created a more comprehensive protein-protein interaction

(PPI) network (Figure 4A). The network diagram consists of 66 nodes

and 223 edges. Subsequently, this network is imported into the

Cytoscape application. With the utilization of the cytohubba plug-in,

we can gain a deeper understanding of the topological characteristics of

these nodes. This process enables us to generate an optimized and

highly intuitive Protein - Protein Interaction (PPI) network diagram, as

depicted in Figure 4B. This visualization not only clearly demonstrates

the complex interactions among the potential targets identified in our

research but also effectively conveys the significance of each node

visually through color-coding. Through the analysis, 17 key genes

related to septic shock were identified.
3.5 Screen key gene results based on three
kinds of machine learning

We used three machine learning methods (lasso model, SVM

model and RF model) to further screen and validate 17 key genes.
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According to the random forest algorithm, a total of 10 feature

genes PGLYRP1, MCEMP1, TCN1, MMP8, RETN, LCN2, ARG1,

CD163, CD177 and CEACAM8 were screened out (Figures 5A, B).

The findings obtained from the Lasso model show that the existence

of septic shock is related to the expression of five genes, including

CD163, MCEMP1, MPO, RETN, and S100A12 (Figures 5C, D).

During our research, to generate feature vectors from the data we’d

amassed, we made use of a powerful machine - learning method,

namely a Support Vector Machine (SVM). These feature vectors

represent the genetic feature and pattern of septic shock. By means

of this intricate process of data filtering and analysis, we managed to

unearth eight of the most crucial genes closely related to septic

shock (LTF, MMP8, CEACAM8, MCEMP1, HP, RETN, CD163,

and PGLYRP1) (Figures 5E, F).
3.6 Identification of characteristic genes

We selected the genes outputted by three diverse machine learning

models and subsequently carried out an intersection analysis on them.

Therefore, we focused our research on three genes, CD163, MCEMP1

and RETN (Figure 6A). Compared with the control group, the

expressions of CD163, MCEMP1, and RETN genes were

significantly higher in the septic shock group. We evaluated the

diagnostic efficacy and model accuracy of each gene using the AUC

values of the internal dataset. This method of analysis enabled us to

assess, in a quantitative manner, the predictive capabilities of CD163,

MCEMP1, and RETN, and to determine their ability to distinguish

septic shock patients from healthy individuals. In the GSE4607 dataset,

the AUC value of the CD163 classification model is 0.862 (Figure 6B),

that of the MCEMP1 classification model is 0.936 (Figure 6C), and that

of the RETN classification model is 0.995 (Figure 6D). The results

suggest that CD163, MCEMP1, and RETN has the possibility of acting

as a trustworthy diagnostic marker, which can offer valuable insights

into the existence and development of septic shock.
3.7 Functional enrichment analysis of
CD163, MCEMP1 and RETN

To uncover the functional implications and potential molecular

pathways associated with CD163, MCEMP1, and RETN, we

performed a rigorous GSEA analysis. We observed that CD163 was

mainly involved in upregulating pathways including complement and

coagulation cascades, glycolysis gluconeogenesis, starch and sucrose

metabolism, and toll like receptor signaling pathway and oxidative

phosphorylation. We also found that the down-regulated pathways

affected by CD163 included antigen processing and presentation,

autoimmune thyroid disease, graft versus host disease, and intestinal

pathways immune network for IGA production and type I diabetes

mellitus (Figure 7A). We observed that MCEMP1 is mainly involved

in the up-regulation pathway, including complement and coagulation

cascades, lysosome, starch and sucrose metabolism, toll like receptor

signaling pathway, type II diabetes mellitus. We also found that the

down-regulated pathways affected byMCEMP1 included graft versus

host disease, intestinal immune network for IGA production,
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ribosome, spliceosome, and type I diabetes mellitus (Figure 7B). We

observed that RETN is mainly involved in the up-regulation pathway,

include complement and coagulation cascades, glycolysis

gluconeogenesis, lysosome, toll like receptor signaling pathway, and

type II diabetes mellitus. We also found that down-regulated

pathways affected by RETN include allograft rejection, graft versus

host disease, ribosome, spliceosome, type I diabetes mellitus

(Figure 7C). CD163, MCEMP1 and RETN may co-up-regulate

complement and coagulation cascades and toll like receptor

signaling pathway. graft versus host disease and type I diabetes

mellitus were down-regulated. These findings highlight the global

role of CD163, MCEMP1, and RETN in these molecular pathways

and provide a plausible explanation for their functional significance

in septic shock.
Frontiers in Immunology 06
4 Discussion

Septic shock is accompanied by an immune response to the

pathogen, manifested by activation of pro-inflammatory and anti-

inflammatory mediators (17). Dysregulation of the immune system is

one of the main reasons for the high mortality (18). As a clinically

diagnosed critical disease, septic shock has three important factors

associated with death: first, early identification of patients with

suspected septic shock; second, immediate and active treatment of

patients with septic shock; third, attention should be paid to clinical

indicators, laboratory indicators and hemodynamic monitoring during

treatment (19). These factors are closely related to doctors’ cognition of

the diagnosis and treatment strategy of septic shock in children and the

allocation of pediatric intensive care resources. Therefore, the use of
FIGURE 3

GO and KEGG pathway enrichment analysis of 83 DGEs. (A) biological processes (BP) analysis; (B) cellular components (CC) analysis; (C) molecular
functions (MF) analysis; (D) KEGG enrichment analysis.
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bioinformatics and machine learning methods to dig deeper into the

key indicator proteins of childhood sepsis, and establish the possibility

of their potential treatment options, to make accurate diagnosis of the

disease in the first time, and create favorable conditions for the

development of effective treatment. In this study, we used mRMR

and LASSO logistic regression to screen and validate three key genes,

namely CD163, MCEMP1 and RETN.

CD163 is a cell membrane surface molecule with an anti-

inflammatory phenotype that is specifically expressed by

macrophages and is involved in innate immunity as a receptor for

the hemoglobin-contactoglobin (Hb-Hp) complex (20, 21). It exists in

two distinct forms: the soluble form, sCD163, which is present in serum

or plasma, and the membrane-associated form, mCD163. The

macrophage-associated CD163 receptor plays a crucial role in the

uptake and endocytosis of the hemoglobin (Hb) or the hemoglobin-

haptoglobin (HB-HP) complex. The expression of the sCD163 receptor

is regulated by tumor necrosis factor-a (TNF-a) and interleukin-10(IL-
10). Enzyme-linked immunosorbent assay (ELISA) was used to detect

serum of sepsis patients admitted to ICU on different days (1 day, 3

days, 5 days), and the results showed that septic shock was associated

with the highest concentration of CD163. The admission value of

CD163 has a significant impact on the prediction of mortality in sepsis

patients (22). In addition, Dan et al. used CD163 as an important

functional marker in their studies on the distribution and inflammatory

phenotype of circulating monocyte subsets in patients with sepsis (23).

In Kjærgaard’s study, the expression of CD163 monocytes in non-

surviving patients with septic shock was higher than that of surviving

patients at ICU admission and surviving patients during observation

(24). Existing studies confirm that CD163 plays a critical role in the

development and development of septic shock in adults. Based on an

in-depth analysis of pediatric sepsis cohort data, this study is the first to

identify a potential regulatory role the CD163 gene in pediatric septic

shock progression. These findings suggest that the CD163 gene plays an
Frontiers in Immunology 07
important role in the pathogenesis of septic shock in different age

groups, providing new scientific evidence for the study of mechanisms

and targeted interventions across age groups of the disease.

Mast cell expressed membrane protein 1 (MCEMP1) is

responsible for the encoding of single-pass transmembrane protein

and is involved in the regulation of MC differentiation activity or

immune response (25). MCs worsens septic disease by disrupting

phagocytic cell activity of resident macrophages, thereby enabling the

proliferative activity of local and systemic microbial factors. Chen

et al. confirmed that Mir-125-mediated inhibition of MCEMP1 can

reduce the levels of serum TNF-a, IL-1b and IL-6, and programmed

cell death promotes the activity of T white blood cells, thereby

reducing the immune activity of septicemia mice (26). In previous

studies, we observed that MCEMP1 was elevated in a mouse sepsis

model and a human LPS-treated macrophage model (27). These

findings suggest that MCEMP1 may be a potential diagnostic marker

of septic shock. At the same time, blocking the overexpression of the

MCEMP1 gene could potentially serve as a treatment alternative for

patients suffering from severe sepsis or septic shock.

Circulating myeloid cells produce the cytokine resistin (RETN) is

an adipose tissue-specific secretion factor encoded by the RETN gene.

It is a cysteine-rich peptide hormone that is chiefly expressed within

adipose tissue and assumes an essential role in a variety of

physiological and pathological processes. RETN was initially

identified in mouse adipose cells and has been associated with the

development of diabetes. In human beings, macrophages and

neutrophils are the primary producers of RETN (28). It is believed

that its capacity to activate endothelial cells contributes to the

pathogenesis of atherosclerosis (29). This process may be mediated

by toll-like receptor signaling pathways. Elevated levels of

proinflammatory adipokine RETN have been observed during ICU

sepsis (30) and have been studied as a potential indicator of neonatal

sepsis. It has been hypothesized that RETN is involved in the
FIGURE 4

Results of PPI network analysis and identification of candidate nodes. (A) PPI network associated with DEGs. (B) Filter the candidate gene by PPI network.
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pathogenesis of sepsis through its promotion of neutrophil-

endothelial cell adhesion. Prior studies have demonstrated that,

in vitro, RETN stimulates the expression of white blood cell

adhesion molecules, namely ICAM-1 and VCAM-1, in endothelial

cells. In the in vivo environment, these receptors are cleaved and

released into the bloodstream in a soluble form. This soluble form can

serve as an indirect indicator of endothelial cell activation (31).
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However, the potential role of RETN as a mediator of endothelial

cell activation in clinical cases of sepsis remains unexamined.

In terms of pathophysiological mechanism, septic shock belongs to

distributed shock. Under the invasion of pathogen infection,

inflammatory mediators such as histamine, interleukin, 5-

hydroxyserotonin and superoxide free radicals are released in a

waterfall level, such as blood, which is manifested as significantly
FIGURE 5

Screening for hub septic shock. (A) The genes were selected and ranked according to the importance scores assigned by the random forest
algorithm in the context of septic shock. (B) The Gini coefficient method random forest classifier was used to filter results. (C) Tenfold cross-
validation was performed to identify the optimal tuning parameter (l). (D) LASSO coefficient profiles of the 5 genes. (E, F) Curves portraying the error
rate and accuracy rate of variable selection.
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increased capillary permeability in the body, and peripheral vascular

dilatation and reduced resistance (32, 33). Most BP analyses in this

study focused on inflammatory responses, bacterial and fungal defense

responses. Usually, mannose binds to lectin-associated serine proteases

to activate the lectin pathway of the complement system, which is an
Frontiers in Immunology 09
important component of the dysregulated immune response in sepsis

(34). In our study, we found that the main participants were immune

receptor activity and serinase activity. KEGG analysis results included

complement and coagulation cascade, staphylococcus aureus infection,

systemic lupus erythematosus, coronavirus disease-COVID-19,
FIGURE 6

Expression of related biomarkers of septic shock (A) Venn diagram of the overlapping hub genes between the random forest, LASSO algorithm and
SVM-RFE algorithms in septic shock. (B) Expression of the CD163 gene signature and ROC curves of classification models in the GSE4607 dataset.
(C) Expression of the MCEMP1 gene signature and ROC curves of classification models in the GSE4607 dataset. (D) Expression of the RETN gene
signature and ROC curves of classification models in the GSE4607 dataset.
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inflammatory bowel disease, acute myeloid leukemia, transcription

dysregulation of intestinal immune network IgA and Legionnaires’

disease. All of these pathways are associated with septic shock. Taken

together, these findings further highlight the complex interplay between

sepsis and inflammatory responses and bacterial and fungal defenses,

highlighting inflammatory pathways as potential therapeutic targets.
Frontiers in Immunology 10
Our study still has limitations. First, the small sample size of the

dataset may lead to limitations in data analysis and one-sided

results. To address this problem, we actively collect data, but data

on septic shock in children are scarce and most data are incomplete.

Therefore, our results require further validation by other analytical

methods. While large clinical cohort studies are required to assess
FIGURE 7

GSEA was carried out on the selected feature genes. Regarding the KEGG pathway analysis, the top five upregulated and downregulated pathways
were determined for (A) CD163, (B) MCEMP1, and (C) RETN.
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the three key genes identified in this study, this study does

demonstrate the potential of these new approaches. In addition,

the case data used in this study were incompletely collected,

including, but not limited to, the patients’ gender, ethnicity,

geographic location or comorbidities. The lack of this information

makes it impossible to classify samples in more detail, which can

lead to potential bias in the results. We therefore believe that future

studies should consider model training and validation for people

from different gender, ethnic and geographical backgrounds. In

addition, the complexity and interpretive challenges of the model

may limit their reproducibility and practical application in this area.
5 Conclusion

Based on the dataset of septic shock in the public database, we

used bioinformatics in combination with machine learning to

explore the potential target for septic shock, and found that the

proteins CD163, MCEMP1, and RETN are associated with the risk

of septic shock. Compared with a healthy control group, septic

shock patient had significantly higher expression levels of CD163,

MCEMP1, and RETN. Patients with higher levels of CD163,

MCEMP1, and RETN had higher mortality, and this lower

survival rate was found to be associated with septic shock risk

factors that were independent and specific. Using machine learning

models to predict the potential mechanisms and targets of CD163,

MCEMP1, and RETN proteins, CD163, MCEMP1 and RETN may

jointly regulate complement and coagulation cascades, toll like

receptor signaling pathway, graft versus host disease, type I

diabetes mellitus. This research offers a novel perspective

regarding the potential mechanism underlying septic shock.

Additionally, it presents a fresh research lead for identifying the

therapeutic target of septic shock.
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