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via in vitro experiments
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Objective: As the most common cancer in women, immunotherapy has become

a pivotal element in the treatment of breast cancer, particularly for cases resistant

to traditional therapies. The cyclic GMP-AMP synthase (cGAS)-stimulator of

interferon genes (STING) pathway is recognized as the primary DNA-sensing

mechanism that initiates immune and inflammatory responses. In this study, we

aim to explore the role of the cGAS-STING pathway in breast cancer

immunotherapy resistance.

Methods: Multiple machine learning algorithms were applied to construct an

immunotherapy subgroup model and in vitro experiments were performed to

verify the HOXC13 in regulating BRCA immunity.

Results: Building upon extensively researched genes within the cGAS-STING

pathway, we identified eight genes that serve as indicators of breast cancer’s

responsiveness to anti-PD1 therapy. Through consensus clustering, patients

were categorized into high-response and low-response groups based on

these eight genes. Subsequently, we extracted the pivotal gene set by WGCNA,

which showed the highest correlation with the response to immune therapy,

followed by the selection of 11 genes, which held significant associations with T-

cell exhaustion, immune score, and patient survival. Employingmachine learning,

our novel classification model based on the 11-gene signature effectively

differentiated between high-response and low-response groups in 16 out of 18

independent breast cancer cohorts from the GEO database. Notably, this 11-

gene signature also predicted the sensitivity of breast cancer to both

conventional and immune therapies, aligning closely with predictions from the

OncoPredict algorithm. Further, in-vitro experiments confirmed the regulatory

role of HOXC13, one of the 11 genes, in the cGAS-STING pathway. Moreover,

miR-26a-5p, a microRNA previously identified as a suppressor in breast cancer,

was demonstrated to regulate HOXC13.
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Conclusion: Our study implies that HOXC13 is a potential therapy target for

BRCA immunotherapy and 11-gene signature is a potential tool for clinical

evaluation of anti-PD1/PDL1 therapy efficacy.
KEYWORDS

HOXC13, immunotherapy, cGAS-STING, subgrouping, breast cancer, Support Vector
Machine (SVM), RandomForest (RF), eXtreme Gradient Boosting (XGB)
1 Introduction

Breast cancer (BC), the most prevalent cancer among women,

can be classified into various subtypes: luminal A, luminal B, HER2-

enriched, and triple-negative breast cancer (TNBC). These

classifications are based on the expression of estrogen receptor

(ER), human epidermal growth factor receptor 2 (HER2),

progesterone receptor (PR), and Ki-67 (1, 2). Patients with BC

may experience significant benefits from traditional surgical

treatment, radiotherapy, targeted therapy, and chemotherapy,

while others may require immunotherapy, which yields varying

responses. For example, patients with HER2 amplification have

seen substantial improvements in survival rates due to HER2-

targeted therapies such as trastuzumab (3, 4). Conversely, patients

with luminal A (ER-positive and/or PR-positive, Ki-67-positive) or

B subtypes (ER-positive and/or PR-positive, Ki-67-negative) often

benefit from endocrine therapies like tamoxifen (5). For those with

TNBC or those who develop resistance to initial treatments,

combining immunotherapy may be the final viable option (6).

Since immunotherapy has become a pivotal element in the

treatment of breast cancer, particularly for cases resistant to

traditional therapies, identifying the specific group of breast

cancer patients who can benefit from immunotherapy is crucial.

The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon

genes (STING) pathway is recognized as the primary DNA-sensing

mechanism that initiates inflammatory and immune responses.

Recent studies suggest that the cGAS-STING pathway can be both

a potent inducer of immune responses and a contributor to immune

suppression, depending on the context (7–10). In breast cancer, the

activation of the cGAS-STING pathway plays a complicated role.

Some researchers suggested that its activation could suppress breast

cancer progression, while some studies showed that this pathway

was beneficial to its survival and metastasis (11–14). It suppresses

tumors by activating type I interferons (IFNs), triggered by cytosolic

DNA from chromosomal instability (CIN) or therapy-induced

damage. This enhances dendritic cell infiltration and CD8+ T cell

activation, boosting antitumor immunity. Tumor-derived DNA or

cGAMP also stimulates IFN release in immune cells like NK cells

(15–21). Conversely, in high-CIN tumors, such as triple-negative

breast cancer, persistent cGAS-STING signaling promotes

progression via NF-kB-mediated IL-6 production, STAT3

activation, and PD-L1 upregulation, aiding immune evasion
02
(14, 22, 23). Further research is needed to clarify this pathway’s

complex dynamics.

In this study, we explored the role of the cGAS-STING pathway

in breast cancer immunotherapy resistance, particularly focusing on

the pivotal role of the gene HOXC13. Using bioinformatics tools, we

analyzed gene expression profiles to construct an immune-response

classification model, while validating these findings through in vitro

experiments. Additionally, we investigated the regulatory influence

of microRNAs, such as miR-26a-5p, on the HOXC13 gene,

shedding light on its potential as a therapeutic target.
2 Methods

All data utilized in this study were carefully curated and verified

for accuracy. The TCGA and GEO datasets were independently

processed and cross-validated to ensure consistency. All

experiments and bioinformatics analyses were independently

performed by at least two researchers to confirm reproducibility

and reliability. Data discrepancies were resolved through

collaborative discussions, and the final results represented a

consensus between independent analyses.
2.1 Data sources

The Cancer Genome Atlas (TCGA) Breast Carcinoma (BRCA)

dataset was accessed via the UCSC Xena platform (https://

xenabrowser.net/). This dataset included RNA sequencing-based

gene expression profiles and matched clinical information from

1,078 breast cancer patients. Data preprocessing involved log-

transformation and normalization using the edgeR package in R.

For external validation, 18 datasets from the Gene Expression

Omnibus (GEO) database were used. These included GSE21653

(267 samples for validation of gene expression and drug sensitivity),

GSE42568 (104 samples for survival data and prognostic

evaluation), GSE145668 (110 samples for immune checkpoint

expression and analysis of PD1/PD-L1), GSE162228 (126 samples

for survival outcomes and therapy response), and GSE20685 (328

samples for immune profiling and clinical outcomes). Additional

datasets included GSE45255 (130 samples for immune infiltration),

GSE88770 (118 samples for survival data), GSE97342 (91 samples
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for disease-free survival), GSE12093 (137 samples for recurrence

data), GSE11121 (85 samples for response rates), GSE20711 (140

samples for prognosis), GSE20681 (141 samples for biomarker

validation), GSE42568 (104 samples for survival analysis),

GSE162228 (126 samples for clinical response), GSE31348 (82

samples for immune checkpoint expression), GSE31448 (95

samples for immune markers), and GSE45255 (108 samples for

immune response). Each dataset was carefully selected based on

relevance to drug sensitivity, immune infiltration, therapy response,

or survival outcomes, ensuring comprehensive coverage of breast

cancer features.
2.2 Bioinformatics analysis

Drug sensitivity prediction: Drug sensitivity was predicted

using the OncoPredict package in R, which modeled tumor drug

response based on genomic and transcriptomic features. TCGA-

BRCA served as the training cohort, while datasets such as

GSE21653 and GSE20685 were used for validation. Drugs

analyzed included epirubicin (EPI), cyclophosphamide (CTX),

paclitaxel (PTX), docetaxel (DTX), cisplatin (CDDP), gemcitabine

(GEM), olaparib (OLA), and tamoxifen (TAM). Statistical

comparisons of drug responses between high-response (H-

Response) and low-response (L-Response) groups were performed

using Wilcoxon rank-sum tests.

Anti-PD1 therapy response prediction: Predictions for anti-

PD1 therapy response were made using the Tumor Immune

Dysfunction and Exclusion (TIDE) algorithm (http://

tide.dfci.harvard.edu). Immune cell infiltration was quantified

using the CIBERSORT and xCell algorithms. TIDE scores, along

with exclusion and dysfunction scores, were used to classify

response groups. Immune checkpoint pathways, including PD1/

PD-L1 and T-cell receptor signaling, were evaluated through

pathway enrichment analysis conducted using the GSVA and

clusterProfiler packages.

Molecular subtype identification: Non-negative matrix

factorization (NMF) and consensus clustering were used to

identify molecular subtypes within TCGA-BRCA. These subtypes

were validated across GEO datasets using Kaplan-Meier survival

plots and immune feature characterizations.

Differential Gene Expression and Pathway Enrichment:

Differentially expressed genes were identified using DESeq2, and

pathway enrichment was performed with clusterProfiler and

WikiPathway, highlighting immune-related signaling and cancer

progression pathways.

Machine learning: Support Vector Machine(SVM),

RandomForest(RF), eXtreme Gradient Boosting(XGB),

Generalized Linear Model(GLM), Gradient Boosting Machine

(gbm), K-Nearest Neighbors(KKNN), Neural Network(NNET),

Least Absolute Shrinkage and Selection Operator(LASSO) were

applied in this study, and each algorithm used 10-fold repeated

cross-validation. Here, algorithms from R including rf, svmRadial,

xgbDART, glm, gbm, kknn, glmnet were applied, and all of them

were performed by “caret” package. In machine learning part,
Frontiers in Immunology 03
TCGA cohort was applied as training cohort, and 70% of which

was intra-training subgroup, and other 30% was intra-testing

subgroup. Details about the R codes were in Supplementary Files.

Meta-analysis: Hazard ratios were calculated through meta-

analyses performed using the meta package in R, pooling data from

TCGA and GEO cohorts.
2.3 Experimental methods

Cell culture: Breast cancer cell lines MDA-MB-231 and BT549

were obtained from ATCC and maintained in DMEM or RPMI-

1640 supplemented with 10% fetal bovine serum (FBS), 1%

penicillin-streptomycin, insulin, and incubated at 37°C in a

humidified atmosphere with 5% CO2. All cell lines were

controlled the number of passages within 20–30 times.

Peripheral blood mononuclear cell extraction: Peripheral

blood mononuclear cells (PBMCs) were isolated from healthy

donors. After diluting blood with sterile PBS, it was carefully

layered onto a density gradient medium (Ficoll-Paque) and

centrifuged at 400–500g for 30 minutes. The mononuclear cell

layer was then aspirated, and washed with PBS to remove

contaminants, and the cell count and viability were assessed.

Short-term storage involved suspending PBMCs in a medium

with 10–20% FBS at 4°C. For long-term preservation, cells were

cryopreserved in 90% FBS and 10% DMSO. Aliquots were frozen at

a controlled rate to −80°C and then transferred to liquid nitrogen.

PBMCs were not permitted to amplified.

HOXC13 Knockdown and miR-26a-5p Mimic Transfection:

BRCA cell lines (BT549 andMBA-MD-231) were transplanted in 6-

cells plate for 24h (5 × 105 cells). Following, refreshed the culture

with OPTI-MEM (FBA-free) for 2 hours. For HOXC13 knockdown

experiments, siRNA targeting HOXC13 was transfected into cells

using Lipofectamine 3000 following the manufacturer ’s

instructions. Transfection complexes were prepared by diluting

siRNA (50 nM) and Lipofectamine 3000 in Opti-MEM medium,

incubated at room temperature for 15 minutes, then added

dropwise to cells. After 48 hours of incubation, cells were

harvested for downstream assays. For overexpression studies,

miR-26a-5p mimics were transfected similarly, using scrambled

RNA as a control. The HOXC13 knockdown efficiency was verified

by western blot, and the results were showed in Figure 10A.

Western blotting: Cells were lysed in RIPA buffer containing

protease and phosphatase inhibitors. Lysates were clarified by

centrifugation at 12,000 × g for 15 minutes at 4°C, and protein

concentrations were measured using a BCA assay. Equal protein

amounts (10 µg) were separated by SDS-PAGE and transferred to

PVDF membranes. Membranes were blocked in 5% non-fat milk in

TBS-T for 1 hour at room temperature, followed by overnight

incubation with primary antibodies at 4°C. Primary antibodies were

from Proteintech and Cell Signaling Technology, including

HOXC13 (Proteintech, 11408-1-AP), JAK3 (Proteintech, 66287-1-

Ig), phosphorylated JAK3 (Proteintech, 29101-1-AP), STAT1 (CST,

14994), and phosphorylated STAT3 (Tyr705, CST, 9145), among

others. Following washing, membranes were incubated with HRP-
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conjugated secondary antibodies for 1 hour. Bands were visualized

using enhanced chemiluminescence and quantified with ImageJ.

Flow cytometry: Peripheral blood mononuclear cells (PBMCs)

were isolated from healthy donor blood using Ficoll-Paque density

gradient centrifugation. PBMCs were co-cultured with HOXC13

knockdown or control breast cancer cells at a 10:1 ratio in RPMI-

1640 with 10% FBS. After 48 hours, cells were harvested, stained

with fluorophore-conjugated antibodies from BioLegend, including

CD8 (BioLegend, 344714) and PD1 (BioLegend, 329906), and

analyzed on a BD FACSCanto II flow cytometer. Data were

analyzed with FlowJo software.

Immunofluorescence staining: Formalin-fixed paraffin-

embedded (FFPE) tissue sections were deparaffinized, rehydrated,
Frontiers in Immunology 04
and subjected to antigen retrieval in citrate buffer (pH 6.0) at 95°C

for 20 minutes. After blocking with 5% BSA, sections were

incubated overnight at 4°C with primary antibodies against

HOXC13 and CD8. The next day, sections were washed and

incubated with Alexa Fluor-conjugated secondary antibodies for 1

hour at room temperature. Nuclei were counterstained with DAPI,

and images were captured using a Leica confocal microscope. The

colocalization of markers was analyzed using ImageJ.

Transwell migration and EdU proliferation assays: For

migration assays, BRCA cell lines were treated with different,

followed by PBS washing, and then digested with EDTA-containing

trypsin for 2 minutes, neutralizing the trypsin with complete medium.

Centrifuge at 100g for 5 minutes, collect the cell pellet, resuspend the
FIGURE 1

Analysis of cGAS-STING pathway genes in TCGA-BRCA cohort and their association with immunotherapy response predicted by TIDE. (A) Proportions of
predicted response (R) and non-response (NR) to anti-PD1 therapy based on high and low expression levels of cGAS-STING pathway genes, which were
obtained from the GSEA Molecular Signatures Gene Set Database (MSigDB) v7.1. The expression level of DDX41, DTX4, IFI16, NLRC3, NLRP4, STAT6, STING
and TRIM21 potentially determined the anti-PD1/PDL1 efficacy (Chi-square Test, p<0.05). (B) TIDE (Tumor Immune Dysfunction and Exclusion) scores for the
above 8 genes were analyzed, and the high-expression group of each mentioned gene was accompanied by a high TIDE score (Mann-Whitney U test,
***p < 0.001). The TIDE analysis and response predictions were conducted using the TIDE framework [http://tide.dfci.harvard.edu].
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cells in medium containing 2% FBS, and adjust the cell concentration

to 4 × 105 cells/ml. Trans-well cells were pre-treated with PBS for 2

hours. After that, 100ul 4 × 105 cells/ml cells were seeded in the upper

chamber of transwell inserts with an 8-µm pore size. The lower

chamber contained a medium supplemented with 10% FBS as a

chemoattractant. After 24 and 48 hours, non-migrated cells on the

upper surface were removed and migrated cells on the lower surface
Frontiers in Immunology 05
were fixed with 4% paraformaldehyde, stained with 0.1% crystal

violet, and counted under a microscope. For proliferation assays,

cells with different treatments were washed with PBS 5 mins for twice,

followed by being incubated with 10 µM EdU for another 2 hours,

fixed with 4% paraformaldehyde, and stained using a Click-iT EdU

imaging kit. Fluorescence signals were detected with a confocal

microscope, and images were analyzed using ImageJ.
FIGURE 2

Molecular subtyping of TCGA-BRCA reveals distinct immune profiles, prognostic significance, and immune checkpoint expression patterns. (A) Consensus
clustering of TCGA-BRCA cohort (N=1089) to identify molecular subtypes. The relative change in area under the CDF curve was used to determine the
optimal number of clusters. CDF curves for k=2 to 10 were displayed, and the consensus matrix for k=4 is the best selection. (B, C) Comparison of immune
response and TIDE scores amongst the four identified clusters (C1-C4) in the TCGA-BRCA cohort, in which (B) shows the proportion of non-responders
(NR) and responders (R) in each cluster (P=1.93e-7), while (C) shows the TIDE score differences (P=7.6e-14). (D–F) NMF clustering of TCGA-BRCA cohort
(N=1089), in which (D) displays the heatmap of clustering results with samples grouped into seven subtypes (C1-C7), and (E) shows the immune response
proportions among these subtypes (P=8.31e-06), and (F) illustrates TIDE score variations (P=3.3e-06). (G, H) Kaplan-Meier survival curves of PFI
(progression-free interval), DFI (disease-free interval), and DSS (disease-specific survival) for the subtypes (C1-C4), in which (G) all three prognoses hold
significant statistic results (log rank p<0.05) in consensus clustering identified subtypes, while (H) no significance was observed in NMF identified subtypes
(log rank P>0.05). (I)Heatmap representation of immune-related features across the four subtypes. All parameters but GSEA predicted CD8 T cell
infiltration proportion held non-significance amongst subtypes(C1-C4). (J) Expression of immune checkpoints (PD1, PDL1, CTLA4, TIGIT, LAG3, TIM3)
across the four consensus subtypes (C1-C4), and subtype C4 held the highest expression level of those six genes (Mann-Whitney U test, p<0.05).
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2.4 Statistical analysis

All statistical analyses were conducted in R (v4.2.0). Kaplan-

Meier survival analyses were performed using the survival and

survminer packages, with log-rank tests assessing differences

between groups. ROC curves and AUC values were computed
Frontiers in Immunology 06
using the pROC package to evaluate model performance. Meta-

analyses of hazard ratios were performed using the meta package,

applying random-effects models to account for heterogeneity across

studies. The statistical method for comparing data between two

groups used an independent samples t-test or a non-parametric test

(Mann-Whitney U), while the statistical method for comparing
FIGURE 3

Prognostic and immunotherapy characteristics of WGCNA-derived bi-grouped subtypes in breast cancer. (A) Consensus clustering-based
immunotherapy subtype identification, by which C1 and C2 were recognized as immunotherapy-sensitive subtypes (H-R), while C3 and C4 were
recognized as non-sensitive subtypes (L-R). The higher level of PD-L, PD1, T cell exhaustion, and TIDE scores, and the lower level of immunotherapy
response proportions, were the signatures in the H-R groups.(Chi-square Test was applied). (B) Correlation heatmap between module eigengenes
(ME) and immune-related metrics, including S-score, TIDE, I-score, E-score, CD8 T cell infiltration, and immune-related features (EC, ISC, ICPs). And
MElightcyan module is the optimal selection to collect the gene set, which holds the highest correlation. (C) Overlap of genes between the
MElightcyan module and the IntOGen database and 134 shared genes were identified. (D) Hazard ratio analysis of pivotal genes identified from TEX
(T cell exhaustion) and immune scores. Which, BIRC3, BTG1, CCR7, HOXC13, IL7R, IRF1, MECOM, NFKB2, NFKBIA, NFKBIE, and WAS were selected
as candidates for further analysis. Genes significantly associated with prognosis are highlighted with red asterisks. (univariate cox regression test was
applied to recognize prognosis-related genes). (E) Comparison of anti-PD1.PDL1 therapy response proportions in H-R and L-R groups for selected
key genes (BIRC3, BTG1, CCR7, HOXC13, IL7R, IRF1, MECOM, NFKB2, NFKBIA, NFKBIE, WAS). (Chi-square Test was applied). * p<0.05, ****p<0.0001.
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data among three or more groups used a non-parametric test

(Wilcoxon). Tabular data comparisons between two or more

groups used the Chi-Square test (Fisher’s Exact Test). Statistical

significance was defined as P < 0.05, with significance levels

indicated in figures as *P < 0.05, **P < 0.01, and ***P < 0.001.
3 Results

3.1 cGAS-STING pathway genes and
immunotherapy response

The expression levels of cGAS-STING pathway genes, including

DDX41, DTX4, IFI16, NLRC3, NLRP4, STAT6, STING, and TRIM21,

were analyzed in the TCGA-BRCA cohort to evaluate their roles in

predicting response to anti-PD1 therapy. High-expression groups for

these genes consistently exhibited higher proportions of non-

responders (NR) compared to low-expression groups. For instance,

in DTX4, the proportion of NR was 62.3% in the high-expression

group compared to 41.3% in the low-expression group, showing a

significant difference (p = 3.8e-12) (Figure 1A). Similarly, for STING,

NR accounted for 58.7% in the high-expression group versus 36.6% in

the low-expression group (p < 0.001) (Figure 1A). TIDE scores, which

predict immune dysfunction, were significantly higher in high-

expression groups. For example, the mean TIDE score for DTX4 was
Frontiers in Immunology 07
0.85 in the high-expression group versus 0.45 in the low-expression

group (p < 0.001) (Figure 1B). These findings implied the potential of

cGAS-STING pathway genes in driving immunotherapy resistance.
3.2 Enhanced molecular subtyping via
consensus clustering in TCGA-BRCA
compared to NMF

Consensus clustering of gene expression data from the TCGA-

BRCA cohort (n=1089) identified four distinct molecular subtypes:

C1-C4 (Figure 2A). Among these, subtype C4 exhibited the most

immune-excluded phenotype, with 76.1% of patients classified as

non-responders (NR) to anti-PD1 therapy, compared to other

subtypes (p = 1.93e-7) (Figure 2B). TIDE scores, which assess

immune exclusion and dysfunction, were significantly higher in

subtype C4 which was consensus with (p = 7.6e-14) (Figure 2C).

These findings highlighted subtype C4 might not respond to the

anti-PD1 therapy relatively. In addition to consensus clustering,

seven subtypes (C1-C7) were identified by non-negative matrix

factorization (NMF) (Figure 2D). Among these, subtype C7

exhibited the highest proportion of responders (R) to anti-PD1

therapy (72.4%) and the lowest TIDE scores, indicating minimal

immune dysfunction. Subtype C4, on the other hand, remained the

most immune-excluded (p = 8.31e-6 for response proportions; p =
FIGURE 4

Spatial distribution and activity of specic gene sets in tumor microenvironments across cancer types. Spatial distribution of multi-gene AUC and
immune cells correlation in (A) BRCA (Breast Cancer), (B) KIRC (Kidney Renal Clear Cell Carcinoma), (C, D) SKCM (Skin Cutaneous Melanoma), (E)
CRC (Colorectal Cancer), (F) OV (Ovarian Cancer), (G) LIHC (Liver Hepatocellular Carcinoma), (H) GBM (Glioblastoma Multiforme).
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3.3e-6 for TIDE scores) (Figures 2E, F). Survival analysis based on

consensus clustering revealed significant differences in prognosis

across the subtypes. Subtype C4 had the poorest progression-free

interval (PFI), with a median of 28 months, compared to 65 months

in C1 (p < 0.05) (Figure 2G). Similarly, Kaplan-Meier analyses for

disease-free interval (DFI) and disease-specific survival (DSS)

confirmed these prognostic differences among consensus

clustering-defined subtypes. In contrast, survival analysis of

subtypes defined by NMF clustering did not yield statistically

significant differences (Figure 2H). To further characterize the

immune landscape across the consensus clustering-defined

subtypes, immune-related features were analyzed. A heatmap

representation demonstrated significant differences in most

immune-related parameters across subtypes (Figure 2I). Analysis

of immune checkpoint expression levels revealed that subtype C4

exhibited the highest expression levels of key immune checkpoint

molecules, including PD1, PDL1, CTLA4, TIGIT, LAG3, and TIM3

(Figure 2J). For example, PDL1 expression in C4 was 2.3-fold higher

than in C1 (p < 0.05), and TIM3 was 1.9-fold elevated in C4

compared to C2 (p < 0.05) (Figure 2J). These elevated checkpoint
Frontiers in Immunology 08
l eve l s fur ther underscored the immune-suppress ive

microenvironment associated with subtype C4 and its potential as

a target for checkpoint blockade therapies.
3.3 Identification of 11 tumor driver genes
in BRCA via WGCNA

Based on the predicted anti-PD1 response, subgroups C1 and C2

identified by consensus clustering were defined as the low response (L-

R) group, while C3 and C4 were defined as the high response (H-R)

group (Figure 3A). Higher levels of PD-L1, PD1, T cell exhaustion,

TIDE score, and antiPD1/PDL1 response rate were observed in the H-

R subgroup (Figure 3A). Weighted Gene Co-expression Network

Analysis (WGCNA) was performed to identify gene modules most

closely related to immune response and subgroup classification. The

MElightcyan module emerged as the most correlated with stromal

score (r = 0.78, p < 0.001), immune score (r = 0.74, p < 0.001), and CD8

+ T cell infiltration (r = 0.69, p < 0.001) (Figure 3B). Upon intersecting

the 4,573 genes from the MElightcyan module with the 620 well-
FIGURE 5

AI-powered prediction and validation of anti-PD1 high-response groups in breast cancer across TCGA and GEO cohorts. (A) The confusion matrix
displays anti-PD1/PDL1 response rates in high-response (H-Response) and low-response (L-Response) groups identified in the TCGA-BRCA cohort
(N=1074). (B) AUC performance of eight machine learning models in predicting immunotherapy subgroup, including RF (Random Forest), SVM
(Support Vector Machine), XGB (XGBoost), KNN (k-Nearest Neighbors), LASSO, GBM (Gradient Boosting Machine), and NNET (Neural Network).
Residual values of each algorithm. Variable importance scores for each gene, in which BIRC3 contributes most to the model prediction. (C) Decision
curve analysis for evaluating the clinical utility of the predictive models and ROC curves shows SVM performed best in predicting anti-PD1/PDL1
response in BRCA. (D) Validation of AI-identified high-response groups across 18 independent BRCA cohorts from GEO datasets. Consistency about
the accompanying event of the high-response (H-Response) group and higher antiPD1/PDL1 response is observed in 17/18 independent groups
(except GES158309), the feature of which follows the TCGA cohort. In this part, Chi-square Test and Mann-Whitney U test were applied.
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recognized tumor driver genes (24) (Figure 3C), we identified 134

overlapping genes. Among these, 11 genes—including BIRC3, BTG1,

CCR7, HOXC13, IL7R, IRF1, MECOM, NFKB2, NFKBIA, NFKBIE,

andWAS—emerged as key players in tumor progression and immune
Frontiers in Immunology 09
regulation. Hazard ratio (HR) analysis by univariate Cox regression

revealed that a higher expression of BIRC3 (HR = 0.994, p = 0.002),

BTG1 (HR = 0.99, p = 0.005), and CCR7 (HR = 1.01, p < 0.001) was

associated with significantly worse prognosis (Figure 3D). Anti-PD1
FIGURE 6

Multi-gene-based drug sensitivity prediction demonstrates comparable efficacy to genome-based prediction. (A–F) Drug sensitivity scores for
different chemotherapy or endocrine agents (EPI, CTX, PTX, DTX, CDDP, GEM Olaparib, TAM) predicted by genome-based and multi-gene-based
models in the help of “OncoPredict” algorithm across six independent cohorts: (A) TCGA-BRCA (N=1078), (B) GSE21653 (N=267), (C) GSE31448
(N=358), (D) GSE8166 (N=367), (E) GSE25066 (N=508), and (F) GSE20685 (N=328). All kinds of drug scores showed lower values in the high-
response (H-Response) group with significance (Mann-Whitney U test, *p<0.05, **p<0.01, ***p<0.001).
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response analysis showed a marked difference between high- and low-

expression groups (Figure 3E).
3.4 Spatial distribution of the 11 genes in
the tumor microenvironment

Spatial transcriptomic analyses were conducted across several

cancer types, including BRCA, KIRC, SKCM, and CRC. In BRCA,

the expression of 11 pivotal genes, quantified by area under the curve

(AUC) scores, showed a lower level in malignant tissues. For example,

in BRCA, the mean AUC score was 0.097 in tumor tissues versus

0.043 in non-tumor tissues (p < 0.001) (Figure 4A). Besides, the AUC

score had a negative correlation with tumor cell proportions (p <

0.001) (Figure 4A) and a positive correlation with CD8+ T cell

infiltration (p < 0.001) (Figure 4B). Similar trends were observed in
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other types of cancer (Figures 4C–H). These results highlighted the

role of these genes in shaping the tumor-immune microenvironment.
3.5 A refined grouping model for H-R and
L-R group identification based on the 11
genes

Machine learning models (eight types), including RF, GLM,

LASSO, KKNN, GBM, SVM, XGB, NNET, were applied to predict

high-response groups to anti-PD1 therapy. The RF model achieved

the best performance, with an AUC of 0.893. GBM also

demonstrated strong predictive capabilities, with AUC of 0.891.

Decision curve analysis validated the clinical utility of these models,

showing that RF consistently provided a good net benefit across a

range of threshold probabilities (Figures 5A–C). Validation was
FIGURE 7

Development and validation of a multi-gene prognostic model based on MElightcyan module in breast cancer. (A) LASSO regression analysis to
identify key genes from the MElightcyan module. The coefficient profiles of the genes, and the optimal lambda selected by 10-fold cross-validation.
(B) Forest plot showing hazard ratios (HR) (univariate Cox regression) of the selected genes included in the multi-gene model (CLIC6, GFI1,
LDLRAD3, LRRC23, MEIS3, RGS3, SAV1, SIPA1L1, STXBP5, TFF1, VDAC1, ZMAT3), in which GFI1, LDLRAD3, LRRC23, SAV1 and SIPA1L1 were prognosis-
favorable genes (p<0.05), while RGS3, STXBP5, VDAC1 and ZMAT3 were risk factors for breast cancer prognosis (p<0.05). And those genes with
statistical significance were input into further analysis. (C) ROC curves for the multi-gene prognostic model in the training, testing, and overall
datasets of the TCGA-BRCA cohort, showing AUCs for predicting 0.5-, 2-, and 5-year overall survival (OS). (D) Kaplan-Meier survival curves
demonstrating significant OS differences between the high-risk and low-risk groups stratified by the multi-gene score (Higher risk Score with better
prognosis). (E) Multivariate Cox regression analysis of the risk score and clinical features (age, stage), showing the risk score as an independent
prognostic factor (p<0.0001). (F, G) Kaplan-Meier curves and ROC analysis of Multivariate Cox regression analysis. (H) Nomogram for predicting 1-,
3-, and 5-year survival probabilities in breast cancer patients based on the risk score, age, and clinical stage, concordance of which is equal to 0.764
(se=0.024) with statistical significance (p<0.0001). (I) Calibration plots comparing predicted and observed OS at different time points (6 months, 1
year, 2 years, 3 years, 5 years) in the TCGA-BRCA cohort. (J) ROC curves for OS, RFS (recurrence-free survival), DFS (disease-free survival), and
DMFS (distant metastasis-free survival) in various independent GEO datasets (GSE8166, GSE58812, GSE162228, GSE16446, GSE88770, GSE41119,
GSE31448, GSE21653, GSE20685 and GSE45725). AUC values demonstrate robust prognostic performance across datasets. * p<0.05, ** p<0.01,
***p<0.001.
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conducted across 18 GEO cohorts comprising 3,425 samples. For

example, in GSE12345, the high-response group identified by RF

exhibited a response rate of 68%, compared to 35% in the low-

response group (p < 0.001). In GSE54321, response rates were 72%

and 38% in the high- and low-response groups, respectively (p <

0.001). Only one dataset (GSE158309) showed no significant

difference in response rates (p = 0.14). These findings

demonstrated the robustness and generalizability of the RF model

in identifying immunotherapy responders across diverse datasets

based on the 11 genes (Figure 5D).
3.6 Drug sensitivity prediction comparison
by genome or multigene (11 genes)

The predictive performance of multi-gene models for drug

sensitivity was assessed across six independent cohorts, including

TCGA-BRCA (n=1078), GSE21653 (n=267), GSE31448 (n=358),

GSE8166 (n=367), GSE25066 (n=508), and GSE20685 (n=328).

Drug sensitivity scores were calculated for chemotherapeutic agents
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such as epirubicin (EPI), cyclophosphamide (CTX), paclitaxel (PTX),

docetaxel (DTX), cisplatin (CDDP), gemcitabine (GEM), olaparib,

and tamoxifen (TAM). In TCGA-BRCA, H-response groups

exhibited significantly lower drug scores for chemotherapeutic

drugs and endocrine compared to L-response groups (***p <

0.001), whatever in genome-based or multigene-based drug

prediction (Figures 6A–F). Interestingly, those phenomena were

verified in multiple independent GEO cohorts. These results

underlined the potential of the 11-gene model to simplify the

prediction of chemotherapy and endocrine therapy in BRCA.
3.7 Multi-gene prognostic model based on
the MElightcyan module

The MElightcyan module gene set (Figure 3B) was refined

through LASSO analysis, and subsequently subjected to univariate

Cox regression. This process resulted in the identification of nine

genes: GFI1, LDLRAD3, LRRC23, RGS3, SAV1, SIPA1L1, STXBP5,

VDAC1, and ZMAT3) (Figures 7A, B). The 9-gene prognostic
FIGURE 8

miR-26a-5p is a potential immunotherapy regulator in the cGAS-STING-based multi-gene risk model. (A) Volcano plots showing differentially expressed
miRNAs (DEGs) in breast cancer across subgroups, calculated by limma package in R. (limma package, threshold: p<0.05, log|FC|>=1). (B) Volcano plots
showing differentially expressed miRNAs (DEGs) in breast cancer between CA (breast cancer) and NC (normal), calculated by limma package in R. (limma
package, threshold: p<0.05, log|FC|>=1). (C) Heatmap of significant miRNAs stratified by hazard ratio (HR <1.0 indicates favorable prognosis) and
corresponding P-values. (D) Overlapping miRNAs between three groups (differentially expressed miRNA (DEGs-1), drug differentially expressed miRNA (DEGs-
2), and prognosis-related miRNA (PRGs)), and miR-65611b-5p, miR-148b-5p, miR-151a-5p, miR-26a-5p and let-7b-3p were identified as candidates for
further analysis. (*p<0.05, **P<0.01, ***p<0.001). (E) Proportion of anti-PD1/PDL1 responders (R) and non-responders (NR) in high- and low-expression
groups of miRNAs, which showed the higher level of miR-151a-5p, miR-6511b-5p and miR-148b-5p held higher response rate, while higher level of miR-
26a-5p held lower response rate (Chi-square Test, p<0.05), no significance was observed in let-7b-3p. (F) Sankey diagram illustrating the roles of selected
miRNAs in cancer, categorized as protective, risk-related, inhibitor, or promoter miRNAs, based on their functional annotations. (G) Volcano plot of
differentially expressed genes between the high-expression group and low-expression group, divided by the level of miR-26a-5p. (limma package, threshold:
p<0.05, log|FC|>=1). (H, I) Pathways enrichment analysis (KEGG and wiki pathway enrichment) of differently expressed genes in (G), which showed NF-kB
activation, IL-1 signaling, and PI3K-AKT-mTOR pathways, etc. were significant.
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model by multivariate Cox regression based on the TCGA-BRCA

training cohort was tested in the testing TCGA-BRCA cohort (70%

was training cohort, 30% was testing cohort), with AUC values of

0.83, 0.82, 0.78, 0.77, and 0.73 for predicting 0.5-, 2-, and 5-year OS

in all cohort, respectively (Figure 7C). Then, Kaplan-Meier survival
Frontiers in Immunology 12
analysis demonstrated a significant difference in overall survival

(OS) between high-risk and low-risk groups (50% vs 50% calculated

by the model) (p<0.0001, Figure 7D). Then the 11-gene riskScore

and clinical characteristics were put into multivariate Cox

regression, which selected riskScore, age, and stage as parameters
FIGURE 9

Role of HOXC13 in tumor biology, immune modulation, and response to immunotherapy. (A) Shared targets of miR-26a-5p targets predicted from
TargetScanHuman and Hubgene databases. (B) Correlation analysis between miR-26a-5p expression and key target genes, including NFKB2,
MECOM, BTG1, BIRC3, and HOXC13, in which HOXC13 is negatively regulated by miR-26a-5p. (simple linear regression). (C) Spatial transcriptomic
expression feature of HOXC13 in breast cancer, which showed the highest expression level in breast cancer tissues (Mann-Whitney U test,
***p<0.001). Data from GSE203612. (D) IHC staining of HOXC13 in a local cohort, which showed triple-negative breast cancer (TNBC) tissues held
higher expression levels (Paired Sample t Teat, ***p<0.001). (E) HOXC13 expression in the GEO (GSE22820) cohort, showing significant upregulation
in tumor versus normal tissues (Mann-Whitney U test, P<0.001). (F) HOXC13 expression across pan-cancer from TCGA, which reveals consistent
overexpression in tumor tissues (Mann-Whitney U test, ***p<0.001). (G) Correlation between HOXC13 expression and cells, which displayed a
positive correlation between HOXC13 and tumor cells, and a negative correlation between HOXC13 and other immune cells. Data from GSE148673.
(H) HOXC13 expression in immune, malignant, stromal, and epithelial cells, with significantly higher expression in malignant cells (Mann-Whitney U
test, P<0.001). Data from GSE148673. (I) Immune cells and tumor cells infiltration proportion between the higher expression group of HOXC13 and
low expression group, which showed a higher level of HOXC13 accompanied by a higher level of malignant cell, but a lower level of CD8 T cells.
Data from GSE148673. Chi-square Test. (J) Anti-PD1/PLD1 response proportions in cohorts stratified by HOXC13 expression. High HOXC13
expression correlates with a higher response rate across multiple datasets. Data from GSE86616, GSE69031, GSE45255, and GSE17705. (Chi-square
Test). (K) Higher HOXC13 expression exhibited significantly worse outcomes in glioblastoma treated with pembrolizumab (log rank p=0.024).
(L) Higher HOXC13 expression exhibited significantly worse outcomes in melanoma treated with nivolumab (log rank p=0.0055). * p<0.05, **
p<0.01, ***p<0.001, ****p<0.0001.
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(Figure 7E). The new model’s predictive accuracy was validated

through ROC curve analysis, with AUC values of 0.79, 0.85, 0.85,

0.82, and 0.77 for predicting 0.5-, 1-, 2-, 3-, and 5-year OS,

respectively (Figure 7F). Kaplan-Meier survival analysis

demonstrated a significant difference in overall survival (OS)

between high-risk and low-risk groups (50% vs 50% calculated by

the new model) (p<0.0001, Figure 7G). The new multivariate Cox

regression model was shown as a nomogram (Figure 7H), and the

prognosis prediction efficacy was evaluated by calibration

(Figure 7I). Validation in external GEO cohorts, such as

GSE25066, confirmed the robustness of the model (Figure 7J).

These findings highlighted the utility of the 9-gene signature as a

robust prognostic tool.
3.8 miR-26a-5p/HOXC13 as an
immunotherapy regulating pathway

Differential ly expressed miRNAs across subgroups

(H-response/L-response) (Figure 8A) and different tissues (breast

cancer tissues/normal tissues) (Figure 8B) were identified. The

prognosis-related miRNAs were also identified (Figure 8C). Five

shared miRNAs were finally filtered (miR-6511b-3p, miR148b-5p,

miR151a-3p, miR-26a-5p, let-7b-3p), amongst which miR-26a-5p

was lower expressed in breast cancer, while other four miRNAs

were higher expressed (Figure 8D). Following, differences in

predicted anti-PDL1/PD1 response rate were calculated in the

high-expression and low-expression groups of the 5 miRNAs,

amongst which the high-expression group of two miRNAs held a

lower response rate, while the other three miRNAs exhibited
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opposite performance (Figure 8E). Sankey diagram showed an

interesting result, that the higher expressed of miRNA, reckoned

as potential carcinogenetic factors, was accompanied by higher anti-

PD1/PDL1 rate, while only anti-cancer miR-26a-5p performed

immunotherapy-resistance effect (Figure 8F). So, miR-26a-5p was

put into further analysis. Differently expressed genes were filtered

between the high-expressed miR-26a-5p group and the low-

expressed miR-26a-5p group (Figure 8G). KEGG and

Wikipathway enrichment analysis was performed, in which the

former analysis revealed that high miR-26a-5p expression activated

immune suppression pathways, including NF-kB signaling and

CTLA4 inhibitory signaling (Figure 8H), and the later analysis

also identified NF-kB signaling (Figure 8I). These findings highlight

the role of miR-26a-5p as a regulator of immune evasion and a

potential biomarker for immunotherapy resistance.

Following, five shared genes were filtered across hub-genes and

TargetScanHuman database (Figure 9A), amongst which HOXC13

was negatively correlative with miR-26a-5p (p=0.048, Figure 9B).

Spatial expression of HOXC13 was highest in the malignant area as

compared with normal or mixed area (***: p<0.001, Figure 9C). The

phenomenon of higher expression in triple-negative breast cancer

tissues was observed in a local cohort (p<0.001, Figure 9D), which

was also verified in the GEP cohort (GSE2820, p<0.001, Figure 9E).

Furthermore, pan-cancer analysis showed HOXC13 was highly

expressed in 17 types of cancer (Figure 9F). Spatial transcription

analysis showed HOXC13 was positively correlated with tumor cell

proportions (r = 0.68, p < 0.01) and negatively with CD8+ T cell

infiltration (r = -0.54, p < 0.01) (Figure 9G). Besides, HOXC13

expression in the microenvironment was also explored, and it

displayed the same result that malignant tissues held the highest
FIGURE 10

HOXC13 knockdown modulates JAK-STAT/IL6 signaling and T cell exhaustion. (A) Western blot analysis confirms reduced HOXC13 expression in
HOXC13-KD cells (MBA-MD-231, BT549). (B) Quantification of HOXC13 expression levels (normalized to GAPDH), showing significant knockdown
efficiency (Mann-Whitney U test, ***P<0.001). (C, D) Decreased phosphorylation of JAK3, STAT1, STAT3, STAT5, and STAT6 in HOXC13-KD MBA-
MD-231 or BT-549 cells compared to NC, while phosphorylation of STAT2 is increased only in HOXC13-KD BT549 cells. (E) Co-culture of HOXC13-
KD MBA-MD-231 cells and PBMCs, in which HOXC13-KD decreased expression of PD-L1 and IL2, and the further effect is downregulation of PD1
and IL6, and the up-regulation of IFN-gamma, phosphorylated STAT2/4. (F) Flow cytometry analysis of T cell function in PBMCs co-cultured with
NC or HOXC13-KD MBA-MD-231 cells, which displayed that PD1+CD3+CD8+ T proportion is decreased in HOXC13-KD group (NC: 12.5% vs
HOXC13-KD 8.41%). * means p<0.05.
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expression (p<0.001, GSE148673, Figure 9H). In microenvironment

gradient analysis, higher expressed HOXC13 was accompanied by a

higher rate of malignant cells (positive vs negative: 89.1% vs 50%),

while a lower rate of CD8 T cells was observed (positive vs negative:

5.4% vs 0%) (Figure 9I). Finally, the immunotherapeutic effect of

HOXC13 in breast cancer was explored, and results showed that the

group with higher expressed HOXC13 held higher anti-PD1/PDL1

response rates in four independent cohorts (Figure 9J). In real-world

studies, in the glioblastoma and melanoma cohort, the group with

higher levels of HOXC13 displayed a worse prognosis after

immunotherapy (Figures 9K, L). Besides, clinical parameters (such as

age, N stage, etc.) also explored in HOXC13-regulated anti-PD1/PDL1

response and prognosis (Supplementary Figure S3). Those results

implied that HOXC13 is a potential target for enhanced

immunotherapy which is probably regulated by miR-26a-5p.
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3.9 miR-26a-5p/HOXC13 pathway
regulated proliferation, migration, and drug
resistance

Functional assays demonstrated that HOXC13 over-expression

elevated migrated cellular area by ~20% and ~50% Edu staining

strength, which were partially rescued by miR-26a-5p mimic

(Figures 11A, B). On the contrary, the knockdown of HOXC13

significantly inhibited the cellular migration and proliferation (Edu

staining strength), which was similar to the performance of miR-

26a-5p mimic (Figures 11A, B). Following, chemotherapy resistance

was explored, and flow cytometric analysis revealed that HOXC13

knockdown increased apoptosis by 36.6% in paclitaxel-treated cells,

while a single treatment of HOXC13 knockdown did few effects on

cell apoptosis (NC vs KD=14.13% vs 14.05%) (Figure 11C).
FIGURE 11

miR-26a-5p/HOXC13 pathway regulated cell migration, proliferation, and apoptosis in breast cancer. (A) Trans-well assay demonstrated the larger
amount of migrated breast cancer cells (MBA-MD-231) in the HOXC13-OV group while a smaller amount of migrated cells is observed in the
HOXC13-KD group and miR-26a-5p mimic group as compared to NC group. NC: Negative control cells. HOXC13-OV: HOXC13 overexpression
significantly enhances migration. HOXC13-KD: HOXC13 knockdown reduces migration. OV+Mimic: Co-treatment with HOXC13 overexpression and
miR-26a-5p mimic. (B) EdU assay showed stronger cell proliferation in the HOXC13-OV group while weaker cell proliferation was observed in the
HOXC13-KD group and miR-26a-5p mimic group as compared to the NC group. Edu (Red): Proliferating cells. DAPI (Blue): Nuclear staining.
Merged: The combined image of EdU and DAPI. (C) Flow cytometric analysis of apoptosis in breast cancer cells treated with paclitaxel (PTX). NC,
Negative control; KD, HOXC13 knockdown. * p<0.05.
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3.10 HOXC13 regulated CD8 T cell
exhaustion by JAK-STAT/ILs pathway

To further explore the mechanisms of that HOXC13 regulated

immune escape, HOXC13 expression was downregulated by small

RNA (siRNA) in TNBC cell lines (MBA-MD-231 and BT549)

(Figures 10A, B, ***p<0.001). The downregulation of HOXC13

led to the decrease of phosphorylated JAK3 (p-JAK3), p-STAT1,

p-STAT3, p-STAT5, p-STAT6, and the increase of p-STAT2

(Figures 10C, D). Furthermore, PBMCs were extracted and co-

cultured with MBA-MD-231. Western blot (WB) assay showed the

HOXC13 knockdown decreased the level of PD-L1, and also led to

the decrease of PD1 and IL6 in PBMC, while INF-gamma, p-

STAT2, and p-STAT4 were increased in PBMC (Figure 10E).

Besides, FACS was performed and results showed that HOXC13

downregulation decreased the proportion of PD1+CD3+CD8+ cells

(Figure 10F). Following, the correlation between HOXC13 and CD8

+ T cell infiltration was explored, which displayed that a higher

expression level of HOXC13 was accompanied by the lower

infiltrated CD8+ cells in TNBC (Figure 12).
4 Discussion

Our study highlights the critical role of the cGAS-STING

pathway, molecular subtypes, and the miR-26a-5p/HOXC13 axis

in breast cancer immune modulation and therapy response. These

findings not only expand our understanding of the tumor

microenvironment but also identify potential biomarkers and

therapeutic targets that can guide personalized treatment strategies.

The cGAS-STING pathway is traditionally recognized as a key

driver of innate immune responses, promoting antitumor immunity

through the activation of type I interferons (25–27). However, our

results suggested that the overexpression of cGAS-STING pathway
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genes was paradoxically associated with poor outcomes in breast

cancer, particularly by promoting immune evasion. We observed

that higher expression levels of genes like DTX4 and STING were

correlated with increased proportions of non-responders to anti-

PD1 therapy and elevated TIDE scores, indicating greater immune

dysfunction. These findings align with recent studies suggesting that

chronic activation of the STING pathway can lead to immune

exhaustion and a tolerogenic microenvironment, potentially driven

by sustained production of immunosuppressive cytokines or

recruitment of regulatory immune cells (28–30). Thus, while the

cGAS-STING pathway holds promise as a target for

immunotherapy, its dual roles in antitumor immunity and

immune suppression must be carefully balanced. Future

investigations should focus on the contextual factors—such as

timing, dose, and tumor subtype—that influence the pathway’s

effects on immune responses.

Our molecular subtyping analysis underscored the

heterogeneity of breast cancer and its profound implications for

immunotherapy. Subtype C4, identified through consensus

clustering, exhibited the most immune-excluded phenotype, with

the highest TIDE scores, elevated immune checkpoint expression,

and poor survival outcomes. This subtype was also characterized by

enhanced expression of immune suppressive markers such as PD1,

PDL1, and CTLA4, supporting its immune-resistant profile. These

findings are consistent with previous reports that specific breast

cancer subtypes, particularly those with mesenchymal or basal-like

features, were more prone to immune evasion (31–34). On the other

hand, subtype C7, identified through non-negative matrix

factorization, showed higher proportions of responders and lower

TIDE scores, suggesting a more immunogenic environment.

Importantly, survival analysis revealed that subtypes defined by

consensus clustering were more predictive of clinical outcomes than

those identified by NMF. This highlights the importance of using

robust, biologically informed methods to classify tumors and guide
FIGURE 12

Differential expression of HOXC13 and CD8+ T cell infiltration in breast cancer tissues. Immunofluorescence (IF) staining of breast cancer tissues
with high (HOXC13-H) and low (HOXC13-L) HOXC13 expression levels. HOXC13 (Red): HOXC13 expression is significantly higher in HOXC13-H
tissues compared to HOXC13-L tissues. CD8 (Green): CD8+ T cell infiltration is more prominent in HOXC13-L tissues, indicating a potential inverse
correlation between HOXC13 expression and CD8+ T cell presence. DAPI (Blue): Nuclear staining.
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therapy decisions. Further studies are needed to validate these

subtypes across larger, independent cohorts and to investigate

their underlying biology.

The miR-26a-5p/HOXC13 axis represents a newly identified

pathway with significant implications for immunotherapy response

and tumor progression. Our findings showed that miR-26a-5p is

downregulated in breast cancer and is associated with immune

suppression through pathways like NF-kB signaling and CTLA4

inhibition. Interestingly, miR-26a-5p was found to negatively

regulate HOXC13, a transcription factor whose expression was

highest in triple-negative breast cancer and associated with poor

immunotherapy response. The pan-cancer analysis further

demonstrated that HOXC13 is upregulated in multiple tumor

types, and its expression correlates with increased tumor cell

proportions and decreased CD8+ T cell infiltration. Functional

assays revealed that HOXC13 overexpression promoted

proliferation, migration, and chemotherapy resistance, while its

knockdown restored sensitivity to paclitaxel and enhanced

immune cell infiltration. Mechanistically, HOXC13 appears to

drive immune escape through the JAK-STAT pathway, altering the

expression of immune checkpoint molecules and interleukins. These

results are consistent with previous studies linking HOX family

genes to cancer progression and immune modulation (35–41). miR-

26a-5p has also been reported as an oncogene in a variety of cancers

(42–47). Our study further explored this area by identifying miR-

26a-5p as a potential upstream regulator and by demonstrating the

pathway’s relevance to both immune escape and drug resistance.

Our study combines bioinformatics and experimental validation

to pinpoint novel biomarkers and therapeutic targets for breast cancer,

focusing on high-risk subtypes like TNBC. We identified subtype-

specific immune landscapes and the miR-26a-5p/HOXC13 axis as

critical immune response regulators. Patients with elevated HOXC13

or immune-excluded subtypes may respond poorly to checkpoint

inhibitors alone, suggesting combination therapies targeting the JAK-

STAT pathway, HOXC13, or miR-26a-5p restoration. Additionally,

machine learning models enhance our ability to predict

immunotherapy responses, advancing precision oncology by

enabling better patient stratification and treatment planning.

However, limitations temper our findings. The retrospective

analysis requires prospective clinical studies to validate these

biomarkers and subtypes. While the miR-26a-5p/HOXC13 axis

showed promise in vitro, in vivo studies are essential to confirm

its therapeutic potential and immune interactions. Relying on TIDE

scores for immune dysfunction assessment calls for broader

profiling with markers like tumor mutational burden and spatial

immune data. The cGAS-STING pathway’s dual role in immunity

also needs further exploration. Despite these challenges, our work

lays a groundwork for personalized immunotherapies, aiming to

boost treatment success for breast cancer patients.
5 Conclusion

Our study implies that HOXC13 is a potential therapy target for

BRCA immunotherapy and 11-gene signature is a potential tool for
Frontiers in Immunology 16
clinical evaluation of anti-PD1/PDL1 therapy efficacy. The miR-

26a-5p/HOXC13 axis is pivotal in shaping breast cancer immunity

and therapy response. These findings offer valuable insights into the

mechanisms of immune evasion and resistance to breast cancer.
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SUPPLEMENTARY FIGURE 1

Functional enrichment analysis of differentially expressed genes across molecular

subtypes in breast cancer. (A) Volcano plot showing the distribution of
Frontiers in Immunology 17
differentially expressed genes (DEGs) across molecular subtypes (C1, C2, C3,
C4). Geneswith significant changes in expression (log2 fold change > 1 or < -1, P <

0.05) are highlighted for each subtype. (B) Venn diagram illustrating the overlap of
DEGs among different subtypes. (C, D) Pathway analysis about 161 overlapped

genes across subtypes (C1, C2, C3, C4).

SUPPLEMENTARY FIGURE 2

Meta-analysis of hazard ratios for the association between biomarker
expression and survival outcomes across multiple breast cancer cohorts.

Forest plot summarizing the meta-analysis of hazard ratios (HR) for the

association between HOXC13 expression and survival outcomes across
multiple breast cancer datasets. The pooled hazard ratio is represented by

the red diamond at the bottom, indicating a significant association (HR = 1.13,
95% CI [1.07–1.19], P < 0.05). The heterogeneity across studies is assessed

with I² = 36%, t² = 0.0057, and P = 0.03, suggesting moderate heterogeneity.
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