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Dendritic cell-derived exosomes
as anti-cancer cell-free agents:
new insights into enhancing
immunogenic effects
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The secretome of immune cells is currently a major focus in both diagnostic and

therapeutic contexts. Cell-free therapeutic agents attract even more attention in

cancer immunotherapy research, as their properties are comparable to, and

sometimes surpass, those of cell-based immunotherapy. This is particularly

evident when dendritic cell-based vaccines are compared with dendritic cell-

derived exosomes (dexosomes). However, there is still significant potential for

further research and optimization. We propose incorporating immunogenic cell

death stimuli into the production of dendritic cell-derived exosomes in order to

improve their effectiveness as a cell-free anti-cancer treatment. In this review, we

suggest a new strategy to enhance the immunogenic potential of dexosomes, as

well as summarize and compare immunogenic proprieties of dendritic cells and

dendritic cells-derived exosomes as anti-cancer agents.
KEYWORDS
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1 Introduction

In recent decades, the concept of strengthening cancer patients’ immune systems has gained

recognition. The idea of self-healing seems elegant and straightforward. The first instance of

cancer immunotherapy was reported by William Coley in 1891, who noted that some cancer

patients experienced spontaneous remission when they developed a Streptococcus skin

infection, erysipelas. He then used an injectable mixture of live and inactivated bacteria,

specifically Streptococcus pyogenes and Serratia marcescens, to develop a treatment (1). Later,

in the 1950-1960s, the idea of anti-cancer immunoediting was introduced, setting the stage for

further research on immunotherapy. It postulated that the immune system can both inhibit and

stimulate tumor growth. In 1990, the Food and Drug Administration (FDA) approved a

bacteria-based vaccine (alive/protein-containing) Bacillus Calmette-Guérin for bladder cancer,

marking one of the first successful applications of an immunotherapy agent (2, 3). Sipuleucel-T

—the first therapeutic cell-based anti-cancer vaccine—was approved in 2011 for metastatic
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castration-resistant prostate cancer. This milestone in cell

immunotherapy paved the way for further advances in vaccine

development. A pinnacle of achievement in cell immunotherapy has

been the development of chimeric antigen receptor (CAR) T cells.

CAR-T therapy has been used to treat various cancer types, including

the first FDA-approved CAR-T drug tisagenlecleucel against acute

lymphoblastic leukemia, axicabtagene ciloleucel (Yescarta) against non-

Hodgkin lymphoma, and idecabtagene vicleucel (Abecma) against

multiple myeloma (4).

Nevertheless, there are still several barriers to the widespread

application of cell immunotherapy, such as its high cost and low

accessibility, as well as immune system fatigue (5). Furthermore, cell

immunotherapy is often regarded as an adjuvant, supportive

treatment, or last resort when other clinical approaches prove

insufficient or totally ineffective. A therapy based on membrane-

bound vesicles could be the next step in the fight against cancer. As

a result, researchers are becoming more interested in the idea of

using immune cell derivatives as anti-cancer agents: these

medications are potentially more effective, less ethically

constrained, and more commercially viable.

One of the prospective therapeutic cell-free agents is dendritic

cells-derived exosomes (DEX). In the first part of the article, we

comprehensively describe dendritic cells as therapeutic anti-cancer

agents. The second half focuses on a detailed description of DEX

proprieties, including their advantages and limitations, and

compares them with dendritic cells in the context of cancer

treatment. Furthermore, a novel strategy to increase the

immunogenic potential of DEXs is proposed.
2 Discovery of dendritic cells: a new
step in understanding antigen
presentation

Dendritic cells (DCs) show great promise as a therapeutic agent,

progressing steadily through clinical trials and being increasingly

incorporated into conventional therapies and combination

strategies to treat different types of solid tumors (6, 7).

In 1973, Ralph Steinman and Zanvil Cohn were the first to

identify DCs in the mouse spleen (8). The unique morphology of

DCs and high expression of major histocompatibility complex

(MHC) molecules led to their classification as a distinct type of

antigen-presenting cells (APCs) (9, 10). In the late 1990s, DCs were

established as essential for linking the innate and adaptive immune

system via the presentation of processed antigens to T cells (11, 12).

Since those findings had been reported, the idea of employing DCs

to treat cancer emerged.
2.1 Advances and challenges in dendritic
cell-based cancer immunotherapy:
timeline of clinical research and application

The clinical exploration of DCs as therapeutic agents began

with clinical trials focusing on their ability to present tumor
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antigens to T cells. Despite objective tumor response rates being

typically moderate, below 15%, early research showed that DC-

based vaccines could elicit immune responses in cancer patients. By

the late 1990s, as antigen-presenting proprieties of DCs had been

described, various clinical trials commenced to assess the efficacy of

DCs in treating diverse malignancies, including melanoma and

prostate cancer. For instance, a notable study published in the

Journal of Experimental Medicine in 1999 illustrated that

vaccination with peptide-pulsed mature DCs could expand

specific cytotoxic T cells (CTLs) and induce regression of

metastases in patients with advanced melanoma (13, 14).

The understanding of DCs’ roles has evolved over the years:

researchers have shown that DC vaccines may increase overall

survival rates in some patients, despite the initially limited

responses to these vaccines. This has changed the way clinical

effectiveness is evaluated. New strategies have emerged, including

next-generation DC vaccines designed to enhance immunogenicity

and combination therapies integrating DC vaccination with other

cancer treatments (14–16).

As of the end of 2024, the ClinicalTrials.gov database by the

National Library of Medicine included 69 active or recruiting

clinical trials on DC-based or DC-targeted mono- or combined

immunotherapy: 5 studies were in the early phase I, 40 – phase I, 37

– phase II, and none were in phase III or IV. The ‘Completed’ and

‘Terminated’ statuses were assigned to 204 and 48 studies,

respectively (17).

Not registered in this database, a phase III anti-glioma DC

vaccine trial has shown that autologous tumor lysate-loaded DC

vaccine (DCVax-L) increased the median overall survival up to 19,3

months, achieving clinical and statistical significance in comparison

with matched, contemporaneous external controls (18) (Table 1).
2.2 Expanding role of dendritic cell
vaccines in cancer therapy: mechanisms,
combinatorial strategies, and future
directions

Such a strong research interest in DCs is understandable and

well-justified, as they have significant potential both as a standalone

treatment and in combination with other immunotherapeutic

cancer medications and chemotherapy (35, 36). It is clear today

that DC vaccination is an important and expanding subject, with

continuous research being done to increase its overall clinical

efficacy and application versatility (37).

DCs are recognized as the most effective APCs, capable of

inducing both innate and adaptive immune responses. They

demonstrate exceptional proficiency in processing and presenting

tumor antigens to T cells, which is crucial for initiating a robust

immune response against cancer (38, 39). By presenting tumor-

specific antigens, DCs can stimulate the production of cytotoxic T

lymphocytes that specifically target and eliminate cancer cells (40).

Clinical trials have repeatedly shown that DC-based treatments are

safe, even for patients whose cancer has progressed. DCs are

therefore a good choice for many patients who might not respond
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well to conventional therapies. DC-based therapy can promote

immune responses that result in persistent remissions, offering

hope for long-lasting results (41).

The effectiveness of treatment increases when DC-based

immunotherapy is combined with other modalities, such as

immune checkpoint inhibitors (ICIs). This combined approach

has demonstrated encouraging results in various cancers, e.g.,

melanoma, non-Hodgkin lymphoma, and breast cancer, including

enhanced immune responses and better clinical outcomes.

However, the percentage of cancer patients who benefit from ICIs

is still low (42). These advantages of DCs motivate researchers to

create specific, targeted, and highly effective DC-based vaccines

against different malignancies.
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2.3 Dendritic cells-based vaccines: general
practiсe and innovative strategies

To date, there is only one DC-based vaccine approved for

clinical usage. Sipuleucel-T (Provenge) is an FDA-approved

vaccine against metastatic castration-resistant prostate cancer. It

is a DC vaccine based on autologous cancer cell stimulation, with

prostatic acid phosphatase (PAP) as the main target. According to

the clinical trial results, overall survival increased by nearly 6.5

times after vaccination compared to the placebo, and side effects,

such as fever and chills, were rare (43). The clinical protocol

involves ex vivo incubation of autologous DCs with a

recombinant antigen protein combines PAP and GM-CSF. Yet,
TABLE 1 Current state of dendritic cell-based vaccines clinical trials.

Tumor type Treatment Clinical protocol References

Early phase 1

High Risk Triple Negative Breast Cancer Neoantigen DC vaccine 3 vaccinations summary: every 2 weeks; 2
booster shots on month 6 and month 12.

(19)

EBV-associated Nasopharyngeal Carcinoma Autologous DC vaccine (KSD-101) Injection once every 2 weeks for a total of 3-5
times: 3 obligatory injections and 2 boost
injections if needed.

(20)

Phase 1

Stage IV Pancreatic, Liver, Biliary Tract and
Colorectal Cancer

Tumor lysate or carcinoembryonic antigen
(CEA) derived DC vaccine

2 regimens: DC vaccine monotherapy on days
1, 8, 15, 29, 85, 141, 197, 253 and 309
or
DC vaccine with booster of anti-VEGF/anti-
PD-1: 1, 8, 15, 29, 85, 141, 197, 253 and 309 +
Lenvatinib on day 43-77 and Nivolumab on
day 43, 57 and 71

(21)

Multiple Myeloma (MM), Plasmacytoma Post-CAR-T Ag-presenting and immune
modifying DC vaccine

– (22–24)

Recurrent or Progressive High-grade Glioma Personalized DC vaccine (ZSNeo-DC1.1) Complex DC vaccine injections cycles (25)

Phase 2

Pancreatic, Esophageal, Liver or
Ovarian Cancer

IL15-transpresenting WT1-targeted
DC vaccine

DC vaccine injection every 2 weeks (± 3 days)
for a total of 6 vaccinations

(26–28)

Epithelial ovarian cancer (EOC) Autologous tumor lysate-loaded autologous
(cDC1)-based vaccine (XP-DC)

– (29)

Endometrial cancer (EC) Autologous DC vaccine (AdHER2DC) Injections of DC-vaccine on day 1 of cycles 1-
3 with optional up to 3 boost doses on day 1
of cycles 6, 9, 12 + Pembrolizumab
and Lenvatinib

(30–33)

Colorectal Cancer Autologous DCs loaded with autologous
tumor homogenate

Injection of DC vaccine on day 1 + IL-2 daily
for five days (days 3-7)

(34)

Advanced Ovarian, Fallopian Tube, or
Primary Peritoneal Cancer

Multi-epitope folate receptor alpha-loaded DC
vaccine + Pembrolizumab

– (18)

Phase 3

Glioblastoma Autologous tumor lysate-loaded DC vaccine
(DCVax-L)

DCVax-L on days 0, 10, and 20; in months 2,
4, 8 and months 12, 18, 24, and 30, with
monthly temozolomide

(18)

Status “Completed” – 204 studies Status “Terminated” – 48 studies
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the vaccine application is limited by strict requirements for sterility,

transportation, and manufacturing conditions. Only 50 centers

around the world are capable of providing this kind of therapy (44).

The general principle of DC vaccine design is to induce the

activation andmaturation of the patient’s or donor’s DCs ex vivowith

the primary tumor cell lysates, followed by their administration via

subcutaneous injection. The first step is to obtain DC, for which the

patient’s mobilized blood is the ideal choice. Mobilization is an

inevitable step because the number of DC progenitors in the blood

is low, about 0.2% of the total peripheral blood mononuclear cells. To

increase the proportion of DCs and progenitor cells (e.g., CD34+

hematopoietic stem cells), differentiation stimuli like granulocyte

colony-stimulating factor (G-CSF) or granulocyte-macrophage

colony-stimulating factor (GM-CSF) must be used (45). Next, DCs

should be purified using leukapheresis or other similar methods. The

remaining cells are then cultured in a specific cytokine environment

(e.g., GM-CSF, IL-4, and/or TNF-a) to promote DC differentiation

and maturation (46, 47). Once DCs reach a mature state, they are

pulsed with specific tumor lysates and re-injected to the patient as a

subcutaneous vaccine, with the follow-up for non-specific

inflammation-like reactions and side effects, which are usually

limited to fever, redness, local pain, and mild swelling (43, 48).

Interestingly, DCs that are currently used as therapeutic agents can be

pulsed not only with autologous tumor cell lysates or homogenates,

but also with messenger RNA (mRNA), tumor-associated antigens

(TAA), proteins, or modified nanoparticles, while cytokine cocktails

are often used as maturation stimuli (49–53).

Some extraordinary examples of DC vaccines have been observed

in clinical applications. The N.N. Petrov National Medical Research

Center of Oncology (Saint-Petersburg, Russia) provides a promising

example of treatment with a DC vaccine. There, DC vaccines are used

as a routine method for melanoma: bone marrow-derived

progenitors and photosensitizers are injected intratumorally and

then activated by light. According to in vitro and animal studies, it

might be immunogenic cell death of primary melanoma cells in vivo

that activates DCs and stimulates specific immune response, but the

results have not been published yet (54). The same scientific group

also described a clinical case of effective DC vaccination

against pediatric H3 K27M-mutant diffuse midline glioma.

They observed a dynamic increase in the proportion of T-

lymphocytes (CD3+CD19-) and natural killer (NK) cells (CD3-

CD16+56+). There were steady trends in the proliferation of

activated HLA-DR+ T helper cells (CD3+CD4+) and CTLs

(CD3+CD8+). At the same time, the proportion of regulatory

subpopulations—both CD3+CD4+CD25highCD127low T regulatory

(Treg) cells and CD3+CD16+56+ NKT cells—showed no significant

growth. The profile of immune response is presented in this article

but the fate of the patient is not clear (55). The use of the DC vaccine

against soft tissue sarcoma, colon cancer, and kidney cancer is

mentioned as well, but no data has been published in a scientific

format (56).

As many strategies have emerged, some researchers are striving

to improve well-described and, more importantly, clinically used
Frontiers in Immunology 04
approaches to lysate-pulsed DC vaccines. One fundamental

principle that could be integrated into clinical practice is the

targeted induction of immunogenic cell death (ICD) during lysate

preparation. Immunogenic cell death is a type of regulated cell

death characterized by cell stress, the release or surface exposure of

damage-associated molecular patterns (DAMPs), activation of

antigen-presenting cells, especially DCs, and, as a result,

enhanced specific T-cell immune response. It has been shown

that DCs pulsed with lysates of immunogenically killed cells are

more effective than DCs pulsed with necrotic cell lysates both in

vitro and in vivo (57–60). ICD was first described as immunogenic

apoptosis in 2005 and was later expanded to include other types of

cell death, such as ferroptosis, pyroptosis, necroptosis, and other

modalities (61, 62).
2.4 Challenges in dendritic cell
immunotherapy: overcoming tumor
microenvironment barriers – focus on
exosomes

The many advantages of DCs in cancer therapy include specific

immune response activation via antigen presentation, long-lasting

immunity, less harmful side effects compared to chemo- or

radiotherapy, and high compatibility with other therapeutic

approaches (37, 42, 63, 64). However, many limitations have yet

to be overcome. Thus, the tumor immune microenvironment

(TIME) has a strong immunosuppressive DC-targeted profile.

The subset of DCs typically used in immunotherapy due to

accessibility issues — monocyte-derived DCs from mobilized

peripheral blood — have lower efficacy in anti-tumor response

than conventional DCs, previously known as myeloid DCs derived

from a common DC progenitor (65–67). As described earlier,

mobilization of monocytes and hematopoietic stem cells is

critical for DC vaccination because of the constraints of

autologous transplantation (68, 69). Here, researchers and clinical

practitioners face yet another problem: the immune system of

cancer patients develops fatigue and exhaustion as a consequence

of chemotherapy and radiotherapy, cytokine imbalances, long-term

bone marrow injury, and comorbidities (70, 71). Furthermore,

limited lymph node infiltration in tumor-bearing individuals

contributes to immunosuppression. If professional APCs cannot

effectively penetrate the lymph nodes, they may fail to activate the

full potential of T cells, resulting in a weaker targeted anti-

tumor response.

Altered chemokine expression, phenotypic changes, challenges

in identifying target antigens for DC stimulation, the risk of both

immunosuppression and overstimulation, and the weakened

immune status of late-stage cancer patients all similarly affect

treatment outcomes (72–77). To overcome these limitations,

novel immunotherapeutic strategies must be developed. Among

emerging options, DC-derived exosomes show particular promise

as an innovative approach to immunotherapy.
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3 Dendritic cell-derived exosomes –
cell-free saviors?

3.1 Exosomes as nanoscale mediators:
content and structure

Exosomes are nanosized extracellular vesicles, typically ranging

from 30 to 150 nm in diameter. They can be secreted by various cell

types both under normal conditions and in response to external

stimuli or due to acquired impairments (78). Exosomes play a

crucial role in intercellular communication by transporting

proteins, lipids, and nucleic acids from donor to recipient cells.

This unique capability makes exosomes promising candidates for

targeted drug delivery systems in therapeutic applications.

Exosomes are primarily composed of a lipid bilayer, proteins

(including heat shock proteins (Hsp) and membrane transport

proteins), and nucleic acids (mRNAs and microRNAs). The lipid

bilayer protects the cargo from degradation and facilitates fusion

with target cell membranes (79–81). Exosome uptake by recipient

cells involves several mechanisms, including receptor-ligand

interactions, membrane fusion, and endocytosis. The specific

uptake pathway can vary depending on the type of recipient cell

and the surface proteins present on the exosomes (79, 82, 83).
3.2 Dendritic cell-derived exosomes:
mechanisms of antigen presentation

One of the most impressive properties of DEX surface

membranes, contributing to their immunogenic potential, is the

presence of markers involved in specific antigen processing and

presentation. DC-derived exosomes were first described in the

context of their immunological function in 1998. This discovery

was made by Zitvogel et al., who demonstrated that MHC-II

enriched exosomes could present peptide–MHC II complexes to

T cells, thus activating specific immune responses (84, 85). Worth

noting that MHC-expressing exosomes secreted from B

lymphocytes were detected and described two years earlier, in

1996, by Raposo et al. who first reported that extracellular vesicles

are able to present antigens to T cells (86).

Usually, DC-derived exosomes are 30–150 nm extracellular

vesicles that transport and deliver molecular signals, carry a

variety of receptors, and inhibit immune surveillance (87, 88).

They can present TAA to T cells, promoting a robust immune

response. Interestingly, DEXs have a stimulatory effect on APCs

termed ‘cross-dressing’. Exosomes from DCs transfer MHC-peptide

complexes directly to other APCs, enhancing their ability to

stimulate T-cell responses against tumors (89–91). Studies

indicate that exosomes derived from DCs can efficiently capture

and present antigens, leading to improved activation of CD8+ T

cells compared to direct antigen presentation by DCs.

The DEX specific content and surface profile can induce a T-cell

immune response either directly or indirectly (87, 92). The indirect

pathway involves antigen cross-presentation via the MHC-peptide

complex on exosomes, followed by reprocessing of antigen in DCs.
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Then, DCs present newly recognized peptides to T cells. In contrast,

the direct pathway implies immediate interaction between T cells

and MHC complexes on the surface of the DEXs (88, 93, 94).

Interestingly, DEXs are able to make the tumor more attractive

for immune cells. A variety of strategies was described for breast

carcinoma, melanoma, and hepatocellular carcinoma (89, 95–97).

DEXs contain a rich array of MHC molecules, both class I and II,

and co-stimulatory signals crucial for effective T-cell activation.

Furthermore, it has been found that DEX membranes are enriched

with MHC molecules compared to DCs (98). Major surface

molecules responsible for antigen presentation on DCs are also

found on DEX: MHC-I, MHC-II, CD80, CD86, CD40, etc. (87).

Notably, co-stimulatory molecules B7.1 and B7.2, originally very

important in T-cell response activation via different interactions,

have also been identified on DEX. Additionally, intercellular

adhesion molecule 1 (ICAM-1) has been shown to be essential for

T-cell priming, as its expression as a co-stimulatory molecule is

critical for the immunogenic properties of DEX in the anti-tumor

immune response (92).
3.3 Dexosomes: next step in overcoming
the limitations of DC-vaccines

Derived from cells , exosomes naturally have high

biocompatibility, which makes them suitable for clinical

applications (82) and a possible answer to the limitations of DC

vaccine therapy. DEXs have a more targeted action: their sizes range

from 30 to 150 nm, allowing them to migrate and internalize within

lymph nodes. DEXs are also less susceptible to the TIME due to their

stable composition and phenotype, which remains unaffected by

immunosuppressive immune and tumor cells (87, 99–101). There

are reports that DCs activated in vitro can switch into an

immunosuppressive phenotype associated with a weaker

immunotherapy effect (102, 103). In the TIME, DEXs are able to

change pro-tumor immune cells into anti-tumor cells. Exosomes

from activated DCs can induce a pro-inflammatory environment,

essential for effective anti-tumor immunity. They achieve this by

enhancing the expression of pro-inflammatory cytokines and

promoting the maturation of other DCs, which in turn can

stimulate T-cell responses against tumors (104–107). Exosomes

influence the tumor microenvironment (TME) by altering the

behavior of stromal cells, such as fibroblasts and immune cells. For

instance, they can induce the secretion of cytokines and chemokines

that recruit more immune cells to the tumor site, thereby creating an

environment conducive to immune attack (108). Additionally,

exosomes can inhibit the immunosuppressive functions of Tregs

and myeloid-derived suppressor cells, further enhancing anti-tumor

immunity (Figure 1) (109, 110). T cells can independently attract

DEX via the LFA-1 molecule, potentially enhancing the immune

response (111). The interaction of DEXs with CD4+ results in MHC I

expression in the CD4+ population and facilitates CTL transition.

Importantly, exosomes can easily penetrate biological barriers

such as the blood-brain barrier or blood-tumor barrier (112, 113).

This could be leveraged in brain tumor treatment (114), as not all
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immunotherapeutic and chemotherapeutic drugs can penetrate

these barriers to accumulate in the target tumor (115). For

example, temozolomide, a standard chemotherapy drug for

glioblastoma multiforme, only reaches about 20% of its blood

concentration within the brain (115).

Romagnoli et al. have hypothesized that tumor cells treated with

DEX could induce anti-tumor effects de novo and stimulate

migration of both primary and modified immune cells and
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interact with them. Through a series of complex incubation steps

using DC+tumor-derived exosomes, activated DC+T-cells, and

interferon-g (IFN-g)-producing T-cell detection, it was elegantly

demonstrated that tumor cells treated with DC-derived exosomes

become more attractive targets for existing immune effector

cells (89).

Furthermore, we should mention the economic benefits of DC-

derived exosomes. During the manufacturing process, DEX can be
FIGURE 1

Main effects of dendritic cell-derived exosomes (DEX) obtained from mature stimulated dendritic cells. 1 – APC-like function assumes DEX
interaction with T cells via MHC-TCR complex for antigen presentation as it happens in case of cellular (DC-T cell) contact. 2 – DEX are able to
recruit immune cells to the tumor same as entice DC from TME to act as anti-tumor active cells. 3 – modified DEX (e.g. caring FasL, TNF-a) are able
to suppress Treg pro-tumor activity via MHC-TCR interaction along with shifting the balance away from Treg dominance to effector T cells
activation as DEX express co-stimulatory molecules. 4 – DEX express integrins, ICAM-1, and tetraspanins (CD9, CD63, CD81) which enable efficient
binding to and uptake by other DCs, also DC-derived EVs are able to transfer peptide-MHC complex to recipient DCs, which then reprocess and
present these antigens, amplifying the immune response.
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easily stored at -80˚ C for 3–6 months, their homogeneity is

sufficient for massive production, and as subcellular components,

exosomes have significantly fewer ethical restrictions in clinical

usage (92, 116–118). The main features and effects of DEXs are

illustrated in Figure 1.
3.4 Challenges and considerations in
dendritic cell-derived exosome production:
standardization and optimization

There are currently no standardized guidelines or criteria for

DEX manufacturing (119). While it is evident that DCs are the

source of dexosomes, several key factors are overlooked. For

instance, the subtype of DCs producing DEXs is often

disregarded. Furthermore, methods for identifying intravesicular

content are complex and costly. Thus, more aspects and methods

should be reviewed to improve standardization, optimization,

and applicability.

The common DEX production process begins with ex vivo DC

cultivation and stimulation of their mature phenotype as one of the

most critical points that determine the effectiveness of immune

system activation by DEXs. The subsequent manipulations include

the incubation of DCs with tumor lysates or proteins and several

genetic, e.g., viral, modifications of DCs (Figure 2A). After exposure

to antigenic stimuli, DEXs are collected from the culture media and

washed several times before analysis (87, 120) (Figure 2B). Typical

DEX analysis includes several techniques (Figure 2C) (121–123).

Scanning electron microscopy is used to assess the morphology of

extracellular vesicles, which is crucial for understanding their

biological functions and potential applications in diagnostics and

therapeutics. Nanoparticle tracking analysis allows for rapid and

precise measurement of vesicle size and concentration. Dynamic

light scattering helps assess biophysical properties of extracellular

vesicles, while immunoblotting is used to valuate purity and detect

different proteins and markers they carry.

In vivo-focused research includes additional methods like flow

cytometry for phenotype detection and mass spectrometry for

identifying internal DEX content (124). After purification, DEXs

can be used as active vesicles in various applications.

Purity of exosomes is a critical factor in the context of both in

vitro and in vivo studies. Inappropriate characterization of purified

EVs might cause the lack of efficacy, false assays interpretation and

additional immunological load on organism. So, there are several

strategies to prevent the production of unearmarked EVs. On of the

strategies include the usage of culture medium depleted of bovine

serum exosomes. This method implies ultracentrifugation for

serum-derived exosomes precipitation and following culture

medium preparation without pelleted exosomes (125). Another

strategy is based on the known size of DEX. To improve purity

and separate exosomes from other vesicles and protein aggregates,

density gradient ultracentrifugation could be used. The goal product

typically located in one of the fractions depending on target size of

the EV (126). Immunoaffinity isolation is a precise and high-

selective method of DEX isolation. Magnetic beads coated with
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antibodies against exosome-specific surface markers (e.g., MHC-II

molecules) could be used while selective DC-derived exosomes

capturing (127).

To ensure the safety and efficacy of dendritic cell-derived

exosomes for different patients, strict quality control measures

throughout production should be implemented. Firstly, criteria

for dendritic cell vaccination could be applied in the context of

the ability to get the cells from the blood through the general

volume of DC and DC precursors measurement. As the source of

the DEX are dendritic cells, so the first criteria should be the ability

to culture and stimulate autologous dendritic cells (128). The

second criteria could be presented as a list of requirements for

detailed EVs characterization (e.g. identity, purity, structure and

sterility), functional compliance and storage (98, 129). Adhering to

guidelines and regulations set forth by organizations like the

International Society for Extracellular Vesicles (ISEV) and the

European Network on Micro-vesicles and Exosomes in Health

and Disease (ME-HaD) is another step to the clinical safety of

DEX-based treatment (130).

The versatility of DEX remains an important but largely

unexplored area of research. Most studies report obtaining DEXs

from allogeneic DCs, and graft-versus-host reactions have not been

described. This raises the question of HLA typing for DEX, which is

another challenge researchers have to face. Overall, the use of DEXs

derived from non-donor DCs is still under discussion. Addressing

these questions will require approaches rooted in autoimmune

research and allogeneic transplantation algorithms.
3.5 Current status and preclinical
advancements in DEX-based anti-cancer
therapy

As of 2024, the clinical trials database (https://clinicaltrials.gov/)

lists only two clinical trials related to anti-cancer treatment with

DC-derived exosomes. The first is a completed phase II clinical trial

for unresectable non-small cell lung cancer. However, the results

have not yet been published and no data on survival or effectiveness

are available. Still, the trial included a well-documented clinical

protocol involving stimulatory proteins for DC activation,

cyclophosphamide treatment, and intradermal injections of DEX

—administered weekly for four weeks and followed by injections

every two weeks for six weeks (131). The second study was

completed at the end of 2023 and investigated DEX therapy for

bladder cancer but details on the DEX design and clinical protocol

are not available (131). Notably, most clinical studies focus on the

role of exosomes of different origin as diagnostic molecules for

various diseases.

In contrast to the limited number of clinical trials, likely due to

the novelty of this approach, numerous fundamental and pre-

clinical studies have been described. Thus, exosomes enriched

with chaperones proved an effective way of glioma treatment in

mice. The chaperone-rich lysate contained at least four chaperone

proteins, including Hsp70 and Hsp90, calreticulin, and glucose-

regulated protein 94 (GRP94), which made the treatment more
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effective (132). Lu et al. showed that DEX derived from a-
fetoprotein-expressing DCs activated a specific anti-tumor

response against hepatocellular carcinoma and increased the

number of CD8+ T cells in the TME. Furthermore, CD8+ cells

gradually increased the level of immunostimulatory cytokines, such

as IL-2 and INF-g, while also reducing CD25+ expression and CD25

+FoxP3+ the proportion of Tregs, as well as lowering IL-10 and

TGF-b in tumor sites (97). Another DEX-based approach has been

used for cervical cancer. This study presented a protocol for DEXs

engineered via DC stimulation with the HPV early antigen 7
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protein, the main target antigen for this type of tumors (133). In

human gastric adenocarcinoma, the CTL immune response was

induced using either tumor lysate or RNA to treat DCs, with tumor

RNA being more effective. Exosomes were then obtained and

injected as a vaccine. In a phase I clinical trial, DEXs derived

from autologous plasmacytoid DCs have shown mixed effectiveness

against melanoma. Only one patient in this study had a pronounced

T-cell response, but researchers observed a high proportion of

infiltrating NK cells and proposed that DEXs are important for

NK activation (134). This finding was later supported by multiple
FIGURE 2

Common steps involved in DEX production and quality control. (A) Blood processing and DC stimulation; (B) Сonsecutive DEX purification with
centrifugation; (C) Purified DEX size and quality control.
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studies and another phase I clinical trial (88, 135, 136).

Combination of DEXs with anti-CTLA-4 ICI treatment was able

to strongly enhance the efficacy of immune response (137). Using

chimeric DEX-like exosomes for glioblastoma treatment in the

orthotopic model, researchers found an increase in tumor-

infiltrating T-cells, a better Ki-67response, and the maintenance

of memory T cells (138). For gastric cancer, hybrid exosomes were

engineered. DEXs modified with a chemotherapeutic agent induced

an effective anti-cancer immune response in a murine model (139).
3.6 Immunogenic cell death as a strategy
for to enhance dendritic cell-derived
exosome-based cancer therapy

As described above, immunogenic cell death (ICD) is a form of

regulated cell death. It is characterized by exposure to DAMPs

released from dying tumor cells, followed by the activation of

specific immunity (61, 140). We propose DEX therapy could

benefit from employing core determinants of ICD. First, the cell

should undergo stress adaptation as it leads to intracellular changes

and shapes the immunogenic profile of cell death mediated by

therapeutic modifications. The second determinant is that dying

cells should be taken up by antigen-presenting DCs rather than

macrophages, to promote an effective immune response. The third

important point is the sufficient antigenicity of the dying cells. The

last determinant is the adjuvant effect, which involves the release of

DAMPs as immune-stimulating molecules (141).

With various methods of its induction available, ICD is an

elegant cell death pathway to be used in research and development.

This cell death modality can be activated using classical inducers,

such as chemotherapeutic drugs, e .g. , anthracyclines,

cyclophosphamide, bortezomib, radiotherapy (142), or

photodynamic therapy when immunogenic photosensitizers (PS)

are used, e.g. porphyrazines, G-chlorin, and nanocarriers with PS

(143–145). Interestingly, there are some rarely used methods of ICD

induction, like cold atmospheric plasma (146) or natural

compounds capsaicin and curcumin (147). Since immunogenic

apoptosis was first described by Guido Kroemer’s group in 2005,

the number of studies focusing on ICD has increased rapidly. As of

17th December, 2024, PubMed database includes 5,262 articles

mentioning immunogenic cell death (61, 148). Given that

immunogenic cell death markers include cell surface proteins,

they may also be exposed on extracellular vesicles in a similar

manner. We further suggest that DEXs could be enriched with

immunogenic surface proteins, as this has been observed for MHC

molecules (98). While the DEX classical phenotype has been

described, there is no data on their inner and surface composition

in the context of ICD-mediated DEX (Figure 3). As MHC and co-

stimulatory molecules are common for the majority of DEX, some

of inner molecules like Hsp and annexins might be detected as

DAMPs which play a key role in immune system response during
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ICD-based activation (61, 87). On the other hand, the specific

surface profile after ICD stimuli has not been clearly described

which opens a wide area for the research of dendritic cell-derived

exosomes in the context of therapy search.

ICD proprieties suggest that immunogenically killed cells could

be applied in the production of DC-derived exosomes, as this

strategy could potentially enhance the therapeutic efficacy of

extracellular vesicles (Figure 4). The content of DEXs is well

characterized and was discussed earlier in this review. However,

the impact of immunogenically killed cells on the resulting ICD-

DEX remains largely unexplored, highlighting the need for

further studies.
3.7 Challenges and strategies to enhance
the anti-tumor efficacy of dendritic cell-
derived exosomes in cancer
immunotherapy

Dexosomes promote a strong T cell response in both in vitro

and in vivomodels. DEXs are often described as vesicles with strong

antigen-presenting properties, yet DEX immunotherapy faces

challenges in clinical trials and treatment integration (92, 120).

Most clinical trials listed in databases do not progress to the next

phases or are even terminated without providing results (88), and

clinical applications seem to have stuck in a holding pattern. On the

other hand, fundamental research has explored DEX properties,

content, and their so-called phenotype, or surface molecule profile,

in depth. Therefore, this matter calls for explanation.

First, DEXs are not living cells, so they cannot actively migrate

to the tumor or lymph nodes like DCs. Instead, exosomes are

transported from peripheral tissues through lymphatic vessels and

nodes in complex with lymphatic endothelial cells (149). Second,

the complexity of DEX composition can vary significantly, making

it difficult to standardize the treatment and manufacturing process

(150). Interestingly, artificially generated DC subtypes, e.g. cDC

obtained after PIB-induced transformation, might become a

prospective source of DEX in context of both routine and novel

manufacturing designs. Furthermore, dendritic cells subtypes

obtained with INF-g simulation show solid efficacy and

immunogenicity. Exosomes derived from DC stimulated with

IFN-g show imposing therapeutic effect in combination with

chemotherapeutic treatment of non-small cell lung cancer.

Controlled stimulation of dendritic cells phenotypes might

become one of the solutions on the way to standardization of

DEX manufacturing and immunogenicity enhancement of therapy

(151–153). Still discussing the possibility of using PIB-induced or

other derived DC is important in context of the ability to use them

as full-fledged alternative of DEX source as this transformation

strategy might face the problems of incomplete functional

maturation, variable reprogramming efficiency, reduced

proliferative activity, and genetic and epigenetic barriers (154).
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DEX are easy to store and transport, but they still originate from

DCs derived from live donors or cancer patients, which requires

complex invasive procedures. The ‘quality’ of the original

biospecimens and the source and subtypes of DCs also play an

important role in the treatment success (155). The last limitation we

would like to highlight is the lack of pre-selection criteria. There is

currently no standardized set of criteria for selecting patients who

would benefit most from DEX therapy, which complicates the

identification of optimal candidates (156). This is particularly

evident in clinical trials when the immune backgrounds of

patients and treatment strategies differ a lot in each case.

All these limitations of DEXs necessitate modifications to

enhance their anti-tumor properties. Therefore, researchers

propose strategies to address these challenges and improve

existing methods. DEXs are more compatible with different

modifications like genetic engineering, surface treatment, and

exogenous cargo loading. In particular, genetic engineering

enables target ligand expression and can be employed as a

therapeutic strategy. For instance, overexpression of several

proteins in precursor DCs results in CD8+ reprogramming and

an enhanced CTL response following DEX treatment. Another

approach is to inhibit the PD-1/PD-L1 pathway, which tumors
Frontiers in Immunology 10
exploit to evade immune detection. PD-1 is a T-cell checkpoint

protein engaged by its ligand PD-L1 that inhibits T-cell activation.

Parental DCs transfected with a plasmid can successfully express

anti-PD-1 antibodies. Alternatively, DEXs can be loaded with anti-

PD-1 antibodies. Thus, anti-PD-1 antibodies in combination with

DEXs can significantly enhance T cell activity against tumors (92,

157). Additionally, antigens or adjuvant molecules can be directly

conjugated to the cell surface. As demonstrated in macrophages,

such a modification could be utilized to modify DEX in future

research (158). Preconditioning DCs with cytokines, such as IFN-g,
can enhance the immunogenicity of the resulting exosomes. IFN-g
preconditioning promotes DC maturation and increases the pro-

inflammatory cytokine production, which can improve the efficacy

of DEXs against tumors (150). DEXs can be loaded with specific

molecules endogenously by using viral vectors or plasmids to

modify parental cells (159).
4 Conclusion

Over 25 years, since the first description of DEX functions and

pilot in vivo experiments, DC-derived exosomes are still under
FIGURE 3

Probable composition of exosomes derived from dendritic cells pulsed with ICD stimuli.
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active research focus. DEXs have the potential to control, suppress,

and target tumors in vitro and in vivo. Due to these properties, DEX

are therapeutically promising cell-derived elements that can

efficiently present antigens, overcome immunosuppression in the

tumor microenvironment, and enhance immunogenicity (85, 89,

98). In addition, although DEX-based drugs have reached the stage

of clinical trials, they were not successful for a number of reasons.

DEXs are cell-derived products rather than viable cells. The main

benefit of DEX-based therapy is that the exosomes cannot be

recruited by immune cells in the tumor microenvironment.

Furthermore, some studies show that they can reprogram host’s

immune cells previously recruited by tumors. However, despite all

DEX benefits, there is great room for further research and

improvements. For example, it has never been described how the

cells that died via the ICD pathway impact the efficacy of the

resulting exosomes. We propose that DEX obtained following an

ICD stimulus can promote a significantly more effective response

against a tumor, as demonstrated by DC vaccines in a variety of

murine models (57, 160–162). The ICD-DEX approach requires

further study and validation, both in vitro and in vivo. If successful,
Frontiers in Immunology 11
it could become an appealing option for clinical practice, not only as

a monotherapy or a part of multicomponent treatment but also as

an agent that enhances the immune response through its impact on

the tumor microenvironment.
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