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As a typical pathological feature of pancreatic ductal adenocarcinoma,

reprogramming of glucose metabolism synergistically drives the tumorigenesis

and development process throughmolecular mechanisms such as regulating the

expression of driver genes, modifying key functional proteins, triggering

mitochondrial metabolism abnormality, and remodeling the tumor

microenvironment. It is worth noting that this metabolic remodeling

phenomenon is s ign ificant ly assoc ia ted wi th the format ion of

chemoresistance. Based on the latest research progress, this paper

systematically describes the molecular basis of glucose metabolic

reprogramming in pancreatic cancer, drug resistance characteristics and its

targeted intervention strategies, and provides a theoretical framework for the

research and development of innovative drugs.
KEYWORDS
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1 Introduction

Pancreatic ductal adenocarcinoma (PDAC), the main subtype of pancreatic cancer

(accounting for more than 90% of cases), is highly approachable in terms of morbidity and

mortality, and is projected to jump to the second place in cancer-related deaths in 2030 (1).

Due to the lack of early diagnostic markers, more than 90% of patients are diagnosed at an

advanced or metastatic stage, with a 5-year survival rate of only 11% (2). Although surgery

can prolong the survival of some patients, the rate of postoperative metastasis is extremely

high, and existing treatments, such as chemotherapy, have limited effectiveness and are

accompanied by serious side effects in advanced patients (3).

Malignant progression of PDAC is closely related to metabolic reprogramming. Tumor

cells continuously acquire energy through aerobic glycolysis (Warburg effect (4)),

preferring glycolysis over oxidative phosphorylation even under hypoxic conditions. This
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metabolic pattern not only provides adenosine triphosphate(ATP)

and macromolecular precursors, but also acidifies the tumor

microenvironment (TME) by releasing lactate, which in turn

promotes immune escape, chemoresistance, and metastasis (5).

Therefore, a more comprehensive exploration of aerobic

glycolysis will help to unravel the mechanisms of PDAC

progression and point to potential therapeutic avenues. This

review provides insights into the mechanisms of reprogramming

of PDAC glycolysis, the tumor immune microenvironment, subtype

specificity, therapeutic resistance, and targeted therapies.
2 Mechanisms of reprogramming
glucose metabolism in pancreatic
cancer

2.1 Metabolite-based metabolic
reprogramming in pancreatic cancer

Metabolites are intermediates of cellular metabolism, and a

variety of metabolites have been reported to be involved in the

regulation of multiple signaling pathways in PDAC development.

Cancer cells draw large amounts of energy from glycolysis and

produce large amounts of lactate even under aerobic conditions (6).

Lactate, an abundant cancer metabolite, is an end product of

glycolysis. Enhanced glycolysis and accumulation of lactate is a

common feature of many types of cancers. Lactate is the main

carbon source of the tricarboxylic acid(TCA) cycle and therefore a

major energy source, glucose transporters (GLUTs) and lactate

dehydrogenase (LDHA) play an important role in the high-speed

conversion of glucose to lactate play an important role in the

conversion of glucose to lactate (7). In normal cells, most of the

pyruvate enters the mitochondria for oxidation and participates in

the generation of ATP after TCA, whereas in pancreatic cancer cells,

there is an enhancement of glycolysis and a significant increase in

the rate of production of pyruvate, which is converted to lactate.

The production of lactate is accompanied by the production of

NADH (nicotinamide adenine dinucleotide hydrogen), and

pancreatic cancer cells gain energy through enhanced glycolysis to

produce large amounts of NADH. Lactate not only provides energy

for pancreatic cancer cells, but also suppresses immune cells by

altering the tumor microenvironment. Lactate is exported from

cancer cells via the monocarboxylate transporter (MCT), and the

exported lactate is a potential substrate for the TCA cycle of the

surrounding cells to meet their energy requirements. In response to

MCT, the investigators provided a therapeutically relevant

approach to reduce cGAS lactation by blocking MCT1 (8),

thereby altering the pH of the tumor microenvironment (TME),

and thus the TME of the cancer (9). Accumulation of cancer cell-

derived lactate in the TME has been shown to impair cytotoxic T-

lymphocyte cytokine production and proliferation by blocking and

disrupting T-cell metabolism via lactate efflux and lactate from

cancer cells stimulates production of IL-6 by cancer-associated
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fibroblasts (CAFs), synergistically impairing cytotoxic lymphocyte

function (10).However, it has been found that lactate-pretreated in

vitro CD8 + T cells effectively inhibit tumor growth when

overtransferred to hormonal mice, and that lactate increases

stemness and enhances anti-tumor immunity in CD8 + T cells.

This suggests that the effects of lactate on tumors and immune cells

are highly complex and difficult to interpret (11).

It is important to note that in normal lung tissue and lung

cancer, the largest TCA contribution comes from lactate, whereas in

PDCA, glutamine contributes more (12). In PDCA, glutamine not

only participates in the TCA cycle to generate energy, but also

supports cancer cell proliferation by regulating the supply of carbon

sources, and glutamine plays a more critical role as an important

metabolic substrate. This central role relies on the optimization of

glutamine catabolic pathways by mitochondrial metabolic

reprogramming. The key initiating step in glutamine metabolism

is catalyzed by glutaminase (GLS), which converts glutamine to Glu.

Glu is in turn converted to a-ketoglutarate (a-KG), which enters

the TCA cycle, either by glutamate dehydrogenase activity or by the

action of transaminases (e.g., aspartate aminotransferase, glutamic

oxaloacetic acid transaminase 1/2, i.e., GOT1/GOT2). PDAC cells

are particularly preferred to metabolize glutamine via GOT1/

GOT2-mediated transamination reactions, which help maintain

the levels of nicotinamide adenine dinucleotide phosphate

(NADPH) and nicotinamide adenine dinucleotide (NAD) pools,

thereby supporting both tumor growth and intracellular redox

homeostasis (13). The versatility of Glu goes far beyond energy

metabolism. It is an indispensable substrate for the synthesis of

lipids, nucleotides and proteins. More importantly, glutamine

provides a key nitrogen source and/or carbon skeleton for the

biosynthesis of a wide range of amino acids, including asparagine,

glutamate, proline, aspartate, alanine, glycine, serine, cysteine, and

ornithine (14). Among other things, it was found that there is a

significant dependence of PDAC on the flow of glutamine

metabolism to the ornithine synthesis pathway. This process is

mediated by ornithine aminotransferase (OAT) and supports

polyamine synthesis essential for tumor growth (15). Oncogenic

genetic alterations driving the development of PDAC are central

regulators of reprogramming of glutamine metabolism (16).

Through its powerful transcriptional regulation, c-MYC directly

binds to and up-regulates the gene expression of high-affinity

glutamine transporter proteins, thereby significantly enhancing

cellular uptake of glutamine (17). On the other hand, the tumor

suppressor TP53 targets and regulates the expression of GLS2,

which promotes mitochondrial respiration and ATP synthesis by

increasing glutamate and a-KG production, and enhances cellular

antioxidant defenses and protects against oxidative stress-induced

apoptosis by up-regulating glutathione levels and decreasing

reactive oxygen species (ROS) levels (18, 19). Dissecting the

complex network of glutamine metabolism will provide a

theoretical foundation for the development of therapeutic

strategies that target metabolic vulnerabilities, while driving

synergistic innovation of metabolic interventions with existing

therapies such as immunotherapy. The interactions among
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glycolysis, the TCA cycle, and glutaminolysis are schematically

summarized in Figure 1.

Tissues obtain ATP from two pathways - glycolysis and the

TCA cycle coupled to the electron transport chain. Most energy in

mammals is produced through TCA metabolism. Glycolytic flux is

increased in tumors compared to healthy tissue, but this increase is

not sufficient to compensate for the low TCA flux for ATP

production. As a result, solid tumors typically produce ATP at a

slower-than-normal rate, rather than the high metabolism that is

often assumed. In mouse pancreatic cancer, this can be achieved by

down-regulation of protein synthesis, which is one of the major

energy expenditures of the tissue. In solid tumors, cancer cells lose

some tissue-specific function and grow uncontrollably despite their

limited ability to produce ATP (20). NADH plays an important role

in the TCA cycle, acting as a donor to the electron transport chain

and supporting ATP production. Although the flux of the TCA

cycle is low in pancreatic cancer cells, it is still involved in cellular

energy production. Since cancer cells rely primarily on glycolysis for

energy production, NADH maintains the NAD+/NADH ratio

through the action of lactate dehydrogenase and other regulatory

enzymes. The NAD+/NADH balance directly affects cellular

metabolic pathways, especially in the presence of enhanced

glycolysis and decreased TCA cycle function.
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2.2 Metabolic reprogramming in pancreatic
cancer based on gene expression
regulation

2.2.1 Driver genes
A feature of PDAC is the prevalence of oncogenic mutations in

the Kras gene, which plays a key role in the development and

maintenance of pancreatic tumors and is involved in cell

proliferation and survival. The Kras mutation was identified at an

early stage of PDAC development (PanIN1) (21), suggesting that it

is important for tumorigenesis and that tumor progression requires

other genes for additional mutations. Oncogenic Kras is associated

with regulation of the TME and pro-tumorigenic cell recruitment,

leading to tumor invasion and metastasis (22, 23). The important

role of Kras in the maintenance of an immunosuppressive TME and

the opportunity to combine Kras targeting with immunotherapy to

achieve a sustained response to therapy. It has been shown that Kras

(G12D) plays an important role in controlling pancreatic cancer

metabolism by stimulating glucose uptake and directing glucose

intermediates into hexosamine biosynthesis and the pentose

phosphate pathway (PPP). These studies have also revealed that

oncogenic Kras promotes ribose biogenesis (24). Newly approved

and emerging Kras G12C inhibitors can only benefit a small
FIGURE 1

This figure presents the link between glycolysis, TCA cycle and glutamine metabolism. Glutamine is transported into cells via ASCT2/SLC1A5, and
leucine activates mTORC1 for cell growth, which is inhibited by Torin1. Glutamine is partly used for amino acid/protein synthesis, partly into the
mitochondria via GDH to participate in the tricarboxylic acid cycle, which is regulated by HIF-1a and Sirt4. In glycolysis, glucose undergoes a series
of enzymatic reactions to form pyruvate, which can enter the tricarboxylic acid cycle, and its product, citric acid, is used in lipid and amino acid
synthesis, etc. It can also participate in the hexosamine biosynthetic pathway. Created in https://BioRender.com.
frontiersin.org

https://BioRender.com
https://doi.org/10.3389/fimmu.2025.1586959
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1586959
percentage of pancreatic cancer patients, and there are no approved

drugs targeting the major PDAC mutations Kras G12D and

G12V (25).

Robert A. Weinberg emphasized the important role of genomic

instability in the characterization of cancer and recognized

metabolic reprogramming as a novel feature associated with

activated oncogenes (26). Although aerobic glycolysis clearly

affects cancer cell survival, it is controlled by proteins involved in

cellular programs that are central to other hallmarks of cancer. The

Warburg effect may constitute a certain phenotype driven by

genomic alterations. Epigenetic dysregulation leads to aberrant

gene expression, which promotes malignant transformation and

progression of tumors in several ways. SET structural domain 2

(SETD2) is a single histone methyltransferase responsible for

catalyzing the trimethylation of histone H3 lysine 36

(H3K36me3), which is somatically mutated in a variety of

malignant tumors, including PDAC (27). Hotspot mutations in

SF3B1 (splicing factor 3b subunit 1) have been observed in a variety

of cancers and these mutations result in a large number of aberrant

mRNA splices, which are strongly associated with tumorigenesis.

Specifically, the SF3B1 K700E mutation is tightly associated with

tumor growth in PDAC. The SF3B1 K700E mutation promotes

glycolysis in tumor cells, increasing glucose consumption, lactate

release, and extracellular acidification. The mutation activates the

glycolysis regulator c-Myc through aberrant splicing of the protein

phosphatase 2 regulatory subunit B’alpha(PPP2R5A) gene and

through post-translational regulation. This finding provides a

potential therapeutic strategy for targeting PDAC with the SF3B1

K700E mutation (28).

In addition, leptin, an adipokine, is significantly elevated in

obese patients and plays an important role in several biological

processes in tumors. A study demonstrated that in vitro leptin

treatment significantly promoted cell proliferation, glucose uptake,

and lactate production in human PDAC and healthy pancreatic

cells in a dose-dependent manner and was accompanied by an

increase in the expression of the glycolytic enzymes hexokinase 2

(HK2) and glucose transporter protein 1 (GLUT1) (29). TWIST1 is

an important regulator of aerobic glycolysis in PDAC. And its

genetic silencing significantly inhibited the glycolytic phenotype of

PDAC cells, e.g., by decreasing glucose uptake, lactate production,

and extracellular acidification rates. Notably, induction of TWIST1

expression promotes the Warburg effect in PDAC cells, i.e.,

enhanced aerobic glycolysis (30). In addition, p38g connects Kras
oncogene signaling with the Warburg effect via 6-phosphofructo-2-

kinase/fructose-2,6-biphosphatase 3(PFKBF) and GLUT2, which in

turn promotes PDAC (31). In general, Forkhead box Q1(FOXQ1)

promotes LDHA transcription and aerobic glycolysis. High FOXQ1

expression appears to be associated with poor clinical outcomes and

has been identified as an independent prognostic marker for poor

survival in pancreatic, colorectal, lung, gastric, and hepatocellular

cancers (32). There are some exceptions. Several studies have

reported increased expression of FOXQ1 in breast cancer cells

(33). However, in certain subtypes of breast cancer, i.e., HER2-

positive breast cancer and ductal breast cancer, the level of FOXQ1

expression is lower compared to healthy tissue and triple-negative
Frontiers in Immunology 04
breast cancer (34). In these cancers, high FOXQ1 expression was

found to be associated with a more favorable clinical outcome.

FOXQ1 can also apparently act as a tumor suppressor in certain

types of cancers, and its loss in these cancers results in a

worse prognosis.

2.2.2 Non-coding RNA
Non-coding RNAs are a class of RNAs that do not code for

proteins but are involved in a variety of cellular functions, including

the regulation of glycolysis. Non-coding RNAs, including

microRNAs (miRNAs), long chain non-coding RNAs (lncRNAs)

and circular RNAs (circRNAs), have different functions in tumor

cells (35). It has been shown that miRNAs, lncRNAs and circRNAs

are involved in the development of pancreatic cancer cells, in part

by regulating glycolysis (36).

MiRNAs are a class of non-coding RNAs that are approximately

22 nucleotides in length. Studies have shown that several miRNAs

are dysregulated in PDAC and can regulate glycolysis in PDAC and

a variety of genes in tumor cells. Most of the miRNAs identified in

recent studies were able to inhibit glycolysis in PDAC.

MicroRNA323a (miR-323a) was downregulated in pancreatic

cancer tissues and cells and was enriched in the glucose

metabolism pathway. MiR-323a was downregulated within

pancreatic cancers and acted as a tumor-suppressor miRNA by

inhibiting cancer cell proliferation and glycolysis, and targeting HK-

2 for its Tumor suppressor role (37). MiR-30d is a functional and

clinical tumor suppressor gene in PDAC. MiR-30d was found to be

a novel target of YT521-B homology (YTH) structural domain

protein 1(YTHDC1). Through m6A modification. MiR-30d

suppresses pancreatic tumorigenesis by inhibiting aerobic

glycolysis (38).

Long non-coding RNAs (lncRNAs) regulate gene expression

through a variety of mechanisms and play crucial roles in a wide

range of cellular processes such as chromatin remodeling,

embryonic development, cell differentiation, energy metabolism

and tumorigenesis (39). Several dysregulated lncRNAs with

oncogenic activity have been identified in PDAC, such as

LINC00673, UNC5B-AS1, DICER1-AS1, LINC00261, and

lncRNAmIR210hg. LINC01559 and UNC5B-AS1 significantly

inhibited the glycolytic activity of BxPC-3 cells, with glucose

utilization decreased, and the rates of lactate production and

extracellular acidification were reduced. LINC01559 and UNC5B-

AS1 expression was also closely correlated with the mRNA levels of

many glycolytic components of the glycolytic pathway, suggesting a

regulatory role of LINC01559 and UNC5B-AS1 in PDAC glycolysis

(40, 41). LncRNA DICER1-AS1 expression is down-regulated in

PDAC and negatively correlates with glycolytic gene expression.

DICER1-AS1 promotes the transcription of its justice gene,

DICER1, by recruiting the transcription factor YY1 to the

DICER1 promoter. Meanwhile, DICER1 promoted the

maturation of miR-5586-5p, which inhibited the expression of

glycolytic genes including LDHA, HK2, PGK1 and SLC2A1.

Notably, reciprocal feedback between the N6-methyladenosine

reader YTHDF3 and the lncRNA DICER1-AS1 promotes

glycolysis in pancreatic cancer by inhibiting the maturation of
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miR-5586-5p (42). LINC00261 is down-regulated in pancreatic

cancer tissues and cell lines. The down-regulation of LINC00261

is driven by the promoter regions of the CpG islands

hypermethylation and EZH2-mediated trimethylation of histone

H3 lysine 27. In addition, LINC00261 exerts its biological function

by binding to miR-222-3p to activate the HIPK2/ERK/c-Myc

pathway. LINC00261 also reduces c-Myc expression by

sequestering IGF2BP1 (43). LncRNA mIR210hg is abnormally

up-regulated within pancreatic cancer and is a PDAC aggressive

and a key oncogenic regulator of glycolysis. Knockdown of

MIR210HG significantly suppressed the aggressive phenotype of

pancreatic cancer cells and inhibited the growth of xenograft

tumors. More importantly, MIR210HG knockdown inhibited

pancreatic cancer cell glycolysis by regulating the expression of

glycolysis-associated HK2 and pyruvate kinase muscle isoform M2

(PKM2). MIR210HG affects pancreatic cancer cell phenotypes

including proliferation, invasion, migration, and glycolysis by

regulating the miR-125b-5p/HK2/PKM2 axis (44). LncRNAs, in

addition to having a role in PDAC development, also play an

important role in GEM resistance, e.g., HIF1A-AS1 significantly up-

regulates lncRNAs in GEM-R pancreatic cancer cells and triggers

glycolysis-associated GEM resistance by regulating the translation

of the justice gene HIF-1a (45).

Circular RNAs (circRNAs) are a group of predominantly non-

coding RNAs produced by reverse splicing without 5’ and 3’ end

structures (46, 47). Hsa_circRNA_103809 (circ_0072088) has

emerged as an emerging tumor regulator in human cancers and

was identified as one of the most aberrantly expressed circRNAs in

PDAC patients with one of the most aberrantly expressed

circRNAs. Circ_0072088 plays an oncogenic role in the malignant

progression and glycolysis of PDAC cells through the circ_0072088/

miR-545-3p/SLC7A11 pathway (48). CircPUM1 activates miR-

200c-3p through phagocytosis of the PI3K/AKT signaling

pathway and promotes PDAC progression (49). Circ_03955

functions as a tumor promoter through the miR-3662/HIF-1a
axis, providing new perspectives on the treatment of PDAC (50).

CircLIPHmay exert its oncogenic biological effects by activating the

miR769-3p/GOLM1/PI3K/AKT/mTOR axis, whereas si-circLIPH

effectively inhibited the expression of circLIPH and suppressed

tumor growth through apoptosis in vivo (51). CircSLIT2 is

significantly upregulated in PDAC tissues and cells, and

circSLIT2/miR-510-5p/c-Myc/LDHA axis is involved in aerobic

glycolysis and carcinogenesis in PDAC (52).
2.3 Key proteins and their modifications

Almost all enzymes in glycolysis as well as regulatory proteins

play a dual functional role in the progression of PDAC. These

enzymes or related proteins typically exert catalytic activity in the

cytoplasm and regulate transcription factors in the nucleus. All are

critical in the proliferation, invasion, migration and metastasis of

PDAC, and some new strategies for the treatment and detection of

PDAC can be developed from this information. LDHA catalyzes the

conversion of pyruvate to lactate in the final step of glycolysis, thus
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becoming a key regulator of the “Warburg effect”. LDHA is

modified or overexpressed in PDAC tissues, and LDHA is post-

translationally palmitoylated at cysteine 163 by ZdhHC9, which

promotes the enzyme activity and lactate production, and reduces

reactivity. lactate production and reduced ROS production.

ZdhHC9 expression is upregulated in pancreatic cancer and

correlates with poor patient prognosis (53). FOXQ1 promotes

LDHA transcription and facilitates aerobic glycolysis (54).

Modulation of LDHA expression or activity affects PDAC cell

migration and globule growth, decreases metalloproteinases and

cancer stem cell-like cell marker (i.e., CD133+) expression

(55).LDHA overexpression decreased phosphorylation of the

metabolic regulator AMPK and promoted downstream mTOR

phosphorylation in PDAC cells, enhancing PDAC cell

proliferation, tumor stem cell proliferation, invasion, and

metastasis (56). When tumor growth exceeds its oxygen supply,

upregulation of LDHA ensures ATP synthesis, increases resistance

to oxidative stress by promoting DNA repair and NADPH

production, and reduces ROS by inhibiting mitochondria,

favoring Epithelial-Mesenchymal Transition(EMT) epithelial-

mesenchymal transition and angiogenesis by starving neighboring

cells for nutrients and evading the immune system to create space

(57). Knockdown of LDHA expression prevents the growth of

PANC-1 and CFPAC-1 cell growth (58). Expression of ubiquitin

carboxy-terminal hydrolase L3 (UCHL3) was significantly

increased in pancreatic cancer tissues and cells, and knockdown

of UCHL3 significantly inhibited cell viability and aerobic

glycolysis. UCHL3 promotes LDHA expression and can be

reduced by shFOXM1, and low-expression of LDHA partially

reversed the inhibition of aerobic glycolysis induced by

overexpression of UCHL3, UCHL3 may be a potential diagnostic

and therapeutic target for the treatment of cancer (59). LDHA

inhibition attenuates tumor cell proliferation and promotes

proliferation and infiltration of anti-tumor T lymphocytes by

reducing lactate production. However, targeting LDHA was

mildly effective in tumor tissues lacking CD8+ T lymphocytes. In

addition, LDHA has been found to have other roles in cellular

metabolism, such as catalyzing the production of 2HG, aHB, and

metabolites that epigenetically influence disease progression (60).

However, it was found that LDHB expression was not associated

with the prognosis of PDAC (61).

The regulatory role of glycolysis-related proteins, such as

fructose-1,6-bisphosphatase (FBP1), which encodes a rate-limiting

gluconeogenic enzyme, has been reported to play a role in tumor

suppression in many cancers (62). Deficiency in FBP1 expression

has been associated with a poor prognosis in patients with

pancreatic and hepatocellular carcinomas (63, 64). In particular, a

previous study demonstrated that inhibition of FBP1 in PDAC leads

to tumor progression by altering glucose metabolism (63). GLUT1

plays a critical role in PDAC progression, and Forkhead Box D1

(FOXD1)enhances GLUT1 expression by regulating aerobic

glycolysis, which promotes proliferation, invasion, and metastasis

of PDAC cells (65). UBR5 is an E3 ubiquitin ligase that has been

implicated in the regulation of metabolism, proliferation, and

apoptosis (66). UBR5-induced aerobic glycolysis is dependent on
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FBP1 in pancreatic cancer cells and there is a significant negative

correlation between the levels of UBR5 and FBP1. UBR5 regulates

FBP1 expression through modulation of C/EBPa, directly binding

to C/EBPa, and facilitating its ubiquitylation and degradation of

FBP1 expression (67).

Histones are involved in the regulation of a variety of

physiological functions, and post-translational modifications of

histones (e.g., lactylation, acetylation, succinylation, etc.) play an

important role in the development of diseases. Metabolic

reprogramming and epigenetic remodeling are closely related and

regulate each other. For example, microglia exhibit significant

enrichment in brain specimens from Alzheimer’s disease patients

for histone H4 lysine 12 lactoylation, which targets the promoter

regions of genes associated with glycolysis, thereby inducing their

transcription and promoting lactate production. This establishes a

positive feedback loop involving metabolism-epigenetics-

metabolism, which exacerbates microglia metabolic dysregulation

and dysfunction (68). Lactate-derived lactylation modification on

core histones has been demonstrated as a novel histone marker by

several investigators. Lactylation modifications of histones

preferentially affect enzymes involved in essential metabolic

pathways such as carbohydrate, amino acid, lipid and nucleotide

metabolism. Lactate promotes cell proliferation and migration in

part through histone lactylation, particularly H3K18la, and this

process is mediated by TTK protein kinase (TTK) and serine/

threonine kinase B (BUB1B), which in turn enhances glycolysis and

increases lactylation (7). This study establishes a positive feedback

loop between glycolysis, histone lactylation, and cell cycle genes,

which adds a novel mechanism for PDAC and provides clues for the

treatment of PDAC. However, strategies involving histone

lactylation therapy to overcome and alter the molecular landscape

of PDAC have not yet been realized. Acetyl coenzyme A, a donor

for histone acetylation, is dependent on intracellular acetyl

coenzyme A availability, which is dynamically regulated by

glucose availability in the TME (69). ATP Citrate Lyase(ACLY) is

a metabolic enzyme found in cytoplasmic lysates and the nucleus

that cleaves citrate salt to produce acetyl coenzyme A and plays an

important role in the regulation of histone acetylation. In PDAC,

high levels of histone acetylation are associated with low survival.

High glucose conditions induce BMI1 expression via ATP-citrate

lyase-dependent acetyl coenzyme A. Bmi1 regulates the Warburg

effect in PDAC cells and enhances immunosuppression of TME by

targeting HK2 (70). Frequent histone lysine succinylation is a newly

identified histone modification that can be regulated by KAT2A

histone succinyltransferase. KAT2A is highly expressed in human

PDAC specimens and positively correlates with survival of patients

with PDAC in both late and short-term stages. KAT2A regulates

H3K79 succinylation in the promoter region of YWHAZ (encoding

14-3-3z) to promote YWHAZ mRNA and 14-3-3z expression,

which prevents b-linker degradation and thus promotes tumor

proliferation (71). The interplay between histone modification

and metabolism reflects the cell’s delicate balance between energy

perception and regulation of gene expression. In disease, disruption

of this balance leads to the persistence of a “metabolic memory” that

drives malignant phenotypes. In the future, multi-omics
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technologies (e.g., combined metabolome-epigenome analysis)

will be required to analyze the temporal and spatial dynamics and

develop microenvironment-specific targeted therapies to break the

metabolic-epigenetic vicious cycle of tumors.

In PDAC, autocrine insulin-like growth factor-1 (IGF-1) and

paracrine insulin stimulate the IGF-1 receptor (IGF1R) and insulin

receptor (IR) to increase tumor growth and glycolysis. Cavity

protein-1 (cav-1), a protein that coexists with insulin-like growth

factor receptor (IGF1R) and insulin resistance (IR), stimulates

IGF1R/IR and glycolysis in cancer cells and triggers a malignant

state in tumor carriers (72). Integrin subunit alpha 3 (ITGA3) is a

cell surface adhesion protein involved in tumor progression. ITGA3

enhances glycolysis to promote pancreatic cancer growth and

metastasis by increasing HIF-1a and c-Myc expression in a Col1-

dependent autocrine manner (73).
2.4 Mitochondrial dysfunction

Mitochondria play a central role in energy production and

respiration (oxidative phosphorylation), and the contribution of

this biology to survival increases under metabolic stress, including

low glucose. Pancreatic cancer cells rely on efficient ATP production

under adverse conditions to drive pro-survival pathways. For

adeno-ductal metaplasia (ADM), the first step in pancreatic

carcinogenesis, it has been revealed that the switch from oxidative

phosphorylation to glycolysis attenuates ADM formation by

blocking the metabolic switch in ADM. In addition, ab initio

synthesis of serine and glutathione requires mitochondrial

metabolism, whereas ATP production does not. C-Myc mediates

an increase in GSH intermediates in ADM, whereas inhibition of

GSH synthesis suppresses ADM development (74). Mitochondrial

programs are down-regulated in the partially immune population of

pancreatic cancer, relative to normal mitochondria in a healthy

pancreas. Although granulocytes, B cells, and CD8+ T lymphocytes

all downregulated oxidative phosphorylation, the mechanism by

which this occurred was cell-type specific, and the expression

pattern of the electron transport chain complex was sufficient to

recognize immune cell types without the use of lineage markers

(75).Silencing of cytidine deaminase (CDA) in PDAC cells altered

the levels of several metabolites produced by mitochondria, but also

reduces mitochondrial respiration and ATP production. It

reconnects cancer cell metabolism to glycolysis.CDA promotes

mitochondrial biogenesis independently of its known catalytic

activity.CDA has new and unexpected effects on mitochondrial

biology and OXPHOS in PDAC cells, which establishes a link

between enzymes involved in pyrimidine production and

mitochondrial function (76). The pyruvate dehydrogenase

complex (PDC) plays a Carbohydrate metabolism plays a central

role linking cytoplasmic glycolysis to the TCA cycle. PDC is a

conserved E1-E2-E3 dehydrogenase, with PDHA1 and PDHB

heterotetramers functioning as E1 subunits. Hypoxia induces the

expression of PDHK1 and PDHK3 and hyperphosphorylates

PDHA1. PDC plays a role in the metabolic reprogramming of

pancreatic cancer by integrating oncogenic and environmental
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signals, thereby supporting tumor growth (77). Overexpression of

wild-type isocitrate dehydrogenase 1 (IDH1) in PDAC cells

promotes PDAC cell survival by supporting mitochondrial

function and antioxidant defense (74).

Mutations in mitochondrial DNA (mtDNA), particularly

mtDNA encoding OXPHOS-related proteins, result in altered

mitochondrial function, including OXPHOS (78). An early study

sequencing the complete mtDNA genome of PDAC cells reported a

significant increase in intracellular mass in mtDNA mutant cells

compared to normal cells, suggesting more mtDNA somatic

mutations (79). During the cellular life cycle, mitochondrial

morphology is continuously remodeled through fission and fusion

events to adapt to the cellular environment (80, 81). Dynamin-

related protein 1 (DRP1), mitochondrial fission protein 1 (FIS1),

and mitochondrial fission factor (MFF) are the most relevant

proteins involved in mitochondrial fission in mammalian cells

(82, 83). Mitochondrial fusion is mainly controlled by

mitochondrial fusion protein 1 (MFN1), mitochondrial fusion

protein 2 (MFN2), and OPA1 (optic nerve atrophy 1) control

(84). In recent years, there has been increasing evidence of a

strong link between mitochondrial fission and fusion dysfunction

and cancer (85). Dysregulated expression of DRP1, DRP1, and

MFN2 has been observed in several types of cancers, including

hepatocellular carcinoma (86), breast carcinoma (87), and lung

carcinoma (88), DRP1 is significantly up-regulated in pancreatic

cancer cells and tissues, whereas knockdown of DRP1 strongly

induced apoptosis in PDAC cells. Knockdown of DRP1 significantly

reduced glucose consumption and lactate production in PDAC

cells, and after replacing glucose with galactose in the culture

medium, galactose was found to significantly abrogate the tumor-

promoting effect of DRP1 on the growth and invasive potential of

SW1990 and AsPC-1 cells (89). The glycolytic reprogramming

metabolic map of PDAC is illustrated in Figure 2.
2.5 Interactions in the tumor
microenvironment

The interaction of stromal cells, immune cells and malignant

cells creates a tumor microenvironment (TME) that can exert

physical stress, oxidative stress, nutrient deprivation, competition,

hypoxia and immune surveillance on cancer cells (90). Notably, the

TME of PDAC has a strong connective tissue proliferative response

and low vascular density, which reduces nutrient and oxygen

delivery capacity and leads to enhanced glycolysis and lactate

deposition (91). In the TME, fibroblasts and immune cells

actively support the cancer cells to ensure that tumor cell

development is sustained even in the absence of adequate blood

vessel formation.

2.5.1 Hypoxia
Several studies in recent years have identified hypoxia as a

major inducer of glycolytic conversion in tumors (92). Ubiquitin-

specific protease 25 (USP25) is a major regulator of glycolysis by

regulating hypoxia-inducible factor-1a (HIF-1a) stability and
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glycolysis and HIF-1a was verified in Neuromedin U (NMU)

stimulation, which resulted in the activity of key enzymes PK and

LDH increased and promoted the production of lactate by tumor

cells, which could induce the differentiation of tumor-associated

macrophages to an M2-like phenotype through the activation of

HIF-1a, and induced the expression of arginase 1 and vascular

endothelial growth factor to promote tumor invasion, metastasis,

and angiogenesis (94). Hypoxia-induced circRNF13, mediated by

HIF-1a and EIF4A3, promoted PDAC tumor progression and

glycolysis, circRNF13 has the potential to be a prognostic

biomarker and therapeutic target for PDAC (95). Hypoxia-

induced exosome circPDK1 promotes pancreatic cancer glycolysis

through c-Myc activation by regulating the miR-628-3p/BPTF axis

and degradation of BIN1 (96). Alkaline leucine zipper and inclusion

of the W2 structural domain protein 1 (BZW1) promote PDAC

metabolic stress resistance and glycolysis by controlling eIF2a
phosphorylation-mediated translation of HIF-1a and c-Myc (97).

Lysyl oxidase-like 2 (LOXL2) is a hypoxia-responsive gene, and

there exists a positive feedback loop between LOXL2 and HIF-1a
that promotes glycolytic metabolism under hypoxic conditions. In

addition, LOXL2 combines with the Warburg effect in PDAC to

promote tumor growth and metastasis (98). Hypoxia and

endoplasmic reticulum stress lead to overexpression of

endoplasmic reticulum oxidoreductase 1a (ERO1L) in PDAC.

Researchers confirmed the modulation of the Warburg effect by

ERO1L using bioinformatics analysis and functional analysis, and

inhibition of tumor glycolysis partially eliminated the growth-

promoting activity of ERO1L (99).

2.5.2 Cancer-associated fibroblasts
Oxygen depletion accompanying tumor proliferation poses a

barrier to the nutritional requirements of tumors, and the TME

undergoes adaptive changes to meet the increased biosynthetic

demands of tumor proliferation through multiple metabolic

pathways. In response to these complex microenvironmental

changes, metabolic reprogramming in CAFs induces a shift in

energy production from mitochondria to glycolytic sources, which

contributes to the formation of a hypoxic and acidic TME that

supports tumor growth in multiple dimensions (10). Significant

expression of MCT1, fumarate hydratase and succinate

dehydrogenase in pancreatic cancer cells suggests a metabolic

coupling between CAFs and tumor cells. Pancreatic CAFs can

alter metabolism and communicate and respond to cancer cell

migration and invasion. This may be an important mechanism to

promote tumor progression in a non-vascular manner in the tumor

microenvironment. The mechanisms by which CAFs remodel

metabolic shifts require further analysis (100). In addition, CAFs

from platinum-resistant patients were found to significantly

enhance oxaliplatin resistance in pancreatic cancer cells through

the secretion of IL-8 and extracellular vesicles, thereby promoting

non-homologous end-joining (NHEJ)-dependent DNA repair

mechanisms (101). Hu et al. revealed that CAFs induce

gemcitabine resistance in pancreatic cancer through aerobic

glycolysis mediated by monocarboxylic acid transporter proteins,
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underscoring the potential of targeting the metabolic connectivity

of CAFs in cancer cells to enhance chemotherapeutic outcomes

(102). Nevertheless, the impact of glycolytic regulation of CAFs on

pancreatic cancer drug resistance remains underexplored,

highlighting the need for in-depth studies.

2.5.3 Immune microenvironment
A typical feature of PDAC is the immune-tumor

microenvironment, where increased glycolysis in PDAC tumors

leads to a low-glycemic, high-lactate TME, which suppresses

immune cell function.

Stimulated by pathological factors, bone marrow-derived

pluripotent stem cells differentiate into different types of T

lymphocytes, which perform the appropriate functions. T

lymphocyte activation is thought to drive the initial increase in

glucose uptake, which is accompanied by an upregulation of aerobic

glycolysis (103). However, when glycolysis rates are low, chronic

nutrient deficiencies may lead to T lymphocyte energy. One study

found that Dickkopf-related protein 3(DKK3) increased glucose

levels, promoted CD4+ T lymphocyte proliferation and decreased

apoptosis levels (104). Pathways associated with oxidative

metabolism promote effector functions in immune cells (105). A

previous study also reported that lactate inhibits cytokine

production triggered by T lymphocyte receptors and impairs
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lysate granule cytotoxicity in cytotoxic T lymphocytes (106).

Neuromedin U (NMU) impairs the biological function of CD8+

T lymphocytes in the PDAC tumor microenvironment in an

NMUR1-dependent manner, whereas blockade of lactate

production by tumor cells restores NMU-mediated inhibition of

the antitumor activity of CD8+ T lymphocytes, which provides a

new idea for immunotherapy (94).

Tumor-associated macrophages (TAMs) are key elements of

immune infiltration within tumor tissues. A large proportion of

TAMs are recruited and polarized from the peripheral blood via

cytokines and chemokines secreted by tumor and stromal cells.

Macrophages can be classified into two types: classically activated

M1 type and selectively activated M2 type, and in TMEs, the

majority of TAMs differentiate into the M2 phenotype, which

promotes tumor progression, including tumor growth, metastasis,

and angiogenesis (107). Pyruvate metabolic remodeling and

glycolysis in PDAC are closely related to the M2 type (108). In

one study, it was determined that more TAMs were infiltrated in

tumor samples of pancreatic cancer with intense glycolysis than in

tumor samples of pancreatic cancer with attenuated glycolysis by

analyzing the immunohistochemical results of the patients’

preoperative PET-CT images and postoperative tumor sample

sections. The data also suggest that TAMs enhance tumor

glycolysis to promote malignant progression of pancreatic cancer.
FIGURE 2

Mechanisms of PDAC glucose metabolism reprogramming. PFKFB3 and GLUT2 mediate KRAS oncogenic signaling with the Warburg effect, thereby
promoting PDAC progression. MiR-30 functions as a tumor suppressor in PDAC by inhibiting pancreatic tumorigenesis through suppression of
aerobic glycolysis. CircSLIT2 participates in PDAC carcinogenesis via the circSLIT2/miR-510-5p/c-Myc/LDHA axis, which regulates aerobic glycolysis
and malignant transformation. FOXQ1 enhances LDHA transcriptional activation to facilitate aerobic glycolysis in PDAC. PDAC cells overexpressing
wild-type isocitrate dehydrogenase 1 (IDH1) demonstrate improved survival through mitochondrial functional maintenance and reinforcement of
antioxidant defense systems. Created in https://BioRender.com.
frontiersin.org
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TAMs promote tumor progression primarily through the secretion

of a variety of cytokines, chemokines, and other elements that

impact both the tumor and TME (109). For example, TAMs secrete

IL-8 to promote GLUT3 expression in PDAC cells and enhance

tumor glycolysis in vitro and in vivo (109). Tumor extracellular

vesicles (EVs) are involved in macrophage polarization, and

LINC00511, encapsulated in pancreatic cancer (PDAC) cell-

derived EVs, accelerates glycolysis and promotes mitochondrial

oxidative phosphorylation in PDAC cells through macrophage

polarization, thereby inducing invasion and migration of PDAC

cells (110). This provides new novel ideas for developing immune

and targeted metabolic therapies for PDAC.

Dendritic cells (DCs) use glucose to support their effector

functions, while conventional dendritic cells (cDCs) consist of the

cDC1 and cDC2 subpopulations. These two subpopulations play a

key role in anticancer immunity by promoting the activation of

cytotoxic CD8+ T lymphocytes and CD4+ T lymphocytes,

respectively. Relative to other tumor types, PDAC has a lower

number of dendritic cells in the TME and poorer antigen-

presenting capacity. Increased glycolysis in PDAC tumors results

in a low-glucose, high-lactic acid tumor microenvironment (TME),

which suppresses immune cell function, particularly dendritic cells

(DCs) and CD8+ T lymphocytes (111). However, this study was

conducted in mice, and future studies should evaluate the effects on

human-derived DCs to better elucidate the detailed mechanisms

underlying the attenuated DC antigen-presenting function in low-

glucose and high-lactate environments. Currently, studies on DC

antigen-presenting function have focused on immune cell

interactions and the effects of cytokines (112). The effect of

metabolic reprogramming in tumors on this antigen-presenting

function is unknown.

Myeloid-derived suppressor cells (MDSCs) are a heterogeneous

population of cells that arise in a range of pathological conditions,

such as cancer, inflammation, and infection, and show a remarkable

ability to suppress T lymphocyte responses (113). During maturation

and activation, these tumor-derived MDSCs exhibit increased central

carbon metabolism, including glycolysis, PPP, and TCA cycling.

Tumor-derived MDSCs exhibit a high degree of glycolysis

upregulation, and their metabolite phosphoenolpyruvate protects

MDSCs from apoptosis and contributes to their survival. Inhibition

of glycolysis by 2-deoxyglucose was shown to inhibit MDSCs

differentiation from precursor cells, whereas enhancement of

glycolysis with metformin significantly rescued rapamycin-induced

MDSC decline (114). In the tumor microenvironment, glycolytic

activation induces the expansion of bone marrow-derived myeloid

precursor cells into MDSCs, which may be inhibited by the mTOR

inhibitor rapamycin. Accumulating evidence now suggests that

immune cells have a high degree of metabolic plasticity, which can

alter their differentiation and function according to the

desired environment.

Tumor-associated neutrophils (TANs) are neutrophils that

infiltrate into the TME, including areas of tumor infiltration,

tumor periphery, or areas close to blood vessels and metastatic

sites (115). They can promote or inhibit tumor progression (116).

These functions include tumor cell killing, promotion of
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inflammation, tissue remodeling, regulation of angiogenesis, and

modulation of the immune response (117, 118). Neutrophil

function in TME is also affected by HIF-1a, which helps

neutrophils adapt to hypoxic stress and promotes anaerobic

glycolysis (119). In addition, glycolysis induced by LDHA and

basic helix-loop-helix family member e40 (BHLHE40) contributes

to the pro-tumorigenic function of the TANs subpopulation (120).

These findings suggest that targeting metabolic pathways, including

glycolysis, in TANs within TME may offer a potential therapeutic

strategy to modulate their function and enhance anti-

tumor immunity.

2.5.4 Extracellular matrix
Interestingly, untransformed extracellular matrix (ECM)

stiffness is involved in the complex regulation of metabolic

reprogramming, including carbohydrate metabolism, with

chloride intracellular channel 1 (CLIC1) acting as a bridge

between tumor stromal stiffness and the Warburg effect in PDAC.

Pancreatic cancer cells were found to sense ECM stiffness and

activate the Wnt/b-catenin/TCF4 signaling pathway, leading to

upregulation of CLIC1 expression, which promotes glycolysis-

dependent tumor growth (121). TME drives glycolytic

reprogramming in PDAC, as schematically illustrated in Figure 3.
2.6 Pancreatic cancer treatment resistance

Despite recent advances in early diagnosis and therapeutic

strategies, the outcome of pancreatic cancer remains

unsatisfactory. The mechanisms of therapeutic resistance in

pancreatic cancer are complex and diverse, involving the tumor

microenvironment, metabolic reprogramming, genetic mutations

and other factors. Therapeutic resistance not only leads to clinical

treatment failure, but also greatly affects the survival prognosis

of patients.

Resistance to gemcitabine (GEM) in PDAC is an important

factor leading to ineffective chemotherapy, delayed treatment and

poor prognosis. Glycolysis is thought to be one of the key

mechanisms of gemcitabine resistance, which competitively

inhibits gemcitabine activity by promoting the accumulation of

deoxycytidine triphosphate (dCTP) in PDAC. Although

postoperative chemotherapy is the standard treatment option for

patients with pancreatic cancer, no study to date has demonstrated

that it significantly improves the long-term prognosis of patients.

With increasing resistance to chemotherapy in pancreatic cancer, it

is difficult for a single chemotherapy regimen to alter a patient’s

prognosis. Tumor glycolytic pathways have been shown to play an

important role in promoting chemotherapy resistance. Therefore,

chemotherapeutic strategies combining metabolic modulation have

gradually attracted the attention of researchers. However,

therapeutic tools targeting tumor metabolism alone are still

insufficient because metabolic changes alone are not sufficient to

alter the composition of the TME, and the active components in the

TME still support tumor progression. Therefore, targeting

synergistic changes in tumor cell metabolism and TME to
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enhance the efficacy of chemotherapy has become an important

direction in current therapeutic strategies.

In response to gemcitabine therapeutic resistance, researchers

have proposed a number of strategies that could improve sensitivity.

Targeting the glycolytic pathway can increase the sensitivity of

SETD2-deficient PDAC to gemcitabine. SETD2-deficient PDAC is

highly dependent on glycolysis, particularly through upregulation

of GLUT1 to promote tumor growth. Therefore, the combination of

GLUT1 inhibitors with gemcitabine may provide a new therapeutic

strategy for patients with SETD2-deficient PDAC (27). ROCK1, a

member of the Rho-associated coiled-coil protein kinases (ROCKs),

plays a key role in pancreatic cancer metastasis and progression.

ROCK1 promotes, through the c-Myc/PFKFB3 signaling pathway,

the glycolysis in pancreatic cancer cells and drives tumor growth.

Knockdown of ROCK1 can effectively inhibit pancreatic cancer
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growth in vivo and increase tumor sensitivity to gemcitabine,

providing a new strategy for clinical treatment (122). LIPH

(Lipase H), a membrane-associated phosphatidic acid-selective

phospholipase A1a, is able to maintain the stability of ALDOA

through activation of the LPA/LPAR axis, and directs ALDOA

stabil i ty , directly connects PDAC cells to the tumor

microenvironment, and promotes aberrant aerobic glycolysis.

Xenograft models showed that high LIPH-expressing PDAC were

sensitive to gemcitabine treatment without triggering significant

side effects, suggesting its potential as a combination therapy (123).

Overexpression of wild-type isocitrate dehydrogenase 1 (IDH1) by

PDAC cells promotes PDAC cell survival by supporting

mitochondrial function and antioxidant defenses. IDH1 promotes

PDAC cell survival by generating a-ketoglutarate and NADPH to

neutralize ROS and resist oxidative stress after chemotherapy.
FIGURE 3

TME orchestrates glycolytic reprogramming in PDAC through interconnected molecular cascades. Neuromedin U (NMU) activates pyruvate kinase
M2 (PKM2) and lactate dehydrogenase A (LDHA), driving excessive lactate production that stabilizes HIF-1a to polarize tumor-associated
macrophages (TAMs) toward immunosuppressive M2 phenotypes. Concurrently, NMU suppresses CD8+ T-lymphocyte antitumor responses via
NMU receptor 1 (NMUR1), while pharmacological blockade of lactate synthesis reverses this immunosuppressive effect. Hypoxia-inducible exosomal
circPDK1 fuels glycolytic flux by dual mechanisms: sponging miR-628-3p to upregulate bromodomain PHD finger transcription factor (BPTF) and
destabilizing bridging integrator 1 (BIN1), thereby amplifying c-Myc-driven metabolic reprogramming. A self-reinforcing circuit between lysyl oxidase
homolog 2 (LOXL2) and HIF1a perpetuates hypoxia-adapted glycolysis through coordinated transcriptional activation of glycolytic enzymes. TAM-
derived interleukin-8 (IL-8) upregulates glucose transporter 3 (GLUT3) expression, enhancing glycolytic output and tumor progression both in vitro
and in vivo. Dickkopf-related protein 3(DKK3) increases glucose levels, promotes proliferation of CD4+ T lymphocytes, and decreases apoptosis
levels. Dendritic cell(DC) promotes the activation of cytotoxic CD8+ T lymphocytes and CD4+ T lymphocytes, which play a key role in anti-cancer
immunity. Activation of glycolysis induces the expansion of bone marrow-derived myeloid precursor cells into Myeloid-derived suppressor cells
(MDSCs). Tumor-associated neutrophils(TANs) function in TME is affected by HIF-1a. Furthermore, mechanotransduction of extracellular matrix
(ECM) stiffness activates the Wnt/b-catenin/TCF4 axis, elevating chloride intracellular channel 1 (CLIC1) expression to sustain glycolysis-dependent
proliferation. Created in https://BioRender.com.
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Ivosidenib inhibition of wild-type IDH1 when combined with

conventional chemotherapeutic agents such as FOLFIRINOX

enhances its efficacy in a mouse model of PDAC, providing a

promising clinical therapeutic option (74, 124). Pharmacological

doses of vitamin C are able to inhibit citrate synthase (CS) activity

and reduce the level of glucose-derived citrate, which in turn

inhibited tumor proliferation and significantly enhanced the

response to gemcitabine. In addition, reduced citrate utilization

correlated with the overall inhibition of glycolysis, providing a new

idea to improve patients’ chemotherapeutic response by regulating

citrate metabolism (125). Furthermore, human equilibrium

nucleoside transporter protein 1 (hENT1) was able to effectively

reverse gemcitabine-induced resistance by inhibiting glycolysis and

regulating HIF-1a in pancreatic cancer, further demonstrating that

the regulation of glucose transporter’s potential role in PDAC drug

resistance (126).

Chemotherapy only slightly extends their life by a few months;

immunotherapy has revolutionized the treatment of pancreatic

cancer. Immunotherapy is now the focus of pancreatic cancer

treatment. However, this recalcitrant tumor evades immune

detection primarily through the secretion of immunosuppressive

factors such as transforming growth factor-b (TGF-b), the creation
of an immunosuppressive environment devoid of T-lymphocytes,

and the expression of immune checkpoints such as programmed

death ligand 1 (PD-L1) and PD-L2. The microenvironment of

pancreatic cancer is characterized by extensive nodal hyperplasia,

scarcity of effector T-lymphocytes, and the presence of helper T-

lymphocytes 2 as the primary tumor cell. scarcity, and an immune

phenotype dominated by helper T lymphocytes 2 cells, all of which

contribute to cancer cell evasion of immune surveillance (127).

Current immunotherapies have had limited success in improving

the survival of patients with PDAC. Immunoresistance of PDAC to

immunotherapies can be attributed to its low mutational load and

host i le TME character ized by fibrosis , hypoxia , and

immunosuppression (128, 129).
2.7 Subtype-specific reprogramming of
glucose metabolism

Glycometabolic reprogramming serves as a key feature of

PDAC, and the manifestation and function of this metabolic

alteration may differ significantly between subtypes (130).

Therefore, clarifying such differences is important for precision

therapy. In 2015, Yu et al. categorized PDAC into glucose- and

glutamine-dependent metabolism based on the expression of

metabolism-related proteins. Among the glucose-dependent

metabolism, there are Warburg-type, reverse Warburg-type,

mixed-type, and null-type. Warburg-type and mixed-type consist

of tumors that are more metabolically active, biologically invasive,

and have a poorer prognosis, while reverse Warburg-type and null-

type consist of metabolically inactive, biologically noninvasive, and

prognostically better tumors (131). In 2017, Nicolle et al. identified

two subtypes motivated by metabolic correlations and defined them

as Basal and Classical. Notably, the basal phenotype identified in
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this study was associated with upregulation of genes related to the

glycolytic pathway; whereas the classical subtype exhibited a general

increase in redox-related metabolites, this study suggests that

targeting the metabolic profile of our transcriptomic subtype for

treatment may also be an active and feasible approach (132). In

2022, Rodriguez et al. identified three different types of glycolysis

based on specific glycolysis genes. The fucoidan glycosylation

subtype is characterized by increased expression of genes involved

in fucoidan glycosylation (GMDS, etc.) and O-glycosylation

(GALNT4, etc.). Basal subtype is characterized by higher

expression of genes encoding galactose lectin-1 and the mucins

MUC4 and MUC16. Mixed/low tumor content, on the other hand,

is characterized by a lower content of tumor cells (133). In 2023, Li

et al. classified pancreatic cancer into four TAM2-associated

metabolic subtypes based on the expression profiles of genes

related to pyruvate and glycolysis metabolism by proteomic and

metabolomic analysis :quiescent , pyruvate , g lycolysis/

gluconeogenesis and mixed (108). The KEGG pathway of the

quiescent subtype is dominated by glucose, amino acid and lipid

metabolism. The KEGG signaling pathway of the pyruvate subtype

is closely related to the MAPK and CAMP signaling pathways. The

KEGG pathway of the GG subtype is enriched in glucose

metabolism and is characterized by exogenous substance

metabolic processes, detoxification and homeostasis in tissues.

The KEGG pathway of the mixed subtype is involved in immune-

related biological processes and signaling molecules, and is

characterized by extracellular matrix, antigen presentation and

serine/threonine kinase signaling pathways.

However, there are differences and lack of consistency in the

criteria and methods for classifying PDAC subtypes in different

studies, which increases the difficulty of clinical translation of

metabolically targeted therapeutic strategies. Moreover, the

metabolic state of PDAC is highly dependent on the regulation of

the tumor microenvironment, for example, factors such as hypoxia

and nutritional deficiencies can lead to changes in the metabolic

state, and even a single tumor may exhibit multiple metabolic states

in possibly different regions. Large discrepancies remain regarding

the causality of the relationship between isoforms and metabolism,

and current evidence does not yet allow a clear distinction to be

made between whether transcriptional isoforms determine

metabolic dependence or whether metabolic status, in turn,

shapes the transcriptional profi le. Therefore, a deeper

understanding of PDAC subtype-specific reprogramming of

glucose metabolism will not only help to reveal the nature of its

tumor biology, but may also provide a stratification basis for

metabolically targeted therapeutic strategies. The interplay among

metabolic reprogramming, genetic regulation, and immune

modulation in PDAC is schematically summarized in Figure 4.
2.8 Specificity of reprogramming of PDAC
glucose metabolism

Compared to other cancers, the reprogramming of glucose

metabolism in PDAC exhibits highly unique adaptive strategies,
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features that directly derive from its oncogenic driver mutations (e.g.,

Kras) and the extremely harsh tumormicroenvironment. Mutations in

the oncogene Kras are hallmark events in PDAC and play a key role in

tumor initiation. Several studies have found that Kras G12D controls

tumormetabolism by stimulating glucose uptake and directing glucose

intermediate metabolites to glucosamine biosynthesis and the PPP.

These studies also revealed that the oncogene Kras promotes ribose

biosynthesis, and that Kras G12D drives glycolytic intermediates to the

non-oxidative pentose phosphate pathway, thereby uncoupling ribose

biosynthesis from NADP/NADPH-mediated redox regulation (24,

134). Glu generates reducing equivalents of NADPH driven by

oncogenic Kras. Kras activates the GOT2-GOT1-ME1 pathway and

initiates a ROS detoxification program dependent on nuclear factor

(erythropoietin-derived 2-like 2, NFE2L2). Mutant Kras persistently

activates this antioxidant program to inhibit ROS and enhance

pancreatic tumorigenesis. Glutamine is not only involved in the

TCA cycle to generate energy, but also supports cancer cell

proliferation by regulating carbon supply, which is unique to PDAC

(135). Unlike other solid tumors, pancreatic cancer has abundant

stromal cells and abundant extracellular mesenchyme, but lacks

angiogenesis, resulting in persistent and severe hypoxia within the

tumor. The hypoxic microenvironment has a wide range of effects on
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the biological behavior or malignant phenotype of pancreatic cancer,

including metabolic reprogramming, cancer intervention, invasion

and metastasis, and pathologic angiogenesis, which collectively

contribute to pancreatic cancer progression and treatment resistance.

Intratumor hypoxia drives the aforementioned biological processes in

pancreatic cancer through various mechanisms including, but not

limited to, maintenance of redox homeostasis, activation of autophagy,

epigenetic regulation, and induction of hypoxia-inducible factors (129,

136). Moreover, the researchers found that hypoxia due to low blood

vessel density and vascular defects can promote the metastatic

potential of cancer cells (137). Activated stromal fibroblasts, known

as CAF, also play a major role in PDAC progression. The autocrine/

paracrine effects of CAF on neighboring stromal and epithelial cancer

cells confer tumor cell invasiveness, cancer stem cell (CSC) self-

renewal, drug resistance, metastatic spread, and disease recurrence

(138). CAF utilizes lactate dehydrogenase from glycolysis-enhanced

cancer cells as fuel and exerts immunosuppressive activity in PDAC

TME (10). It is these metabolic alterations that make PDAC one of

the most metabolically unique and therapeutically challenging

tumors. Future treatments will require the development of

multidimensional combinatorial strategies targeting these unique

metabolic networks.
FIGURE 4

The schematic is centered around pancreatic cancer, presenting its related key regulatory mechanisms, covering three core aspects: Gene
regulation involves genes such as KRAS, TP53, MYC and non-coding RNAs such as miR-323a and miR-30d, which regulate the physiological or
pathological process of pancreatic cancer at the level of gene expression; Immunomodulation contains MDSCs, Lactate, TANs and other immune-
related cells and molecules, which are involved in the immunoregulation of the pancreatic cancer microenvironment and affect the immune
response; Glucose metabolism reprogramming involves molecules such as GLUT1 and HK2, which reflect altered glucose metabolism pathways in
pancreatic cancer cells and are closely associated with metabolic abnormalities in disease states. Created in https://BioRender.com.
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3 Therapeutic strategies for targeting
glucose metabolism in pancreatic
cancer

3.1 Direct targeting of pancreatic cancer
glucose metabolism

Researchers have identified a number of alternative targets for

key enzymes in the glycolytic process. PDAC cells undergo a shift

from mitochondrial to glycolytic metabolism, which promotes a

number of cancer traits, including cell proliferation, invasion, and

resistance to apoptosis (26). It has been shown that this increased

rate of glycolysis is also important for fueling ATP-dependent

plasma membrane calcium pumps (PMCAs) (139). PMCAs are

also important for the production of glycolytic ATP in PDAC cells.

This increased rate of glycolysis has been shown to be important for

fueling the ATP-dependent PMCAs as well, since inhibition of

glycolytic ATP production in PDAC cells leads to cytotoxic Ca2+

overload and cell death. This dependence of PMCAs on glycolytic

ATP in PDAC represents a potential therapeutic pathway, as PKM2

is a major oncogenic ATP-generating glycolytic enzyme, and

shikonin is the most potent and selective enzyme for PKM2.

Shikonin is one of the most potent and selective inhibitors of

PKM2, inhibiting glycolysis, ATP depletion, inhibition of PMCAs

activity, and the resulting cytotoxic Ca2+ overload (140).

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a key

glycolytic enzyme, plays an essential role in energy metabolism in

cancer cells. Among the 3-bromo-4,5-dihydroisoxazole (BDHI)

derivatives, compound 11 was identified as a potent hGAPDH

inhibitor with higher potency than the well-known hGAPDH

inhibitor koningic acid, which can be further used for the

development of anticancer drugs (141). In one study, the authors

obtained 14 PFKFB3 inhibitors by virtually screening a library of

FDA-approved compounds. Subsequently, in vitro studies

confirmed that lomitapide and cabozantinib S-malate exhibited

excellent potential to inhibit PFKFB3. In an in situ pancreatic

cancer model, co-administration of lomitapide and gemcitabine at

a certain molar ratio demonstrated enhanced anti-tumor effects

(142). tRF-19-Q1Q89PJZ directly sponges hexokinase 1 (HK1)

mRNA and inhibits its expression, thereby inhibiting glycolysis in

PC cells. tRF-19-Q1Q89PJZ may be a key target for PDAC therapy

(143). Solute carrier family 45 member A4 (SLC45A4) is an H

+-dependent sugar cotransporter protein. SLC45A4 blocks AMPK/

ULK1 axis autophagy in TP53 mutant PDAC, which may be a

promising biomarker and therapeutic target for TP53 mutant

PDAC (144). Rho GTPase-activating protein 25 (ARHGAP25)

acts as a tumor suppressor by inhibiting the AKT/mTOR

signaling pathway, and may provide a therapeutic target for

PDAC (145). Canagliflozin (CANA) is a sodium-glucose

cotransporter protein 2 inhibitor, CANA effectively inhibits

pancreatic cancer growth in a dose-dependent manner, and it has

potent antitumor activity against pancreatic cancer in vitro and/or

in vivo. In addition, reduced glucose uptake and lactate production

and decreased mRNA levels of glycolysis-related genes, including
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glucose transporter protein-1 and lactate dehydrogenase A, were

found in cellular assays (146). Pharmacological inhibition of

ubiquitin specific protease 25 (USP25) in vitro and in vivo

resulted in PDAC cell death and tumor regression, making

USP25 a promising therapeutic target for PDAC (93). In animal

experiments, researchers found that targeting ULK1/2

synergistically with the hexokinase I inhibitor, 2-deoxyglucose (2-

DG), and the hexokinase II inhibitor, 3-bromopyruvate (3-BP),

provided better therapeutic efficacy in PDAC (147).

Furthermore, oxidative phosphorylation is the main pathway by

which pancreatic CSCs meet their energy requirements, and thus,

the Achilles’ heel of this highly tumorigenic cell can be identified

from oxidative phosphorylation (OXPHOS). The ligand complex

Ru1 is not only an exciting new anticancer drug, but also serves as a

molecular tool to analyze the role of OXPHOS in CSCs (148). The

biguanides metformin and phenylbiguanide have been reported to

inhibit the mitochondrial respiratory complex I (149–152). In a

preclinical model of PDAC, both metformin and phenformin were

able to inhibit tumor growth (153, 154). Metformin treatment

amplified gemcitabine-induced delay in tumor growth through a

less responsive pancreatic microenvironment (155). However, in

high OXPHOS PDAC, the therapeutic effect of phenformin in

combination with chemotherapy, was more effective than

metformin (156). Rawand Masou et al. demonstrated synergistic

effects between standard chemotherapy (gemcitabine) and

benzbiguanide (targeting mitochondrial complex I) in high

OXPHOS PDAC cells, regardless of whether they were long-

established cell lines or more recently established progenitor cells

from PDX. Targeting mitochondria with phenylbiguanide induces

an energetic shift to a low OXPHOS state (157),which significantly

enhances the antitumor effects of gemcitabine. Compound 23

(DX3-213B) has been found to be one of the most potent

complex I inhibitors reported to date. DX3-213B disrupts

adenosine triphosphate (ATP) production, inhibits complex I

function, and leads to inhibition of pancreatic cancer cell growth

(158). NADH dehydrogenase (ubiquinone) 1 alpha subcomplex 4

(NDUFA4) affects the mitochondrial respiratory pathway, and high

levels of NDUFA4 correlate with low survival. Knockdown of the

NDUFA4 gene decreased the rate of oxygen consumption, cytosolic

adenosine triphosphate levels, mitochondrial complex IV activity,

and the protein levels of COX6C and COX5B, significantly

inhibited the growth of SW1990 cell-derived xenograft tumors in

vivo (159). Amer Alasadi et al. synthesized a new mitochondrial

uncoupler, MB1-47, which resulted in (1) accelerated pyruvate

oxidation and TCA conversion (2); increased AMP/ATP and

ADP/AMP ratios; and (3) decreased rates of nucleotide and

glycanucleotide synthesis. In addition, MB1–47 inhibited the cell

cycle at the g0-g1 phase, reduced clone formation, and inhibited the

growth of mouse and human pancreatic cancer cells. In vivo studies

demonstrated that MB1–47 inhibited tumor growth in a mouse

tumor transplantation model and inhibited liver metastasis when

tumor cells were transplanted intrasplenically (160). Cells

overexpressing CDA were more sensitive to mitochondria-

targeted drugs, and increased OXPHOS activity in cells

expressing high levels of CDA revealed novel mitochondria-
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targeted drugs (e.g. phenelzine) in primary PDAC cultures

therapeutic vulnerability (153). Unfortunately, phenelzine, which

has shown antitumor activity in patient-derived xenografts, has so

far been disappointing in clinical trials, including in PDAC, due to a

general lack of efficacy and safety issues. ONC212 is a fluorinated

imidacridone with preclinical efficacy in pancreatic and other

malignancies. ONC212 impairs oxidative phosphorylation

(OXPHOS) and decreases mitochondria-derived ATP production.

Glucose restriction or combination with the glycolysis inhibitor 2-

deoxy-D-glucose ONC212 acts synergistically and promotes

apoptosis in vitro and in vivo (161). Betulinic acid (BA) is a

plant-derived natural compound with promising applications in

anticancer (162). BA significantly inhibits PDAC cell viability and

migration at lower doses capacity without affecting normal

pancreatic cells. BA induced down-regulation of a cluster of

proteins involved in mitochondrial complex 1 activity and

oxidative phosphorylation, which was associated with reduced

expression of RNA polymerase mitochondria (POLRMT) and

cytochrome c oxidase translational activator (TACO1), suggesting

that effects on mitochondrial function explain the effects of BA on

PDAC cell growth and migration (163).
3.2 Indirect targeting of glucose
metabolism in pancreatic cancer

Low extracellular pH is usually a sign of solid tumors. Tumor

cells produce large amounts of lactate through glycolysis and

glutamine metabolism, leading to its accumulation in the TME,

which results in altered metabolism of fibroblasts, immune cells,

and endothelial cells in the TME, increased acidity in the TME, and

promotion of immunosuppression. Inhibition of glycolysis

increases glucose availability and decreases lactate levels, which

enhances DC and CD8 + T-lymphocyte function and improves

antitumor responses. These findings highlight the potential of

targeting tumor metabolism to enhance the immunotherapeutic

effects of PDAC (111).Homologous heterotrimeric cassette C4

(HOXC4) is a member of the homologous heterotrimeric cassette

family, which acts as a transcription factor in the regulation of

morphogenesis. HOXC4 promotes the proliferation of PDAC cells

by increasing LDHA-mediated glycolysis and increasing lactate

levels in the microenvironment. Therefore, HOXC4 could be a

target for PDAC therapy. From a metabolic point of view,

combination therapy with TME may improve chemoresistance in

PC cells (164). Berberine acts as a functional inhibitor of LDHA and

inhibits LDHA and L-lactate, thereby inhibiting the progression of

PDAC (7). In addition to this, berberine inhibits PanIN via the

AMPK- hypoxia-inducible factor 1a pathway (165). N-

hydroxyindole (NHI)-based LDH inhibitors are promising

compounds because they not only inhibit cell proliferation

(especially under hypoxic conditions), but also increase the

sensitivity of PDAC cells to conventional chemotherapeutic

agents (e.g., gemcitabine) in a synergistic manner (166, 167).

Inhibition of LDH-A activity not only reduced cell proliferation,

but also decreased migration and invasion of pancreatic cancer cells
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(168). Interestingly, inhibition of LDHA does not affect normal

cells. In fact, patients with rare inborn metabolic defects and a

complete lack of the LDHA gene develop myoglobinuria only after

strenuous exercise (169). Thus, LDHA appears to be an ideal target

for novel therapies in tumors that are highly dependent on aerobic

glycolysis. LDH expression is also regulated by acetylation, and

Zhao et al. demonstrated that acetylation of LDHA reduced LDH

levels (170). As acetylation is reduced in PDAC tissues, this

emphasizes the role of LDH as a potential target for inhibiting

tumorigenesis. Furthermore, LDHA is regulated by HIF-1a, c-Myc

and HER-2/neu, highlighting its key role in hypoxic adaptation and

suggesting other potential targets.

Targeting the tumor microenvironment of PDAC, the

investigators found that hyperglycemia upregulates the Bmi1-

UPF1-HK2 signaling pathway, which promotes aerobic glycolysis

and lactate production in PC cells and leads to immunosuppression,

and that Bmi1 is a new potential therapeutic target for patients with

combined diabetes mellitus in PDAC (70). High glucose is also able

to inhibit AMP-activated protein kinase signaling, leading to high

expression of Bmi1, which promotes immune escape in pancreatic

cancer cells. Constitutive activation of the AMPK-Bmi1-GATA2

axis can mediate MICA/B inhibition, which may serve as a

therapeutic target for further intervention of immune escape in

pancreatic cancer (171). Under low-glucose conditions, metformin

significantly inhibited proliferation and viability and induced

apoptosis in PANC-1 cells. Metformin upregulated the expression

of miR-210-5p in low glucose but not in high glucose. MiR-210-5p

mimics inhibited the viability of PANC-1 cells, which further

enhanced the inhibitory effect of metformin, downregulated the

expression of the predicted target gene of miR-210-5p, PFKFB2,

and reduced the activities of PFK1 and LDH, thereby inhibit the

progression of PDAC (172). Therapeutic targeting strategies for

PDAC are summarized in Figure 5.
4 Immunotherapy

In recent years, researchers have proposed several innovative

immunotherapeutic strategies to address the interaction

mechanism between glucose metabolism reprogramming and

TME in pancreatic cancer. Pancreatic cancer cells take up a large

amount of glucose and secrete lactic acid through the Warburg

effect, leading to glucose deprivation and increased acidity in the

TME, which significantly inhibits anti-tumor immune activities

such as effector T lymphocytes and NK cells. To reverse this

metabolic-immune imbalance, recent research has focused on

synergistic interventions of metabolic modulation and

immunotherapy. Inhibition of the MCT1/4 or neutralization of

lactate improves TME acidity, and preclinical studies have

demonstrated that the MCT inhibitor AZD3965 in combination

with a PD-L1 antibody significantly enhances T lymphocyte

infiltration and inhibits tumor growth (173). In addition, glucose

utilization has been found to be rate limiting for effector CAR-T

lymphocyte function, and it has been demonstrated that enhancing

glucose utilization by GLUT1OE enhances anti-tumor immune
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function (174). Macrophage recruitment was previously observed in

Kras-mutated PDAC cells by chemokine secretion (175). In

addition, CCL18 secreted by M2 macrophages induces aerobic

glycolysis in PDAC cells and promotes tumor survival, and in

turn, the increase in lactate promotes the conversion of M0

macrophages to M2 macrophages (176). Furthermore, cytotoxic

NK cell activity was inhibited by lactate secreted by PDAC cells in

an LDHA-dependent manner (177). Although clinical translation

still faces challenges such as matrix barrier and metabolic toxicity,

precision combination therapies based on metabolic-immune

interaction networks (e.g., PD-1 inhibitors + metabolic

modulators + matrix-targeted drugs) have become a cutting-edge

hotspot for breaking through therapeutic bottlenecks. In the future,

the combination of single-cell multi-omics and spatial metabolic

imaging is expected to further reveal the metabolic heterogeneity of
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pancreatic cancer and drive the optimization of individualized

immunotherapy regimens. Current drugs and clinical trials

related to PDAC glycolytic reprogramming are summarized

in Table 1.
5 Summary and discussion

In this study, we explored the research progress on

glycometabolic reprogramming in pancreatic cancer. As a highly

malignant tumor with poor prognosis, metabolic reprogramming—

particularly aberrant glucose metabolism—has been demonstrated

to play a pivotal role in tumorigenesis and progression. Pancreatic

cancer cells remodel glucose metabolism through multiple

pathways, including enhanced glycolysis, lactate production, and
FIGURE 5

Targeted Therapeutic Strategies for PDAC. Recent research has led to the development of a range of therapeutic agents, including ARHGAP25,
Berberine, Shikonin, DX3-21B, and Phenformin, which specifically target key enzymes and pathways within the glycolytic pathway, as well as
mitochondrial complexes, offering promising avenues for pancreatic ductal adenocarcinoma treatment. Created in https://BioRender.com.
TABLE 1 Summary of therapeutic agents and clinical trials targeting reprogramming of glucose metabolism in PDAC.

Pathways Targets Compounds
Combination
therapies

Clinical
trials

Curative status
References
(source)

Glycolysis

MCT1 AZD3965 NCT01791595 Phase 1 (Completed) (178)

PDK Dichloroacetate NCT00566410 Phase 1 (Completed) (179)

2-deoxy-D-glucose (2-DG) Docetaxel NCT00096707 Phase 1 (Completed) (180)

OXPHOS

Mitochondrial
complex I

Metformin Sirolimus NCT02145559 Phase 1 (Completed) (181)

Metformin NCT01210911 Phase 2(Completed) (182)

IACS-010759 NCT03291938 Phase 1 (Completed) (183)

TCA CPI-613
NCT03699319 Phase 1 (Completed) ClinicalTrials.gov

NCT05325281 Phase 1 (recruiting) ClinicalTrials.gov
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aerobic respiration, thereby promoting their proliferation and

survival. Glycometabolic reprogramming not only provides

sustained energy supply for tumor cells but also critically

mediates metastasis, immune evasion, and chemoresistance.

Furthermore, this metabolic adaptation is not solely intrinsic to

cancer cells but involves dynamic interactions with immune cells

and vascular endothelial cells within the tumor microenvironment.

With advancements in molecular biotechnology and the

emergence of multi-omics data, substantial opportunities remain

for elucidating the mechanisms underlying pancreatic cancer

metabolic reprogramming. Key priorities include exploring the

relationship between dysregulated glucose metabolism and

epigenetic modifications, deciphering genetic drivers of metabolic

abnormalities, linking post-reprogramming metabolite alterations

to cellular phenotypic changes, and characterizing metabolite-

mediated crosstalk between cancer cells and immune

components. In-depth exploration of these mechanisms will likely

uncover novel therapeutic targets and inform innovative

treatment strategies.

Additionally, we observed that glycolytic shifts in pancreatic

cancer are closely associated with transitions between aerobic and

anaerobic respiratory modes. Further studies focusing on

respiratory mode plasticity may unravel the complexity of

pancreatic tumorigenesis and progression, offering renewed

therapeutic promise.
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