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Introduction: Esophageal cancer (EC) is a highly lethal malignancy characterized 
by the uncontrolled proliferation of cancerous cells within the esophagus. Despite 
recent advancements in therapeutic strategies, the prognosis remains poor, 
underscoring the urgent need for novel preventive and therapeutic approaches. 
Notably, several oncogenic viruses have been implicated in EC pathogenesis, 
prompting the exploration of epitope-based vaccines through immunoinformatics. 

Methods: Using immunoinformatics and bioinformatics approaches, we designed 
a novel multi-epitope vaccine targeting viral agents associated with EC. Protein 
sequences of ten viral candidates were retrieved from the UniProt database and 
evaluated for antigenicity using the VaxiJen server. Five highly antigenic proteins 
derived from Human Cytomegalovirus (HCMV), Human Papillomavirus (HPV), 
Human Herpesvirus 8 (HHV-8), Human Immunodeficiency Virus (HIV), and 
Epstein–Barr Virus (EBV) were selected. T cell (CTL and HTL) and B cell (LBL) 
epitopes were predicted and screened for immunogenicity, allergenicity, and 
toxicity. The final vaccine construct incorporated b-defensin as an adjuvant and 
included 3 HTL, 8 CTL, and 8 LBL epitopes. Molecular docking and molecular 
dynamics (MD) simulations were conducted to assess the binding affinity of the 
vaccine with Toll-like receptor 3 (TLR3). In silico cloning was also performed using 
the pET-28a(+) vector in Escherichia coli strain K12. 

Results: The designed vaccine was found to be antigenic, non-allergenic, and non­
toxic. Molecular docking revealed strong binding affinity between the vaccine 
construct and TLR3, which was further supported by MD simulation results 
indicating stable complex formation. Codon optimization and in silico cloning 
confirmed the high expression potential of the vaccine in the E. coli expression system. 

Discussion: The in silico analyses suggest that the developed multi-epitope 
vaccine construct is a promising candidate for preventing EC associated with viral 
infections. While these findings are encouraging, further experimental validation 
through in vitro and in vivo studies is essential to confirm the vaccine's safety, 
immunogenicity, and protective efficacy. 
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1 Introduction 

Esophageal cancer (EC) is a cancer that begins in the esophagus, 
the tube that connects the throat and stomach. It typically manifests as 
squamous cell carcinoma or adenocarcinoma (1, 2). Mortality rates 
and age-standardized incidence (ASMR and ASIR) for EC were 5.0 
and 4.3 per 100,000, respectively, with an estimated 511,054 new cases 
and 445,391 related deaths reported worldwide in 2022. East Asia and 
East Africa were found to have the highest rates. China alone was 
responsible for more than 40% of cases and fatalities worldwide. Male 
rates were consistently higher, and the burden was greatest in 
countries with high Human Development Indexes (HDIs). Due to 
age and population expansion, it is predicted that cases and deaths 
worldwide will increase by more than 80% by 2050 (3). Symptoms of 
EC include unintentional weight loss, difficulty swallowing 
(dysphagia), chest pain or discomfort, hoarseness, persistent cough, 
and, in some cases, regurgitation of food or vomiting. As the disease 
progresses, these symptoms may become more severe and debilitating. 
Barrett’s esophagus, excessive alcohol consumption, chronic 
gastroesophageal reflux disease (GERD), obesity, smoking, and a 
low-vegetable and fruit diet are primary risk factors for EC (4–8). 

Because of its aggressive nature, rapid progression, and often 
delayed diagnosis, EC is particularly deadly, with a survival rate of 
five years less than 20% in many cases. Recurrence and metastasis 
continue to be major obstacles despite of the availability of 
treatments such as radiation, chemotherapy, and surgery (9–11). 
A multi-epitope strategy is required because it can improve 
immunotherapy efficacy, boost the immune response by targeting 
multiple tumor-associated antigens, and possibly lower the risk of 
cancer cells evading the immune system (12). 

Human Papillomavirus (HPV), Human Herpesvirus 8 (HHV-8), 
Human Cytomegalovirus (HCMV), Epstein-Barr Virus (EBV), and 
Human Immunodeficiency Virus (HIV) can all be considered causative 
agents of EC due to their ability to cause chronic inflammation, promote 
cellular transformation, and evade immune detection. The E7 and E6 
oncoproteins of HPV cause the cell cycle to become unbalanced, which 
can result in cancerous development (13, 14). The Latent Membrane Protein 
1 (LMP1) proteins & Epstein-Barr Nuclear Antigen 1 (EBNA1) of EBV 
impede apoptosis and foster a pro-tumorigenic environment (15, 16). 
HCMV’s Immediate Early  (IE)  proteins  and UL97 kinase promote  cell
proliferation and viability (17). The viral interleukin-6 (vIL-6) and Latency-
associated nuclear antigen (LANA)proteins of HHV-8 promote cell 
proliferation and angiogenesis. HIV-induced immunosuppression 
promotes the persistence of these oncogenic viruses, increasing the risk of 
cancer development (18, 19). These viruses, combined, contribute to the 
complex pathogenesis of esophageal cancer through their oncogenic 
properties and interactions with host cellular mechanisms. Despite the 
availability of antivirals and vaccines (e.g., HPV), obstacles such as latent 
infection, immune evasion, and a lack of targeted therapeutics for particular 
viruses impede effective prevention and therapy, emphasizing the need for 
multi-targeted therapeutic techniques such as pan-viral cancer vaccines. 

The multi-epitope vaccine designed in this study is intended as 
a therapeutic intervention targeting viral antigens associated with 
esophageal cancer. Unlike preventive vaccines that aim to block 
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infection, therapeutic vaccines seek to stimulate the immune system 
to recognize and eliminate cancer cells harboring viral proteins. 
This approach leverages the unique viral signatures present in 
tumor cells to enhance anti-tumor immunity and represents a 
promising strategy in cancer immunotherapy. 
2 Materials and methods 

2.1 Retrieval of viral sequences associated 
with EC 

The ten viral proteins: E6 and E7 oncoproteins (HPV); LMP1 
and EBNA1 (EBV); Immediate Early (IE) protein and UL97 kinase 
(HCMV); LANA and vIL-6 (HHV-8); and Tat and Nef (HIV) were 
chosen for the design of a multi-epitope vaccine to HPV, EBV, 
HCMV, HHV-8, HIV. To test their appropriateness as vaccine 
candidates, the antigenic potential of these proteins was determined 
with the VaxiJen server (20). 
2.2 Epitopes prediction and selection 
phase 

Predictions made during the epitope selection phase included 
B-cell epitopes as well as both helper T lymphocyte (HTL) and 
cytotoxic T lymphocyte (CTL) epitopes. B-cell epitopes are of 
paramount importance to the creation of peptide vaccines, 
diagnostics for diseases, and research on allergy (21). ABCPred 
predicted linear B cell epitopes (LBL) (22). 

The Immune Epitope Database (IEDB) server analyzed all 
targeted proteins for MHC class I alleles, a critical step in 
cytotoxic T lymphocyte (CTL) screening to confirm peptide 
binding to major histocompatibility complex class I molecules 
(23). Depending on the MHC allele, length preferences can 
change, but we considered 9-mer epitopes. 

The detection of epitope candidates in cancer, infectious agents, 
allergies, and autoantigens is done directly using HLA class II 
molecules (23). In this study, 15-mer peptides were chosen, a 
consensus method was used, and they were compared to 27 HLA 
alleles to determine HTL epitopes using the IEDB server. In human 
antigen-presenting cells, high binding power epitopes (MHC-I and 
MHC-II) were found using adjusted rank < 2 filtering (23). 

VaxiJen version 2.0, Allergen version FP1.0, ToxinPred, and the 
MHCI immunogenicity servers were used to further assess the 
predicted epitopes (20, 21, 24, 25). Ultimately, HTL epitopes that 
trigger IFN-g were sought using the IFNepitope online server (26). 
2.3 Epitopes population coverage 

T cells identify a combination of a pathogen-derived epitope 
and a particular MHC molecule. Different ethnic groups express 
certain HLA alleles at very different frequencies. T-cell epitope-
frontiersin.org 
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based vaccines for PC were designed and developed using the IEDB 
population coverage server (27, 28). Population coverage for T cell 
(MHC I & MHC II) epitopes across various ethnic groups was 
examined in this study. 
 

 
2.4 Vaccine construction 

To create an effective multi-epitope vaccination, CTL, HTL, and 
LBL were combined with the right linker. Three distinct linkers— 
AAY, GPGPG, and KK—bound the CTL, HTL, and LBL epitopes. 
Because they are necessary for generating functional region 
separation, a broad conformation (flexibility), and protein folding 
—all of which enhance the stability of the protein structure—these 
linkers are used. According to earlier studies, the linkers were 
chosen for their length, stiffness, flexibility, and efficacy (29, 30). 
Most of the time, a vaccine’s epitopes by themselves are insufficient 
to trigger an immune response (28). The adaptive and innate 
immune systems must be stimulated by carriers abundant in 
immunostimulatory adjuvants. The EAAAK linker was used to 
join the b-defensin adjuvant to the N-terminal of the vaccine 
construct. b-defensin was chosen for its capacity to boost antigen 
absorption and activate dendritic and T cells, resulting in powerful 
adaptive immunological responses. Research indicates that b­
defensin-antigen fusions enhance tumor-specific immunity in

cancer vaccines, making them a promising adjuvant (31–33). 
 

2.5 Post analysis of vaccine 

Physical and chemical properties are studied to determine a 
protein’s structural and functional properties. The final vaccine 
construct’s chemical and physical properties were evaluated using 
the ProtParam server (34). We comprehend the activity, stability, 
and nature of proteins by utilizing the diverse physical and chemical 
parameters available on this server, including the amino acid 
composition, extinction coefficient, aliphatic index, theoretical pI, 
instability index, atomic composition, and molecular weight. 
Protein solubility is another important factor to consider when 
designing vaccines, as it is important for therapeutic and industrial 
applications. Protein solubility was predicted by employing the 
SOLpro server (35). The potential of the vaccine to elicit allergic 
reactions can be predicted through allergenicity testing. Thus, 
AllerTop was utilized (34). Structural antigenicity was examined 
using VaxiJen v2.0 (36). Predicting a protein’s secondary structure 
is a challenging task in bioinformatics. Local conformation proteins 
have three distinct secondary structures: b-strand, a-helix, and coil 
region. The secondary vaccine structure was analyzed using the 
SOPMA server (37). 3Dpro server was used to predict the vaccine’s 
three-dimensional structure (38). The community focused on 
structure prediction emphasizes enhancing template-based 
structure models, going beyond the present level of accuracy in 
template information. Therefore, the vaccines ‘s structure  was
improved using the GalaxyRefine server (39). ProSA-web servers 
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and UCLA-DOE LAB were utilized to assess the reliability and 
caliber of the chosen three-dimensional structure (40–42). The 
Ramachandran diagram calculates the residues and probability 
distribution of dihedral angles y and j in the backbone, 
illustrating the structure’s quality by determining the amount and 
percentage of residues. The Ellipro server predicted vaccine 
conformational/linear B cell epitopes, with the vaccine’s 3D

structure as an input (43). 
2.6 Disulfide engineering 

Disulfide bridge formation between cysteine residues plays a 
pivotal role in maintaining the structural integrity and functional 
conformation of proteins and peptides. In this study, the Disulfide 
by Design version 2.0 (DbD2) server was employed to strategically 
engineer disulfide bonds within the vaccine construct, with the aim 
of enhancing molecular stability by elevating the free energy of the 
unfolded state and reducing conformational entropy, thereby 
contributing to the refinement of the vaccine’s three-dimensional 
architecture (44). 
2.7 Immune simulation 

The C-IMMSIM server is a bioinformatics-based immunological 
response simulator that predicts B and T cell epitopes (45). C-ImmSim 
describes the humoral and cellular profiles of a mammal immune 
system’s response to a vaccine using the Celada-Seiden model. The 
study uses pictures from the myeloid and lymphoid lineages, including 
dendritic cells and macrophages. The simulated parameters include 
three vaccination doses, a vaccine without lipopolysaccharides, and 
adjustments to the simulation’s volume and steps. The goal is to 
produce an effective and durable immune response. There is no 
change to the other parameter, “Random Seed”. The immune 
response modeling can be completed in about 350 days (1050 × 8 
h)/(24 h)) since one simulation step is equal to eight hours (8 h) of 
real-time. 
2.8 Molecular docking 

Docking analysis was used to determine how effectively vaccine 
constructs bound to the TLR3 immune cell receptor. TLR3 was 
chosen for molecular docking because of its capacity to identify viral 
double-stranded RNA and initiate potent type I interferon and 
cytotoxic T cell responses—both of which are essential for 
antitumor immunity. Activation of TLR3 stimulates apoptosis 
and  immunological  activation  without  causing  severe  
inflammation, in contrast to TLR4 or TLR9. TLR3 expression has 
also been associated with improved prognosis and immune 
infiltration in esophageal cancer, which supports its applicability 
as a docking target (46–48). The HADDOCK-v-2.4 server 
was utilized for protein-protein interactions, with interactions 
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assessed using PDBsum and complexes visualized using PyMOL 
version 1.3 (49–51). 
 

2.9 MD simulation 

MD simulations were run with the Desmond software of 
Schrodinger suite at 100 ns (52). Molecular docking-created 
protein-protein complexes were analyzed using MDS to 
investigate their dynamic interactions. Before optimization and 
minimization, the complex underwent preprocessing. During the 
energy minimization process, the OPLS_2005 force field was 
integrated with the Transferable Intermolecular Potential with 3 
Points (TIP3P) water model and an orthorhombic simulation box 
to accurately simulate the solvent environment (53, 54). To achieve 
Frontiers in Immunology 04
system neutrality, counterions were introduced, and physiological 
conditions were replicated by incorporating 0.15 M NaCl. Before 
initiating the simulation, the complex underwent relaxation, 
followed by execution under an NPT ensemble maintained at 300 
K and 1 atm pressure. Simulation trajectories were recorded at 50 ps 
intervals for subsequent analysis. 
2.10 In silico cloning 

Nowadays, most sequenced prokaryotes require a group of 
prediction servers to change the target gene codon’s mode of

action. Eukaryotic gene expression hosts are chosen to enhance the 
synthesis of heterologous proteins. E. Coli strain K12 and the Java 
Codon Adaptation Tool (JCat) server was used to quantify the 
TABLE 1 Details of selected antigenic vaccine candidates. 

Virus Proteins Accession No Antigenicity 

Human Papillomavirus (HPV) E6 oncoprotein P03126 0.6921 

E7 oncoprotein P03129 0.5765 

Epstein-Barr Virus (EBV) EBNA1 (Epstein-Barr Nuclear 
Antigen 1) 

P03211 0.5545 

Human Immunodeficiency 
Virus (HIV) 

Tat (Transactivator of transcription) P04610 0.7411 

Nef (Negative regulatory factor). P04324 0.6258 
 

FIGURE 1 

Graphical abstract. 
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TABLE 3 Eight LBL epitopes selected for the designing of a multi-epitope vaccine. 

Protein Epitopes Position Immunogenicity Allergenicity Antigenicity 

Protein E6 RDLCIVYRDGNPYAVC 55 0.2 Non-Allergen 1.0 

Protein E7 DRAHYNIVTFCCKCDS 48 0.2 Non-Allergen 0.6 

STHVDIRTLEDLLMGT 71 0.2 Non-Allergen 0.7 

EBNA1 HGRGRGRGRGRGGGRP 39 0.4 Non-Allergen 1.2 

RGRGRGRGEKRPRSPS 370 0.04 Non-Allergen 1.2 

NEF EEKVGFPVTPQVPLRP 63 0.1 Non-Allergen 1.0 

GPGIRYPLTFGWCYKL 130 0.3 Non-Allergen 0.7 

EWRFDSRLAFHHVARE 182 0.3 Non-Allergen 0.9 
F
rontiers in Immunology 
05 
TABLE 2 Top eight CTL Epitopes selected for construct designing. 

Protein Epitopes Alleles Position Immunogenicity Antigenicity Allergenicity 

Protein E6 FRDLCIVYR HLA-C*07:01 
HLA-B*27:05 
HLA-C*08:0 
HLA-C*04:01 

54-62 0.10 2.1 Non-Allergen 

SRTRRETQL HLA-B*14:02 150-158 0.17 0.9 Non-Allergen 
HLA-C*07:02 
HLA-C*06:02 
HLA-B*27:05 

Protein E7 RAHYNIVTF HLA-A*32:01 49-57 0.18 0.5 Non-Allergen 
HLA-B*15:01 
HLA-B*35:01 
HLA-B*57:01 
HLA-B*46:01 
HLA-A*23:01 
HLA-B*48:01 
HLA-A*24:02 
HLA-C*03:03 

EBNA1 DLPPWFPPM HLA-E*01:01 
HLA-A*26:01 
HLA-C*07:02 

605-613 0.29 0.7 Non-Allergen 

TAT KRRQRRRPP HLA-B*14:02 51-59 0.03 0.5 Non-Allergen 
HLA-C*07:02 
HLA-A*30:01 
HLA-C*06:02 

NEF RAEPAADGV HLA-C*15:02 
HLA-C*05:01 
HLA-C*12:03 

22-30 0.13 0.8 Non-Allergen 

YPLTFGWCY HLA-B*35:01 135-143 0.33 1.3 Non-Allergen 
HLA-B*53:01 
HLA-A*29:02 
HLA-B*18:01 
HLA-B*51:01 

VARELHPEY HLA-B*35:01 
HLA-B*46:01 
HLA-A*29:02 

194-202 0.18 1.1 Non-Allergen 
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expression level of a multi-epitope vaccine (55). For every query 
sequence, JCat determines the GC content and CAI value, identifying 
genes with high expression. The Snapgene design program is used to 
clone the vaccine construct into plasmid pET-28a (+) (56) (Figure 1). 
3 Results 

3.1 Retrieval of EC- related viral sequences 

Ten FASTA-formatted protein sequences from viruses related 
to esophageal cancer, with differing lengths of amino acids, were 
acquired from UniProt. Their antigenicity was checked and non-
antigenic proteins were removed. Five proteins were identified as 
allergenic and are being examined further. The details of these 
proteins are reported in (Table 1). 
Frontiers in Immunology 06
3.2 Epitopes prediction and evaluation 
phase 

HTL, CTL, and B-cell epitopes for particular antigenic proteins 
were predicted by the study. For vaccine design, the top eight CTL 
and eight LBL epitopes were selected because they are non-toxic, 
immunogenic, antigenic, and allergy-free (Tables 2, 3). Likewise, 
three HTL epitopes were chosen due to their IFN-g-inducing, non­
toxic, non-allergic, immunogenic, and antigenic qualities (Table 4). 

3.3 Epitopes population coverage 

The study examined the impact of PC on CD4+ and CD8+ T 
cells in 16 global regions. Results showed that North America and 
South Asia had the highest coverage of PC, while Central America 
received the least coverage at 5.68% (Figure 2). This information 
FIGURE 2 

Population coverage graph of the designed vaccine construct. 
TABLE 4 Final HTL Epitopes of EC proteins selected for construct designing. 

Protein Epitopes Alleles Antigenicity Position Immunogenicity IFN-inducer 

Protein 
E7 

DLLMGTLGIVCPICS HLA-DRB1*11:04, HLA-DRB1*11:06, 
HLA-DRB1*13:11 

1.0 81-95 0.10 Positive 

EBNA1 AGAGGAGAGGAGAGG HLA-DQA1*05:01/DQB1*03:01 0.6 93-107 0.37 Positive 

NEF EVLEWRFDSRLAFHH HLA-DRB1*03:05, HLA-DRB3*01:01, 
HLA-DRB1*03:06, HLA-DRB1*11:28, 
HLA-DRB1*13:05, HLA-DRB1*15:02, 
HLA-DRB1*11:07 

1.0 179-193 0.53 Positive 
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can help assess the efficacy of a vaccine against HLA alleles in 
different ethnic groups. 
3.4 Vaccine construction 

Eleven T cells and eight linear B cell epitopes, each highly 
antigenic, non-toxic, and free of allergens, are part of the multi­

epitope vaccine construct. Linkers from AAY, GPGPG, and KK 
have joined them. To attach the adjuvant b-defensin to the vaccine’s 
N-terminus, the EAAAK linker is utilized (Figure 3). 
 

3.5 Post analysis of vaccine 

3.5.1 Prediction of physiochemical properties 
The ProtParam server determined the final vaccine design’s 

MW to be 38 kDa and its amino acid composition to be 347. Our 
final construct is a suitable vaccine because its molecular weight is 
less than 110 kDa. There were 105 (Arg+Lys) positively charged 
residues in the vaccine. With an emphasis on yeast, mammalian 
reticulocytes, and E. coli, the study examined the lifespan of a multi­

ep i t ope  va c c ina t i on .  With  a  chemi c a l  f o rmu l a  o f  
C1713H2704N536O453S19, the final vaccine was discovered to be 
highly soluble because of its polar nature and efficient water-
binding interaction, as indicated by its -0.665 GRAVY and 59.14 
aliphatic index. The anticipated structure had a 0.687530 
probability of being soluble. Also evaluated were the vaccine’s 
non-toxicity, non-allergenicity, and non-antigenicity. VaxiJen 
Frontiers in Immunology 07 
predicted the final construct’s antigenicity to be 0.8621% at a 
virus model threshold of 0.5%. To make sure the potential 
vaccine did not result in toxic side effects or allergic reactions 
once it entered the body, its toxicity and allergenicity were evaluated 
and results revealed that the vaccine candidate was neither toxic 
nor allergic. 

3.5.2 Secondary & tertiary structure prediction 
According to the SOPMA server, the vaccine design is 

composed of 54.2% random coils, 23.3% b-strands, and 22.5% a-
helices, showing a flexible yet organized conformation (Figure 4A). 
The final structure contains 347 amino acids. 

Tertiary structure prediction was conducted with 3DPro and 
refined with GalaxyRefine (Figure 4B). Structural validation using 
the Ramachandran plot demonstrated improvement after 
refinement, with residues in favored areas increasing from 88.0% 
to 92.3% and disallowed regions falling from 0.7% to 0.4% 
(Figures 4C, F). The ProSA-web Z-score improved from -1.82 to 
-2.13, indicating higher model quality (Figures 4D, G). ERRAT 
analysis also indicated improved structural integrity after 
refinement (Figures 4E, H). These findings  suggest that the

vaccine structure is well-modeled and stable, making it 
appropriate for further interaction analysis. 

3.5.3 Vaccine B cell epitope prediction 
With the use of the ElliPro server, B-cell epitopes inside the 

vaccine design were predicted, and five linear (continuous) 
epitopes, as detailed in Table 5, and eight conformational 
(discontinuous) epitopes, illustrated in Figure 5. 
FIGURE 3 

The designed vaccine construct is shown schematically. 
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3.6 Disulfide engineering 

The Disulfide by Design version 2.13 server was used to analyze 
the vaccine sequence, and it revealed twenty residue pairings that 
might potentially create disulfide bonds. Based on the energy of 
bonds and X3 characteristics, a pair of residues (107PRO-112ALA) 
was chosen since their results satisfied the requirements (Figure 6). 
Frontiers in Immunology 08
3.7 Immune simulation 

The in silico immune simulation projected an active B- and T-cell 
response to the suggested vaccine design, which is consistent with 
known immunological patterns. Initial high IgM levels indicated an 
initial immune response, followed by higher secondary and tertiary 
responses. The simulation also revealed the likelihood of memory B-
FIGURE 4 

Structural modeling and validation of the multi-epitope vaccine construct (A) Tertiary structure of vaccine predicted using 3dpro (B) Vaccine 
sequence with adjuvant and linkers highlighted (C, F) Ramachandran plots before and after refinement respectively (D, G) Prosa-web Z-score plots 
showing model quality before and after refinement (E, H) ERRAT quality factor plots before and after refinement, conforming improved structural 
reliability. 
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cell growth and higher amounts of activated B cells, implying a long­
term immune response. Immunoglobulin activity, comprising IgM, 
IgG1+IgG2, and combination IgG+IgM, was projected to remain 
consistently high, while the simulated vaccine concentration 
decreased over time (Figures 7A–D). The simulation also suggested 
a rise in cytotoxic T lymphocytes (CTLs), helper T lymphocytes 
(HTLs), and the development of memory Th and Tc cells 
(Figures 7E–H Regulatory T cells, dendritic cells, and macrophage 
populations were also expected to increase following simulated 
vaccine exposure. The simulation output showed higher amounts 
of cytokines, including IFN-g and IL-2 (Figures 7I–L). 

While these data show that the vaccine architecture may 
generate a strong immune response, it is important to note that 
Frontiers in Immunology 09
they are computational predictions. Experimental validation is 
needed to confirm the immunogenicity and efficacy of the 
proposed formulation in biological systems. 
3.8 Molecular docking 

A vaccine’s immunogenic potential is greatly influenced by its 
affinity for immunological receptors such as toll-like receptors 
(TLRs), which play an important role in triggering host immune 
responses. In this investigation, the HADDOCK version 2.4 server 
was used to investigate the interaction between the created vaccine 
design and human TLR3. The docking simulation produced a 
TABLE 5 Linear B cell epitopes of vaccine. 

No. Start End Peptide Number of residues Score 

1 1 62 GIINTLQKYYCRVRGGRCAVLSCLPKEEQIGKCSTRGRKCCRRKKEAAAKFRDLCIVYRAAY 62 0.81 

2 287 347 KRPRSPSKKEEKVGFPVTPQVPLRPKKGPGIRYPLTFGWCYKLKKEWRFDSRLAFHHVARE 61 0.797 

3 202 245 HHKKRDLCIVYRDGNPYAVCKKDRAHYNIVTFCCKCDSKKSTHV 44 0.595 

4 181 187 AGGGPGP 7 0.536 

5 118 123 GVAAYY 6 0.529 
 
f
FIGURE 5
 

Conformational B cell epitopes of vaccine. (A-G) Presents the different B-Cell Epitopes with different colours.
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HADDOCK score of -74.6 ± 3.8 kcal/mol, indicating good binding 
between the two molecules (Table 6). 

Figure 8A depicts the docked complex, with TLR3 in blue and 
the vaccine construct in rainbow colors. PDBsum analysis revealed 
nine hydrogen bonds with an average bond length of around 3.34 Å, 
indicating a stable contact interface (Figure 8B). 

Although the docking analysis showed a rather high root-mean­

square deviation (RMSD) of 45.2 Å, this can be attributed to the 
flexible and complex structure of the multi-epitope vaccine, which 
may result in a larger range of anticipated conformations (Figure 8C– 
H). Despite this, the vaccine’s high HADDOCK binding score and 
the existence of many hydrogen bonds indicate a persistent and 
relevant interaction with TLR3. However, based on the combined 
docking score and interaction analysis, the results are deemed reliable 
within the context of this computational investigation and indicate 
the vaccine’s ability to engage immune receptors. 
 

3.9 MD simulation 

A 100-nanosecond molecular dynamics (MD) simulation was 
performed to determine the vaccine-TLR3 complex’s structural 
stability and flexibility. The root-mean-square deviation (RMSD) 
analysis revealed initial oscillations at 10.9 Å around 20 ns, followed 
by overall stabilization with an average RMSD of 4.0 Å, indicating a 
relatively stable complex throughout the simulation (Figure 9B). 
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Root-mean-square fluctuation (RMSF) study showed minimal 
residue-level flexibility, with an average variation of 2.9 Å and a 
maximum of 3.6 Å. TLR3 had consistent behaviour in the presence 
of  the  vaccine ,  indicat ing  minimal  disrupt ion  upon  
binding (Figure 9C). 

Analysis of the radius of gyration (Rg) verified the structural 
compactness over time. The structural robustness of important 
protein areas was demonstrated by secondary structure analysis 
(SSA), which revealed persisting a-helices and b-strands 
throughout the simulation (Figures 9A, D). The vaccine–receptor 
complex’s tight interface and dynamic stability are often supported 
by MD studies. Overall, MD results are consistent with the vaccine-
receptor complex’s dynamic stability and compact interaction. 
3.10 In-silico cloning 

The JCat tool was used to optimize the vaccine’s codon 
utilization for the E. coli K12 strain, yielding a 55.3% GC content 
and 1 CAI, signifying successful expression in the E. coli host. 
Although a GC percentage somewhat higher than 50% might 
sometimes influence expression efficiency, it is still within an 
acceptable range, and codon harmonization helps avoid such 
concerns by matching codon usage with the host’s tRNA

availability. The pET28a(+) E. coli expression vector was altered 
by incorporating the codon sequence between the XhoI and BamHI 
FIGURE 6 

Disulfide engineering of vaccine construct improves stability. A mutant pair selected based on X3 value and energy is shown by the color blue. 
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restriction sites. (Figure 10A), resulting in a recombinant construct 
of 6192 base pairs (Figure 10B) appropriate for future experimental 
validation and protein expression analysis. 
4 Discussion 

Esophageal cancer’s aggressive progression and late-stage 
diagnosis make it difficult to treat, highlighting the need for better 
treatment plans and early detection. A multi-epitope vaccine could 
target multiple antigens on cancer cells, enhancing the immune 
system’s ability to combat diverse tumors, reducing immune 
evasion and tumor recurrence, and potentially providing a more 
potent and individualized therapeutic approach (12, 57–60). 

Vaccines based on peptides, especially those that contain several 
epitopes, have shown great promise in producing immune 
responses against a variety of malignancies, including esophageal 
cancer (EC). Numerous multi-epitope cancer vaccines have 
advanced through Phase I and II clinical studies, demonstrating 
positive immunogenicity, safety profiles, and tolerability (61–64). 
Examples include HER2-derived peptides (E75, AE37, and GP2) in 
breast cancer (65–67) and gp100 or MART-1 peptides in 
melanoma, which have induced antigen-specific T-cell responses 
in early-phase investigations (68, 69). Although several Phase III 
trials, such as nelipepimut-S with GM-CSF in breast cancer, did not 
show substantial increases in survival outcomes, these findings 
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highlight the complexities of tumour immunology rather than the 
ineffectiveness of peptide vaccines themselves (70). Recent 
developments, such as the application of contemporary adjuvants 
like poly-ICLC, have significantly improved T-cell activation in 
early-phase glioblastoma trials, underscoring the field’s continuous 
advancement (71). The continuous development of peptide 
vaccines is supported by the fact that they are still well tolerated 
and rarely cause serious side effects. 

It is critical to understand that viral oncogenesis in esophageal 
cancer (EC) can entail ‘hit-and-run’ mechanisms, in which viral 
proteins trigger malignant transformation but are no longer 
produced in advanced tumours. This is a hurdle for therapeutic 
vaccines targeting viral antigens in late-stage disease. Hence, our 
multi-epitope vaccine is primarily intended as a preventive method, 
stimulating immune responses against viral components before 
malignant transformation starts. Conceptually, this strategy is 
consistent with effective preventative vaccines, like those that 
target HPV. Our vaccine, which incorporates multiple virus-
associated epitopes relevant to EC, aims to provide broad, 
protective immune activation and is a candidate for future 
preclinical and clinical development in virus-linked cancer 
prevention, given the encouraging outcomes of peptide-based 
vaccines in early-phase cancer trials and their excellent safety 
profiles.Ten proteins from various viruses were chosen to predict 
effective epitopes in light of the significance of the virulence factors. 
The protein targets chosen for a broad-spectrum therapeutic 
FIGURE 7 

The vaccine’s immune profile. (A) Immunoglobulin concentrations in relation to antigens (B) Population of B-cell (C) Population of B-cell per state 
(D) Population of plasma B-cell (E) helper T-cell population (F) Population of helper T-cell per state (G) Cytotoxic T-cell population (H) Population 
of cytotoxic T-cell per state (I) T-regulatory cells reduced levels (J) Population of dendritic per state (K) Population of macrophage per state (L) The 
Simpson index of cytokine and interleukin production. 
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vaccine targeting virus-associated cancers include E6, E7, LMP1, 
EBNA1, IE proteins, UL97, LANA, vIL-6, Tat, and Nef. These 
proteins are critical in viral replication, immune evasion, and 
oncogenesis, and are consistently expressed in infected or 
transformed cells, making them promising candidates for 
designing a vaccine. Their prior application in studies on vaccines 
or immunotherapy, supports their inclusion as potential protective 
antigens (72–76). Non-antigenic proteins were eliminated once 
their antigenicity was examined. Five antigenic proteins were 
taken into consideration for additional examination. HTL, CTL, 
and LBL epitopes were used to identify the target proteins, and the 
multi-epitope candidate was selected based on the antigenicity, 
toxicity, immunogenicity, and allergenicity of the proteins. 
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Linkers can enhance rigidity, folding, and expression in vaccine 
development. The vaccine was constructed by joining the CTL, LBL, 
and HTL epitopes with AAY, KK, and GPGPG linkers, respectively, 
as other previous studies have demonstrated (77–81). Since flexible, 
hydrophilic amino acids normally make up GPGPG, AAY, and KK 
linkers, combining these two residues can stop folding disruption 
and domain function (77, 82). b-defensin was used as an adjuvant 
in the EAAAK linker. Owing to its immunomodulatory and 
antibacterial qualities, b-defensin is a useful adjuvant that has 
been employed in numerous prior investigations (83–86). Studies 
in the past have demonstrated that this a-helical linker’s inflexible 
structure gives protein domains adequate room to fold and perform 
independently. Furthermore, stability—particularly thermal 
stability, which is crucial for vaccines—can be significantly 
increased by incorporating this linker into the fusion proteins. 
The final vaccine was 347 amino acids long, but some studies 
have found much larger vaccine sizes (77, 81, 87–89). As a result, we 
believe it will not interfere with consistency or interpretation. 

To ensure a vaccine’s efficacy, it must provide broad-spectrum 
immunity across diverse global populations. Therefore, 
understanding the HLA genotypic frequencies within the target 
endemic regions is essential for vaccine development. According to 
the statistics, the chosen CTL and HTL epitopes represent a 
considerable fraction of the global population. 

The designed vaccine’s appropriate molecular weight facilitates 
purification, making it a suitable vaccine. Greater thermostability at 
various temperatures is indicated by high aliphatic index values, 
while negative GRAVY values reflect the candidate vaccine’s 
FIGURE 8
 

TLR-3 receptor and vaccine docked. TLR3 is shown in blue, while the vaccine is shown in rainbow colors. (A) 3D Structure visualization (B)
 
Interaction analysis between vaccine and TLR3 (C) Docking score and common contacts (D) Energy calculations and RMSD (E) Haddock score and
 
RMSD (F, G) Energy analysis including electrostatic, van deer waals.
 
TABLE 6 Docking statistics of TLR3-vaccine complex. 

HADDOCK score 74.6 +/- 3.8 

Cluster size 24 

RMSD from the overall lowest-energy structure 45.2 +/- 0.3 

Van der Waals energy -55.0 +/- 4.4 

Electrostatic energy -250.7 +/- 60.5 

Desolvation energy -16.8 +/- 5.2 

Restraints violation energy 1965.5 +/- 100.9 

Buried Surface Area 2317.0 +/- 159.4 

Z-Score -1.3 
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hydrophilic nature, which allows it to form strong bonds with water 
molecules. Furthermore, the vaccine has good solubility. 

Recognizing viral particles and activating the innate immune 
system depend on TLRs. TLR targeting may be crucial for creating 
vaccines and averting illness (90, 91). Molecular docking was used 
to examine the vaccine’s specific interactions and binding affinities 
against TLR3. A strong binding affinity was shown by the energy 
scores attained when binding the vaccine-TLR3 complex. In 
conclusion, the study’s MD simulation results validate that the 
vaccine molecule can engage in optimal interaction with the 
TLR3 protein. 

The proposed vaccine’s ability to elicit an immune response was 
then evaluated utilizing an immunological simulation and the C­
IMMSIM server. However, memory T and B cells appeared to have 
significantly improved, according to the data. There was also a 
noticeable increase in the IFN-g titer and a slight rise in IL-2 
following the third vaccination shot, while in the primary immune 
response, antibody levels were lower than in the tertiary and 
secondary immune responses. Together, these findings imply our 
potential multi-epitope vaccine may effectively elicit an 
immunological response, resulting in a robust resistance 
against infections. 

To maximize the multi-epitope vaccine’s translation efficiency 
inside a particular expression system, the vaccine’s mRNA was then 
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amplified using JCAT. The expression vector pET28a (+) was 
constructed by incorporating adaptive DNA sequences at both 
the C- and N-termini, between the BamHI and XhoI restriction 
sites. A CAI value of 0.98 and a GC content of 53.63% in bacteria 
suggested high-level protein expression. 

While the preliminary results appear encouraging, it is 
important to recognize several limitations. The initial vaccine 
design, based on computer projections and simulations, may not 
fully capture in vivo responses. While computational predictions 
like epitope immunogenicity, antigenicity, and population coverage 
offer valuable insights, these must be validated through 
experimental approaches like ELISpot assays, flow cytometry, and 
in vivo studies using animal models. Prioritizing experimental 
validation in preclinical and clinical environments is crucial for 
ensuring the vaccine’s safety and efficacy. Numerous studies have 
shown that in silico-designed vaccine candidates have shown high 
efficacy in experimental evaluations (92–94). Hence, the outcomes 
of this study can serve as the solid framework for future exploration 
meant to precisely ascertain the vaccines’ therapeutic potential. 

Our vaccine construct is envisioned primarily as a therapeutic 
vaccine aimed at eliciting robust cellular and humoral immune 
responses against viral epitopes expressed by esophageal cancer 
cells. While preventive vaccines target viral infection before tumor 
development, therapeutic vaccines focus on controlling or 
FIGURE 9 

Molecular dynamic simulation analysis (A) Secondary structure analysis (SSA): This panel illustrates the dynamic changes in the secondary structure 
elements (a-helices, b-strands, and loops) of the protein throughout the simulation time. The color-coded representation allows for an easy visual 
interpretation of the stability and transitions between different secondary structures (B) Root mean square deviation (RMSD): The RMSD plot depicts 
the deviation of the protein’s backbone atoms over the course of the simulation. The RMSD values are stable, fluctuating within a narrow range of 1 
to 1.5 Å, indicating that the protein structure remains stable throughout the simulation (C) Root mean square fluctuation (RMSF): The RMSF plot 
shows the flexibility of individual residues during the simulation. Most residues exhibit minor fluctuations, with the majority maintaining stability. 
Notable minor fluctuations are observed between residues 250 to 300, which may correspond to flexible regions or loop areas of the protein (D) 
Residue index vs. secondary structure elements (SSE): This panel provides a detailed view of the secondary structure assignment for each residue 
throughout the simulation. It highlights the regions of the protein that maintain their secondary structure or undergo transitions, offering insights 
into the dynamic behavior of specific segments. 
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eradicating established malignancies. The immunoinformatics 
predictions provide a foundation for this approach, but further 
experimental validation is essential to confirm efficacy in 
clinical settings. 
5 Conclusion 

Globally, esophageal cancer is among the most prevalent 
cancers. The primary viruses involved in the pathophysiology of 
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EC are HIV, HHV-8, HCMV, EBV, and HPV. To counter these 
important epitopes, an in silico vaccine was developed in this work, 
and  its  effectiveness  was  evaluated  using  a  variety  of  
immunoinformatics servers. The outcomes showed a rise in T 
cells, including cytotoxic and helper T cells, as well as an increase 
in INF-g and antibodies, indicating that the multi-epitope vaccine 
that was designed serves as a useful prophylactic candidate vaccine. 
Further validation through in vitro and in vivo investigations is 
required to establish the vaccine’s immunogenicity and safety, 
allowing for its potential use in public health strategies. 
FIGURE 10 

Cloning the vaccine in silico using the pET28a (+) expression vector. Cloned region is highlighted by red color. 
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