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Objective: Diabetes mellitus combined with nonalcoholic fatty liver disease is a

prevalent and intricatemetabolic disorder that presents a significant global health

challenge, imposing economic and emotional burdens on society and families.

An in-depth understanding of the disease pathogenesis is crucial for enhancing

diagnostic and therapeutic efficacy. Therefore, the study aims to identify and

validate autophagy-related diagnostic biomarkers associated with T2DM-

associated MAFLD, investigate regulatory mechanisms in disease progression,

and explore cellular diversity within the same tissue using single-cell

sequencing data.

Methods: This study utilized four datasets retrieved from the Gene Expression

Omnibus (GEO) database: GSE15653, GSE89632, GSE24807 and GSE23343. The

analysis involved variance analysis, WGCNA analysis, PPI network construction,

machine learning application, examination of autophagy-related gene sets, and

diagnostic ROC analysis to identify and validate autophagy-related biomarkers in

T2DM combined with MAFLD within an independent external dataset. Functional

enrichment analysis, immune infiltration analysis, and validation of gene

significance in T2DM combined with MAFLD progression were conducted

using animal experiments to understand the biological functions and

immunomodulatory roles of key biomarkers. Cellular diversity within liver

tissues was characterized at the single-cell level, exploring interrelationships,

differentiation, and developmental trajectories among cell populations through

cellular communication and pseudo-temporal analyses.

Results: The study identified four key biomarkers (IRAK3, TNFRSF1A, CX3CR1,

JUNB). Real-time fluorescence quantitative PCR analysis in animal experiments

demonstrated significantly higher mRNA expression levels of IRAK3, TNFRSF1A,

CX3CR1, and JUNB in T2DM and MAFLD rat liver tissues compared to the control
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group. Quantitative immunohistochemical analysis revealed notably elevated

protein expression levels of IRAK3, TNFRSF1A, CX3CR1, and JUNB in liver

tissues of rats with T2DM and MAFLD when contrasted with the control group

(P < 0.05). Enrichment analysis indicated associations of T2DM combined with

MAFLD pathogenesis with pathways such as the NF-kappa B signaling pathway,

MAPK signaling pathway, Fluid shear stress and atherosclerosis, Insulin resistance,

and Cytokine-cytokine receptor interaction. Correlative analysis uncovered

connections between immune infiltration and the identified genes. Single-cell

transcriptomic analysis highlighted the differentiation of CX3CR1, JUNB, and

TFRC in various single-cell-annotated populations. The pseudo-temporal

analysis of epithelial cells identified enriched genes at crucial nodes related to

“Leukocyte transendothelial migration”, “Lipid and atherosclerosis”, and “Type II

diabetes mellitus” signaling pathways. Additionally, four cellular communication

signaling pathways (TNF, CXCL, VEGF, and MIF) potentially significant in T2DM

combined with MAFLD progression were ident ified through cel l

communication analysis.

Conclusion: This study unveiled potential associations and key biomarkers

(IRAK3, TNFRSF1A, CX3CR1, JUNB) concerning T2DM combined with MAFLD

and relevant pathways, offering novel insights for the investigation of these

two conditions.
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1 Introduction

Type 2 Diabetes Mellitus (T2DM) is a prevalent metabolic

disorder characterized by insulin resistance and relative insulin

deficiency, resulting in hyperglycemia. The International Diabetes

Federation reported approximately 537 million adults living with

diabetes globally in 2021, with T2DM representing about 90% of

these cases (1). Metabolic dysfunction-associated fatty liver disease

(MAFLD), formerly termed non-alcoholic fatty liver disease

(NAFLD), is characterized by excessive fat accumulation in the

liver and affects nearly 25% of the global population. The surge in

MAFLD cases mirrors shifts in the environment and lifestyle driven

by rapid global industrialization; environmental elements like air

pollution may heighten MAFLD risk, compounding socio-

economic challenges. In essence, MAFLD represents an escalating

global health issue necessitating robust preventive and therapeutic

strategies. The pathogenesis of MAFLD is multifactorial, heavily

influenced by obesity, insulin resistance, and dyslipidemia. The co-

occurrence of MAFLD in T2DM patients raises concerns as it

increases the risk of liver-related complications and cardiovascular

events (2, 3). This relationship is intricate, with overlapping

metabolic pathways and inflammatory processes that may drive

disease progression. Furthermore, MAFLD is closely linked to

metabolic dysregulation, primarily insulin resistance, which

exacerbates liver fat accumulation and inflammation (4). The

interplay between T2DM and MAFLD is significant; both
02
conditions share common risk factors and pathophysiological

mechanisms, including obesity and dyslipidemia, creating a

vicious cycle that further deteriorates metabolic health (5). Given

the insidious progression of T2DM with MAFLD, identification of

novel diagnostic markers significantly impacts the early detection

and treatment such kind of disease.

The correlation between autophagy and MAFLD has garnered

substantial attention. Autophagy, a conserved catabolic process,

plays a crucial role in physiological functions by degrading

misfolded proteins, eliminating dysfunctional organelles, and

influencing growth and aging. Autophagy’s formation of

autophagosomes, which ensnare substances for degradation and

unite with lysosomes housing hydrolytic enzymes, results in the

breakdown of encapsulated components into biomolecule

monomers like amino acids, fatty acids, and nucleotides for

cellular recycling. An integral mechanism of MAFLD involves

diminished autophagic capacity; the accumulation of excess lipids

in hepatocytes can hinder the autophagic process, impeding

efficient lipid removal and exacerbating fatty liver progression.

Moreover, oxidative stress emerges as a significant determinant of

autophagic levels in MAFLD; augmented reactive oxygen species

(ROS) production can disrupt autophagy regulation and

functionality. Research indicates a prevalent magnesium

deficiency in individuals with obesity and metabolic syndrome.

Magnesium supplementation demonstrates effectiveness in

ameliorating metabolic disorders such as obesity and fatty liver by
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modulating cellular lipid metabolism through autophagy

stimulation via the AMPK/mTOR pathway, thereby curbing lipid

buildup. Recognizing autophagy’s pivotal role in MAFLD

pathogenesis, drug development targeting the autophagic process

holds promise as a novel therapeutic avenue for MAFLD treatment.

The interplay between T2DM and MAFLD has not been fully

elucidated, particularly regarding the role of autophagy-related

genes. To address this knowledge gap, our study aimed to

examine the relationship between autophagy-related genes and

endoplasmic reticulum stress-associated genes in the context of

T2DM and MAFLD. We utilized relevant datasets from the GEO

database for differential analysis to identify differentially expressed

genes (DEGs). Subsequently, we employed WGCNA, PPI network

analysis, machine learning techniques, diagnostic ROC analyses,

and enrichment assessments to identify key biological markers and

elucidate their pathways, gaining deeper insights into the

underlying biological mechanisms.

In our rat model of T2DM combined with MAFLD, we verified

the expression levels of predicted genes, identifying IRAK3,

TNFRSF1A, CX3CR1, and JUNB as potentially significant

candidates. Further, leveraging single-cell analysis, we elucidated

potential mechanisms underlying the progression of T2DM and

MAFLD, focusing on precise cellular localization, differentiation,

developmental trajectories within pertinent cell populations, and

potential intercellular communication networks. This study not

only enhances our understanding of the pathogenesis of T2DM

combined with MAFLD but also identifies diagnostic factors linked

to autophagy. Such advancements are vital for improving early

identification, precise diagnosis, personalized treatment, and

disease monitoring for these conditions. The findings provide

novel opportunities and challenges for the prevention and

treatment of T2DM and MAFLD. The flow diagram of this study

is showed in the Supplementary Figure 1.
2 Material and methods

2.1 Identification of differential expression
genes

The datasets GSE15653, GSE89632, GSE24807 and GSE23343

were obtained from the GEO database through the GEOquery

package (version 2.72.0) (6),please refer to Supplementary Table

S1 for more details.GSE15653 and GSE89632 served as training sets,

while GSE24807 and GSE23343 was utilized as the validation set.

The MAFLD samples within the GSE89632 dataset were

categorized by different stages: Simple Steatosis (SS) and Non-

Alcoholic Steatohepatitis (NASH), and were designated as

GSE89632_Simple Steatosis (GSE89632_SS) and GSE89632_Non-

Alcoholic Steatohepatitis (GSE89632_NASH), respectively. The

data from GSE15653, GSE89632_SS, and GSE89632_NASH were

normalized using the normalizeBetweenArrays function from the

limma package (7). Principal component analysis (PCA) was
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performed on the normalized dataset. Difference analysis was

performed separately to obtain the respective DEGs, using limma

package (version 3.58.1), with screening criteria: |log2FC| > 0.5 and

P < 0.05 (8, 9). Subsequent analyses included the generation of PCA

plots, volcano plots, and basic numerical heatmaps using “ggplot2,”

alongside the creation of complex numerical heatmaps utilizing the

“ComplexHeatmap” package (version 2.20.0) (10).
2.2 WGCNA analysis

Weighted gene co-expression networks were analyzed using the

WGCNA package (version 1.72-5) (11) for the datasets GSE89632_SS

and GSE89632_NASH. Initially, the analysis focused on the top 25% of

genes based on expression variance, identifying and excluding potential

outlier samples through clustering analysis. Next, the

pickSoftThreshold function was employed to ascertain the optimal

soft threshold. After establishing the threshold, the cutreeDynamic

function identified dynamic modules and set the minimum gene count

required for each module (12). Initial modules were identified through

the Dynamic Tree Cut (DTC) method, with similar modules

subsequently merged based on the clustering relationships of

modular eigengene (ME). Subsequently, the TOMsimilarity function

calculated the topological molecular similarity matrix among genes,

with 1,000 genes randomly selected for heatmap visualization. Pearson

correlation coefficients were computed to evaluate associations between

modules and clinical traits, with statistical significance assessed via the

corPvalueStudent function (WGCNA R package). Modules

demonstrating significant correlations with both SS and NASH (p <

0.05) were selected for downstream analysis. KEGG pathway

enrichment analysis was then systematically performed on the genes

within these modules.
2.3 Protein-protein interaction network

The results of DEGs of GSE15653 were intersected with DEGs

of GSE89632_SS, GSE89632_NASH, and WGCNA modular genes,

respectively, and the results were visualized in an “UpSet plot”. In

order to explore the potential interactions of the above genes, we

used the STRING database (https://string-db.org/) for the analysis

(13), and the results were imported into Cytoscape (version 3.10.2)

for the analysis of protein interaction networks (14). Meanwhile, the

Maximal Clique Centrality (MCC), Degree and Molecular Network

Centrality (MNC) algorithms in CytoHubba plug-in were applied

to select the top 15 genes at key positions in the PPI network (15).

Subsequently, the results of the three algorithms were intersected

and visualized using a Wayne diagram. Chromosomal localization

analysis of the intersection hub genes was performed using the

“circlize package”. Finally, the correlation analysis was performed

using Spearman, and the correlation pie charts were used to show

the degree of association and interactions between genes, which

were visualized using the “ggplot2 package”.
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2.4 Acquisition of autophagy-related genes

In order to deeply investigate the molecular mechanisms related

to autophagy in T2DM combined with MAFLD, we combined the

resources from multiple databases. We obtained the autophagy-

associated molecular mechanisms from PubMedGene database

(https://www.ncbi.nlm.nih.gov/gene/), Genecard database (https://

www.genecards.org/), and GSEA database (https://www.gsea-

msigdb.org/), autophagy-related websites (http://www.autophagy.lu/

), (http://hamdb.scbdd.com/home/index/) to obtain autophagy-

related genes.
2.5 Machine learning

The GSE89632_SS and GSE89632NASH datasets underwent

individual screenings using LASSO, RFE-SVM, and Boruta

methods, respectively. The diagnostic LASSO coefficient screening

leveraged the glmnet package (Version 4.1.7) to analyze the cleaned

data, derive variable lambda, likelihood, and L1 regularization

values, along with visualization. We employed ten-fold cross-

validation (seed number: 2022) for validation (16). Additionally,

we utilized two feature selection strategies: Recursive Feature

Elimination (RFE) and the Boruta algorithm. RFE eliminates

features without significant impact on Accuracy during model

training repetitions (17), while the Boruta algorithm selects or

eliminates significant and non-significant features in each base

learner training iteration based on shadow features and Z-scores

(18). This study integrated SVM base learner scores from the e1071

package (Version 1.7-14) with the RFE strategy (17) through 10*10

fold cross-validation and applied the Boruta algorithm using the

Boruta package (Version 8.0.0) (18). Subsequently, the outcomes of

Lasso, Boruta, and RFE-SVM screenings, combined with

autophagy-related genes, were intersected to identify diagnostic

biomarkers linked to autophagy in T2DM and NAFLD. These

results were visually represented in Wayne diagrams.
2.6 Receiver operating characteristic
analysis

In datasets GSE89632_SS, GSE89632_NASH and GSE15653,

ROC curve analysis was performed on each of the three datasets

using the pROC software package to determine the sensitivity and

specificity of the above genes (19), to predict the ROC-related

information and data of the variables at their respective cut-off

values, and to assess the diagnostic accuracy, and the results were

presented as ROC The results were quantified by area under the

curve (AUC), and the AUC ranges between 0.5 and 1, and values

closer to 1 indicate superior diagnostic performance of the variable

in predicting clinical outcomes and visualized using ggplot2.
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2.7 Enrichment analysis

To investigate the functions and pathways of the above

biomarkers, we used the DAVID online database (https://

david.ncifcrf.gov/) for GO and KEGG enrichment analysis (20–

22). The “org.Hs.eg.db” package was used to convert the ID of the

input gene list, and the “clusterProfiler package” was used for

enrichment analysis (23). The significance of the enrichment

results was assessed by calculating the z-score value for each

enriched entry using the “GOplot” package (24). The results were

screened for significance and biological significance at P<0.05 and

FDR<0.2 (25). At the same time, GSEA(Gene Set Enrichment

Analysis) was performed (26), and the results were screened

according to the following criteria: normalized enrichment score |

NES| > 1, FDR < 0.25, p.adjust < 0.05. Finally, the results were

visualized using the “ggplot2 package”.
2.8 Immune cell infiltration analysis

In order to explore the immune cell infiltration in liver tissues of

patients with T2DM combined with MAFLD, the “Single Sample

Gene Set Enrichment Analysis” (ssGSEA) method was used in this

study (27). The ssGSEA algorithm provided by the GSVA package

was utilized for this purpose. Using markers specific to each class of

immune cells (28) as gene sets, the enrichment score for each class

of immune cells in each sample was calculated to assess the

infiltration of immune cells in each sample. All analyses and

visualizations were performed in R 4.2.1. We used the ggplot2

package to draw histograms to visualize the differences in immune

cell infiltration between the normal and control groups. In addition,

Spearman statistics were used to analyze the correlation between

them one by one, and the linkET package was used for the

calculation of the data portion of the network graph. The analysis

results were visualized by ggplot2 package for group comparison

plots, lollipop plots, correlation scatter plots, and correlation

network heatmaps, thus demonstrating more intuitively the

infiltration of immune cells in liver tissues of patients with T2DM

combined with MAFLD.
2.9 Preparation of T2DM combined with
MAFLD rat model

Thirty healthy clean-grade male Sprague–Dawley rats, aged 6–8

weeks, weighing 180–220 g, were provided by Wuhan Yunkron

Technology Company. The animal production and use license

number is DCXR(E)2018-0021. SYXK (E) 2013-0069,

respectively. After 1 week of normal feeding, high-fat and high-

sugar diets and regular diets were prepared according to the

formula. Twenty rats were fed with high-fat and high-sugar diet,
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high-fat and high-sugar diet feed formula: 10% lard, 20% sucrose,

2% cholesterol, 60% ordinary feed, 8% egg yolk powder(Jiangsu

Xietong Pharmaceutical Bio-engineering Co., Ltd.) and 10 rats in

normal control group were fed with normal diet. Twenty rats were

fed a 100 g high-fat and high-sugar diet daily with free access to

food and water. Corn oil 5 mL/kg was given by gavage on an empty

stomach at 8:00 am every morning. At the end of the 12th week, 10

rats in the model group were given intraperitoneal injection of

streptozotocin (STZ) (30 mg/kg) overnight fasting, and the other 10

rats in the model group were not given STZ injection. Ten control

rats fed a regular diet were injected with the corresponding volume

of citrate buffer. Blood samples were collected from the tail vein of

10 rats fed a high-fat and high-sugar diet and injected with STZ 3

days later, and random blood glucose was≥16.7 mmol/L. Blood

glucose was monitored after 2 weeks, and fasting blood glucose was

detected on the 2nd, 4th, 6th, 8th, 10th, 12th and 14th days. At the

14th week, 4 rats in each group were randomly selected to complete

liver ultrasound, and fatty liver results were formed to determine

the success of modeling. Finally, the rats were divided into 3 groups:

(1) T2DM+MASLD group (n=10); (2) High-fat and high-glucose

group (n=10); (3) normal control group (n=10); After 15 weeks, the

rats were sacrificed under anesthesia, and the livers were collected,

rinsed with normal saline at 4°C, weighed and placed in

preservation solution and stored in a refrigerator at −80°C.
2.10 Quantitative real time PCR

Real-time fluorescence quantitative PCR (Polymerase Chain

Reaction): 0.15 g of rat liver tissue was taken from each group,

and total RNA was extracted by the Trizol method. cDNA was

reverse-transcribed into the corresponding cDNA in accordance

with the reverse-transcription kit, and then subjected to real time

Polymerase Chain Reaction (PCR)、RELB、S100A9 and SOCS1

primer sequences are shown in Supplementary Table S2, Chain

Reaction), PCR reaction total system 20mL, PCR amplification

conditions: denaturation at 95°C for 10 min, annealing at 60°C

for 1 min, extension at 95°C for 15 s, 40 cycles, each sample set up 3

replicate wells, internal reference GAPDH. The results of the

experiments were analyzed by Bio-Rad Fluorescence Quantitative

Analysis. The results of the experiments were read by Bio-Rad

fluorescence quantitative analysis software, and the quantitative

calculation of the mRNA expression levels of and in each group was

expressed by 2−DDCt (CT is the number of cycles). The main

observation indexes were RELB, S100A9, SOCS1 mRNA expression

levels in rat liver tissues in each group.
2.11 Immunohistochemical staining

Kidney tissue specimens were fixed for 48h and paraffin-

embedded. The paraffin-embedded tissue sections were serial

sectioned at 3 mm, dewaxed and hydrated. 3% H 202 was incubated

at room temperature for 10 min to remove endogenous peroxidase.

After 10 min of citrate antigen repair, primary antibodies RELB (1:50),
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S100A9(1:300), SOCS1 (1:300), were added dropwise and incubated at

37°C for 25 min, and then freshly prepared DAB color development

solution was added dropwise. The film was stained with hematoxylin

and sealed with neutral gum. At the same time, PBS was used as

negat ive control instead of primary antibodies . The

immunohistochemical pathology pictures were analyzed using

ImageScope software as follows: three different 400x fields of view

were intercepted from each section, enter the analysis module of

lmageScope software, and set all the dark brown color on the tissue

sections as strong positive, brownish yellow as moderate positive, light

yellow as weak positive, and blue nuclei as negative. Each tissue point

was then identified and analyzed to find out the area (in pixels) of

strong positive, moderate positive, weak positive and negative, the

percentage of positivity and finally the H-score rating.
2.12 Single-cell data preprocessing and
clustering annotation

High-throughput sequencing expression profile data (GSE136103)

were downloaded from the Gene Expression Omnibus (GEO) database

(http://www.ncbi.nlm.nih.gov/) (29). Twenty liver tissue samples

were selected, including 9 MAFLD patients and 11 healthy

individuals. Doublets in each sample were identified using

DoubletFinder (30). Subsequently, doublets were filtered out,

retaining cells meeting the following criteria: nFeature_RNA > 500

and < 3000; nCount_RNA < 10,000; percent_mito < 10. Cells from

different samples were then merged using the merge function and

analyzed using the Seurat package (31). Using the NormalizeData

function, data were normalized for each library with the

LogNormalize method and scale.factor of 10,000. The top 2,000

variable features were identified through the FindVariableFeatures

function (32), and linear dimensionality reduction was performed

using the RunPCA function with default parameters (npcs = 50).

Batch effects were corrected using the RunHarmony function (33),

followed by nonlinear dimensionality reduction using the

RunUMAP function. The nearest neighbor graph was constructed

using the FindNeighbors function (k.param = 20) with 30 principal

components. Cell clustering was completed using the FindClusters

function. Cluster marker genes were identified through the

F i n dA l lMa r k e r s f u n c t i o n w i t h m i n . p c t = 0 . 5 a n d

logfc.threshold = 1. Single-cell samples were clustered and

characterized using known lineage markers and manually

annotated with reference to the human liver cell atlas on the

CellMarker2 website (http://117.50.127.228/CellMarker/) (34).

Differential expression analysis between cell clusters was

performed using the FindMarkers function (Wilcoxon rank-sum

test, p_val < 0.05 & abs(avg_log2FC) > 0.5).
2.13 Exploring cell clusters associated with
MAFLD

To further explore intergroup heterogeneity across cell clusters,

we analyzed proportional differences in cell counts between control
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and disease groups within distinct clusters, intergroup density

variations, and distributional biases across conditions.

Additionally, to test changes in cellular abundance at high

resolution between groups/conditions, we employed the

neighborhood abundance method in Milo (v2.2.0) (35) using the

functions “buildGraph” and “makeNhoods” with parameters:

“K=30” , “d=50 ” , “prop=0 .2 ” , “ r efined=TRUE” , and

“refinement_scheme=reduced_dim”, indicating sampling using

dimensionality-reduced data, with remaining parameters selected

according to Milo’s standard workflow recommendations. For

pathway activity scoring of each cell cluster, we used the R

package AUCell (v1.28.0): first, gene expression rankings per cell

were computed via AUCell_buildRankings using the expression

matrix with default parameters; then, custom-defined gene sets

constructed from key genes identified in bulk-RNA analyses were

applied to score individual cells; during this process, for each cell,

the Area Under the Curve (AUC) value was calculated with

AUCell_calcAUC based on gene expression rankings, where the

AUC value represents the proportion of genes in the custom-

defined set appearing among top-ranked genes per cell (36). Gene

Set Variation Analysis implemented in the GSVA package (v2.0.0)

was applied for gene set enrichment analysis using the

“HALLMARK gene set” exported via GSEABase (v1.44.0).

Intergroup differences in pathway activity scores per cell cluster

between control and disease groups were computed using the

LIMMA package (v3.62.2). Finally, based on intergroup

heterogeneity patterns across cell clusters, we extracted Liver

Sinusoidal Endothelial Cells (LSECs) and repeated the standard

Seurat V5 workflow on these cells to identify and visualize

endothelial subpopulations exhibiting significant distributional

differences between groups.
2.14 Pseudo-temporal analysis

Unsupervised pseudotemporal analysis was performed using

the “Monocle” package (v2.34.0) (37). First, a cell dataset containing

the expression matrix, phenotypic data, and feature data was

constructed with the newCellDataSet function (expressionFamily

= negbinomial.size). Next, size factor dispersion and gene

expression across cells were corrected via estimateSizeFactors and

estimateDispersions functions. Subsequently, dimensionality

reduction was conducted using the DDRTree method (parameter

max_components = 2), and cell ordering and visualization were

performed with plot_cell_trajectory (38), while filtering highly

variable genes correlated with pseudotime; expression changes of

these genes along pseudotime were analyzed using the

differentialGeneTest function. Finally, the filtered genes were

clustered into distinct groups based on expression patterns and

visualized using plot_pseudotime_heatmap. To identify genes

bifurcating cells into different branches while exploring specific

roles of key genes from bulk RNA analyses in single-cell pseudotime

trajectories, we conducted “Branched Expression Analysis

Modeling” (BEAM) analysis (39), further enhancing the filtering

threshold; genes from BEAM analysis were visualized via
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plot_genes_branched_heatmap. Subsequently, KEGG functional

enrichment analysis was performed for genes within each cluster

using clusterProfiler (v4.14.4) and org.Hs.eg.db (v3.20.0) packages.
2.15 Cell–cell communication

Initially, to further explore the LSEC clusters derived from prior

research that may be closely associated with MAFLD progression,

we processed and re-clustered LSECs using the standard Seurat V5

workflow. Then, by comparing these clusters through UMAP

visualization of MAFLD and healthy control groups, the LSEC

subpopulation exhibiting the most distinct cellular distribution was

identified. Additionally, beyond LSECs, we identified cell clusters

specifically distributing “bulk-RNA key genes” through scatter plots

of gene distribution across cells; these cell clusters were

simultaneously analyzed with LSECs for cell-cell communication

analysis using the “CellChat” package (v2.1.2) (40). A random seed

was set (seed=0528), and 8000 cells were randomly selected to

create a CellChat object. Ligand-receptor interactions of “secretory

signaling” were analyzed using “human” data from CellChatDB.

The netVisual_circle function displayed the number and strength of

inter-cell connections, while the netVisual_bubble function

illustrated communications between different cell types.

Subsequently, the netVisual_aggregate function demonstrated the

communication network of a specific signaling pathway and

calculated the contribution of various ligands. The mutual

communication network between cells was visualized using the

netVisual_individual function. Network centrality analysis was

conducted using the netAnalysis_computeCentrality function (41)

and represented as a heatmap.
2.16 Statistical analyses

Data analysis utilized SPSS 26.0 statistical software. Normally

distributed measurement data were expressed as mean ± standard

deviation and compared between two groups using independent

samples t-test. Non-normally distributed measurement data were

presented using the median and interquartile range, and

comparisons between groups were conducted using the Mann-

Whitney test. Statistical significance was set at P < 0.05.
3 Results

3.1 Screening of DEGs

The datasets GSE15653 and GSE89632 were downloaded from

GEO data. The GSE89632 dataset was divided into GSE89632_SS

group and GSE89632_NASH group according to SS and NASH

samples. PCA principal component analysis was performed

separately, and in the GSE15653 dataset, PC1 was 26.2% and PC2

was 8.7% (Figure 1A); in the GSE89632_SS dataset, PC1 was 30.6%

and PC2 was 12.1% (Figure 1B); in the GSE89632_NASH dataset,
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PC1 was 30.3% and PC2 was 12.1% (Figure 1C). The volcano plot

showed that 1686 differentially expressed genes were identified in

the GSE15653 dataset with |log2(FC)|>0.5, p-value<0.05 as the

screening threshold, of which 864 were up-regulated and 822

were down-regulated (Figure 1D). In the GSE89632_SS dataset,

2219 differentially expressed genes were identified, of which 1003

genes were up-regulated in expression and 1216 genes were down-

regulated in expression, as in (Figure 1E). In the GSE89632_NASH

dataset, 2248 differentially expressed genes were identified, of which

1062 genes were up-regulated in expression and 1186 genes were
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down-regulated in expression, as in (Figure 1F). The ring value

heatmap and complex value heatmap showed the genes ranked

top40 in differential folds in GSE15653 (Figure 1G), GSE89632_SS

(Figure 1H) and GSE89632_NASH (Figure 1H), respectively.
3.2 WGCNA analysis

Weighted gene co-expression network analysis (WGCNA) was

performed on GSE89632SS, GSE89632NASH. Hierarchical
FIGURE 1

Genes of interest. (A–C) Principal component analysis of GSE15653, GSE89632_SS and GSE89632_NASH. (D–F) Volcano plots of differentially
expressed mRNAs in GSE15653, GSE89632_SS, and GSE89632_NASH, |logFC| > 0.5, P < 0.05. (G, H) Expression heatmaps of the top40 DEGs in the
GSE15653 and GSE89632 datasets.
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clustering was performed based on similarity or correlation between

samples and visualized as a hierarchical dendrogram (Figures 2A, E).

The distance between samples indicated the degree of similarity or

correlation between samples, and outlier samples were removed by

pruning operation, and the outlier samples rejected were

GSM2385767 and GSM2385782, and the most representative

subset of samples was selected, and the clustering differences

between different samples in the Normal group and the MAFLD

group were visualized in a joint heat map (Figures 2C, G). The top

25% of genes with the largest fluctuations were selected for WGCNA

analysis based on standard deviation ranking. The scale-free fit

indices and average connectivity of various soft-threshold powers

were evaluated on the basis of scale-free R2. Among them,

GSE89632_SS selected soft threshold powers with b = 11 and

scale-free R2 = 0.8 (Figure 2B), and GSE89632NASH selected soft

threshold powers with b = 5 and scale-free R2 = 0.8 (Figure 2F).

Gene clustering tree with module identification demonstrates the

results of hierarchical clustering of genes in the two datasets and

categorizes genes into different modules, further merging similar

modules to reduce redundancy (Supplementary Figures 2A, D). The

hierarchical clustering results between different modules were

visualized using module clustering dendrogram (Supplementary

Figures 2B, E), while the correlations between different modules

were visualized with modal correlation heatmap (Supplementary

Figures 2C, F). Finally, GSE89632SS identified 7 modules

(Figure 2D), GSE89632_NASH identified 7 modules (Figure 2H).

We performed KEGG enrichment analysis on genes within the

"brown" modules of GSE89632_SS and GSE89632_NASH. The

results demonstrated that in the SS group, pathways including

TNF-JNK signaling pathway,IL-1/IL-1R-JNK signaling cascade,

and TLR2/4-MAPK signaling axis collectively indicate the role of

pro-inflammatory signaling in driving steatosis progression toward
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fibrosis. Concurrently, pathways such as Environmental factor-

induced PI3K signaling pathway and Environmental factor-

mediated RAS-ERK signaling cascade (activated by heavy metals)

suggest synergistic interactions between environmental carcinogens

and metabolic dysregulation. In the NASH group, the recurrent

enrichment of TNF-JNK signaling pathway and Environmental

factor-mediated RAS-ERK signaling cascade further validates

conserved mechanisms underlying inflammation-carcinogenesis

transition. The observed negative correlation may reflect

compensatory dysregulation of protective mechanisms during

disease progression, where downregulation of module genes

attenuates their inhibitory effects on pro-inflammatory/

carcinogenic pathways, thereby accelerating pathological

advancement (Supplementary Files 1, 2). Based on this

observation, we selected the "brown" modules from both SS and

NASH WGCNA cohorts.
3.3 Protein-protein interaction network

UpSet plots visualize the results of intersections of DEGs of

GSE15653 taken with GSE89632_SS, GSE89632_NASH, SS

WGCNA, NASH WGCNA, respectively. (Figure 3A). In order to

better understand the interactions between genes, we used the

STRING database and constructed the PPI network (Figures 3B,

C), while the CytoHubba plugin was used to identify the top 15 hub

genes in the GSE89632_SS group and the GSE89632_NASH group,

respectively, based on the MCC, MNC, and Degree algorithms

(Figures 3D–F, 3H–J), and then these three algorithms took the

intersection to obtain 13 hub genes each (Figures 3G, K). Next, we

investigated the chromosomal localization (Figures 3L, M) and

interrelationships (Figures 3N, O) of the 13 hub genes.
FIGURE 2

WGCNA.(A–D) GSE89632_SS.(E–H) GSE89632_NASH.(A, E) Sample dendrogram with outlier samples above the red line. (B, F) Scale-free fit indices
and average connectivity for different soft thresholds. (C, G) Clustering dendrogram after fusing similar modules. (D, H) Module-trait association plot.
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3.4 Shared screen of multiple machine
learning algorithms

We employed Lasso, Boruta, and RFE-SVM algorithms to

identify hub genes associated with T2DM and MAFLD in the

GSE89632_SS and GSE89632_NASH datasets. In GSE89632_SS,

Lasso analysis revealed four significant variables: CLDN7, IRAK3,

TFRC, and TNFRSF1A (Figures 4A, B). The Boruta algorithm

identified ten significant variables, including CDKN1A, GJA1,
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IL1B, IRAK3, LBP, SOCS1, STAT3, TFRC, TLR2, and TNFRSF1A

(Figure 4C). RFE_SVM highlighted eight features: IRAK3, MMP9,

TNFRSF1A, TLR2, JUNB, TFRC, RELB, and CDKN1A (Figure 4D).

In GSE89632_NASH, Lasso analysis identified five significant

variables: ASPM, CCNF, CLEC4E, CX3CR1, and JUNB (Figures

4F, G). Furthermore, the Boruta algorithm filtered eleven significant

variables, specifically ASPM, CCNF, CLEC4E, CX3CR1, GJA1,

IL1B, IRAK3, JUNB, SOCS1, TLR2, and TNFRSF1A (Figure 4H).

Two features were identified through RFE_SVM: JUNB and
FIGURE 3

Protein-Protein Interaction (PPI) Network and 13 Hub Genes. (A) UpSet Plot. (B, C) PPI networks for GSE89632_SS and GSE89632_NASH.
(D–F) GSE89632_SS: Top 15 genes identified by the MCC, MNC, and Degree algorithms. (H–J) GSE89632_NASH: Top 15 genes identified by the
MCC, MNC, and Degree algorithms. (G) GSE89632_SS: Venn diagrams illustrating the intersecting genes across the three algorithms.
(K) GSE89632_NASH: Venn diagram depicting the intersection of genes identified by the three algorithms. (L) GSE89632_SS: Chromosomal
localization of 13 hub genes. (M) GSE89632_NASH: Chromosomal localization of 13 hub genes. (N) GSE89632_SS: Correlation heatmap of 13 hub
genes. (O) GSE89632_NASH: Correlation heatmap of 13 hub genes.
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FIGURE 4

Machine learning screening biomarker. (A–E) Dataset GSE89632_SS. (F–J) Dataset GSE89632_NASH. (A, F) Cross validation of parameter selection
in Lasso regression. (B, G) Lasso regression for 13 hub genes. (C, H) Boruta algorithm feature gene screening. (D, I) SVM-RFE algorithm feature gene
screening. (E, J) Wayne plots. (K) ROC curves for IRAK3, TFRC, TNFRSF1A in GSE89632_SS. (L) ROC curves for CX3CR1, JUNB in GSE89632_NASH.
(M) ROC curves for IRAK3, TFRC, TNFRSF1A, CX3CR1, JUNB in GSE15653. (N) ROC curves for IRAK3, TFRC, TNFRSF1A, CX3CR1, JUNB in GSE24807.
(O) ROC curves for IRAK3, TFRC, TNFRSF1A, CX3CR1, JUNB in GSE23343. AUC, area under the curve; TPR, true positive rate; FPR, false positive rate.
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CX3CR1 (Figure 4I). Subsequently, we intersected the machine

learning results from both datasets with autophagy-related genes to

derive diagnostic biomarkers associated with autophagy in type 2

diabetes mellitus combined with NAFLD (Figures 4E, J).
3.5 Performance of five diagnostic
biomarkers

We assessed the diagnostic performance of IRAK3, TFRC,

TNFRSF1A, CX3CR1, and JUNB using the datase t s

GSE89632_SS, GSE89632_NASH, and GSE15653 for training,

followed by plotting ROC curves. The results indicated that in

GSE89632_SS, the AUC for IRAK3, TFRC, and TNFRSF1A

exceeded 0.8 (Figure 4K). In GSE89632_NASH, the AUC for

CX3CR1 and JUNB also surpassed 0.8 (Figure 4L), reflecting their

high predictive accuracy. In GSE15653, the AUCs for all five genes

were above 0.8 (Figure 4M). Subsequently, we conducted external

validation using independent datasets GSE24807 and GSE23343.

The results showed that in GSE24807, the AUC values of IRAK3,

TNFRSF1A, CX3CR1, and JUNB were all greater than 0.6, while in

GSE23343, the AUC values of IRAK3, TNFRSF1A, CX3CR1, and

JUNB were all greater than 0.5 (Figures 4N, O). These results

indicate that in the two independent external validation sets, these

indicators also possess certain diagnostic value, which is consistent

with our previous predictions. Ultimately, we identified IRAK3,

TNFRSF1A, CX3CR1, and JUNB as diagnostic biomarkers for

T2DM complicated with MAFLD associated with autophagy and

endoplasmic reticulum stress.
3.6 Enrichment analysis of GO and KEGG

During the GO and KEGG enrichment analysis, TNFRSF1A and

JUNB were predominantly enriched in the TNF signaling pathway,

while TNFRSF1A and TFRC showed significant enrichment in the

HIF-1 signaling pathway. Furthermore, TNFRSF1A demonstrated

substantial enrichment in the NF-kappa B signaling pathway, MAPK

signaling pathway, Fluid shear stress and atherosclerosis, and Insulin

resistance (Figure 5A, Figure 5C). CX3CR1 exhibited notable

enrichment in the Cytokine-cytokine receptor interaction pathway,

and TFRC displayed significant enrichment in the Hematopoietic cell

lineage (Figures 5B, D).
3.7 Enrichment analysis of GSEA

In Enrichment analysis of GSEA, IRAK3、TNFRSF1A 和

JUNB commonly enriched in REACTOME_SIGNALING_BY_

INTERLEUKINS(Supplementary Figure 3A, Supplementary

Figure 3E, Supplementary Figure 3M).IRAK3 mainly enriched in

BIOCARTA_IL1R_PATHWAY(Supplementary Figure 3B);

REACTOME_TOLL_LIKE_RECEPTOR_TLR1_TLR2_CASCADE
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(Supplementary Figure 3C);REACTOME_TOLL_LIKE_

RECEPTOR_CASCADES (Supplementary Figure 3D).TNFRSF1A

mainly enr iched in KEGG_CYTOKINE_CYTOKINE_

RECEPTOR_INTERACTION (Supplementary Figure 3F);

REACTOME_INTERLEUKIN_10_SIGNALING (Supplementary

F i gu r e 3G) ;KEGG_MAPK_S IGNALING_PATHWAY

(Supplementary Figure 3H).TFRC mainly enriched in

PID_HIF1_TFPATHWAY(Supplementary Figure 3I) ;

KEGG_HEMATOPOIETIC_CELL_LINEAGE (Supplementary

Figure 3J) . JUNB mainly enr iched in REACTOME_

INTERLEUKIN_4_AND_INTERLEUKIN_13_SIGNALING

(Supplementary Figure 3K);WP_TGFBETA_SIGNALING_

PATHWAY(Supplementary Figure 3L); PID_IL6_7_PATHWAY

(Supplementary Figure 3N);REACTOME_SIGNALING_BY_

TGF_BETA_RECEPTOR_COMPLEX (Supplementary Figure 3O).
3.8 Infiltration and functional exploration
of immune cells

To assess immune cell infiltration and functional differences

between the T2DM and control groups, we utilized the ssGSEA

method to evaluate various immune cell subpopulations. The group

comparison plot revealed increased levels of Activated dendritic cells,

Monocytes, and Regulatory T cells in the T2DM group, with

decreased levels of Memory B cells (Figure 6A). The correlation

coefficient’s absolute value indicates the strength of correlation: 0.3-

0.5 denotes weak correlation, 0.5-0.8 signifies moderate correlation,

and 0.8–1 represents strong correlation; P < 0.05 indicates statistical

significance. In the T2DM group, IRAK3 exhibited a negative

correlation with Natural killer cell infiltration level (R=-0.933)

(Figure 6B, Supplementary Figure 4A). The correlations between

TNFRSF1A and Effector memory CD8T cells, Gamma delta T cells,

Macrophages, Natural killer cells, Type 1 T helper cells, and

Regulatory T cells were positive (R=0.733, 0.700, 0.717, 0.717,

0.700, 0.733) (Figure 6C, Supplementary Figures 4B–G). CX3CR1

showed a negative correlation with Type 17 T helper cell infiltration

(R=-0.983) (Figure 6D, Supplementary Figure 4H). JUNB displayed a

positive correlation with Monocyte infiltration (R=0.700) (Figure 6E,

Supplementary Figure 4I). Additionally, correlations existed between

different types of immune cells (Supplementary Figure 4J).
3.9 Real-time fluorescence quantitative
PCR results

The results of real-time fluorescence quantitative PCR analysis

showed that there were significant differences in the expression

levels of IRAK3, TNFR1, CX3CR1 and JUNB between the two

groups (P < 0.05); among them, the mRNA expression levels of

IRAK3, TNFR1, CX3CR1 and JUNB in the liver tissues of rats in the

T2DM combined with MAFLD group were significantly higher

than that in the control group (P > 0.05).), as shown in Figure 7F.
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3.10 Immunohistochemical results

Immunohistochemical picture analysis showed that the

expression levels of the four factors, CX3CR1, IRAK3, JUNB, and

TNFR1, were significantly different between the T2DM & MAFLD

groups and the Control group (P < 0.05); and the T2DM combined

with MAFLD group were significantly higher than the Control

group. For details, see Supplementary Table S3 and Figures 7A–E.
3.11 Single-cell data preprocessing and
clustering annotation

A comprehensive scRNA-seq analysis was conducted using

publicly available data from healthy and MAFLD liver samples.

The clustering results, illustrated through dendrograms

(Supplementary Figure 5A) and marker genes bubble plots

(Figure 8B), culminated in the identification of 13 major cell

clusters at a resolution of 0.6. Distinct cell types were pinpointed,
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including Cycling(cycling cells) (STMN1,MKI67), B_cell (CD79A,

CD79B,MS4A1), Plasma(Plasma cell) (CD79A,IGHA1), pDC

(plasmacytoid dendrit ic cel l) (LILRA4,CLEC4C), Mes

(mesenchymal cell) (PDGFRB,ACTA2,COL1A1,COL1A2,

COL3A1,DCN), Cho (Cholangiocyte) (EPCAM,KRT19,FXYD2),

T_cell (CD3D,CD3E,CD3G,CD8A), ILC (innate lymphoid cell)

(KLRF1,KLRC1,GZMB,NKG7), Kupffer (CD163,MARCO), Neu

(Neutrophils) (S100A8,S100A9), cDC(Conventional Dendritic

Cell) (CLEC10A,CD86), LSEC(Liver Sinusoidal Endothelial Cel)

(CLEC14A,CD34,VWF,STAB2,CLDN5) and LEC(Lymphatic

Endothelial Cells) (PROX1,TFF3,CCL21). The findings were

further visualized using UMAP (Figure 8A).
3.12 Exploring cell clusters associated with
MAFLD

We analyzed the proportional differences in cell counts between

control and disease groups across distinct cell clusters, with LSEC
FIGURE 5

Functional enrichment analysis. (A, B) Lollipop diagrams showing GO and KEGG enrichment analysis of GSE89632_SS group and GSE89632_NASH
group, respectively. (C, D) Heatmaps showing the pathway enrichment of some hub genes in GSE89632_SS and GSE89632_NASH groups,
respectively.
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showing a significantly higher proportion in the MAFLD group

(Figure 8C), along with proportional variations of cell clusters

among different samples (Figure 8D). We performed density

analysis of inter-group cell counts at a two-dimensional level,

where relative brightness indicates higher density of the

corresponding cell cluster in its respective group (Figures 9A, B).

Subsequently, we evaluated the distributional preference between

MAFLD and Control groups using the Ro/e index (Figure 9C), as
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well as distributional preferences across individual samples

(Figure 9D), revealing LSEC exhibiting stronger enrichment

tendencies in the disease group. Further, in the Milo differential

abundance testing, we identified significant disease-state-driven

changes occurring specifically in LSEC, with a negative Log Fold

Change in relative abundance (Figures 9E, F). Despite LSEC’s

preferential enrichment in the MAFLD group (Figure 9C), the

actual abundance of LSEC cells was significantly reduced
FIGURE 6

Immune cell infiltration assessment. (A) Subgroup comparison plot demonstrating the difference in immune cell infiltration between the two groups
as calculated by the ssGSEA algorithm. (B–E) Lollipop plots showing the correlation between IRAK3 (B), TNFRSF1A (C), CX3CR1 (D), JUNB (E) and
immune cells. Note: Significance levels are denoted as follows: ns p ≥0.05; * p < 0.05; ** p < 0.01; *** p < 0.001.
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(Figure 9F), suggesting potential widespread LSEC activation or

proliferation in MAFLD state alongside intrinsic heterogeneity

within LSEC populations, where certain subpopulations may

undergo suppression or reduction. Subsequently, we explored

cellular heterogeneity through differential gene expression and

enrichment scoring perspectives to elucidate connections between

key genes and various cell clusters. Using thresholds of |

avg_log2FC|>1 and p_val<0.05, the FindMarkers function

identified differentially expressed genes suitable for a multi-group
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volcano plot (Figure 10A). The potential marker genes for diabetes-

combined MAFLD, derived from bulk RNA analysis, displayed

significant differences during single-cell differential analysis.

Specifically, JUNB was upregulated in pDC, Neu, and kupffer, but

downregulated in LEC; CX3CR1 was upregulated in Neu, LSEC,

kupffer, ILC, and cDC; IRAK3 exhibited downregulation in Neu

and LSEC. CX3CR1 (Figures 10C, D) and IRAK3 (Figures 10E, F)

also showed distinct distributional variations across cell types,

predominantly localized within five cell populations: LSEC, ILC,
FIGURE 7

(F). IRAK3, TNFR1,CX3CR1, JUNB mRNA expression in liver tissues of rats in T2DM and MAFLD group and control group. (A–E), Expression levels of
antigen-antibody complexes in the liver tissues of rats in the T2DM and MAFLD groups and the Control group. Note: Significance levels are denoted
as follows: ns p ≥0.05; * p < 0.05; ** p < 0.01; *** p < 0.001.
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Neu, cDC, and kupffer. Additionally, using key genes including

JUNB, CX3CR1, IRAK3, and TNFRSF1A to construct a custom

gene set, we scored activity levels across cell clusters on this custom

dataset. Results revealed relatively higher activity of the key gene-

defined custom set within these five cell types: Neu, LSEC, kupffer,

ILC, and cDC (Figure 10B). Finally, we focused our investigation on

LSEC and the other four cell types (ILC, Neu, cDC, kupffer) for

subsequent research. Through gene set variation analysis in LSEC,

we enriched pathways including “TGF BETA SIGNALING”, “WNT

BETA CATENIN SIGNALING”, and “HEDGEHOG SIGNALING”

(Figure 11A). The activity of these pathways indicates that in

MAFLD, LSECs l i ke l y r e s ide in a h igh ly dynamic

microenvironment involved in regulating cell proliferation,

differentiation, immunity, and cellular interactions. When

comparing enrichment differences in LSEC between disease and

MAFLD groups, we observed significantly higher enrichment of

“HEDGEHOG SIGNALING” in the MAFLD group. Additionally,

pathways including “MYC TARGETS V2”, “PI3K-AKT-MTOR

SIGNALING”, “IL6-JAK-STAT3 SIGNALING”, “APOPTOSIS”

and “PROTEIN SECRETION”—significantly associated with

biological processes like cell proliferation, survival, metabolic

regulation, immune response, inflammatory response, and

programmed cell death—exhibited substantial inter-group

enrichment differences (Figure 11B). These results demonstrate
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that LSECs likely play crucial roles in MAFLD pathogenesis,

warranting further investigation into their specific mechanisms

during MAFLD development.
3.13 Pseudo-temporal trajectory analysis of
LSEC during MAFLD and BEAM analysis

Re-clustering of LSEC through secondary dimensionality

reduction yielded 13 subpopulations, among which clusters 2, 6,

7, 8, and 12 showed significant reduction compared to the control

group. This aligns with prior Milo analysis conclusions, indicating

intrinsic heterogeneity within LSEC populations where specific

subpopulations may be suppressed or diminished in the disease

state. Conversely, clusters 0, 1, 5, 9, and 10 exhibited marked

expansion. We defined the expanded clusters 0, 1, 5, 9, 10 as

“LSEC_inc” and the reduced clusters 2, 6, 7, 8, 12 as “LSEC_red”

(Figure 12A). We conducted a pseudo-temporal trajectory analysis

on LSEC, dividing the entire trajectory into five stages

(Supplementary Figure 5B), showing the distribution of different

LSEC subgroups in the trajectory (Supplementary Figure 5C) and

the direction of differentiation and development (Supplementary

Figure 5D). The cell density plot along the timeline further

illustrates the distribution and dynamic changes of LSEC during
FIGURE 8

Cell types annotation. (A) UMAP plot showing the clustering results of cells at 0.6 resolution. (B) Bubble diagram showing Marker genes used to
identify major cell types. (C) Percentage of different cell types between Control and MAFLD groups. (D) Percentage of different cell types among
different samples between Control and MAFLD groups.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1587225
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Wang et al. 10.3389/fimmu.2025.1587225
the pseudo-temporal process (Supplementary Figure 5E). There is a

significant difference in the temporal trajectory distribution of LSEC

between the Control group and the MAFLD group (Supplementary

Figure 5F). Subsequently, we analyzed the expression patterns of

highly variable genes in LSEC during the fitting process. These

highly variable genes were clustered into four different clusters.

Among our key genes of interest, JUNB—identified as a highly

variable gene along the pseudotime trajectory—was grouped into

the fourth cluster (Figure 12B). To further explore the role of JUNB

in pseudotime progression, through BEAM (Branched Expression
Frontiers in Immunology 16
Analysis Modeling) analysis, we identified the potential regulatory

genes that regulate the branches of LSEC in the pseudo-temporal

process, and clustered these genes into four different clusters

according to different expression patterns. In BEAM analysis,

JUNB was also clustered as a highly variable gene in the first

cluster (Figure 12C). These results suggest that JUNB may

participate in critical regulatory processes during pseudotime. To

investigate further, we performed KEGG enrichment analysis on

genes in the first cluster (containing JUNB) from BEAM analysis.

Consequently, we enriched pathways potentially relevant to LSEC,
FIGURE 9

Cell clusters associated with MAFLD. (A, B) Density plots. (C) Distributional preference of different cells between groups evaluated by the Ro/e index.
(D) Distributional preference of different cells across samples assessed by the Ro/e index. (E) Neighborhood graph of cells generated using Milo
differential abundance testing. Nodes represent neighborhoods across different cell cluster populations. Color indicates the fold-change between
MAFLD patients and healthy donors. Increased neighborhoods are shown in red, decreased neighborhoods in blue. (F) Beeswarm and box plots
display the distribution of fold-change across neighborhoods in different cell type populations. Color coding follows the scheme in (E).
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including “Fluid shear stress and atherosclerosis” and “Leukocyte

transendothelial migration” signaling pathways, indicating that

LSEC alterations during MAFLD progression may relate to fluid

shear stress and leukocyte transendothelial migration

(Supplementary Figure 5G, Supplementary Table S4).
3.14 Cell–cell communication

We employed the CellChat package to analyze cell-cell

communication networks among five key cell types in MAFLD:

LSEC, ILC, Neu, cDC, and kupffer. “LSEC_red” and “LSEC_inc”

were defined as cell types at an equivalent hierarchical level to ILC,
Frontiers in Immunology 17
Neu, cDC, and kupffer. Circular plots depict interaction quantities

(Supplementary Figure 6A) and interaction strengths

(Supplementary Figure 6B) among cellular populations. When

“LSEC_inc” acts as a signal receiver, it communicates with

multiple cell types through ligand-receptor pairs including CCL5-

ACKR1 and PPIA-BSG (Figure 13A); when serving as a signal

sender, it interacts via MIF-(CD74+CD44), MIF-(CD74+CXCR4),

and PPIA-BSG (Figure 13B). For “LSEC_red” as a receiver,

communications occur through GZMA-F2R and PPIA-BSG pairs

(Figure 13C); as a sender, interactions involve MIF-(CD74+CD44),

MIF-(CD74+CXCR4), and PPIA-BSG pairs (Figure 13D). The

dominant communicating ligand-receptor pairs remained

consistently identified, with corresponding signaling pathways
FIGURE 10

Differential expression analysis of different cell types and AUCell analysis. (A) Multi-subgroup volcano plots demonstrating differentially expressed
genes in different cells between MAFLD and Control groups. (B) AUCell scores showing activity levels of the custom gene set across distinct cell
populations. (C, D) CX3CR1 distribution plots in disease and control groups. (E, F) IRAK3 distribution plots in disease and control groups.
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classified as: MIF-(CD74+CD44) and MIF-(CD74+CXCR4) belong

to the MIF signaling pathway; CCL5-ACKR1 belongs to the CCL

signaling pathway; GZMA-F2R belongs to the PARs signaling

pathway; PPIA-BSG belongs to the CypA signaling pathway

(Supplementary Tables S5, S6). Consequently, this study focuses

on the aforementioned four signaling pathways.

Within the MIF signaling pathway, both “LSEC_inc” and

“LSEC_red” act exc lus ive ly as s igna l senders when

communicat ing with other cel l s , d isplaying no sel f-

communication. In hierarchical diagrams corresponding to MIF-
Frontiers in Immunology 18
(CD74+CD44) and MIF- (CD74+CXCR4) , ex t ens i v e

communications exist between LSEC and ILC, Neu, cDC, and

kupffer (Figures 13E, 14A). In the CypA pathway, both

“LSEC_inc” and “LSEC_red” communicate with kupffer cells as

signal senders (Figure 14B). Conversely, within the PARs signaling

pathway, nearly exclusive communication occurs where

“LSEC_red” acts as a signal receiver interacting with ILC

(Figure 14C). The CCL5 signaling pathway exhibits an inverse

pattern, with “LSEC_inc” primarily functioning as a signal receiver

communicating with ILC (Figure 15A). Subsequently, we ranked
FIGURE 11

GSVA. (A) Heatmap displays enriched pathways from HALLMARK gene sets in MAFLD group cell clusters through GSVA analysis, with color
representing z-score transformed mean GSVA scores. (B) Pathway activity differences between MAFLD and normal samples in LSECs assessed via
GSVA.
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ligand-receptor pair contributions across these four pathways

(Supplementary Figures 6D–G) and consolidated the results.

Compared to other ligand-receptor pairs, two pairs from the MIF

pathway—”MIF-(CD74+CXCR4)” and “MIF-(CD74+CD44)”—

along with the PPIA-BSG pair from the CypA pathway

demonstrated significantly higher pathway contributions

(Supplementary Figure 6C). This highlights the critical

importance of these two signaling pathways and the three key

ligand-receptor pairs in mediating communications between LSEC

and ILC, Neu, cDC, and kupffer.

Finally, by computing network centrality scores, we identified

primary signaling roles of distinct cells within the specified

pathways mentioned above (Figures 15B–E, Supplementary
Frontiers in Immunology 19
Figure 7). Additionally, analysis of signaling roles across all

aggregated cell-cell communication networks revealed

comprehensively assessed communication identities for different

cell types. Both MIF and CypA signaling pathways exhibited the

highest activity among all pathways, which aligned with our

pathway contribution ranking (Figure 15F).
4 Discussion

Type 2 diabetes mellitus (T2DM) and metabolic-associated

fatty liver disease (MAFLD) are two prevalent metabolic disorders

that often co-occur, significantly impacting global health. NAFLD is
FIGURE 12

Clustering, enrichment analysis, and branching analysis of highly variable genes in the Pseudo-temporal process. (A) UMAP visualization of ECs re-
clustering results in MAFLD group and Control group. (B) Four expression patterns of highly variable genes. (C) Four expression patterns of potential
regulatory genes at branches.
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significantly more prevalent among individuals with T2DM, with

some studies indicating that up to 70% of patients with T2DM may

also have NAFLD (42). This co-morbidity correlates with a

heightened risk of cardiovascular disease, cirrhosis, and

hepatocellular carcinoma, contributing to increased morbidity

and mortality associated with NAFLD (43). Despite numerous

diagnostic and therapeutic strategies, managing T2DM alongside

NAFLD remains challenging due to their shared risk factors,

including obesity, insulin resistance, and dyslipidemia (44).

Furthermore, recent evidence suggests that autophagy plays a

significant role in immune response (45), protein secretion, and

cellular metabolism (46). It is also crucial in neurological systemic
Frontiers in Immunology 20
diseases, neuroinflammation, and stroke (47). The pathogenesis of

T2DM and MAFLD, along with autophagy dysfunction, is

intricately linked; however, the underlying mechanisms remain

poorly understood. This study aimed to explore the molecular

mechanisms underlying the interplay between T2DM and

MAFLD while identifying potential diagnostic biomarkers. We

employed an integrated approach comprising differential gene

expression analysis, weighted gene co-expression network analysis

(WGCNA), protein-protein interaction (PPI) network analysis, and

various machine learning techniques to identify key genes and

pathways involved in the pathogenesis of these diseases.

Additionally, we evaluated the diagnostic accuracy of the
FIGURE 13

Inferred signaling pathways. (A, B) Communication with other cells and the ligand-receptor pairs involved when MAFLD_LSEC_inc act as signal
senders and signal receivers, respectively. (C, D) Communication with other cells and the ligand-receptor pairs involved when MAFLD_LSEC_red act
as signal senders and signal receivers, respectively. (E) Hierarchical cell-cell communication plot for ligand-receptor pair “MIF-(CD74+CXCR4)”.
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identified biomarkers through ROC curve analysis and explored

their functional roles using enrichment analysis. Bulk RNA analysis

of 98 samples from three datasets (GSE15653, GSE89632, and

GSE24807) revealed four genes—CX3CR1, IRAK3, JUNB, and

TNFRSF1A—as diagnostic biomarkers associated with autophagy

and endoplasmic reticulum stress in T2DM and MAFLD.

CX3CR1, a G protein-coupled receptor (GPCR), is extensively

expressed in the human body, particularly in monocytes and
Frontiers in Immunology 21
macrophages, regulating cellular migration and activation by

interacting with its ligand, CX3CL1. It plays a crucial role in

various physiological processes and is implicated in significant

human diseases like atherosclerosis, rheumatoid arthritis,

neurodegenerative diseases, and cancer (48–51), rendering it a

promising therapeutic target. For example, activation of CX3CR1

enhances macrophage response to cytokines such as TNF-a and IL-

6, which exacerbates liver inflammation and injury, while CX3CR1
FIGURE 14

Hierarchical diagrams. (A–C) Cellular communication under three distinct ligand-receptor pairs: “MIF-(CD74+CD44)”, “PPIA-BSG”, “GZMA-F2R”.
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is also involved in regulating the migration of immune cells and

promotes their aggregation to the liver, which further exacerbates

the pathological process of MAFLD (52, 53). In diabetes mellitus

combined with metabolic-associated fatty liver disease (MAFLD),

aberrant expression and function of CX3CR1 might relate to

inflammatory responses and impaired lipid metabolism. Research

indicates that CX3CR1 deficiency or dysfunction could exacerbate

liver damage associated with diabetes, underscoring its significant
Frontiers in Immunology 22
contributory role in the development of diabetes combined with

MAFLD (54, 55).

Our recent experimental findings indicate a notably elevated

expression level of CX3CR1 in the T2DM combined MAFLD group

compared to the control group in RT-PCR and immunohistochemistry

experiments. This aligns with previous research outcomes.

Furthermore, the CX3CR1 signaling pathway is intricately linked to

the generation of various cytokines, offering novel perspectives for
FIGURE 15

Network centrality scores. (A) Hierarchical cell-cell communication plot for ligand-receptor pair “CCL5-ACKR1”. (B–E) Network centrality analysis of
different cells in the four pathways of MIF, CypA, PARs, and CCL. (F) Summary analysis of the possible roles of different cells in the whole
communication network.
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potential therapeutic interventions in the context of diabetes combined

with MAFLD. Recent literature has suggested that cholesterol regulates

the activation of CX3CR1 (56). Additionally, function of CX3CR1 in

MAFLD may confused now, as CX3CR1 knockout mice exhibit

increased susceptibility to high-fat diet-induced obesity, insulin

resistance, hepatic degeneration, and inflammation (57). Research

indicates that CX3CR1 significantly regulates autophagy. Its

activation suppresses the autophagic process in macrophages, causing

intracellular metabolite accumulation and cellular dysfunction, notably

pronounced in diabetes with MAFLD (58). Specifically, the CX3CL1-

CX3CR1 signaling pathway downregulates autophagy-related gene

expression through key regulators like CaMKIId and HDAC4,

impacting macrophage survival and function (59). Single-cell

communication analyses revealed that MAFLD-associated LSEC and

various other cells engage in intercellular communication via the

macrophage migration inhibitory factor (MIF) pathway. Hepatocytes

and Kupffer cells are identified as primary sources of hepatic MIF (60).

Our analysis identified that the intercellular communication within the

MIF signaling pathway predominantly relies on the receptor-ligand

pair “CD74-CXCR4,” with the ligand CXCR4 belonging to the same

“chemokine receptor family” as CX3CR1, which is a potential

biomarker for MAFLD identified in bulk analyses (61). These

findings imply a potential synergistic effect between the CX3CL1-

CX3CR1 signaling pathway and the MIF pathway, particularly

concerning the role of LSEC. Further investigation is warranted to

explore any deeper connections between these pathways and their

relation toMAFLD development. Furthermore, autophagy inhibition is

closely linked to diabetes-related inflammatory responses, subsequently

enhancing hepatic fat accumulation and fibrosis (62). Nonetheless, the

pathophysiological role of the CX3CL1-CX3CR1 signaling pathway in

NAFLD development is still debated. In mouse liver, CX3CL1 is

expressed in Kupffer cells, hepatic macrophages, and hematopoietic

stem cells (21), while CX3CR1 primarily localizes to Kupffer cells

(63).Kupffer cells are resident macrophages in the liver. Studies indicate

that the interaction between CX3CL1 and CX3CR1 suppresses the

inflammatory properties of Kupffer cells/macrophages, thereby

alleviating hepatic inflammation and fibrosis (63).Studies have shown

that in the absence of CX3CR1, hepatic monocytes preferentially

differentiate into macrophages that produce pro-inflammatory tumor

necrosis factor and inducible nitric oxide synthase. CX3CR1 serves as a

critical survival signal for monocyte-derived macrophages in the liver

by activating the expression of the anti-apoptotic protein Bcl-2.

Monocytes/macrophages lacking CX3CR1 exhibit increased cell

death following liver injury, thereby sustaining inflammation,

promoting persistent recruitment of inflammatory monocytes to the

liver, and exacerbating hepatic fibrosis. Thus, CX3CR1 limits liver

fibrosis in vivo by regulating the differentiation and survival of

intrahepatic monocytes (64).Studies have also shown that

administration of CX3CR1 agonists (such as CXCL16 analogs) can

reduce Kupffer cell activation, decrease TNF-a/IL-6 levels, and

ameliorate steatohepatitis in high-fat diet mouse models (65).In our

study, through single-cell analysis, we discovered CX3CR1

predominantly enriched in neutrophils and innate lymphoid cells.

Kupffer cells communicate with neutrophils and innate lymphoid cells

via the MIF-(CD74+CXCR4) ligand-receptor pair in the MIF signaling
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pathway. Thus, we speculate that the enrichment state of CX3CR1 in

non-alcoholic steatohepatitis may undergo alterations during disease

progression. It should be noted that this dynamic pattern requires

further validation through future research.

Experimental results indicated significantly elevated IRAK3

expression in the T2DM and MAFLD group compared to the

control group, suggesting that IRAK3 may play a vital role in the

pathophysiology of T2DM and MAFLD. IRAK3 has been shown to

regulate inflammatory responses effectively. As a negative regulator,

IRAK3 curtails excessive inflammatory responses by inhibiting key

molecules in downstream signaling pathways. For instance, IRAK3

regulates endogenous immune signaling via its guanylate cyclase

activity, thereby inhibiting the production of inflammatory

cytokines like tumor necrosis factor-a (TNF-a) and interleukin-6

(IL-6) (66). In models of disease, such as acute pancreatitis, IRAK3

deficiency results in heightened inflammation, underscoring its

importance in maintaining immune homeostasis (67).

Additionally, IRAK3 inhibits the activation of the NF-kB pathway

through interaction with the MyD88 pathway, thereby mitigating

the severity of the inflammatory response (68). Consequently,

IRAK3 functional deficiency may contribute to the emergence of

multiple inflammation-related diseases, highlighting its potential as

a therapeutic target. Furthermore, IRAK3 regulates intrinsic

immune signaling through its guanylate cyclase activity, further

influencing the release of inflammatory mediators. The regulatory

mechanism by which IRAK3 influences autophagy is receiving

increasing attention. Autophagy, a cellular self-degradation

process, is essential for maintaining intracellular homeostasis and

managing stress responses. Research indicates that IRAK3 is not

only involved in regulating inflammatory signaling but also

influences autophagy activity. For instance, IRAK3 expression

levels were negatively correlated with autophagy-related genes,

indicating that IRAK3 may modulate cell survival and death by

inhibiting autophagy (68). Moreover, IRAK3 affects the autophagic

process by influencing intracellular cGMP levels; an increase in

cGMP promotes autophagy, counteracting IRAK3’s inhibitory

effect to some extent (69). Thus, IRAK3’s role in regulating

autophagy offers new insights into its dual functionality in

inflammation and cell fate decisions. In this study, bioinformatics

analysis demonstrated IRAK3’s association with the IL1R pathway

and TLR1 and TLR2 cascades, wherein IRAK3 expression

diminishes downstream signaling by inhibiting the activation of

IRAK1, subsequently reducing the production of inflammatory

factors (70). Additionally, IRAK3 is intricately linked to the

cascade responses of TLR1 and TLR2, regulating TLR-mediated

immune responses and affecting the activation status of

macrophages and monocytes (71). In the context of infection and

inflammation, IRAK3 prevents immune overreaction by negatively

regulating the TLR signaling pathway, thus safeguarding host

tissues from damage. This mechanism has been validated across

various disease models, underscoring the complexity and

significance of IRAK3 in regulating immune responses (72).

Furthermore, IRAK3 introduces additional regulation by

producing cyclic guanosine monophosphate (cGMP) through its

guanylate cyclase activity. cGMP inhibits NF-kB activity and
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reduces cytokine levels in response to inflammatory stimuli. This

cGMP-mediated pathway may represent a novel mechanism by

which IRAK3 exerts its anti-inflammatory effects, providing new

therapeutic avenues for managing inflammatory responses in

T2DM and MAFLD (66, 73).

JUNB, a significant transcription factor, is engaged in diverse

biological processes such as cell proliferation, differentiation, and

apoptosis. Our present experimental validation indicated markedly

elevated JUNB expression in the T2DM combined with metabolic-

associated fatty liver disease (MAFLD) group compared to the

control group. Research indicates a direct correlation between

JUNB expression levels and metabolic disorders, impacting fat

metabolism, insulin sensitivity, and inflammatory reactions. For

instance, JUNB deficiency boosts adipocytes’ calorie consumption,

ameliorating diet-induced insulin resistance, implying an inhibitory

function of JUNB in energy metabolism (74). Furthermore, JUNB

significantly influences hepatic metabolism and might contribute to

the pathogenesis of nonalcoholic fatty liver disease by modulating

lipid synthesis and catabolism in hepatocytes (75). Our single-cell

analysis unearthed an additional mechanism impacting NAFLD

through metabolic pathways. Through the identification of core

mutated genes in differentiation trajectories, we observed the

pivotal role of the “Lipid and atherosclerosis” pathway in LSEC

differentiation and development. This pathway is intricate,

involving lipid metabolism, vascular biology, and cardiovascular

diseases. Maintaining hepatic cholesterol homeostasis is critical for

hepatic function. Disruptions in this balance can result in MAFLD

and atherosclerotic cardiovascular disease (76).Moreover, BEAM

analysis revealed the critical “Leukocyte transendothelial migration”

pathway associated with LSEC differentiation. Our findings are

substantiated by evidence demonstrating that LSECs from MAFLD

patients exhibit enhanced leukocyte migratory capacity (77). Liver

inflammation is recognized as a hallmark of MAFLD progression,

with multiple studies indicating immune cell remodeling during

this process correlates with disease severity and hepatic fibrosis (78,

79). In conclusion, JUNB plays essential roles in modulating

inflammation through diverse mechanisms, maintaining immune

homeostasis, and preventing excessive inflammation. Given the

chronic inflammation associated with T2DM and MAFLD,

targeting JUNB may offer novel therapeutic interventions for

these conditions.

Bioinformatics analysis indicated that JUNB is predominantly

enriched in the TNF signaling pathway, TGF-beta signaling

pathway, interleukin 4 and interleukin 13 signaling, IL6, and IL7

pathways, playing a pivotal role in various cellular signaling

pathways, particularly in inflammation and metabolic regulation.

The TNF signaling pathway regulates inflammation by modulating

inflammatory responses, with JUNB regulating the expression of

TNF-related genes (80). Additionally, JUNB exerts a crucial

influence in the TGF-beta signaling pathway, impacting cell

proliferation and fibrosis, closely associated with the development

of metabolic disorders (80). JUNB’s involvement in the interleukin

4 and interleukin 13 signaling pathways underscores their

significance in immune responses and metabolic processes (81).

Similarly, JUNB’s connection to the IL-6 and IL-7 pathways
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highlights the direct link between overexpression of IL-6 and

metabolic syndrome development (82), suggesting JUNB’s role in

metabolic status regulation through IL-6 signaling modulation.

Hence, targeting JUNB in these signaling pathways presents a

promising therapeutic strategy for metabolic diseases, aligning

with our experimental findings. The emerging recognition of

JUNB’s role in the autophagy mechanism is gaining prominence,

with studies demonstrating JUNB’s ability to modulate cellular

autophagy levels by regulating autophagy-related gene expression.

Notably, JUNB’s overexpression correlates with autophagy

inhibition, as evidenced in an osteoarthritis model, indicating a

potential promotion of articular cartilage degradation by JUNB

through autophagy suppression (83).Recent studies have indicated

that upregulation of JUNB impairs hepatic lipid metabolism in

mice, while inhibition of JUNB can alleviate lipid accumulation in

the liver (84). Additionally, research in lymphoma suggests that

inhibiting mTOR can downregulate JunB protein levels and reduce

cell proliferation, indicating that JunB is a crucial target of mTOR

(85). However, the mechanisms by which JUNB modulates the

mTOR signaling pathway in the context of T2DM and MAFLD

remain unclear.

TNFRSF1A, a vital cell membrane receptor, crucially regulates

cell survival, proliferation, and apoptosis. Our study revealed a

notable upregulation of TNFRSF1A in T2DM with MAFLD,

aligning with earlier research. The heightened TNFRSF1A

expression correlated closely with insulin resistance,

inflammation, and hepatic lipid deposition. Recent studies have

shown that immune dysregulation is observed in MAFLD.

TNFRSF1A is closely related to immune regulation. TNFRSF1A

can improve the sensitivity and accuracy of diagnosing and

predicting T2DM-related MAFLD, thus providing new diagnostic

options for patients with T2DM and MAFLD (86).

Notably, bioinformatics analysis identified TNFRSF1A

enrichment in the TNF, MAPK, and NF-kappa B signaling

pathways. TNFRSF1A, a pivotal player in the TNF pathway,

orchestrates cellular responses to TNF-a. By stimulating NF-

kappa B and MAPK pathways, TNFRSF1A drives inflammation

and apoptosis. In the diabetic MAFLD context, elevated TNF-a
levels trigger TNFRSF1A and subsequent NF-kappa B activation,

leading to downstream inflammatory mediator expression,

exacerbating liver damage and metabolic irregularities.

Furthermore, MAPK pathway activation influences cell dynamics

like proliferation, apoptosis, and inflammation, providing fresh

insights into diabetes with MAFLD mechanisms (87, 88).

Furthermore, TNFRSF1A is intricately linked with the NF-kappa

B and MAPK signaling pathways through its endogenous structural

domains, thereby establishing a complex signaling network. In

diabetes with MAFLD, TNFRSF1A activation induces NF-kappa B

translocation, resulting in the production of pro-inflammatory

factors like IL-6 and TNF-a, which exacerbate liver inflammation.

Additionally, TNFRSF1A enhances cellular stress responses and

apoptosis via MAPK signaling pathway activation, contributing to

hepatocyte injury and fat accumulation. Activated endothelial cells in

the liver facilitate the subendothelial migration of monocytes, which

can further differentiate into macrophage-like cells or mobile
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dendritic cells, accumulating in hepatic tissue. Chemotactic

stimulation enhances cellular recruitment, while the inhibition of

JAK-STAT signaling can reduce monocyte migration (89). In our

GSEA enrichment analysis of potential MAFLD marker genes, we

identified proliferation in the KEGG_CYTOKINE_CYTOKINE_

RECEPTOR_INTERACTION pathway linked to the JAK-STAT

pathway, emphasizing that TNFRSF1A significantly promotes

inflammatory responses. Consequently, TNFRSF1A serves as a

crucial biomarker for diabetes in conjunction with MAFLD and

presents as a promising therapeutic target (90). Our findings revealed

that TNFRSF1A and JUNB are key genes enriched within the TNF

signaling pathway, essential for elucidating the molecular

mechanisms underlying T2DM and MAFLD. TNFRSF1A encodes

TNFR1, a mediator of pro-inflammatory responses and apoptosis

pivotal in pathogenesis of insulin resistance and liver inflammation

(91). JUNB, a component of the AP-1 transcription factor, regulates

gene expression in response to TNF signaling and significantly

contributes to the inflammatory process. The enrichment of

TNFRSF1A and JUNB within the TNF signaling pathway indicates

their potential as diagnostic biomarkers for T2DM coupled with

MAFLD. Their roles in critical inflammatory and apoptotic pathways

highlight the significance of targeting TNF signaling to mitigate

disease progression. Furthermore, therapeutic interventions aimed

at modulating TNF signaling may concurrently address both

metabolic and hepatic dysfunction in affected patients (92).

Finally, our single-cell analysis also has some methodological

limitations: while our computational approach substantially

mitigated batch effects inherent in bulk RNA-seq, it lacks

complementary single-cell expression profiling or in situ

validation. This limitation precludes direct evidence of how the

signature genes (CX3CR1, IRAK3, JUNB, TNFRSF1A) dynamically

modulate LSEC functionality during MAFLD progression.
5 Conclusion

In conclusion, this study provides critical insights into the

molecular mechanisms underlying the comorbidity of T2DM and

MAFLD. Utilizing comprehensive bioinformatics approaches, we

identified multiple differentially expressed genes and pivotal signaling

pathways that potentially mediate the co-progression of T2DM and

MAFLD. However, this study has several limitations. The primary

constraint lies in the relatively small sample size of human liver biopsy

datasets meeting both T2DM andMAFLD phenotypic criteria in GEO

databases (GSE15653, n=14; GSE23343, n=17), which may reduce

statistical power for detecting subtle molecular alterations and limit the

generalizability of findings across diverse populations. Although these

datasets underwent rigorous quality control, the scarcity of publicly

available samples fulfilling dual diagnostic criteria remains a significant

challenge for contemporary bioinformatics research in this field. To

address these issues, we are implementing proactive monitoring of

newly released public datasets and initiating multicenter collaborations
Frontiers in Immunology 25
to expand sample collections, thereby supporting subsequent

validation studies.
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SUPPLEMENTARY FIGURE 1

Flow diagram of this study.

SUPPLEMENTARY FIGURE 2

(A, E) Sample dendrogram (after removing outlier samples) and feature
heatmap.(B, F) Clustering dendrogram. (C, G) Clustering dendrogram of

modules. (D, H) Inter-module correlation heatmap.
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