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Decoding the hypoxia-exosome-
immune triad in OSA: PRCP/
UCHL1/BTG2-driven metabolic
dysreqgulation revealed by
interpretable machine learning

Weilong Ye', Yitian Yang', Feiju Chen', Xiaoxi Lin, Yunan Wang,
Lianfang Du, Jingjing Pan, Weifeng Liao, Bainian Chen,
Riken Chen* and Weimin Yao*

The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China

Background: Obstructive sleep apnea (OSA) is a prevalent disorder characterized
by significant metabolic and immune dysregulation. This study aims to uncover
exosome-related biomarkers implicated in immune-metabolic disturbances in
OSA and explore their potential as diagnostic and therapeutic targets.
Methods: Transcriptomic data from two GEO datasets (GSE135917 and GSE38792)
were integrated and analyzed using differential expression analysis via the limma
package. Key biomarkers were identified using feature selection techniques
including LASSO and Random Forest. Machine learning models, specifically
XGBoost, were trained to evaluate biomarker performance, with model accuracy
assessed by ROC curve analysis and AUC values. Immune cell infiltration was
evaluated using single-sample Gene Set Enrichment Analysis (ssGSEA). Drug
enrichment predictions were made through the Drug Signatures Database
(DSigDB). Vivo and Vitro Experimental Validation on Multiple Independent cohorts.
Results: Three exosome-related biomarkers—PRCP, UCHL1, and BTG2—were
identified as central to OSA’s immune-metabolic dysregulation. XGBoost
modeling demonstrated robust predictive power (AUC = 0.968). Immune
analysis revealed significant correlations between gene expression and
immune cell subsets, particularly CD56 bright natural killer cells and Memory B
cells. Drug enrichment analysis identified potential therapeutic compounds,
including Pentaphenate and Delphinidin, which target these biomarkers. OSA is
associated with a reproducible transcriptional signature characterized by
increased PRCP and UCHL1 expression and decreased BTG2 expression.
Conclusions: This study identifies PRCP, UCHL1, and BTG2 as key exosome-
related biomarkers in OSA that regulate immune-metabolic disruption. By
integrating transcriptomic data, machine learning, and immune analysis, we
uncover an “exosome-immune” axis in OSA pathophysiology.

exosome signaling, obstructive sleep apnea (OSA), immune infiltration, machine
learning, biomarkers
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GRAPHICAL ABSTRACT

1 Introduction

An estimated 1 billion people worldwide are affected by OSA
(1), and its prevalence continues to rise (2), primarily due to the
increasing global rates of obesity (3-5). OSA is characterized by
repeated partial or complete obstruction (collapse) of the upper
airway during sleep, leading to hypercapnia, intermittent hypoxia
(IH), and a reduction in blood oxygen saturation (2). The clinical
diagnostic standard for OSA relies on polysomnography (PSG) (6).
However, the high cost and time-intensive nature of this diagnostic
method limit its application in the early screening and long-term
treatment monitoring of OSA. As a result, identifying reliable
biomarkers has become a research focus in the field of sleep
medicine over the past decade (7). Pathophysiological studies
suggest that IH, a core pathological feature of OSA, activates the
sympathetic nervous system, induces metabolic disturbances, and
promotes systemic inflammation and oxidative stress (8). Notably,
IH exposure significantly upregulates the transcriptional activity of
hypoxia-inducible factor-lo. (HIF-1at), which then regulates a
variety of downstream signaling pathways (9, 10). In terms of
immune regulation, OSA patients exhibit characteristic
proliferation of natural killer (NK) cells and natural killer T
(NKT) cells (11). Further analysis shows that in mild to moderate
cases, the proportion of CD4+ effector T cell subsets is abnormally
elevated, while the numbers of effector memory T cells (TEM) and
central memory T cells (TCM) are significantly reduced (12). Severe
OSA cases display also pronounced immune dysregulation: the
ratio of T helper (Th) cells to cytotoxic T lymphocytes (CTLs)
decreases, while the number of B lymphocytes, which mediate
humoral immunity, is significantly reduced (13). These findings
suggest that the pathological progression of OSA involves complex
immune cell dynamic imbalances, with characteristic immune
phenotype changes observed at different stages of the disease.
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This provides potential targets for the development of novel
diagnostic and therapeutic strategies.

Exosomes, key components of adipose-derived extracellular
vesicles, play a crucial role in systemic metabolic regulation (14).
These nanometer-sized vesicles, ranging from 30 to 150 nm in
diameter, are rich in proteins and nucleic acids (including mRNA,
miRNA, and IncRNA) derived from their parent cells (15). By
mediating intercellular communication, metabolic waste clearance,
and the maintenance of microenvironment homeostasis, exosomes
significantly contribute to metabolic processes (16). Notably,
exosome-carried metabolic regulatory factors can specifically bind
to lipid transport proteins, modulating inflammatory cascades,
immune response networks, and programmed cell death
pathways (17, 18). This ultimately leads to pathological changes
associated with metabolic disorders (19). Based on these functions,
this study proposes an innovative hypothesis: intermittent hypoxia
may alter the exosome secretion profile of adipose tissue, which in
turn changes immune cell infiltration patterns, ultimately driving
the pathological processes of OSA.

Current research has yet to fully elucidate the molecular
mechanisms by which adipose-derived exosomes interact with
metabolic regulation. Experimental evidence has shown that
adipose tissue macrophages (ATMs) deliver miR-155 to
adipocytes via exosomes, and this microRNA plays a significant
role in improving obesity-related metabolic abnormalities by
inhibiting the expression of peroxisome proliferator-activated
receptor ¥ (PPARY) (20). On the other hand, exosome-derived
miR-34a from adipocytes has been shown to suppress M2
macrophage polarization, exacerbating the chronic inflammatory
state induced by obesity (17). These findings suggest a bidirectional
regulatory network between adipocytes and immune cells mediated
by exosomes, offering a new perspective on the mechanistic study of
metabolic diseases.
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Building on this background, this study aims to adopt a
comprehensive bioinformatics approach. First, it will screen OSA-
specific exosome biomarkers and establish a machine learning-assisted
diagnostic model. Second, the study will analyze the immune
microenvironment of adipose tissue using the ssGSEA (single-sample
Gene Set Enrichment Analysis) algorithm. Finally, we conducted in
vivo and in vitro experimental validations across multiple independent
cohorts and established a theoretical framework for the “hypoxia-
exosome-immune” regulatory axis, thereby providing a solid
foundation for the development of precise therapeutic targets.

2 Materials and methods

2.1 Collection and preprocessing of OSA
transcriptomic data

The mRNA expression profiles for OSA were obtained from the
GEO database, specifically datasets GSE135917 (21) and GSE38792
(22), both generated using the GPL6244 platform (Aftymetrix
Human Gene 1.0 ST Array). In the GSE135917 dataset, the
control group included 8 samples, while the OSA group
comprised 34 samples, with total RNA extracted from
subcutaneous adipose tissue. Similarly, the GSE38792 dataset
consisted of 8 control samples and 10 OSA patient samples, with
RNA extracted from visceral adipose tissue biopsies collected
during surgery. Log transformation was applied to both datasets
to standardize expression values, followed by correction of
distribution differences across samples. The datasets were then
merged, and batch correction was performed to mitigate technical
variations. Principal component analysis (PCA) was employed to
visualize the differences between the two datasets before and after
batch correction, ensuring improved data comparability.

2.2 Differential gene expression analysis
and intersection with exosome-related
genes

After data preprocessing, differential expression analysis was
conducted using the limma package to compare gene expression
profiles between control and disease groups, aiming to investigate the
molecular mechanisms underlying sleep apnea. The normalize-
Between-Arrays() function was applied to standardize the data.
Subsequently, further analysis was performed using linear
modeling: the ImFit() function was employed to fit a generalized
linear model, make-Contrasts() was used to construct a contrast
matrix defining specific comparisons, followed by contrasts.fit() for
contrast analysis, and finally, eBayes() was applied for empirical
Bayesian adjustment to enhance the robustness and accuracy of
statistical inference. The filtering criteria included an adjusted p-
value < 0.05 and |log2FC| > 0.5 (approximately corresponding to a
1.41-fold change). This threshold was chosen based on established
practices in similar studies (23, 24), as microarray data typically reveal
subtle expression changes, with a [log2FC| > 0.5 regarded as a
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meaningful difference. The resulting differentially expressed genes
were visualized using a heatmap. Exosome-related genes were
retrieved from the GeneCards database, a publicly available
resource for human gene information (https://www.genecards.org/).
We selected genes with Relevance Score > 2 as strongly associated
genes, which accounted for more than 50 percent of the total. A
Venn diagram was then constructed to visualize the intersection
between exosome-related genes and differentially expressed genes,
highlighting those with potential relevance to the study.

2.3 Functional enrichment analysis of
EOR-DEGs

To explore the functional roles of exosome-related differentially
expressed genes (EOR-DEGs), Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway analyses
were performed using the clusterProfiler package (25). Enrichment
was considered significant when both p-values and adjusted p-values
were less than 0.05. GO analysis encompassed 3 domains: biological
processes (BP), cellular components (CC), and molecular functions
(MF). The results of these enrichment analyses were visualized using
bar-plots to highlight significant pathways and cnet-plots to illustrate
the relationships between genes and their associated terms.

2.4 Logistic regression analysis and feature
selection of EOR-DEGs

To assess the prognostic and diagnostic value of EOR-DEGs,
univariate logistic regression was first applied, with the odds ratio
(OR) and p-value used to identify genes significantly associated with
prognosis and diagnosis (p < 0.05). Genes meeting this threshold
were then subjected to feature selection using Least Absolute
Shrinkage and Selection Operator (LASSO) regression (A. min) and
Random Forest (RF) analysis (Importance > 4) (26). The overlap of
selected genes from both methods was visualized using a Venn
diagram, identifying a set of key biomarkers for further clinical and
mechanistic analysis. Subsequently, box plot was used to illustrate the
expression levels of feature genes across different groups, and
correlation plot was employed to visualize their interrelationships.

2.5 Construction and evaluation of a
diagnostic model

A nomogram was developed to visualize the relationship
between feature gene expression and disease risk, with coefficients
derived from multivariate logistic regression. The model’s
performance was evaluated using the Receiver Operating
Characteristic (ROC) curve, with the area under the curve (AUC)
indicating predictive accuracy. Calibration curves were constructed
to assess the agreement between predicted and observed outcomes,
while Decision Curve Analysis (DCA) evaluated the model’s clinical
utility by assessing net benefit at various threshold probabilities.
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2.6 XGBoost model construction

The XGBoost algorithm (27) was selected for its efficiency and
robust performance in binary classification tasks. The feature genes
were set as the predictors, with occurrence of OSA acting as
response variable. The model’s predictive performance was
evaluated using ROC curves. To minimize overfitting, 5-fold
cross-validation was performed during model validation,
alongside a reduced learning rate and limited maximum depth.

2.7 Model interpretation based on SHAP

We calculated SHAP (SHapley Additive exPlanations) (28) values
to interpret the XGBoost model. The SHAP summary plot visualized
their relative importance. Dependency plots were generated to
illustrate the relationship between gene expression levels and disease
risk. Additionally, SHAP force plots were used to analyze individual
patient predictions, offering detailed insights into the gene-specific
contributions to the probability of OSA occurrence.

2.8 Immune correlation analysis

The ssGSEA was employed to calculate immune cell infiltration
scores, which were subsequently correlated with the expression of
feature genes. Spearman’s correlation method was used to assess the
relationship between immune cell activity and gene expression, with
statistical significance determined for each correlation. The results
were visualized in a heatmap, where the strength and significance of
the correlations were clearly represented. The 28 immune cell-related
gene sets were obtained from previously published studies (29, 30).

2.9 Drug enrichment analysis

The Drug Signatures Database (DSigDB) was utilized to identify
potential therapeutic drugs by predicting protein-drug interactions.
The DSigDB online platform (https://dsigdb.tanlab.org/), a publicly
accessible database that integrates drug-associated gene expression
data, was employed to explore drug-gene relationships, mechanisms
of drug action, and opportunities for drug repurposing (31).
Candidate drugs were identified by comparing the database’s drug
gene expression signatures with disease-related gene expression
profiles. The results were visualized using Cytoscape software
(https://cytoscape.org/).

2.10 Vivo and vitro experimental validation

Human SW872 liposarcoma cells (n=6) and murine 3T3-L1
preadipocytes (n=6) were cultured under standard conditions, with
3T3-L1 cells induced to differentiate into mature adipocytes using a
commercial induction kit. Male C57BL/6] mice (8 weeks of age; n=10)
were randomly assigned to normoxia or chronic CIH exposure. This
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experiment was reviewed and approved by the Animal Welfare and
Ethics Committee under review number: IACUC-20250701-299. Cells
and mice were exposed to intermittent hypoxia (IH/CIH) with cyclic
oxygen fluctuations, while controls were maintained under normoxia.
Total RNA was extracted from cells and mouse adipose tissues,
reverse-transcribed into cDNA, and analyzed by SYBR Green-based
gRT-PCR. Gene expression was quantified using the 2/(-AACT)
method with GAPDH as the internal control, and all reactions were
performed in triplicate to ensure reliability. IHC was performed on
FFPE iWAT sections using antibodies against PRCP, BTG2, and
UCHLI, with DAB visualization, and staining was quantified as
percentage positive area using Image]. The detailed methodological
section has been added in the supplementary file. A brief overview of
the process is presented in the Graphical Abstract.

2.11 Statistical analysis

The entire analysis was conducted using R software (version
4.4.2). During data collection, the GEOmirror and idmap2 packages
facilitated data retrieval and annotation. The limma and sva packages
were utilized for dataset organization, correction, merging, and
differential expression analysis. To ensure uniform distribution of
expression values across all samples, quantile normalization was
applied using the normalize-Between-Arrays function. After merging
the datasets, the ComBat method was employed to correct for batch
effects. For visualization, box plots were generated, and the Wilcoxon
rank-sum test was applied for group comparisons. Correlation
analysis was performed using Pearson’s correlation coefficient to
assess the relationships between gene expression levels. Data are
presented as mean + SEM; qPCR was analyzed using per-sample
ACt values and reported as 2A-AACt, while IHC results were
quantified as the percentage of positive area (area%) per sample
across predefined fields, with two groups compared using unpaired
two-tailed t-tests, multiple groups analyzed by one-way ANOVA with
appropriate post-hoc tests, and non-parametric alternatives applied
when assumptions of normality or homoscedasticity were not met; P
< 0.05 was considered statistically significant.

3 Results

3.1 Data integration and differential
expression analysis

PCA demonstrated that batch correction effectively mitigated
batch effects, thereby preserving the integrity of the biological signal
(Figures 1A, B). Addressing batch effects is crucial to minimize non-
biological variations that could otherwise compromise the reliability of
downstream analyses. Utilizing thresholds of p-value < 0.05 and |
log2FC| > 0.5, 245 differentially expressed genes were identified
(Figure 1C). A heatmap showcasing the top 50 upregulated or
downregulated genes, ranked by |log2FC|, provides a visual
representation of the key expression changes (Figure 1D). Using the
keyword “exosome,” 5,293 protein-coding genes were identified, of
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FIGURE 1

Data preprocessing and differential gene screening. (A) PCA plot before batch correction showed clustering by dataset origin. (B) PCA plot after
batch correction, demonstrating clustering by disease status, indicating the removal of technical variations. (C) Volcano plot of differentially
expressed genes (red dots: upregulated genes; blue dots: downregulated genes; thresholds: p-value < 0.05 and |log2FC| > 0.5), identifying 245
differentially expressed genes (DEGs). (D) Heatmap displaying the top 50 DEGs (ranked by [log2FC]|), with row-normalized expression values
(Z-score) reflecting expression patterns between OSA and control groups. (E) Venn diagram showing 46 exosome-related differentially expressed
genes (EOR-DEGs, intersection of Gene Cards exosome gene set and DEGs).

which 2,740 genes with a Relevance Score > 2 were selected for further
analysis. The Venn diagram displayed 46 EOR-DEGs (Figure 1E).

3.2 Functional enrichment analysis for
EOR-DEGs

The GO terms with the highest number of enriched genes in BP,
CC, and MF were: regulation of inflammatory response, endocytic
vesicle, and structural constituent of the cytoskeleton (Figure 2A).
In the KEGG analysis, relatively few pathways were enriched (with a
p-value < 0.05 and an adjusted p-value < 0.05 with a primary focus
on lipid metabolism and atherosclerosis pathways (Figure 2B). The
GO analysis network plot highlights the top 10 most significant
functional enrichment categories (Figure 2C). The KEGG path view
suggests that LBP, MMP9, APOB, IL6, and RAP1B are involved in
lipid metabolism and atherosclerosis (Figure 2D).

3.3 Logistic regression analysis and feature
selection of EOR-DEGs

In univariate logistic regression analysis, all 46 EOR-DEGs had
p-values less than 0.05. Among them, 20 genes had odds ratios
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(ORs) less than 1, while the remaining genes showed ORs greater
than 1 (Table 1). These 46 EOR-DEGs were further included in
LASSO analysis to address potential collinearity, resulting in the
selection of 10 genes (Figures 3A, B). Random forest analysis was
employed to determine gene importance, with genes having
importance scores greater than 4 being highlighted (Figures 3C,
D). The intersection of genes identified through LASSO and RF
analyses revealed three feature genes for model construction:
PRCP, UCHLI, and BTG2. The box plot indicated that PRCP
and UCHLI1 were highly expressed in the OSA group, while BTG2
showed lower expression (Figure 3E). Correlation analysis revealed
that UCHL1 was negatively correlated with both BTG2 and
PRCP (Figure 3F).

3.4 Construction and evaluation of a
diagnostic model

The nomogram visually represents a diagnostic model
constructed through multivariate logistic regression analysis,
leveraging the expression levels of hub genes to predict the risk of
OSA (Figure 4A). The ROC curve (Bootstrapping method)
demonstrates the model’s superior diagnostic performance, with
an AUC value exceeding that of individual genes, confirming its
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Functional and pathway enrichment of EOR-DEGs. (A) GO enrichment bar plot with significant terms (p < 0.05) including “regulation of inflammatory
response” (BP), “endocytic vesicle” (CC), and “structural constituent of cytoskeleton” (MF). (B) KEGG pathway enrichment highlighted significant
pathways such as “lipid metabolism” and “atherosclerosis”. (C) GO network diagram displaying the top 10 enriched terms, where node size
represents the number of genes and edge width indicates gene overlap. (D) KEGG pathway map (lipid metabolism) highlighting key genes (LBP,

MMP9, APOB, IL6, RAP1B).

robustness (Figures 4B, C). Model evaluation through the
calibration curve indicates that the bias-corrected curve closely
parallels the ideal curve, with only minor deviations observed in
the high-probability range (approaching 1.0) (Figure 4D).
Additionally, the Decision Curve Analysis (DCA) reveals that
employing the model for prediction and intervention provides a
higher net benefit (Figure 4E). These findings underscore the
model’s reliability and practical utility in diagnostic applications.
In the XGBoost model, the AUC value reached 0.968 (Figure 4F).
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To mitigate overfitting, 5-fold cross-validation was performed,
further validating the model’s robustness (AUC = 0.989)
(Figure 4G). Additionally, a feature importance plot was
generated to illustrate the contribution of each gene to the
model’s predictions (Figure 4H). For the XGBoost model, we set
the following hyperparameters: learning rate (eta) = 0.01, maximum
tree depth = 2, minimum child weight = 2, gamma = 0.1, subsample
= 0.8, colsample_bytree = 0.8, lambda = 1, and alpha = 0. The
objective was to use a smaller learning rate and limit model
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TABLE 1 Univariate logistic regression analysis.

Gene OR OR.95L OR.95H p-value
PRCP 986.0791 60.17411 43735.75 2.90E-05
ATP6AP2 114.3371 14.29222 1758272 8.39E-05
PDIA3 75.6924 11.11494 951.5929 0.000113
ARF4 4753213 8.308052 4284111 9.42E-05
GLB1 38.61957 7.375862 314.5474 0.000108
EXOSC3 27.94962 5.829075 190.7486 0.000158
UCHLI 27.675 6.2062 175.6567 7.80E-05
RAPIB 22.04958 4769966 176.006 0.000579
ARPC4 15.57668 4.089505 76.78485 0.000201
TUBB4A 11.25975 3.354366 44.70034 0.000205
GCA 10.92942 3.585175 44.0934 0.000151
NSA2 8.126889 2.39504 39.09922 0.003046
SUCNRI 6.522213 2.137218 24.80007 0.002313
ALCAM 6.172922 2.180943 2161758 0.001649
TUBB1 5.6868 2.185966 17.86299 0.001091
GPLDI1 5.651804 2.053642 18.85715 0.00191
TXN 5.265804 1.945368 18.08795 0.003045
LBP 5.037635 1.938829 15.97191 0.002282
GPC4 4393301 1.675899 13.27509 0.004583
HLA-DRB5 3279293 1.375657 10.54385 0.019915
LYZ 2.892675 1.350791 6.975785 0.01005
CHI3LI 2.632013 1.409485 5.399355 0.004322
NPR3 2.523628 1203417 578103 0.018065
MMP9 2.396216 1.199165 5348592 0.020294
HBA2 2236278 1.21276 44752 0.014438
HBB 2.092857 1.330592 3531524 0.002651
ITLN1 0.62736 0378592 0.949145 0.039053
C4B 0.477884 0214379 0.907881 0.036145
L6 0.477017 0.278475 0.779596 0.004177
SLPI 0.432136 0.19901 0.824733 0.017656
SLC2A3 0.392045 0.206861 0.702392 0.002305
KLF4 0365831 0.186386 0.678436 0.00198
SOCS3 0319353 0.147249 0.636311 0.001906
ZFP36 0.31906 0.148147 0.64201 0.001953
OGN 0.303189 0.124932 0.647185 0.003842
AREG 0.292776 0.124983 0.604413 0.001861
ATF3 0.283908 0.127676 0.582859 0.000993
MYC 0.270612 0.108965 0.590503 0.002069

(Continued)
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TABLE 1 Continued

Gene OR OR.95L OR.95H p-value
WTI1 0259777 0.092083 0.626412 0.005114
DPP4 0.245084 0.073703 0.637639 0.009457
KRT19 0215046 0.059646 0.574421 0.007162
APOB 0.158699 0.050603 0423645 0.000567

AZGP1 0.138617 0.036829 0396253 0.000937
SIK1 0.099512 0.026518 0.308981 0.000188
BTG2 0.068947 0.014537 0.254142 0.000202
KLF6 0.050211 0.009535 0202541 9.92E-05

complexity to prevent overfitting when analyzing relatively small
sample sizes.

3.5 Interpreting the machine learning
model with SHAP analysis

The SHAP Summary Plot illustrates the contributions of the 3
hub genes (PRCP, UCHLI, and BTG2) to the overall model
prediction (Figure 5A). Among them, PRCP shows the highest
average SHAP value (0.334), indicating its strongest influence on
the model’s predictions, while UCHL1 and BTG2 have relatively
smaller contributions. The Dependence Plot visualizes the
relationship between the expression levels of the feature genes
and their corresponding SHAP values. For instance, the SHAP
value for BTG2 peaks around an expression level of 8.5, decreasing
as the expression level increases, suggesting a nonlinear relationship
that may reflect BTG2’s complex regulatory role in the model’s
output (Figure 5B). The figure also shows the relationships for
PRCP and UCHLI (Figures 5C, D). According to the SHAP Force
Plot, in one control sample, the hub genes exhibit a negative
contribution to the occurrence of OSA (Figure 5E). These results
suggest that BTG2 might act as a protective gene, with low
expression increasing risk, while UCHLI and PRCP may serve as
risk genes, with higher expression correlating with an increased risk
of OSA.

3.6 Correlation analysis of immunity

The ssGSEA analysis was employed to calculate the immune cell
infiltration scores, which were subsequently correlated with the
expression levels of the hub genes. UCHL1 and PRCP demonstrated
a strong positive correlation with CD56 bright natural killer cells
and a significant negative correlation with Memory B cells. In
contrast, BTG2 exhibited an inverse correlation pattern. A
heatmap was generated to visualize the correlations between the
other immune cells and the feature genes, providing a
comprehensive overview of the immune landscape associated with
these feature genes (Figure 6A).
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FIGURE 3

Feature selection was performed using LASSO (10-fold CV, lambda. min) and random forest (optimal trees, Mean Decrease Gini > 4). (A) coefficient
path (lasso). (B) cross-validation error (lasso). (C) error rate curve (RF). (D) variable importance ranking (RF). (E) Boxplot showing the expression
differences of feature genes (PRCP, UCHLIL, BTG2) between the OSA group and the control group (*p<0.05, **p<0.01, ***p<0.001). (F) Heatmap of

feature gene expression correlations (Pearson correlation coefficient).

3.7 Drug enrichment analysis

Using the gene IDs PRCP, UCHLI, and BTG2 as input in an
online platform, 69 potential drugs were identified (p-value < 0.05).
Among these, compounds such as Pentaphenate and Delphinidin
exhibited significant associations with specific genes like PRCP and
BTG2. Functional enrichment analysis highlighted their fold
enrichment, z-scores, and adjusted p-values, suggesting that these
compounds may exert critical biological effects on the related genes.
Moreover, they could play regulatory roles in specific biological
processes, providing insights into potential therapeutic applications.
The network diagram illustrates the connections between identified
drugs and their corresponding feature genes (Figure 6B). Each node
represents a drug or a gene, with a maximum of 20 drugs displayed

per gene.

3.8 Vivo and vitro experimental validation
on multiple independent cohorts

To determine whether OSA induces transcriptional alterations
in stress and metabolism-related genes, we performed qRT-PCR in
multiple independent cohorts. We focused on PRCP, UCHLLI, and
BTG2, given their previously reported roles in proteolytic
regulation, protein homeostasis, and cell cycle control. As shown
in Figures 7A-C (Differentiated 3T3-L1 murine adipocytes), PRCP
and UCHL1 mRNA levels were significantly elevated in the OSA

Frontiers in Immunology

group compared with controls, whereas BTG2 mRNA expression
was markedly reduced. These findings were consistently reproduced
in independent experimental sets (Figures 7D-F, SW872 human
adipocytes; Figures 7G-I, eWAT), where PRCP upregulation was
highly significant (Figures 7D, G), UCHLI expression was robustly
increased (Figures 7E, H), and BTG2 levels were consistently
downregulated across all comparisons (Figures 7F, I). Notably,
the concordant results across independent replicates underscore
the stability and reproducibility of these transcriptional changes.
Collectively, these data indicate that OSA is associated with a
reproducible transcriptional signature characterized by increased
PRCP and UCHLLI expression and decreased BTG2 expression.
IHC: Representative micrographs (Figures 7Ja-f) and semi-
quantitative analysis of DAB-positive area (%) (Figures 7Jg-i)
revealed group-dependent differences (n = 3 per group).
Compared with the control (CON) group, OSA samples exhibited
significantly higher UCHL1 and PRCP expression and markedly
lower BTG2 levels.

4 Discussion

This study elucidates the potential pathogenesis of OSA
through adipose tissue transcriptomics, revealing PRCP, UCHLI,
and BTG2 as exosome-associated hub genes that orchestrate
metabolic-immune dysregulation. By synergizing cross-platform
data integration (GSE135917/GSE38792), machine learning-
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FIGURE 4

Feature gene-based OSA diagnostic model. (A) The nomogram integrates the expression levels of PRCP, UCHLL, and BTG2 to predict OSA risk, with
the total score corresponding to the right-side risk axis. (B) ROC curve showing the performance of individual genes in predicting OSA. (C) ROC

curve showing the performance of the combined diagnostic model base
The dashed line represents the ideal fit, and the solid line represents the

d on feature genes. (D) Calibration curve with Bootstrap = 1000 iterations.
model's bias-corrected prediction. (E) DCA showing the net clinical benefit

of the model when the threshold probability exceeds 10%. XGBoost Model Validation: (F) ROC curve. (G) 5-fold cross-validation. (H) Feature

importance plot.

driven biomarker discovery (XGBoost AUC = 0.968), and single-
sample immune deconvolution, we reveal an unprecedented
“exosome-immune” axis in OSA pathophysiology. Our robust
feature selection pipeline—incorporating LASSO regularization
(A. min) and random forest permutation importance—
convergently identified PRCP (prolyl carboxypeptidase), UCHLI
(Ubiquitin C-Terminal Hydrolase L1), and BTG2 (B-cell
translocation gene 2) as key non-redundant classifiers, validated
through SHAP interpretability to dissect nonlinear gene-disease
interactions (SHAP value for PRCP: 0.334). These results not only
demonstrate the diagnostic potential of these biomarkers but also
highlight the utility of interpretable machine learning techniques in
elucidating complex biological relationships (32).

Frontiers in Immunology

Prolyl carboxypeptidase (PRCP), a serine protease, exerts
regulatory effects across multiple endocrine axes including the
renin-angiotensin system (RAS), kallikrein-kinin system (KKS),
and pro-opiomelanocortin (POMC) (33). Study had
demonstrated that PRCP plays a crucial role in the onset and
progression of obesity, regulating the balance between energy intake
and expenditure through an o-MSHI1-mediated mechanism (34).
The coexistence of obesity and OSA is commonly observed, with a
bidirectional relationship between the two conditions (35). UCHLI,
a key member of the deubiquitinating enzyme family, influences cell
proliferation, differentiation, and damage by modulating both
ubiquitination and non-ubiquitination pathways (36, 37).
Notably, HIF-1o. has been identified as a potential target
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Intermittent hypoxia induces a conserved cellular stress signature across adipocyte models in vitro and in vivo. Relative mRNA expression of PRCP,
UCHLL, and BTG2 was measured by qRT-PCR. (A-C) Differentiated 3T3-L1 murine adipocytes (n = 3 per group). (D—F) SW872 human adipocytes

(n = 3 per group). Cells were exposed to 24 hours of normoxia or intermittent hypoxia (IH). (G-I) Epididymal white adipose tissue (€WAT) from mice
exposed to 4 weeks of normoxia (Control, n = 5) or chronic intermittent hypoxia (CIH, n = 5). Gene expression was normalized to Actb. Data are
presented as mean + SEM. Statistical significance was assessed by unpaired, two-tailed Student's t-test on ACt values. (J, a, b) Representative IHC images
of PRCP, (J, ¢, d) UCHLL, @, e, f) BTG2. Brown DAB precipitate indicates positive staining; nuclei are counterstained blue (scale bar = 100 um). (3, g—i)
Quantification of DAB-positive area (%). Each dot represents one independent sample; bars denote mean + SD. *p < 0.05, **p < 0.01, ***p < 0.001.
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interacting with UCHLI1, and under hypoxic conditions, UCHLI
may regulate the nuclear translocation of HIF-1a, influencing its
role in cellular responses to low oxygen levels (38). In OSA patients,
IH activates HIF-10o, which in turn triggers systemic inflammation
and disrupts hepatic lipid metabolism (39-41). BTG2, a member of
the ERBB2 (BTG/TOB) family, functions as a B-cell transducer and
regulator (42). Research has shown that Btg2 expression is elevated
in the subcutaneous adipose tissue of obese mice on a high-fat diet,
highlighting its involvement in lipid metabolism during obesity and
metabolic disorders (43). Specifically, Btg2 reduces interleukin-6
expression by inhibiting the Stat3 signaling pathway, which plays a
pivotal role in adipocyte differentiation (44, 45).

Moreover, our immune correlation analysis using ssGSEA
revealed significant associations between the expression of the
hub genes and various immune cell populations. Specifically,
UCHLI and PRCP showed strong positive correlations with
CD56 bright natural killer cells and significant negative
correlations with Memory B cells, whereas BTG2 exhibited an
opposing pattern. During the differentiation process of monocytes
into M1 macrophages, a significant upregulation of PRCP activity is
observed (46). Studies have shown that human blood-derived
alveolar macrophages exhibit higher PRCP activity (47, 48).
Given that M1 macrophages are defined as pro-inflammatory
macrophages, this suggests that PRCP plays a key role in the
inflammatory response mechanism (46). Additionally, PRCP is
also highly expressed in human neutrophils (49). UCHLI
primarily promotes the polarization of M1 macrophages by
regulating the PI3K/AKT signaling pathway (50). It can also
modulate the inflammatory response in lipopolysaccharide (LPS)-
activated macrophages through MAPK and NF-xB signaling
pathways (51). BTG2 mainly by controlling cell proliferation and
activation processes to maintain T cell quiescence (42). Moreover,
the protein complex formed by BTG2 and PRMT1 can effectively
counteract the proliferation activity of pre-B cells, thus promoting
the development of B cells (52). These findings provide solid
evidence supporting the theory that exosome-related genes are
involved in immune regulation, fully revealing their key positions
and mechanisms of action within the immune regulation network.

In addition, drug enrichment analysis using the DSigDB
platform identified several candidate compounds, such as
Pentaphenate and Delphinidin, that significantly interact with the
hub genes. Previous study had shown that PRCP, through its
involvement in the pro-opiomelanocortin (POMC) system, makes
it a highly promising target in the treatment of obesity and related
diseases (34, 53). In vitro and in vivo experiments indicate that
myricetin may influence the lipid metabolic process in the adipose
tissue of obese mice by regulating the expression levels of miR-222
and its target gene BTG2 (54). These potential therapeutic agents
may modulate exosome-mediated signaling and immune responses,
offering promising avenues for targeted intervention in OSA.

While our machine learning approaches provides novel
insights, limitations warrant consideration. First, the analyses
were based exclusively on adipose tissue transcriptomic data,
which may not fully reflect the systemic pathophysiology of OSA
involving airway, liver, and circulating immune cells. Second, the
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relatively small sample size (n=60) may limit the generalizability of
the results, underscoring the need for validation in larger, multi-
center cohorts. Finally, the DSigDB-based drug predictions require
experimental confirmation of target engagement and efficacy.

Based on previous research, we have developed an innovative
hypothesis: the “Exosome-Immune Axis in the Pathogenesis of
OSA.” During the progression of OSA, IH likely activates the HIF-
low signaling pathway in adipose tissue, leading to the release of
pathological exosomes. These exosomes carry key regulatory
molecules such as PRCP, UCHLI, and BTG2, initiating a vicious
cycle of “hypoxia-exosome-immune metabolic disorder.” In terms
of specific mechanisms, PRCP in the exosomes may enhance the
differentiation of M1 macrophages and disrupt the normal
metabolism of o-MSH, thereby triggering a systemic
inflammatory response. UCHL1 may regulate the nuclear
translocation of HIF-lo and activate the PI3K/AKT signaling
pathway, further exacerbating M1 macrophage polarization and
suppressing NK cell activity. BTG2 primarily affects lipid
metabolism via the STAT3 signaling pathway and, through the
BTG2-PRMT1 protein complex, promotes the differentiation and
maturation of B cells. This model comprehensively integrates
interactions involving “hypoxia-exosome”-mediated signaling,
immune cell functional remodeling, and metabolic disruption,
offering a promising new research direction for a deeper
understanding of the systemic pathological mechanisms of OSA.
Finally, the proposed “Hypoxia-Exosome-Immune Axis” represents
a hypothesis derived from bioinformatics associations rather than
demonstrated causal relationships, and its mechanistic details await
functional validation.

In summary, this study is the first to identify PRCP, UCHLI,
and BTG2 as exosome-based biomarkers associated with the
diagnosis of OSA. These biomarkers are closely linked to
immune-metabolic imbalance in the body. The findings not only
uncover key molecular nodes involved in immune-metabolic
disruption in the pathogenesis of OSA but also provide potential
theoretical support and direction for the development of targeted
therapeutic strategies based on the OSA exosome-immune axis.

5 Conclusion

This study identifies PRCP, UCHLI, and BTG2 as key exosome-
related biomarkers in OSA that contribute to immune-metabolic
dysregulation. By integrating transcriptomic data, machine
learning, immune profiling, and in vivo and in vitro validations
across multiple independent cohorts, we reveal an “exosome-
immune” axis underlying OSA pathophysiology.
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