
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Yejun Tan,
Hong Kong Polytechnic University,
Hong Kong SAR, China

REVIEWED BY

Jinwei Li,
Sichuan University, China
Zoya Serebrovska,
Institute of Gerontology (NAN Ukraine),
Ukraine

*CORRESPONDENCE

Riken Chen

chenriken@126.com

Weimin Yao

490296443@qq.com

†These authors have contributed equally to
this work

RECEIVED 05 March 2025
ACCEPTED 06 October 2025

PUBLISHED 27 October 2025

CITATION

Ye W, Yang Y, Chen F, Lin X, Wang Y, Du L,
Pan J, Liao W, Chen B, Chen R and Yao W
(2025) Decoding the hypoxia-exosome-
immune triad in OSA: PRCP/UCHL1/BTG2-
driven metabolic dysregulation revealed by
interpretable machine learning.
Front. Immunol. 16:1587522.
doi: 10.3389/fimmu.2025.1587522

COPYRIGHT

© 2025 Ye, Yang, Chen, Lin, Wang, Du, Pan,
Liao, Chen, Chen and Yao. This is an open-
access article distributed under the terms of
the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction
in other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 27 October 2025

DOI 10.3389/fimmu.2025.1587522
Decoding the hypoxia-exosome-
immune triad in OSA: PRCP/
UCHL1/BTG2-driven metabolic
dysregulation revealed by
interpretable machine learning
Weilong Ye †, Yitian Yang †, Feiju Chen †, Xiaoxi Lin, Yunan Wang,
Lianfang Du, Jingjing Pan, Weifeng Liao, Bainian Chen,
Riken Chen* and Weimin Yao*

The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
Background:Obstructive sleep apnea (OSA) is a prevalent disorder characterized

by significant metabolic and immune dysregulation. This study aims to uncover

exosome-related biomarkers implicated in immune-metabolic disturbances in

OSA and explore their potential as diagnostic and therapeutic targets.

Methods: Transcriptomic data from twoGEO datasets (GSE135917 andGSE38792)

were integrated and analyzed using differential expression analysis via the limma

package. Key biomarkers were identified using feature selection techniques

including LASSO and Random Forest. Machine learning models, specifically

XGBoost, were trained to evaluate biomarker performance, with model accuracy

assessed by ROC curve analysis and AUC values. Immune cell infiltration was

evaluated using single-sample Gene Set Enrichment Analysis (ssGSEA). Drug

enrichment predictions were made through the Drug Signatures Database

(DSigDB). Vivo and Vitro Experimental Validation on Multiple Independent cohorts.

Results: Three exosome-related biomarkers—PRCP, UCHL1, and BTG2—were

identified as central to OSA’s immune-metabolic dysregulation. XGBoost

modeling demonstrated robust predictive power (AUC = 0.968). Immune

analysis revealed significant correlations between gene expression and

immune cell subsets, particularly CD56 bright natural killer cells and Memory B

cells. Drug enrichment analysis identified potential therapeutic compounds,

including Pentaphenate and Delphinidin, which target these biomarkers. OSA is

associated with a reproducible transcriptional signature characterized by

increased PRCP and UCHL1 expression and decreased BTG2 expression.

Conclusions: This study identifies PRCP, UCHL1, and BTG2 as key exosome-

related biomarkers in OSA that regulate immune-metabolic disruption. By

integrating transcriptomic data, machine learning, and immune analysis, we

uncover an “exosome-immune” axis in OSA pathophysiology.
KEYWORDS

exosome signaling, obstructive sleep apnea (OSA), immune infiltration, machine
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GRAPHICAL ABSTRACT
1 Introduction

An estimated 1 billion people worldwide are affected by OSA

(1), and its prevalence continues to rise (2), primarily due to the

increasing global rates of obesity (3–5). OSA is characterized by

repeated partial or complete obstruction (collapse) of the upper

airway during sleep, leading to hypercapnia, intermittent hypoxia

(IH), and a reduction in blood oxygen saturation (2). The clinical

diagnostic standard for OSA relies on polysomnography (PSG) (6).

However, the high cost and time-intensive nature of this diagnostic

method limit its application in the early screening and long-term

treatment monitoring of OSA. As a result, identifying reliable

biomarkers has become a research focus in the field of sleep

medicine over the past decade (7). Pathophysiological studies

suggest that IH, a core pathological feature of OSA, activates the

sympathetic nervous system, induces metabolic disturbances, and

promotes systemic inflammation and oxidative stress (8). Notably,

IH exposure significantly upregulates the transcriptional activity of

hypoxia-inducible factor-1a (HIF-1a), which then regulates a

variety of downstream signaling pathways (9, 10). In terms of

immune regulation, OSA patients exhibit characteristic

proliferation of natural killer (NK) cells and natural killer T

(NKT) cells (11). Further analysis shows that in mild to moderate

cases, the proportion of CD4+ effector T cell subsets is abnormally

elevated, while the numbers of effector memory T cells (TEM) and

central memory T cells (TCM) are significantly reduced (12). Severe

OSA cases display also pronounced immune dysregulation: the

ratio of T helper (Th) cells to cytotoxic T lymphocytes (CTLs)

decreases, while the number of B lymphocytes, which mediate

humoral immunity, is significantly reduced (13). These findings

suggest that the pathological progression of OSA involves complex

immune cell dynamic imbalances, with characteristic immune

phenotype changes observed at different stages of the disease.
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This provides potential targets for the development of novel

diagnostic and therapeutic strategies.

Exosomes, key components of adipose-derived extracellular

vesicles, play a crucial role in systemic metabolic regulation (14).

These nanometer-sized vesicles, ranging from 30 to 150 nm in

diameter, are rich in proteins and nucleic acids (including mRNA,

miRNA, and lncRNA) derived from their parent cells (15). By

mediating intercellular communication, metabolic waste clearance,

and the maintenance of microenvironment homeostasis, exosomes

significantly contribute to metabolic processes (16). Notably,

exosome-carried metabolic regulatory factors can specifically bind

to lipid transport proteins, modulating inflammatory cascades,

immune response networks, and programmed cell death

pathways (17, 18). This ultimately leads to pathological changes

associated with metabolic disorders (19). Based on these functions,

this study proposes an innovative hypothesis: intermittent hypoxia

may alter the exosome secretion profile of adipose tissue, which in

turn changes immune cell infiltration patterns, ultimately driving

the pathological processes of OSA.

Current research has yet to fully elucidate the molecular

mechanisms by which adipose-derived exosomes interact with

metabolic regulation. Experimental evidence has shown that

adipose tissue macrophages (ATMs) deliver miR-155 to

adipocytes via exosomes, and this microRNA plays a significant

role in improving obesity-related metabolic abnormalities by

inhibiting the expression of peroxisome proliferator-activated

receptor g (PPARg) (20). On the other hand, exosome-derived

miR-34a from adipocytes has been shown to suppress M2

macrophage polarization, exacerbating the chronic inflammatory

state induced by obesity (17). These findings suggest a bidirectional

regulatory network between adipocytes and immune cells mediated

by exosomes, offering a new perspective on the mechanistic study of

metabolic diseases.
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Building on this background, this study aims to adopt a

comprehensive bioinformatics approach. First, it will screen OSA-

specific exosome biomarkers and establish a machine learning-assisted

diagnostic model. Second, the study will analyze the immune

microenvironment of adipose tissue using the ssGSEA (single-sample

Gene Set Enrichment Analysis) algorithm. Finally, we conducted in

vivo and in vitro experimental validations across multiple independent

cohorts and established a theoretical framework for the “hypoxia–

exosome–immune” regulatory axis, thereby providing a solid

foundation for the development of precise therapeutic targets.
2 Materials and methods

2.1 Collection and preprocessing of OSA
transcriptomic data

The mRNA expression profiles for OSA were obtained from the

GEO database, specifically datasets GSE135917 (21) and GSE38792

(22), both generated using the GPL6244 platform (Affymetrix

Human Gene 1.0 ST Array). In the GSE135917 dataset, the

control group included 8 samples, while the OSA group

comprised 34 samples, with total RNA extracted from

subcutaneous adipose tissue. Similarly, the GSE38792 dataset

consisted of 8 control samples and 10 OSA patient samples, with

RNA extracted from visceral adipose tissue biopsies collected

during surgery. Log transformation was applied to both datasets

to standardize expression values, followed by correction of

distribution differences across samples. The datasets were then

merged, and batch correction was performed to mitigate technical

variations. Principal component analysis (PCA) was employed to

visualize the differences between the two datasets before and after

batch correction, ensuring improved data comparability.
2.2 Differential gene expression analysis
and intersection with exosome-related
genes

After data preprocessing, differential expression analysis was

conducted using the limma package to compare gene expression

profiles between control and disease groups, aiming to investigate the

molecular mechanisms underlying sleep apnea. The normalize-

Between-Arrays() function was applied to standardize the data.

Subsequently, further analysis was performed using linear

modeling: the lmFit() function was employed to fit a generalized

linear model, make-Contrasts() was used to construct a contrast

matrix defining specific comparisons, followed by contrasts.fit() for

contrast analysis, and finally, eBayes() was applied for empirical

Bayesian adjustment to enhance the robustness and accuracy of

statistical inference. The filtering criteria included an adjusted p-

value < 0.05 and |log2FC| > 0.5 (approximately corresponding to a

1.41-fold change). This threshold was chosen based on established

practices in similar studies (23, 24), as microarray data typically reveal

subtle expression changes, with a |log2FC| > 0.5 regarded as a
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meaningful difference. The resulting differentially expressed genes

were visualized using a heatmap. Exosome-related genes were

retrieved from the GeneCards database, a publicly available

resource for human gene information (https://www.genecards.org/).

We selected genes with Relevance Score > 2 as strongly associated

genes, which accounted for more than 50 percent of the total. A

Venn diagram was then constructed to visualize the intersection

between exosome-related genes and differentially expressed genes,

highlighting those with potential relevance to the study.
2.3 Functional enrichment analysis of
EOR-DEGs

To explore the functional roles of exosome-related differentially

expressed genes (EOR-DEGs), Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analyses

were performed using the clusterProfiler package (25). Enrichment

was considered significant when both p-values and adjusted p-values

were less than 0.05. GO analysis encompassed 3 domains: biological

processes (BP), cellular components (CC), and molecular functions

(MF). The results of these enrichment analyses were visualized using

bar-plots to highlight significant pathways and cnet-plots to illustrate

the relationships between genes and their associated terms.
2.4 Logistic regression analysis and feature
selection of EOR-DEGs

To assess the prognostic and diagnostic value of EOR-DEGs,

univariate logistic regression was first applied, with the odds ratio

(OR) and p-value used to identify genes significantly associated with

prognosis and diagnosis (p < 0.05). Genes meeting this threshold

were then subjected to feature selection using Least Absolute

Shrinkage and Selection Operator (LASSO) regression (l. min) and

Random Forest (RF) analysis (Importance > 4) (26). The overlap of

selected genes from both methods was visualized using a Venn

diagram, identifying a set of key biomarkers for further clinical and

mechanistic analysis. Subsequently, box plot was used to illustrate the

expression levels of feature genes across different groups, and

correlation plot was employed to visualize their interrelationships.
2.5 Construction and evaluation of a
diagnostic model

A nomogram was developed to visualize the relationship

between feature gene expression and disease risk, with coefficients

derived from multivariate logistic regression. The model’s

performance was evaluated using the Receiver Operating

Characteristic (ROC) curve, with the area under the curve (AUC)

indicating predictive accuracy. Calibration curves were constructed

to assess the agreement between predicted and observed outcomes,

while Decision Curve Analysis (DCA) evaluated the model’s clinical

utility by assessing net benefit at various threshold probabilities.
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2.6 XGBoost model construction

The XGBoost algorithm (27) was selected for its efficiency and

robust performance in binary classification tasks. The feature genes

were set as the predictors, with occurrence of OSA acting as

response variable. The model’s predictive performance was

evaluated using ROC curves. To minimize overfitting, 5-fold

cross-validation was performed during model validation,

alongside a reduced learning rate and limited maximum depth.
2.7 Model interpretation based on SHAP

We calculated SHAP (SHapley Additive exPlanations) (28) values

to interpret the XGBoost model. The SHAP summary plot visualized

their relative importance. Dependency plots were generated to

illustrate the relationship between gene expression levels and disease

risk. Additionally, SHAP force plots were used to analyze individual

patient predictions, offering detailed insights into the gene-specific

contributions to the probability of OSA occurrence.
2.8 Immune correlation analysis

The ssGSEA was employed to calculate immune cell infiltration

scores, which were subsequently correlated with the expression of

feature genes. Spearman’s correlation method was used to assess the

relationship between immune cell activity and gene expression, with

statistical significance determined for each correlation. The results

were visualized in a heatmap, where the strength and significance of

the correlations were clearly represented. The 28 immune cell–related

gene sets were obtained from previously published studies (29, 30).
2.9 Drug enrichment analysis

The Drug Signatures Database (DSigDB) was utilized to identify

potential therapeutic drugs by predicting protein-drug interactions.

The DSigDB online platform (https://dsigdb.tanlab.org/), a publicly

accessible database that integrates drug-associated gene expression

data, was employed to explore drug-gene relationships, mechanisms

of drug action, and opportunities for drug repurposing (31).

Candidate drugs were identified by comparing the database’s drug

gene expression signatures with disease-related gene expression

profiles. The results were visualized using Cytoscape software

(https://cytoscape.org/).
2.10 Vivo and vitro experimental validation

Human SW872 liposarcoma cells (n=6) and murine 3T3-L1

preadipocytes (n=6) were cultured under standard conditions, with

3T3-L1 cells induced to differentiate into mature adipocytes using a

commercial induction kit. Male C57BL/6J mice (8 weeks of age; n=10)

were randomly assigned to normoxia or chronic CIH exposure. This
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experiment was reviewed and approved by the Animal Welfare and

Ethics Committee under review number: IACUC-20250701-299. Cells

and mice were exposed to intermittent hypoxia (IH/CIH) with cyclic

oxygen fluctuations, while controls were maintained under normoxia.

Total RNA was extracted from cells and mouse adipose tissues,

reverse-transcribed into cDNA, and analyzed by SYBR Green-based

qRT-PCR. Gene expression was quantified using the 2^(-DDCT)
method with GAPDH as the internal control, and all reactions were

performed in triplicate to ensure reliability. IHC was performed on

FFPE iWAT sections using antibodies against PRCP, BTG2, and

UCHL1, with DAB visualization, and staining was quantified as

percentage positive area using ImageJ. The detailed methodological

section has been added in the supplementary file. A brief overview of

the process is presented in the Graphical Abstract.
2.11 Statistical analysis

The entire analysis was conducted using R software (version

4.4.2). During data collection, the GEOmirror and idmap2 packages

facilitated data retrieval and annotation. The limma and sva packages

were utilized for dataset organization, correction, merging, and

differential expression analysis. To ensure uniform distribution of

expression values across all samples, quantile normalization was

applied using the normalize-Between-Arrays function. After merging

the datasets, the ComBat method was employed to correct for batch

effects. For visualization, box plots were generated, and the Wilcoxon

rank-sum test was applied for group comparisons. Correlation

analysis was performed using Pearson’s correlation coefficient to

assess the relationships between gene expression levels. Data are

presented as mean ± SEM; qPCR was analyzed using per-sample

DCt values and reported as 2^−DDCt, while IHC results were

quantified as the percentage of positive area (area%) per sample

across predefined fields, with two groups compared using unpaired

two-tailed t-tests, multiple groups analyzed by one-way ANOVAwith

appropriate post-hoc tests, and non-parametric alternatives applied

when assumptions of normality or homoscedasticity were not met; P

< 0.05 was considered statistically significant.
3 Results

3.1 Data integration and differential
expression analysis

PCA demonstrated that batch correction effectively mitigated

batch effects, thereby preserving the integrity of the biological signal

(Figures 1A, B). Addressing batch effects is crucial to minimize non-

biological variations that could otherwise compromise the reliability of

downstream analyses. Utilizing thresholds of p-value < 0.05 and |

log2FC| > 0.5, 245 differentially expressed genes were identified

(Figure 1C). A heatmap showcasing the top 50 upregulated or

downregulated genes, ranked by |log2FC|, provides a visual

representation of the key expression changes (Figure 1D). Using the

keyword “exosome,” 5,293 protein-coding genes were identified, of
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which 2,740 genes with a Relevance Score > 2 were selected for further

analysis. The Venn diagram displayed 46 EOR-DEGs (Figure 1E).
3.2 Functional enrichment analysis for
EOR-DEGs

The GO terms with the highest number of enriched genes in BP,

CC, and MF were: regulation of inflammatory response, endocytic

vesicle, and structural constituent of the cytoskeleton (Figure 2A).

In the KEGG analysis, relatively few pathways were enriched (with a

p-value < 0.05 and an adjusted p-value < 0.05 with a primary focus

on lipid metabolism and atherosclerosis pathways (Figure 2B). The

GO analysis network plot highlights the top 10 most significant

functional enrichment categories (Figure 2C). The KEGG path view

suggests that LBP, MMP9, APOB, IL6, and RAP1B are involved in

lipid metabolism and atherosclerosis (Figure 2D).
3.3 Logistic regression analysis and feature
selection of EOR-DEGs

In univariate logistic regression analysis, all 46 EOR-DEGs had

p-values less than 0.05. Among them, 20 genes had odds ratios
Frontiers in Immunology 05
(ORs) less than 1, while the remaining genes showed ORs greater

than 1 (Table 1). These 46 EOR-DEGs were further included in

LASSO analysis to address potential collinearity, resulting in the

selection of 10 genes (Figures 3A, B). Random forest analysis was

employed to determine gene importance, with genes having

importance scores greater than 4 being highlighted (Figures 3C,

D). The intersection of genes identified through LASSO and RF

analyses revealed three feature genes for model construction:

PRCP, UCHL1, and BTG2. The box plot indicated that PRCP

and UCHL1 were highly expressed in the OSA group, while BTG2

showed lower expression (Figure 3E). Correlation analysis revealed

that UCHL1 was negatively correlated with both BTG2 and

PRCP (Figure 3F).
3.4 Construction and evaluation of a
diagnostic model

The nomogram visually represents a diagnostic model

constructed through multivariate logistic regression analysis,

leveraging the expression levels of hub genes to predict the risk of

OSA (Figure 4A). The ROC curve (Bootstrapping method)

demonstrates the model’s superior diagnostic performance, with

an AUC value exceeding that of individual genes, confirming its
FIGURE 1

Data preprocessing and differential gene screening. (A) PCA plot before batch correction showed clustering by dataset origin. (B) PCA plot after
batch correction, demonstrating clustering by disease status, indicating the removal of technical variations. (C) Volcano plot of differentially
expressed genes (red dots: upregulated genes; blue dots: downregulated genes; thresholds: p-value < 0.05 and |log2FC| > 0.5), identifying 245
differentially expressed genes (DEGs). (D) Heatmap displaying the top 50 DEGs (ranked by |log2FC|), with row-normalized expression values
(Z-score) reflecting expression patterns between OSA and control groups. (E) Venn diagram showing 46 exosome-related differentially expressed
genes (EOR-DEGs, intersection of Gene Cards exosome gene set and DEGs).
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robustness (Figures 4B, C). Model evaluation through the

calibration curve indicates that the bias-corrected curve closely

parallels the ideal curve, with only minor deviations observed in

the high-probability range (approaching 1.0) (Figure 4D).

Additionally, the Decision Curve Analysis (DCA) reveals that

employing the model for prediction and intervention provides a

higher net benefit (Figure 4E). These findings underscore the

model’s reliability and practical utility in diagnostic applications.

In the XGBoost model, the AUC value reached 0.968 (Figure 4F).
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To mitigate overfitting, 5-fold cross-validation was performed,

further validating the model’s robustness (AUC = 0.989)

(Figure 4G). Additionally, a feature importance plot was

generated to illustrate the contribution of each gene to the

model’s predictions (Figure 4H). For the XGBoost model, we set

the following hyperparameters: learning rate (eta) = 0.01, maximum

tree depth = 2, minimum child weight = 2, gamma = 0.1, subsample

= 0.8, colsample_bytree = 0.8, lambda = 1, and alpha = 0. The

objective was to use a smaller learning rate and limit model
FIGURE 2

Functional and pathway enrichment of EOR-DEGs. (A) GO enrichment bar plot with significant terms (p < 0.05) including “regulation of inflammatory
response” (BP), “endocytic vesicle” (CC), and “structural constituent of cytoskeleton” (MF). (B) KEGG pathway enrichment highlighted significant
pathways such as “lipid metabolism” and “atherosclerosis”. (C) GO network diagram displaying the top 10 enriched terms, where node size
represents the number of genes and edge width indicates gene overlap. (D) KEGG pathway map (lipid metabolism) highlighting key genes (LBP,
MMP9, APOB, IL6, RAP1B).
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complexity to prevent overfitting when analyzing relatively small

sample sizes.
3.5 Interpreting the machine learning
model with SHAP analysis

The SHAP Summary Plot illustrates the contributions of the 3

hub genes (PRCP, UCHL1, and BTG2) to the overall model

prediction (Figure 5A). Among them, PRCP shows the highest

average SHAP value (0.334), indicating its strongest influence on

the model’s predictions, while UCHL1 and BTG2 have relatively

smaller contributions. The Dependence Plot visualizes the

relationship between the expression levels of the feature genes

and their corresponding SHAP values. For instance, the SHAP

value for BTG2 peaks around an expression level of 8.5, decreasing

as the expression level increases, suggesting a nonlinear relationship

that may reflect BTG2’s complex regulatory role in the model’s

output (Figure 5B). The figure also shows the relationships for

PRCP and UCHL1 (Figures 5C, D). According to the SHAP Force

Plot, in one control sample, the hub genes exhibit a negative

contribution to the occurrence of OSA (Figure 5E). These results

suggest that BTG2 might act as a protective gene, with low

expression increasing risk, while UCHL1 and PRCP may serve as

risk genes, with higher expression correlating with an increased risk

of OSA.
3.6 Correlation analysis of immunity

The ssGSEA analysis was employed to calculate the immune cell

infiltration scores, which were subsequently correlated with the

expression levels of the hub genes. UCHL1 and PRCP demonstrated

a strong positive correlation with CD56 bright natural killer cells

and a significant negative correlation with Memory B cells. In

contrast, BTG2 exhibited an inverse correlation pattern. A

heatmap was generated to visualize the correlations between the

other immune cells and the feature genes, providing a

comprehensive overview of the immune landscape associated with

these feature genes (Figure 6A).
TABLE 1 Univariate logistic regression analysis.

Gene OR OR.95L OR.95H p-value

PRCP 986.0791 60.17411 43735.75 2.90E-05

ATP6AP2 114.3371 14.29222 1758.272 8.39E-05

PDIA3 75.6924 11.11494 951.5929 0.000113

ARF4 47.53213 8.308052 428.4111 9.42E-05

GLB1 38.61957 7.375862 314.5474 0.000108

EXOSC3 27.94962 5.829075 190.7486 0.000158

UCHL1 27.675 6.2062 175.6567 7.80E-05

RAP1B 22.04958 4.769966 176.006 0.000579

ARPC4 15.57668 4.089505 76.78485 0.000201

TUBB4A 11.25975 3.354366 44.70034 0.000205

GCA 10.92942 3.585175 44.0934 0.000151

NSA2 8.126889 2.39504 39.09922 0.003046

SUCNR1 6.522213 2.137218 24.80007 0.002313

ALCAM 6.172922 2.180943 21.61758 0.001649

TUBB1 5.6868 2.185966 17.86299 0.001091

GPLD1 5.651804 2.053642 18.85715 0.00191

TXN 5.265804 1.945368 18.08795 0.003045

LBP 5.037635 1.938829 15.97191 0.002282

GPC4 4.393301 1.675899 13.27509 0.004583

HLA-DRB5 3.279293 1.375657 10.54385 0.019915

LYZ 2.892675 1.350791 6.975785 0.01005

CHI3L1 2.632013 1.409485 5.399355 0.004322

NPR3 2.523628 1.203417 5.78103 0.018065

MMP9 2.396216 1.199165 5.348592 0.020294

HBA2 2.236278 1.21276 4.4752 0.014438

HBB 2.092857 1.330592 3.531524 0.002651

ITLN1 0.62736 0.378592 0.949145 0.039053

C4B 0.477884 0.214379 0.907881 0.036145

IL6 0.477017 0.278475 0.779596 0.004177

SLPI 0.432136 0.19901 0.824733 0.017656

SLC2A3 0.392045 0.206861 0.702392 0.002305

KLF4 0.365831 0.186386 0.678436 0.00198

SOCS3 0.319353 0.147249 0.636311 0.001906

ZFP36 0.31906 0.148147 0.64201 0.001953

OGN 0.303189 0.124932 0.647185 0.003842

AREG 0.292776 0.124983 0.604413 0.001861

ATF3 0.283908 0.127676 0.582859 0.000993

MYC 0.270612 0.108965 0.590503 0.002069

(Continued)
TABLE 1 Continued

Gene OR OR.95L OR.95H p-value

WT1 0.259777 0.092083 0.626412 0.005114

DPP4 0.245084 0.073703 0.637639 0.009457

KRT19 0.215046 0.059646 0.574421 0.007162

APOB 0.158699 0.050603 0.423645 0.000567

AZGP1 0.138617 0.036829 0.396253 0.000937

SIK1 0.099512 0.026518 0.308981 0.000188

BTG2 0.068947 0.014537 0.254142 0.000202

KLF6 0.050211 0.009535 0.202541 9.92E-05
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3.7 Drug enrichment analysis

Using the gene IDs PRCP, UCHL1, and BTG2 as input in an

online platform, 69 potential drugs were identified (p-value < 0.05).

Among these, compounds such as Pentaphenate and Delphinidin

exhibited significant associations with specific genes like PRCP and

BTG2. Functional enrichment analysis highlighted their fold

enrichment, z-scores, and adjusted p-values, suggesting that these

compounds may exert critical biological effects on the related genes.

Moreover, they could play regulatory roles in specific biological

processes, providing insights into potential therapeutic applications.

The network diagram illustrates the connections between identified

drugs and their corresponding feature genes (Figure 6B). Each node

represents a drug or a gene, with a maximum of 20 drugs displayed

per gene.
3.8 Vivo and vitro experimental validation
on multiple independent cohorts

To determine whether OSA induces transcriptional alterations

in stress and metabolism-related genes, we performed qRT-PCR in

multiple independent cohorts. We focused on PRCP, UCHL1, and

BTG2, given their previously reported roles in proteolytic

regulation, protein homeostasis, and cell cycle control. As shown

in Figures 7A–C (Differentiated 3T3-L1 murine adipocytes), PRCP

and UCHL1 mRNA levels were significantly elevated in the OSA
Frontiers in Immunology 08
group compared with controls, whereas BTG2 mRNA expression

was markedly reduced. These findings were consistently reproduced

in independent experimental sets (Figures 7D–F, SW872 human

adipocytes; Figures 7G–I, eWAT), where PRCP upregulation was

highly significant (Figures 7D, G), UCHL1 expression was robustly

increased (Figures 7E, H), and BTG2 levels were consistently

downregulated across all comparisons (Figures 7F, I). Notably,

the concordant results across independent replicates underscore

the stability and reproducibility of these transcriptional changes.

Collectively, these data indicate that OSA is associated with a

reproducible transcriptional signature characterized by increased

PRCP and UCHL1 expression and decreased BTG2 expression.

IHC: Representative micrographs (Figures 7Ja–f) and semi-

quantitative analysis of DAB-positive area (%) (Figures 7Jg–i)

revealed group-dependent differences (n = 3 per group).

Compared with the control (CON) group, OSA samples exhibited

significantly higher UCHL1 and PRCP expression and markedly

lower BTG2 levels.
4 Discussion

This study elucidates the potential pathogenesis of OSA

through adipose tissue transcriptomics, revealing PRCP, UCHL1,

and BTG2 as exosome-associated hub genes that orchestrate

metabolic-immune dysregulation. By synergizing cross-platform

data integration (GSE135917/GSE38792), machine learning-
FIGURE 3

Feature selection was performed using LASSO (10-fold CV, lambda. min) and random forest (optimal trees, Mean Decrease Gini > 4). (A) coefficient
path (lasso). (B) cross-validation error (lasso). (C) error rate curve (RF). (D) variable importance ranking (RF). (E) Boxplot showing the expression
differences of feature genes (PRCP, UCHL1, BTG2) between the OSA group and the control group (*p<0.05, **p<0.01, ***p<0.001). (F) Heatmap of
feature gene expression correlations (Pearson correlation coefficient).
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driven biomarker discovery (XGBoost AUC = 0.968), and single-

sample immune deconvolution, we reveal an unprecedented

“exosome-immune” axis in OSA pathophysiology. Our robust

feature selection pipeline—incorporating LASSO regularization

(l . min) and random forest permutation importance—

convergently identified PRCP (prolyl carboxypeptidase), UCHL1

(Ubiquitin C-Terminal Hydrolase L1), and BTG2 (B-cell

translocation gene 2) as key non-redundant classifiers, validated

through SHAP interpretability to dissect nonlinear gene-disease

interactions (SHAP value for PRCP: 0.334). These results not only

demonstrate the diagnostic potential of these biomarkers but also

highlight the utility of interpretable machine learning techniques in

elucidating complex biological relationships (32).
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Prolyl carboxypeptidase (PRCP), a serine protease, exerts

regulatory effects across multiple endocrine axes including the

renin-angiotensin system (RAS), kallikrein-kinin system (KKS),

and pro-opiomelanocort in (POMC) (33) . S tudy had

demonstrated that PRCP plays a crucial role in the onset and

progression of obesity, regulating the balance between energy intake

and expenditure through an a-MSH1-mediated mechanism (34).

The coexistence of obesity and OSA is commonly observed, with a

bidirectional relationship between the two conditions (35). UCHL1,

a key member of the deubiquitinating enzyme family, influences cell

proliferation, differentiation, and damage by modulating both

ubiquitination and non-ubiquitination pathways (36, 37).

Notably, HIF-1a has been identified as a potential target
FIGURE 4

Feature gene-based OSA diagnostic model. (A) The nomogram integrates the expression levels of PRCP, UCHL1, and BTG2 to predict OSA risk, with
the total score corresponding to the right-side risk axis. (B) ROC curve showing the performance of individual genes in predicting OSA. (C) ROC
curve showing the performance of the combined diagnostic model based on feature genes. (D) Calibration curve with Bootstrap = 1000 iterations.
The dashed line represents the ideal fit, and the solid line represents the model’s bias-corrected prediction. (E) DCA showing the net clinical benefit
of the model when the threshold probability exceeds 10%. XGBoost Model Validation: (F) ROC curve. (G) 5-fold cross-validation. (H) Feature
importance plot.
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FIGURE 6

Immune association and potential targeted drugs of feature genes. (A) Heatmap depicting the correlations between immune cell infiltration and
feature gene expression. (B) Network of drug-gene interactions, visualized using Cytoscape, showing potential therapeutic drugs targeting the
feature genes.
FIGURE 5

SHAP Interpretation of the XGBoost Model. (A) Summary plot illustrating the contributions of PRCP, UCHL1, and BTG2 to the overall prediction of
OSA risk. (B) Relationship between BTG2 Expression Level and SHAP Value (LOESS fitting curve). (C) Relationship between PRCP Expression Level
and SHAP Value. (D) Relationship between UCHL1 Expression Level and SHAP Value. (E) SHAP force plot illustrating the contribution of feature genes
to the OSA risk prediction for a control sample.
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FIGURE 7

Intermittent hypoxia induces a conserved cellular stress signature across adipocyte models in vitro and in vivo. Relative mRNA expression of PRCP,
UCHL1, and BTG2 was measured by qRT-PCR. (A–C) Differentiated 3T3-L1 murine adipocytes (n = 3 per group). (D–F) SW872 human adipocytes
(n = 3 per group). Cells were exposed to 24 hours of normoxia or intermittent hypoxia (IH). (G–I) Epididymal white adipose tissue (eWAT) from mice
exposed to 4 weeks of normoxia (Control, n = 5) or chronic intermittent hypoxia (CIH, n = 5). Gene expression was normalized to Actb. Data are
presented as mean ± SEM. Statistical significance was assessed by unpaired, two-tailed Student’s t-test on DCt values. (J, a, b) Representative IHC images
of PRCP, (J, c, d) UCHL1, (J, e, f) BTG2. Brown DAB precipitate indicates positive staining; nuclei are counterstained blue (scale bar = 100 mm). (J, g–i)
Quantification of DAB-positive area (%). Each dot represents one independent sample; bars denote mean ± SD. *p < 0.05, **p < 0.01, ***p < 0.001.
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interacting with UCHL1, and under hypoxic conditions, UCHL1

may regulate the nuclear translocation of HIF-1a, influencing its

role in cellular responses to low oxygen levels (38). In OSA patients,

IH activates HIF-1a, which in turn triggers systemic inflammation

and disrupts hepatic lipid metabolism (39–41). BTG2, a member of

the ERBB2 (BTG/TOB) family, functions as a B-cell transducer and

regulator (42). Research has shown that Btg2 expression is elevated

in the subcutaneous adipose tissue of obese mice on a high-fat diet,

highlighting its involvement in lipid metabolism during obesity and

metabolic disorders (43). Specifically, Btg2 reduces interleukin-6

expression by inhibiting the Stat3 signaling pathway, which plays a

pivotal role in adipocyte differentiation (44, 45).

Moreover, our immune correlation analysis using ssGSEA

revealed significant associations between the expression of the

hub genes and various immune cell populations. Specifically,

UCHL1 and PRCP showed strong positive correlations with

CD56 bright natural killer cells and significant negative

correlations with Memory B cells, whereas BTG2 exhibited an

opposing pattern. During the differentiation process of monocytes

into M1 macrophages, a significant upregulation of PRCP activity is

observed (46). Studies have shown that human blood-derived

alveolar macrophages exhibit higher PRCP activity (47, 48).

Given that M1 macrophages are defined as pro-inflammatory

macrophages, this suggests that PRCP plays a key role in the

inflammatory response mechanism (46). Additionally, PRCP is

also highly expressed in human neutrophils (49). UCHL1

primarily promotes the polarization of M1 macrophages by

regulating the PI3K/AKT signaling pathway (50). It can also

modulate the inflammatory response in lipopolysaccharide (LPS)-

activated macrophages through MAPK and NF-kB signaling

pathways (51). BTG2 mainly by controlling cell proliferation and

activation processes to maintain T cell quiescence (42). Moreover,

the protein complex formed by BTG2 and PRMT1 can effectively

counteract the proliferation activity of pre-B cells, thus promoting

the development of B cells (52). These findings provide solid

evidence supporting the theory that exosome-related genes are

involved in immune regulation, fully revealing their key positions

and mechanisms of action within the immune regulation network.

In addition, drug enrichment analysis using the DSigDB

platform identified several candidate compounds, such as

Pentaphenate and Delphinidin, that significantly interact with the

hub genes. Previous study had shown that PRCP, through its

involvement in the pro-opiomelanocortin (POMC) system, makes

it a highly promising target in the treatment of obesity and related

diseases (34, 53). In vitro and in vivo experiments indicate that

myricetin may influence the lipid metabolic process in the adipose

tissue of obese mice by regulating the expression levels of miR-222

and its target gene BTG2 (54). These potential therapeutic agents

may modulate exosome-mediated signaling and immune responses,

offering promising avenues for targeted intervention in OSA.

While our machine learning approaches provides novel

insights, limitations warrant consideration. First, the analyses

were based exclusively on adipose tissue transcriptomic data,

which may not fully reflect the systemic pathophysiology of OSA

involving airway, liver, and circulating immune cells. Second, the
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relatively small sample size (n=60) may limit the generalizability of

the results, underscoring the need for validation in larger, multi-

center cohorts. Finally, the DSigDB-based drug predictions require

experimental confirmation of target engagement and efficacy.

Based on previous research, we have developed an innovative

hypothesis: the “Exosome-Immune Axis in the Pathogenesis of

OSA.” During the progression of OSA, IH likely activates the HIF-

1a signaling pathway in adipose tissue, leading to the release of

pathological exosomes. These exosomes carry key regulatory

molecules such as PRCP, UCHL1, and BTG2, initiating a vicious

cycle of “hypoxia-exosome-immune metabolic disorder.” In terms

of specific mechanisms, PRCP in the exosomes may enhance the

differentiation of M1 macrophages and disrupt the normal

metabolism of a-MSH, thereby triggering a systemic

inflammatory response. UCHL1 may regulate the nuclear

translocation of HIF-1a and activate the PI3K/AKT signaling

pathway, further exacerbating M1 macrophage polarization and

suppressing NK cell activity. BTG2 primarily affects lipid

metabolism via the STAT3 signaling pathway and, through the

BTG2-PRMT1 protein complex, promotes the differentiation and

maturation of B cells. This model comprehensively integrates

interactions involving “hypoxia-exosome”-mediated signaling,

immune cell functional remodeling, and metabolic disruption,

offering a promising new research direction for a deeper

understanding of the systemic pathological mechanisms of OSA.

Finally, the proposed “Hypoxia-Exosome-Immune Axis” represents

a hypothesis derived from bioinformatics associations rather than

demonstrated causal relationships, and its mechanistic details await

functional validation.

In summary, this study is the first to identify PRCP, UCHL1,

and BTG2 as exosome-based biomarkers associated with the

diagnosis of OSA. These biomarkers are closely linked to

immune-metabolic imbalance in the body. The findings not only

uncover key molecular nodes involved in immune-metabolic

disruption in the pathogenesis of OSA but also provide potential

theoretical support and direction for the development of targeted

therapeutic strategies based on the OSA exosome-immune axis.
5 Conclusion

This study identifies PRCP, UCHL1, and BTG2 as key exosome-

related biomarkers in OSA that contribute to immune–metabolic

dysregulation. By integrating transcriptomic data, machine

learning, immune profiling, and in vivo and in vitro validations

across multiple independent cohorts, we reveal an “exosome–

immune” axis underlying OSA pathophysiology.
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