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and experimental approaches
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Hospital of Guilin Medical University, Guilin, Guangxi, China, 4Pharmacy school of Guilin Medical
University, Guilin, China, 5Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair,
the Affiliated Hospital of Guilin Medical University, Guilin, China
Background: Psoriasis and Crohn’s disease (CD) are chronic inflammatory

diseases that involve complex immune-mediated mechanisms. Despite clinical

overlap and shared genetic predispositions, the molecular pathways connecting

these diseases remain incompletely understood. The present study seeks to

identify shared biomarkers and therapeutic targets for psoriasis and CD.

Methods: Differentially expressed genes (DEGs) were identified from publicly

available transcriptomic datasets related to psoriasis and CD. Simultaneously,

weighted gene co-expression network analysis (WGCNA) was performed to

identify gene modules associated with the clinical traits of psoriasis and CD.

Subsequently, biomarkers were prioritized from shared key genes by integrating

protein-protein interaction (PPI) networks with machine learning models. Gene

Set Enrichment Analysis (GSEA), along with Gene Ontology (GO) and KEGG

pathway analyses, were performed to determine the biological significance of

the identified genes. Immune infiltration analysis underscored the involvement of

hub genes in immune regulation, while single-cell transcriptomic analysis

revealed the cellular localization of these hub genes. Additional targeted

molecular biology experiments validated the shared biomarkers. DSigDB

predictions were employed to identify potential therapeutic compounds.

Molecular docking simulations were performed to assess the binding affinity of

the drugs to key target proteins. Finally, additional in vitro experiments were

conducted to validate the therapeutic effects of the identified compounds.

Results: The study identified KIF4A, DLGAP5, NCAPG, CCNB1, and CEP55 as key

regulatory molecules and shared biomarkers for both diseases. GSEA and

pathway analysis highlighted the importance of cell cycle regulation and

immune response pathways in the comorbidities of psoriasis and CD. Immune

infiltration analysis emphasized the role of hub genes in immune regulation.

Furthermore, DSigDB predictions and molecular docking simulations indicated
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strong therapeutic potential for Etoposide, Lucanthone, and Piroxicam, with

Etoposide showing the highest affinity for key targets. In cellular models,

Etoposide demonstrated promising therapeutic effects by significantly

downregulating the expression of psoriasis-related keratinocytes marker genes

(KRT6, KRT16) and CD-related inflammatory cytokines (IL6, IL8, TNF-a),
highlighting its potential in treating psoriasis and CD.

Discussion: This study integrates bioinformatics, machine learning, and

molecular validation to identify the shared molecular mechanisms of psoriasis

and CD, uncovering novel biomarkers and potential combined therapeutic

candidates. These findings provide valuable insights into potential treatment

strategies for these diseases.
KEYWORDS

psoriasis, Crohn’s disease, immune, single-cell sequencing analysis, machine
learning, bioinformatics
1 Introduction

Psoriasis is a complex and chronic immune-mediated polygenic

hereditary skin disorder influenced by a wide array of internal and

external factors, including genetic predispositions, environmental

triggers, and immunological irregularities (1). It is characterized by

excessive proliferation of keratinocytes, abnormal differentiation,

epidermal thickening, and infiltration of distinct inflammatory cell

subsets such as T cells, dendritic cells, and neutrophils. These

immunological disturbances are driven by a dysregulated cytokine

network, with pivotal roles played by interleukin (IL)-17, IL-23, and

tumor necrosis factor-alpha (TNF-a), which perpetuate chronic

inflammation and skin lesions (2). Recent advances in molecular

biology have facilitated the development of targeted therapies,

including biologics such as IL-17 and IL-23 inhibitors, which

have revolutionized psoriasis management. These therapies not

only alleviate clinical symptoms but also improve patients’ quality

of life by targeting the underlying inflammatory pathways.

However, despite significant advancements, the precise

pathogenesis of psoriasis remains incompletely understood,

particularly regarding its systemic effects and associations with

comorbid conditions (3, 4). Emerging evidence highlights a

robust association between psoriasis and systemic diseases such as

metabolic syndrome, cardiovascular disorders, and autoimmune

conditions. The heightened cardiovascular risk in psoriasis patients,

for example, is hypothesized to stem from chronic systemic

inflammation, endothelial dysfunction, and increased prevalence

of traditional risk factors such as obesity and dyslipidemia (3, 4).

Despite these observations, the precise biological mechanisms

linking psoriasis with systemic diseases remain inadequately
02
characterized. Further investigations are necessary to fully

elucidate these pathways.

Crohn’s disease (CD), a highly debilitating chronic and

relapsing inflammatory bowel disease (IBD), is characterized by

persistent inflammation affecting various parts of the

gastrointestinal (GI) tract (5). The incidence and prevalence of

CD are rising globally, particularly in Western countries and newly

industrialized nations, seriously affecting the quality of life of

patients (6, 7). While CD predominantly involves the terminal

ileum and colon, it is frequently associated with extraintestinal

manifestations, such as iridocyclitis and erythema nodosum (5, 8).

Its pathogenesis is now generally accepted to result from a complex

interplay of genetic susceptibility, gut microbiota dysbiosis,

environmental factors, and abnormal immune responses (6, 9).

Therefore, the exact interplay between genetic, microbial, and

immunological factors remains poorly understood, necessitating

continued research.

Importantly, psoriasis and CD demonstrate a significant degree

of genetic and pathogenic overlap, with shared susceptibility loci.

Genome-wide association studies (GWAS) have revealed strong

evidence of shared genetic underpinnings and a bidirectional

relationship between psoriasis and CD (10, 11). Patients with

psoriasis are significantly more likely to develop CD, and vice

versa (12, 13). This phenomenon is thought to result from shared

genetic predispositions, overlapping pathogenic pathways, and

specific interactions between the immune system and microbiota

(10, 14–17). The prevailing hypothesis is that individuals with

genetic susceptibility may develop these diseases through the

interplay of environmental and immune factors, with epigenetic

mechanisms such as DNA methylation and histone modification
frontiersin.org
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also playing a crucial role (18). However, the underlying

mechanisms linking psoriasis and CD remain inadequately

characterized. Additionally, current treatments for psoriasis and

CD, such as the biologic agent ixekizumab and ustekinumab (UST),

often lead to complex adverse reactions (19, 20). Therefore, further

research is essential to uncover these connections and pave the way

for innovative diagnostic and therapeutic approaches. Drug

repurposing, also known as drug repositioning, is a strategy that

accelerates the therapeutic process by identifying new indications

for existing drugs (21). Traditional drug development typically

takes decades, whereas drug repurposing can significantly shorten

this timeline and reduce costs. Despite the availability of various

treatment options for immune-related diseases like psoriasis and

CD, challenges such as side effects and drug resistance highlight the

urgent need for new therapeutic approaches. In this context, drug

repurposing represents an innovative strategy that may provide

effective alternative options.

This study integrates comprehensive bioinformatics approaches

and machine learning to investigate the molecular mechanisms

underlying the relationship between psoriasis and CD, as illustrated

in the comprehensive flowchart (Figure 1). By identifying shared

differentially expressed genes and critical biological pathways,

KIF4A, DLGAP5, NCAPG, CCNB1, and CEP55 were recognized

as novel co-biomarkers with potential diagnostic and therapeutic

significance. Furthermore, molecular experiments and molecular

docking analyses were employed to preliminarily identify potential
Frontiers in Immunology 03
therapeutic agents, which not only exhibit known safety profiles but

also offer new perspectives for treatment strategies for both diseases.
2 Materials and methods

2.1 Bulk transcriptome data preprocessing

Microarray sequencing datasets related to psoriasis and CD were

retrieved from the GEO database (https://www.ncbi.nlm.nih.gov/geo/

). The search was conducted using the following Boolean search

strategies: For psoriasis-related datasets: (“psoriasis”[MeSH Terms]

OR psoriasis[All Fields]) AND “Homo sapiens”[orgn] AND

(“gse”[Filter] AND “Expression profiling by array”[Filter]). For

CD-related datasets: (“crohn disease”[MeSH Terms] OR Crohn’s

disease[All Fields]) AND “Homo sapiens”[orgn] AND

(“gse”[Filter] AND “Expression profiling by array”[Filter]). The

entry type was restricted to “series”, the study type was limited to

“expression profiling by array”, and the tissue source organism was

restricted to “Homo sapiens”. Based on the strategy of selecting

relatively large transcriptomic datasets, a total of four eligible gene

expression datasets (GSE13355, GSE14905, GSE75214, and

GSE102133) were selected. The GSE13355 dataset contains skin

tissues from 58 patients with psoriasis and 64 normal healthy

controls, while the GSE75214 dataset includes 67 CD samples and

11 control samples from ileal tissue. For validation datasets,
FIGURE 1

The comprehensive flowchart of this research.
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GSE14905 contains 33 psoriasis samples and 21 normal control

samples, and GSE102133 includes 65 CD samples and 12 normal

control samples. Non-lesional samples were excluded to focus on

examining differences between patient and normal control samples.

These datasets are advantageous due to their relatively large sample

sizes and have been widely cited in relevant literature, with their

analysis results regarded as authoritative and reliable (22–25).

Subsequently, data preprocessing was carried out as follows: The

raw expression matrix was read using the “exprs()” function, and

probe IDs were mapped to gene symbols. Background correction

and quant i l e normal iza t ion were appl ied us ing the

“normalizeBetweenArrays()” function from the “limma” package

to adjust for technical variations between arrays. Additionally, log2

transformation was performed when significant numerical

differences were observed, based on distribution checks. Data

quality was visualized using box plots to ensure that no obvious

outliers were present in the normalized data.
2.2 Single-cell transcriptome data

Single-cell transcriptomic data for psoriasis and CD were

analyzed using datasets retrieved from the GEO database (https://

www.ncbi.nlm.nih.gov/geo/). The psoriasis dataset (GSE162183)

consisted of data from 3 psoriasis patients (lesional skin) and 3

healthy controls (normal skin). For CD, the GSE214695 dataset was

utilized, focusing on colonic tissue from 6 CD patients and 6 healthy

controls. Data processing and filtering were performed using the

Seurat R package (v5.0.1) (26). The mitochondrial content of each

cell was calculated with the Percentage_Feature_Set function.

Quality control criteria for the GSE162183 dataset required each

cell to express more than 300 genes, have a mitochondrial content

of 5%–30%, and a total unique molecular identifier (UMI) count

exceeding 1,000. For the GSE214695 dataset, the criteria included

the expression of more than 300 genes, mitochondrial content of

5%–75%, and a total UMI count exceeding 1,000. After filtering,

15,592 and 23,591 high-quality cells were retained from the

respective datasets for downstream analyses. Normalization was

performed using the SCTransform function, with mitochondrial

gene effects regressed out (vars.to.regress = “percent.mt”) to

minimize technical biases. Dimensionality reduction was

conducted using principal component analysis (PCA) and

uniform manifold approximation and projection (UMAP), with

the first 30 principal components (dims = 1:30) used for UMAP

embedding. Cell clustering was achieved by constructing a shared

nearest-neighbor (SNN) graph using the FindNeighbors function,

followed by clustering with FindClusters.
2.3 Differential expression analysis

Differential expression analysis was performed on the GSE13355

(psoriasis) and GSE75214 (CD) datasets using the R package

“limma”. Differentially expressed genes (DEGs) were identified with

a significance threshold of P.adj.value < 0.05 and |log2 fold change
Frontiers in Immunology 04
(FC)| > 0.585. Shared DEGs between the psoriasis and CD datasets

were identified using Venn diagrams generated with the online tool

Evenn (https://jvenn.toulouse.inrae.fr/app/example.html).
2.4 Gene set enrichment analysis

Gene Set Enrichment Analysis (GSEA) was performed to

explore the molecular pathways and mechanisms underlying the

association between psoriasis and CD (27). To identify relevant

pathways, we utilized the “clusterProfiler” package and the

“h.all.v2024.1.Hs.symbols.gmt” gene set obtained from the

Molecular Signatures Database (MSigDB) (28). Pathways

significantly enriched in both psoriasis and CD were reported.

Enriched gene sets with a nominal p-value < 0.05, |Normalized

Enrichment Score (NES)| > 1, and a false discovery rate (FDR) q-

value < 0.25 were considered statistically significant in this study.
2.5 Weighted gene co-expression network
analysis

Weighted gene co-expression network analysis (WGCNA), a

systems biology approach (29), was applied to analyze gene

expression data from the GSE13355 and GSE75214 datasets. First,

the top 25% of genes with the highest variance were selected to

construct the input matrix, reducing noise and enhancing network

robustness. Outlier samples and low-quality genes were filtered out

using the “goodSamplesGenes” function from the WGCNA

package to ensure data quality. Topological analysis was

performed using the “pickSoftThreshold” function to determine

the optimal soft-threshold power b, ranging from 1 to 20, which

transformed the similarity matrix into a weighted adjacency matrix.

A topological overlap matrix (TOM) was constructed, and gene

clustering was performed using average linkage hierarchical

clustering. Co-expressed gene modules were identified using the

dynamic tree cut algorithm. The module eigengene (ME),

representing the overall expression pattern of each module, was

calculated. Pearson correlation analysis was then used to evaluate

the association between the merged modules and disease

occurrence, with statistical significance assessed using Student’s t-

test. Modules showing the strongest positive and negative

correlations with the disease were selected as the core modules

for further analysis.
2.6 Functional enrichment analysis

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and

Genomes (KEGG) enrichment analyses were performed using the

“ClusterProfiler” package (version 4.8.2) in R (30). GO is used to

annotate biological processes, molecular functions, and cellular

components, while KEGG is utilized for annotating gene

pathways. Enrichment was considered statistically significant

when P < 0.05.
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2.7 Protein-protein interaction network
construction and module analysis

Protein-protein interaction (PPI) analysis of the shared key

genes was performed using the online tool STRING (https://string-

db.org) (31). The filtering criteria were set to “highest confidence”

with a confidence score threshold of >0.9, and isolated nodes were

excluded from the network visualization. PPI networks were

visualized using Cytoscape (v3.9.1) (32). The key gene clusters

were screened by MCODE (Molecular Complex Detection), and

the screening conditions were set to degree cutoff=2, node score

cutoff=0.2, k-core=2, max depth=100.
2.8 Machine learning

To further identify shared hub genes, we employed six machine

learning models, including Random Forest (RF), k-Nearest

Neighbors (KNN), eXtreme Gradient Boosting (XGBoost),

Decision Tree (Dtree), Support Vector Machine (SVM), and Least

Absolute Shrinkage and Selection Operator (LASSO). Data

preprocessing and model training were conducted in R using the

“tidymodels” package (v1.2.0). The preprocessing steps included

factorizing categorical variables, handling missing data with the

“step_naomit()” function, and applying “step_dummy()” for one-

hot encoding of categorical predictors. Model training was performed

using a 5-fold cross-validation strategy to fine-tune hyperparameters,

including the number of predictors (“mtry”) and the minimum node

size (“min_n”). A grid search was conducted over a predefined

hyperparameter space, and model performance was evaluated using

three metrics: accuracy, ROC-AUC, and PR-AUC, computed with

the “yardstick” package (v1.3.1). Although multiple evaluation

metrics were considered, ROC-AUC was ultimately chosen as the

primary criterion for hyperparameter selection. As a threshold-

independent metric, ROC-AUC demonstrated the highest average

value during cross-validation, providing a robust and consistent

measure of model performance across varying classification

thresholds (33). The final model trained with the optimal

hyperparameter combination was then re-fitted on the entire

training dataset and ROC curves for both the training and testing

sets were generated to further assess model performance. Feature

importance was analyzed using the “varImpPlot()” function, and

partial dependence plots were generated to visualize the effects of key

variables on classification outcomes.
2.9 Construction of receiver-operating
characteristic curves to assess diagnostic
efficacy

The “ROCR” package was utilized to generate the receiver

operating characteristic (ROC) curve (34), evaluating the ability

of shared hub genes to distinguish between psoriasis patients, CD

patients, and healthy individuals across all datasets.
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2.10 Immune infiltration analysis

Single-sample gene set enrichment analysis (ssGSEA) was

performed using the GSVA package in R to evaluate the relative

abundance of 28 immune cell types in psoriasis and CD samples.

Pearson correlation analysis was performed to calculate the

correlation between hub gene expression levels and immune cell

abundance. The correlation coefficients were computed using the

“rcorr()” function. Finally, a heatmap was generated to visualize the

correlation between gene expression and immune cell abundance.
2.11 Identification of drug candidates

The shared hub genes of psoriasis and CD were input into the

Enrichr platform (https://maayanlab.cloud/Enrichr/) (35). We then

utilized the Drug Signature Database (DSigDB) to identify

candidate drugs associated with the hub genes (36).
2.12 Molecular docking of candidate
targets and active ingredients

We used the PubChem database (https://pubchem.

ncbi.nlm.nih.gov/) to retrieve the chemical structures of

compounds for docking against key proteins (37), including

Etoposide, Lucanthone and Piroxicam. The crystal structure of

KIF4A was obtained from the AlphaFold Protein Structure

Database (38, 39), and the crystal structure of Cyclin B1

(CCNB1) was retrieved from the RCSB Protein Data Bank (PDB)

(https://www.rcsb.org) (40). Molecular docking analyses were

performed using the CB-Dock2 platform, which automatically

predicted potential binding pockets and calculated the binding

energies of the docking complexes (41, 42). The platform utilized

an automatic scoring function to estimate binding affinities and

ranked the docking conformations based on predicted binding

scores. The results, including binding energies and docking poses,

were further analyzed to evaluate the interaction patterns and

affinities between the compounds and target proteins.
2.13 Cell culture

Human epidermal keratinocytes (HaCaT) were purchased from

the Kunming Institute of Zoology, Chinese Academy of Sciences

(Kunming, China), and the human colorectal adenocarcinoma cell

line (HT-29) was obtained from the Chinese Academy of Sciences

(Shanghai, China). Both cell types were cultured in Dulbecco’s

Modified Eagle Medium (DMEM, Gibco, USA) supplemented with

10% fetal bovine serum (FBS, Gibco, USA) and 1% penicillin/

streptomycin (Gibco, USA). Cells were incubated at 37°C in a 5%

CO2 incubator and passaged when they reached approximately

80% confluence.
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2.14 Establishment of psoriasis and CD cell
models

HaCaT cells were treated with M5 (TNF-a, IL-17A, IL-22, IL-
1a, and oncostatin M) at a concentration of 10 ng/mL for 24 hours

to induce a psoriasis dermatitis inflammatory cell model (43). M5

cytokines sourced from PeproTech (Rocky Hill, USA) were utilized

in this study. In addition, HT-29 cells were treated with 20 mg/mL

lipopolysaccharide (LPS, Sigma-Aldrich, USA) for 24 hours to

establish a CD inflammatory model (44).
2.15 Acquisition and preparation of
Etoposide

Etoposide and dimethyl sulfoxide (DMSO) were both

purchased from MedChemExpress (MCE, USA). Etoposide was

initially dissolved in DMSO to prepare a 50 mM stock solution,

which was aliquoted to avoid repeated freeze-thaw cycles and stored

at -20°C. For in vitro experiments with HaCaT and HT-29 cell lines,

the stock solution was freshly diluted with appropriate cell culture

media to the desired working concentrations (e.g., 1, 5, 10, 20, and

50 mM) before use. All working solutions were freshly prepared,

thoroughly mixed, and immediately applied to the cells to ensure

drug stability and reproducibility of experimental results.
2.16 CCK-8 assay

The Cell Counting Kit-8 (CCK-8) was procured from Dojindo

Molecular Technologies, Inc. (Kumamoto, Japan). HaCaT

keratinocytes were cultured in a 96-well plate and subjected to

treatment with M5 cocktail cytokines for durations ranging from 24

to 48 hours. Following treatment, each well received 10 ml of the
CCK-8 reagent and the plate was incubated at 37°C for a period of 2

hours. The absorbance at 450 nm was subsequently quantified using

a Multiskan microplate reader (Thermo Fisher Scientific).
2.17 Total RNA Extraction and Quantitative
Real-Time PCR

HaCaT and HT-29 cells in the logarithmic growth phase were

seeded in 6-well plates and stimulated as described. Cells were

harvested 48 hours post-stimulation, and total RNA was extracted

from approximately 1×106 cells per well using TRIzol™ reagent

(Invitrogen, USA). The extracted RNA was reverse-transcribed into

complementary DNA (cDNA) using the RevertAid First Strand

cDNA Synthesis Kit (Thermo Fisher Scientific, USA).

Quantitative real-time PCR (qRT-PCR) was performed using

SYBR Green PCRMaster Mix (TaKaRa, Japan) on a CFX96 Touch™

Real-Time PCR Detection System (Bio-Rad, USA). The

thermocycling conditions were as follows: initial denaturation at

95°C for 10 s, annealing at 60°C for 10 s, and extension at 72°C for

10 s, for a total of 40 cycles. b-Actin (ACTB) served as an internal
Frontiers in Immunology 06
control, and relative gene expression levels were calculated using the

2−DDCt method. Specific primer sequences are provided in

Supplementary Table S1.
2.18 Statistical analysis

The error bars in the figures represent the standard error of

mean (SEM). For comparisons between two groups involving

continuous variables, Student’s t-test was performed for normally

distributed data. A one-way analysis of variance (ANOVA) was

employed for multigroup comparisons. All statistical p-values were

two-sided, with P < 0.05 considered statistically significant.
3 Result

3.1 Identification of differentially expressed
genes in psoriasis and CD

Principal component analysis (PCA) was applied to assess

sample variations in the psoriasis (GSE13355) and CD

(GSE75214) datasets, revealing distinct separation between patient

groups and healthy controls for both conditions (Figures 2A, B).

From the psoriasis dataset, differential expression analysis revealed

1,806 differentially expressed genes (DEGs), including 812

upregulated and 994 downregulated genes (Figure 2C). Similarly,

971 DEGs were detected in the CD dataset, comprising 557

upregulated and 414 downregulated genes (Figure 2D).

Importantly, 223 overlapping DEGs were shared between the two

datasets (Figure 2E), with their expression profiles visualized in a

heatmap. Specifically, Figure 2F illustrates the distinct expression

patterns of these DEGs in 58 psoriasis patients compared to 64

healthy controls, while Figure 2G highlights their differential

expression in 67 CD samples versus 11 control samples.
3.2 Gene set enrichment analysis

Gene Set Enrichment Analysis (GSEA) using the HALLMARK

gene sets identified significant downregulation of the

HALLMARK_UV_RESPONSE_DN and HALLMARK_

EPITHELIAL_MESENCHYMAL_TRANSITION (EMT) pathways

in the psoriasis dataset (Figures 3A, B). Suppression of the

UV_RESPONSE_DN pathway suggests impaired cellular responses

to UV-induced stress, which may contribute to immune

dysregulation, deficiencies in DNA repair, and abnormal cell

proliferation, collectively exacerbating the pathogenesis of psoriasis

(45). Similarly, downregulation of the EMT pathway may impair skin

repair and regeneration, restrict keratinocytes migration, and delay

wound healing. This inhibition could contribute to skin barrier

dysfunction and increased immune cell infiltration, thereby

exacerbating epidermal thickening and inflammation (46, 47).

In both the psoriasis and CD datasets, pathways associated with

the cell cycle, including HALLMARK_E2F_TARGETS,
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HALLMARK_G2M_CHECKPO INT , HALLMARK_

MYC_TARGETS_V1, and HALLMARK_MYC_TARGETS_V2,

showed significant enrichment (Figures 3C, D). This finding

suggests that dysregulation of the cell cycle is a shared

pathological mechanism in both diseases, particularly in the

context of immune-mediated chronic inflammation. Aberrations

in E2F and G2/M checkpoints may drive excessive proliferation of

keratinocytes in psoriasis and intestinal epithelial cells in CD, while
Frontiers in Immunology 07
activation of the MYC pathway may amplify pathological cell

proliferation (48–51).

Moreover, inflammation-related pathways were prominently

enriched in both diseases. The activation of HALLMARK_

INTERFERON_GAMMA_RESPONSE and HALLMARK_

INTERFERON_ALPHA_RESPONSE pathways underscores the

critical role of interferon signaling in modulating immune

responses (52) (Figures 3E, F). Additionally, pathways such as
FIGURE 2

Results of differential expression analysis of psoriasis and CD. (A) Principal component analysis in GSE13355. (B) Principal component analysis in
GSE75214. (C) A volcano plot of DEGs in GSE13355. (D) A volcano plot of DEGs in GSE75214. (E) Venn diagram of shared DEGs in psoriasis and CD.
(F) A heatmap of the shared DEGs in GSE13355. (G) A heatmap of the shared DEGs in GSE75214.
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HAL LMARK _ IN F LAMMATORY _ R E S PON S E a n d

HALLMARK_TNFA_SIGNALING_VIA_NFKB directly contribute

to the maintenance and amplification of inflammation. Notably, the

enrichment of HALLMARK_IL6_JAK_STAT3_SIGNALING

highlights the potential role of the IL-6/STAT3 axis in linking
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immune cell activation with abnormal cell proliferation, which may

exacerbate disease progression (53) (Figures 3E, F). Figures 3G, H

illustrate the five most enriched pathways alongside the

corresponding protein-protein interaction (PPI) networks identified

in psoriasis and CD, respectively. In Figure 3G, pathways such as
FIGURE 3

GSEA analysis of psoriasis and CD datasets. (A, B) Bubble plots showing GSEA enrichment results for psoriasis (GSE13355) and CD (GSE75214). The
size of the bubbles represents the number of genes (counts) in each enriched pathway, and the color intensity indicates the enrichment significance,
as measured by the adjusted p-values. (C, D) GSEA enrichment plots depicting cell cycle-related pathways in psoriasis and CD, showing the
enrichment score for each gene set along with the corresponding p-values. (E, F) GSEA enrichment plots illustrating immune-related pathways in
psoriasis and CD. These plots provide insight into the immune response-related gene sets enriched in the datasets. (G, H) Protein-protein interaction
(PPI) network analysis of genes associated with the top five pathways in psoriasis and CD. The network analysis identifies key hub genes involved in
the top-ranked pathways, showing their interactions and potential roles in disease progression. Hub genes are indicated in larger nodes, and edges
represent significant protein-protein interactions.
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allograft rejection, E2F targets, inflammatory response, and interferon

responses are associated with hub genes TRAF2, GBP2 and CD274,

which are crucial for immune regulation. Figure 3H highlights

pathways including EMT, G2/M checkpoint, inflammatory

response and interferon responses, with core genes SPP1, IL6,

MYC, and HIF1A governing critical regulatory mechanisms. In

summary, the co-enrichment of these cell cycle and inflammation-

related pathways underscores the shared dysregulation of immune

responses and cell proliferation in psoriasis and CD.
3.3 WGCNA identifies key modules in
psoriasis and CD

To investigate potential associations between diseases and genes,

WGCNA was conducted on the psoriasis dataset (GSE13355) and the

CD dataset (GSE75214). Using the WGCNA framework, the optimal

soft-thresholding power was determined to be 12 for the psoriasis

dataset and 14 for the CD dataset (Figures 4A, B). Module similarity

analysis identified eight significant modules in both datasets

(Figures 4C, D). Heatmap analysis of module-trait relationships

revealed that the blue module showed the strongest positive

correlation with psoriasis (r = 0.92), while the turquoise module

exhibited the most pronounced negative correlation (r = -0.96)

(Figure 4E). In the CD dataset, the brown module showed the

strongest positive correlation with CD (r = 0.48), and the blue

module demonstrated the strongest negative correlation (r =

-0.36) (Figure 4F).

Notably, there was a significant correlation between Gene

Significance (GS) and Module Membership (MM) within modules,

with correlation coefficients of 0.92 in the psoriasis dataset and 0.48 in

the CD dataset (Figures 4E, F). This finding indicates a robust

association between the identified module genes and disease

pathogenesis. By intersecting 223 common DEGs (CDEG) with the

427 genes derived from WGCNA, a total of 79 shared key genes were

identified as candidates for further analysis (Figure 4G). These shared

key genes are hypothesized to play pivotal roles in the pathogenesis and

progression of both psoriasis and CD.
3.4 GO and KEGG enrichment analyses
were conducted to identify biological
processes and signaling pathways
associated with shared key genes

To further elucidate the biological functions of the shared key

genes, GO and KEGG enrichment analyses were conducted. The

GO analysis results, visualized using chord diagrams (Figures 5A–

F), emphasized Biological Processes (BP) such as chromosome

segregation (GO:0007059), nuclear division (GO:0000280),

mitotic nuclear division (GO:0140014), and sister chromatid

separation (GO:0000819) (Figures 5A, B). These processes were

significantly enriched, with adjusted p-values < 0.05, highlighting

the essential roles of these genes in cell cycle regulation, mitosis, and

chromosome allocation. KEGG pathway enrichment analysis
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further revealed significant enrichment in the cell cycle pathway

(Figure 5G), suggesting that dysregulation of cell division and cell

cycle checkpoint control may represent a shared pathogenic

mechanism in psoriasis and CD. In summary, GO and KEGG

analyses underscore the pivotal roles of shared key genes in cell

cycle-related processes and indicate their likely contribution to the

shared pathological mechanisms underlying these diseases. These

findings provide valuable insights into the molecular basis of co-

pathogenesis, particularly through the regulation of chromosome

segregation and mitosis.
3.5 Key genes of the PPI network and
identification of hub genes

To investigate the interactions between proteins encoded by the

shared key genes, a protein-protein interaction (PPI) network was

generated using the STRING database with a confidence score

threshold of >0.9 (Figure 5H). The network, visualized using

Cytoscape (v3.9.1), comprised 32 nodes and 204 edges (Figure 5I).

Modular analysis, performed using the MCODE plugin, identified a

core module containing 18 hub genes with a cluster score of 16.353

(Figure 5J). The hub genes include PRC1, NUSAP1, CCNA2, PBK,

DLGAP5, KIF4A, KIF11, TTK, ASPM, TPX2, CDC20, CEP55,

KIF20A, NCAPG, CCNB1, CENPE, RRM2, and MELK. These genes

are critical regulators of fundamental biological processes, including

cell cycle progression, mitosis, and inflammation, all of which are

integral to the pathogenesis of both psoriasis and CD. Specifically,

CCNA2, CDC20, and CCNB1 are involved in regulating the G2/M

phase transition and mitotic progression (54), suggesting their

potential contribution to the abnormal cell proliferation observed in

both diseases. Additionally, KIF4A, KIF11, and KIF20A are linked to

mitotic spindle formation and chromosome segregation, processes

often disrupted in hyperproliferative conditions such as psoriasis and

CD. Furthermore, genes such as PBK and CEP55 are vital in regulating

inflammation and immune responses, potentially influencing immune

cell dynamics and the inflammatory microenvironment in these

diseases. TPX2 and RRM2 are involved in DNA damage repair and

stress signaling, processes essential for maintaining cellular integrity in

the context of inflammation and tissue damage.

The identification of this core module and its hub genes

highlights their centrality and regulatory significance in the

shared molecular mechanisms underlying both diseases. These

findings suggest that these hub genes may represent potential

therapeutic targets for managing psoriasis and CD.
3.6 Identification and validation of
potential shared biomarkers through
multiple machine learning approaches

To further identify the most diagnostically valuable shared

biomarkers, six machine learning algorithms, including RF, KNN,

XGBoost, Dtree, SVM, and Lasso, were employed to select feature
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genes from the 79 shared key genes identified in earlier analyses. The

performance of each model was systematically evaluated by generating

ROC curves for both the training and test datasets (Supplementary

Figure S1). Among these machine learning models, the SVM model

achieved the highest predictive performance in both psoriasis and CD
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datasets (Figures 6A, B), while the Lasso model also exhibited robust

diagnostic accuracy (Figures 6C, D). To improve the interpretability of

the SVM model, Shapley Additive Explanations (SHAP) values were

employed to assess the importance of individual features (Figures 6E,

F). A feature value-SHAP value correlation plot was generated to
FIGURE 4

Identification and analysis of key module of psoriasis and CD by WGCNA. (A, B) Scale independence and average connectivity plots for psoriasis and
CD. These plots illustrate the selection of the soft threshold power (b) for network construction in WGCNA. (C, D) Clustering dendrograms of
module feature genes in psoriasis and CD. These dendrograms show the hierarchical clustering of genes based on their module feature values,
identifying distinct gene modules that are strongly associated with disease phenotypes in both psoriasis and CD. (E, F) Heatmaps of module-trait
correlations and scatter plots for the modules with the highest correlation in psoriasis and CD. Each row represents a color module, and every
column represents a clinical trait. The correlation coefficient and corresponding P-value are shown in each cell. (G) Venn diagram showing shared
DEGs and genes in related modules in psoriasis and CD. This diagram highlights the overlap of DEGs across both diseases, identifying key genes that
may play a role in the pathogenesis of both psoriasis and CD.
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FIGURE 5

Functional enrichment analysis and PPI network construction. (A, B) Chord diagrams of shared key genes enriched in the GO Biological Process (BP)
category for psoriasis and CD. (C, D) Chord diagrams of shared key genes enriched in the GO Cellular Component (CC) category for psoriasis and
CD. (E, F) Chord diagrams of shared key genes enriched in the GO Molecular Function (MF) category for psoriasis and CD. (G) Bar plot of KEGG
pathway enrichment analysis. (H) PPI network of shared key genes constructed using the STRING database. (I, J) Key modules and hub genes
identified in the PPI networks using the MCODE algorithm.
Frontiers in Immunology frontiersin.org11

https://doi.org/10.3389/fimmu.2025.1587705
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1587705
FIGURE 6

Machine learning model selection and hub gene identification. (A, B) ROC curves of the SVM model for psoriasis and CD, showing performance on
the training and testing sets. The area under the curve (AUC) values are provided to assess the model’s discriminative ability. (C, D) ROC curves for
the Lasso model applied to psoriasis and CD. (E, F) SHAP value plots highlighting the importance of gene features in the SVM model. Each point
represents the impact of a gene’s expression on the model’s output, with the x-axis showing the SHAP value and the y-axis showing the gene
features. (G) Venn diagram showing the overlap of key genes identified by SVM and hub genes from the PPI network.
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illustrate each feature’s contribution to the model’s output. Based on

the SHAP analysis, the top 30 genes were selected based on their

importance in the SVM model and intersected with the 18 hub genes

identified from the PPI network using the MCODE algorithm

(Figure 6G). This integrative approach highlighted KIF4A, DLGAP5,

NCAPG, CCNB1, and CEP55 as key shared biomarkers for both

psoriasis and CD.
3.7 Validation of shared hub genes with
GEO databases

The diagnostic predictive value of the identified hub genes was

evaluated using ROC curve analysis across multiple datasets. In the

psoriasis dataset (GSE13355), the AUC values for KIF4A (AUC =

0.99), DLGAP5 (AUC = 1), NCAPG (AUC = 0.99), CCNB1 (AUC

= 0.99), and CEP55 (AUC = 0.99) exhibited exceptional diagnostic

performance, with all values exceeding 0.7 (Figure 7A). Similarly, in

the CD dataset (GSE75214), the AUC values for KIF4A (AUC =

0.93), DLGAP5 (AUC = 0.93), NCAPG (AUC = 0.84), CCNB1

(AUC = 0.94), and CEP55 (AUC = 0.94) also exceeded 0.7, further

supporting their robust diagnostic potential (Figure 7B). To validate

these findings, the predictive efficacy of these biomarkers was

examined in independent validation cohorts. In the psoriasis

validation cohort (GSE14905), the AUC values for KIF4A,

DLGAP5, NCAPG, CCNB1, and CEP55 were 0.96, 0.97, 0.96,

0.98, and 0.93, respectively. Likewise, in the CD validation cohort

(GSE102133), the AUC values for these genes were 0.90, 0.87, 0.78,

0.88, and 0.92, respectively, with all markers exhibiting AUC values

above 0.7, reaffirming their significance as diagnostic biomarkers

(Figures 7C, D).

Furthermore, box plot analyses revealed significant

upregulation of these five diagnostic markers in the disease

groups compared to the controls in both psoriasis and CD

training datasets (Figures 7E, G). Consistent differential

expression patterns were observed in the psoriasis (GSE14905)

and CD (GSE102133) validation cohorts (Figures 7F, H). These

findings collectively underscore the potential of KIF4A, DLGAP5,

NCAPG, CCNB1, and CEP55 as shared diagnostic biomarkers for

psoriasis and CD.
3.8 Immune cell infiltration and its
correlation with shared hub genes

Single-sample Gene Set Enrichment Analysis (ssGSEA) was

used to evaluate immune cell infiltration in psoriasis and CD. The

analysis revealed significantly elevated immune cell infiltration in

psoriasis patients compared to normal controls, with 20 out of 28

immune cell types exhibiting elevated infiltration levels in psoriasis

samples (Figure 8A). Similarly, in CD patients, immune cell

infiltration was generally higher compared to controls, with 16

immune cell types showing significant increases (Figure 8B).

Notably, 10 immune cell types demonstrated consistently higher
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infiltration levels in both psoriasis and CD samples relative

to controls.

The correlations between immune cell infiltration and hub gene

expression were further analyzed (Figures 8C, D). The results

indicated significant positive correlations between most immune

cell types and the hub genes. Specifically, in the psoriasis dataset,

hub genes KIF4A, DLGAP5, NCAPG, CCNB1, and CEP55 were

strongly positively correlated with activated CD4+ and CD8+ T

cells, activated dendritic cells, myeloid-derived suppressor cells

(MDSCs), and gdT cells, while negatively correlated with

immature dendritic cells and mast cells (Figure 8C). In the CD

dataset, these five hub genes were predominantly positively

correlated with activated CD4+ T cells and Th2 cells, and

negatively correlated with monocytes (Figure 8D). These findings

suggest that the hub genes may contribute to autoimmune

regulation by modulating the activation or suppression of specific

immune cell populations. Collectively, the immune infiltration

analysis highlights both commonalities and differences in immune

cell infiltration between psoriasis and CD, emphasizing the

potential role of hub genes in immune system regulation and

their involvement in modulating autoimmune responses.
3.9 Single-cell analysis of hub gene
locations

To investigate the cellular-level gene expression characteristics

and alterations in psoriasis and CD, single-cell RNA sequencing

(scRNA-seq) datasets (GSE162183 for psoriasis and GSE214695 for

CD) were integrated and reanalyzed. After rigorous quality control,

15,592 cells were retained in the psoriasis dataset, and 23,591 cells

were retained in the CD dataset (Supplementary Figure S2).

In the psoriasis dataset (GSE162183), unsupervised clustering

via UMAP identified 23 distinct cell clusters. Based on annotations

from the original publication and related studies (55, 56), these

clusters were further classified into 23 subtypes (Supplementary

Figure S3), visualized on UMAP plots (Figures 9A, B). These

subtypes were further consolidated into 13 major cell types:

keratinocytes (5,986 cells), fibroblasts (2,188 cells), pericytes

(2,252 cells), endothelial cells (1,625 cells), dendritic cells (758

cells), T cells (610 cells), mesenchymal stem cells (512 cells), mast

cells (502 cells), dermal papilla/dermal sheath cells (584 cells), EC-

lymphocytes (205 cells), melanocytes (204 cells), smooth muscle

cells (102 cells), and Schwann cells (64 cells) (Figure 9C). UMAP

plots illustrated the distribution of these cell types between psoriasis

patients and healthy controls (Figure 9D).

Similarly, for the CD dataset (GSE214695), UMAP clustering

revealed 17 cell clusters (Figure 9M). These clusters were annotated

into 11 distinct cell types based on the original publication and

additional references (50) (Figure 9N) (Supplementary Figure S3).

These cell types were further grouped into 9 major categories:

epithelial cells (9,846 cells), T cells (2,730 cells), plasma cells (1,770

cells), natural killer (NK) cells (2,832 cells), B cells (1,086 cells),

myeloid cells (2,651 cells), fibroblasts (1,994 cells), mast cells (495
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FIGURE 7

Validation of hub genes with GEO databases. (A-D) ROC curves of hub genes in GSE13355 (psoriasis), GSE75214 (CD), GSE14905 (psoriasis), and
GSE102133 (CD), respectively. (E-H) Box plots showing hub gene expression in GSE13355 (psoriasis), GSE14905 (psoriasis), GSE75214 (CD), and
GSE102133 (CD), respectively.
Frontiers in Immunology frontiersin.org14

https://doi.org/10.3389/fimmu.2025.1587705
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Li et al. 10.3389/fimmu.2025.1587705
cells), and endothelial cells (187 cells) (Figure 9O). UMAP plots

similarly mapped the distribution of these cell types between CD

patients and healthy controls (Figure 9P).

Subsequently, cellular composition between patient and control

groups was compared to identify key subpopulations implicated in the

pathogenesis of psoriasis and CD. In psoriasis, keratinocytes
Frontiers in Immunology 15
abundance showed no significant difference, yet plasma cell numbers

were markedly increased (Figure 9E). This suggests that while

keratinocytes undergo hyperproliferation and abnormal

differentiation, their overall abundance remains stable. Psoriatic

lesions are characterized by hyperkeratosis and epidermal thickening

(2), primarily due to enhanced keratinocyte proliferation. Immune cell
FIGURE 8

Immune cell infiltration and correlation with shared hub genes. (A, B) Box plots of immune cell infiltration differences in psoriasis and CD compared
to normal controls. (C, D) Heatmaps of correlations between immune cells and shared hub genes in psoriasis and CD. The color scale indicates the
strength of the correlation, with positive correlations in red and negative correlations in blue. *P < 0.05; **P < 0.01; ***P < 0.001.
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FIGURE 9

Single-cell RNA sequencing reveals cell-type-specific expression of core genes in psoriasis and CD. (A) UMAP plot showing cell clusters identified in psoriasis
samples. (B) UMAP plot annotated with specific cell types in psoriasis samples. (C) Visualization of major cell types in psoriasis samples. (D) Comparison of
cell type composition between psoriasis samples and normal controls. (E) Stacked bar plot displaying the distribution of cell types across psoriasis samples
and normal controls. (F) Dot plot showing the average expression and the percentage of cells expressing shared hub genes across cell types. (G-K) UMAP
feature plots illustrating the expression patterns of hub genes in psoriasis samples and normal controls. (L) Volcano plot showing the differential expression of
hub genes between psoriasis samples and normal controls in keratinocytes. (M-X) Equivalent analyses performed on CD datasets, including cell cluster
annotation, cell-type distribution, gene expression patterns, and differential expression analysis in epithelial cells.
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infiltration, including T cells, dendritic cells, and plasma cells, plays a

pivotal role in driving inflammation. The elevated plasma cell numbers

likely reflect heightened B cell activation and plasma cell generation,

accompanied by increased secretion of pro-inflammatory cytokines

such as IL-17 and IL-22, which collectively exacerbate inflammation

and contribute to psoriatic skin lesions.

In CD, epithelial, endothelial, and NK cell proportions were

significantly reduced (Figure 9Q), indicating compromised barrier

integrity, vascular dysfunction, and impaired immune surveillance

under chronic inflammation. Conversely, T cell and myeloid cell

proportions were significantly elevated (Figure 9Q), highlighting

excessive immune cell recruitment and activation that perpetuate

the inflammatory response. Reduced epithelial and endothelial cell

abundance points to impaired tissue repair, while elevated T cell

and myeloid cell numbers underscore the pro-inflammatory

microenvironment. These findings reveal the complex interplay

between immune dysregulation and tissue damage in CD.

To further understand the cellular context of the diagnostic

markers identified in psoriasis and CD, their spatial distribution

and expression patterns across different cell types were analyzed. In

psoriasis, the five diagnostic hub genes (KIF4A, DLGAP5, NCAPG,

CCNB1, and CEP55) were predominantly expressed in

keratinocytes (Figure 9F), with significantly higher expression

levels in patient samples compared to controls (Figures 9G–K).

This observation highlights their critical roles in regulating

keratinocyte proliferation and differentiation. Subsequently, the

keratinocyte population was isolated for differential analysis, and

the volcano plot visualized the differentially expressed genes

between psoriasis samples and normal controls (Figure 9L). In

CD, these hub genes were highly expressed in epithelial cells

(Figures 9R, S–W), implicating their involvement in epithelial cell

proliferation and barrier maintenance. Interestingly, NCAPG also

exhibited high expression in NK cells, suggesting a potential role in

intestinal immune responses and NK cell-mediated cytotoxicity.

Similarly, the epithelial cell population was isolated for differential

analysis, and the volcano plot visualized the differentially expressed

genes between CD samples and normal controls, with CEP55

showing the most significant difference (Figure 9X).

The consistent upregulation of these five hub genes in both

diseases indicates shared pathological mechanisms, including cell

cycle dysregulation and aberrant immune responses. These findings

highlight the potential of these genes as shared diagnostic markers

and therapeutic targets for psoriasis and CD. Furthermore, their

distinct cellular expression patterns underscore their contributions

to tissue-specific pathophysiology. These results provide a solid

foundation for the development of diagnostic panels and

therapeutic strategies targeting the shared molecular mechanisms

underlying psoriasis and CD.
3.10 Validation of shared hub genes via
cellular experiments

To validate the findings from transcriptomic, machine learning,

and single-cell analyses, functional assays were performed using

CCK-8 and RT-qPCR techniques to assess the expression of shared
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biomarkers. The CCK-8 assay demonstrated thatM5-induced in vitro

psoriasis models significantly enhanced the proliferation of HaCaT

keratinocytes compared to controls (Figure 10A). Furthermore, RT-

qPCR analysis showed significant upregulation of the shared

biomarkers, including CCNB1, CEP55, DLGAP5, KIF4A, and

NCAPG, in M5-treated HaCaT cells relative to the control group

(Figures 10B–F). Among these, CCNB1 exhibited the most

pronounced upregulation, with expression levels increasing 1.45-

fold compared to controls. Similarly, in an in vitro inflammatory

model of CD established by LPS (lipopolysaccharide) stimulation of

HT-29 cells, RT-qPCR results revealed substantial increases in the

mRNA levels of pro-inflammatory cytokines IL-6, IL-8, and TNF-a
compared to the control group (Figures 10G–I). Concurrently, the

shared biomarkers CCNB1, CEP55, DLGAP5, KIF4A, and NCAPG

were also significantly upregulated (Figures 10J–N), with KIF4A

exhibiting the greatest increase, reaching a 2.53-fold elevation

relative to controls. In summary, these in vitro validation

experiments for psoriasis and CD models validated the

dysregulated expression of shared biomarkers during disease

progression and reinforced the reliability of the integrative

bioinformatics analyses. These findings lay a robust experimental

foundation for further investigations into the molecular mechanisms

underlying the roles of core genes in psoriasis and CD.
3.11 Identification of candidate drugs
targeting hub genes in psoriasis and CD

Potential therapeutic drugs targeting the identified hub genes

were systematically screened by analyzing p-values and binding

scores. After multiple testing correction, several drugs, including

Etoposide, Lucanthone, Piroxicam, and Ciclopirox, were identified

as strong candidates based on their binding affinities and significant

correlations with the hub genes (Figure 11A). Notably, these small-

molecule compounds exhibited potential applicability as co-

treatments for psoriasis and CD. Among the identified

compounds, the analysis prioritized the top five candidates with

promising therapeutic potential (Figure 11B). Collectively, these

findings offer a foundation for experimental validation of these

compounds as dual treatments for these diseases.
3.12 Molecular docking of candidate
targets and related ingredients

Molecular docking analysis was performed to investigate the

interactions between the two most significantly upregulated shared

hub genes identified by RT-qPCR (CCNB1 and KIF4A) and the top

three predicted candidate drugs (Figure 11C). A binding energy

below 0 kcal/mol indicates docking activity, while a binding energy

below −6 kcal/mol suggests favorable docking affinity. The analysis

revealed that Etoposide exhibited the lowest binding energies with

both CCNB1 (−7.9 kcal/mol) and KIF4A (−9.4 kcal/mol) among the

tested compounds, indicating highly stable binding conformations.

The visualized docking conformations provided additional evidence

for these findings (Figures 11D–I). These results position Etoposide
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as the most promising candidate for the dual treatment of psoriasis

and CD. As an approved chemotherapeutic agent, Etoposide has a

long clinical history and well-established management protocols for

its side effects. Through the strategy of drug repurposing, the
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immunosuppressive effects of Etoposide have been reassessed,

offering potential new solutions for the treatment of psoriasis and

CD. The therapeutic potential of Etoposide warrants further

experimental validation and mechanistic investigations.
FIGURE 10

Validation of hub genes via cellular experiments. (A) CCK-8 assay showing the proliferation capacity (OD value) of cells in the M5-treated group and
the control group at different time points. (B-F) qPCR validation of the relative expression levels of hub genes in the psoriasis cell model treated with
M5. (G-I) qPCR analysis of inflammatory cytokines IL-6, IL-8, and TNF-a expression levels in the CD cell model stimulated with LPS. (J-N) qPCR
validation of the relative expression levels of hub genes in the CD cell model stimulated with LPS. Statistical significance: ns indicates no significance,
*P < 0.05, **P < 0.01, ***P < 0.001. Data are presented as mean ± SEM.
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3.13 Validation of the therapeutic effects of
Etoposide on HaCaT and HT-29 cell lines

To further evaluate the therapeutic effects of Etoposide on

HaCaT and HT-29 cell lines (Figure 12A), the impact of
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Etoposide on cell viability was first assessed using the CCK-8

assay. HaCaT cells were treated with Etoposide at concentrations

of 1, 5, 10, 20, and 50 mM for 24 hours. The results demonstrated a

dose-dependent cytotoxic effect of Etoposide, with concentrations

above 20 mM significantly reducing cell viability (Figure 12B).
FIGURE 11

Identification of candidate drugs and molecular docking analysis targeting hub genes in psoriasis and CD. (A) Summary of candidate drugs identified
from the DSigDB database. (B) Enrichment analysis results for candidate drugs targeting hub genes. (C) Docking scores and ligand-receptor
interaction details for hub genes. (D, E) Molecular docking visualization of Etoposide with KIF4A and CCNB1. (F, G) Molecular docking visualization of
Lucanthone with KIF4A and CCNB1. (H, I) Molecular docking visualization of Piroxicam with KIF4A and CCNB1.
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FIGURE 12

Effects of Etoposide on HaCaT and HT-29 cell lines. (A) Chemical structure of Etoposide. (B) CCK-8 assay showing the effect of different
concentrations of Etoposide (1, 5, 10, 20, and 50 mM) on HaCaT cell viability. (C, D) qRT-PCR analysis of the expression levels of psoriasis-related
marker genes KRT6 and KRT16 in HaCaT cells. HaCaT keratinocytes were treated with or without 1 mM Etoposide for 24 hours and simultaneously
stimulated with M5 cocktail cytokines (10 ng/ml) or not for 24 hours. Cells were harvested, and RNA was extracted for qRT-PCR analysis, with b-
actin as an internal reference. The following groups were included: DMSO (Control), DMSO+M5 (M5), M5+Etoposide (M5+Etoposide). (E) CCK-8
assay showing the effect of different concentrations of Etoposide (1, 5, 10, 20, and 50 mM) on HT-29 cell viability. (F-H) qRT-PCR analysis of the
expression levels of CD-related inflammatory cytokines IL6, IL8, and TNF-a in HT-29 cells. HT-29 cells were treated with or without 1 mM Etoposide
for 24 hours and simultaneously stimulated with LPS (20 mg/ml) or not for 24 hours. Cells were harvested, and RNA was extracted for qRT-PCR
analysis, with b-actin as an internal reference. The following groups were included: DMSO (Control), DMSO+LPS (LPS), LPS+Etoposide (LPS
+Etoposide). *P < 0.05, **P < 0.01, ***P < 0.001.
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Consequently, 1 mM was selected for further experiments with

HaCaT cells. HT-29 cells were treated with the same concentration

gradient of Etoposide for 24 hours, and concentrations above 50

mM significantly reduced cell viability (Figure 12E). Therefore, 1

mM was also chosen as the treatment concentration for subsequent

experiments with HT-29 cells. Subsequently, HaCaT cells were

stimulated with M5, and HT-29 cells were treated with LPS. The

cells were then divided into the following groups: control,

stimulation group, and Etoposide treatment group. Total RNA

was extracted and analyzed using qRT-PCR to assess the

expression levels of psoriasis-related keratinocytes marker genes

(KRT6, KRT16) (Figures 12C, D) and CD-related inflammatory

cytokines (IL6, IL8, TNF-a) (Figures 12F–H). The results showed

that M5 and LPS stimulation significantly upregulated the

expression of these genes in HaCaT and HT-29 cells, indicating a

pro-inflammatory and hyperproliferative state. However, Etoposide

treatment effectively reversed the induced gene upregulation,

significantly reducing the expression levels of KRT6, KRT16, IL6,

IL8, and TNF-a.
These findings validate the therapeutic potential of Etoposide in

modulating inflammatory responses and inhibiting abnormal

keratinocytes activation. This observation aligns with molecular

docking predictions, suggesting that Etoposide may exert protective

effects in inflammatory skin and intestinal diseases. Future studies

will further investigate the specific signaling pathways involved in

its action.
4 Discussion

Psoriasis and CD are chronic inflammatory conditions

characterized by immune dysregulation, genetic predisposition,

and cyclical flare-ups (10, 11). Both diseases share overlapping

genetic and environmental factors, as demonstrated by

epidemiological studies. For instance, a nationwide Danish cohort

of over 5.5 million adults found a strong correlation between the

two (57). In addition, a meta-analysis of 93 studies reported a

psoriasis prevalence of 3.6% in CD patients and 2.8% in ulcerative

colitis (UC) patients, with higher rates among pediatric CD cases.

Individuals with psoriasis were shown to have a 1.7-fold increased

risk of developing CD, highlighting a significant bidirectional

association (12). Similar findings have been reported in other

studies (13). Furthermore, genetic evidence further supports the

link between these diseases. A Mendelian randomization study

using GWAS data from 463,372 individuals of European ancestry

demonstrated a significant increase in risk associated with genetic

predisposition to inflammatory bowel disease (IBD), particularly in

CD patients (58). However, the reverse relationship remains

unclear, indicating a need for further elucidation of the

underlying genetic and molecular mechanisms. In summary,

psorias is and CD exhibi t robust associat ions across

epidemiological, genetic, and immunological domains (10, 14–

17). While existing research has primarily focused on

epidemiological aspects, further exploration into the molecular
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mechanisms is necessary to identify key biomarkers and

therapeutic targets. This study aims to fill this knowledge gap

through the use of bioinformatics to analyze bulk transcriptomic

and single-cell sequencing data, identifying shared biomarkers and

regulatory pathways. Molecular experiments and docking analyses

will validate potential therapeutic targets to provide insights into

common mechanisms and treatment strategies for these diseases.

Using WGCNA and differential analysis, 79 shared genes were

identified as being implicated in psoriasis and CD, with functional

enrichment demonstrating a strong association with cell cycle

processes. KEGG and GSEA analyses revealed significant

enrichment in pathways associated with cell division and

inflammation, including E2F targets, G2M checkpoints, MYC

targets, interferon-g response, TNF-a signaling via NF-kB,
and IL-6/JAK/STAT3 signaling. These results indicate that

immune dysregulation and abnormal cell proliferation serve as

common drivers of disease progression, highlighting potential

therapeutic targets.

Machine learning identified five hub genes—KIF4A, DLGAP5,

NCAPG, CCNB1, and CEP55—as shared molecular biomarkers.

These genes are essential for cell cycle regulation, including

processes such as chromosome separation, spindle assembly, and

regulation of the G2/M transition.

KIF4A (Kinesin Family Member 4A) is a microtubule-

associated motor protein involved in the regulation of

chromosome condensation and separation during mitosis. Studies

have shown that KIF4A is overexpressed in various cancers and

contributes to tumorigenesis by influencing cell proliferation,

migration, and the tumor microenvironment (59–64). However,

research on the role of KIF4A in psoriasis and CD remains relatively

scarce. Based on the existing findings, we hypothesize that KIF4A

may regulate cell proliferation by maintaining mitosis, contributing

to the abnormal proliferation of keratinocytes and intestinal

epithelial cells in the pathogenesis of psoriasis and CD, thereby

interfering with tissue repair processes.

DLGAP5 (Discs Large Homolog Associated Protein 5) is a

microtubule-associated protein that plays a critical role in mitotic

spindle assembly and stabilization. It influences cell proliferation

and migration, particularly in various cancers (65–67), though

reports on its involvement in psoriasis and CD are limited.

Research by Yujie Li has shown that DLGAP5 regulates breast

cancer cell proliferation, migration, invasion, and the cell cycle via

the JAK2/STAT3 signaling axis (68). Therefore, upregulation of

DLGAP5 may affect the abnormal differentiation of keratinocytes in

psoriasis and intestinal epithelial cell repair in CD by enhancing cell

proliferation and mitosis regulation.

NCAPG (Non-SMC Condensin I Complex Subunit G) is

essential for chromosome condensation and stability during

mitosis. Its overexpression has been linked to tumorigenesis,

promoting cell proliferation, invasion, migration, and resistance

to apoptosis (69, 70). Specifically, Ding-Ping Sun’s research revealed

that NCAPG is highly expressed in colorectal cancer (CRC) tissues

(71), and its downregulation inhibits CRC cell proliferation,

migration, and invasion by interfering with the G2/M to G1 cell
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cycle transition (72). Moreover, NCAPG has been identified as a

susceptibility gene for psoriasis (73), underscoring its role in both

diseases and justifying its investigation as a key gene in cell

cycle regulation.

CCNB1 (Cyclin B1) is a key regulatory factor in cell cycle

progression, particularly in the G2/M transition (54). Abnormal

expression of CCNB1 has been observed in various cancers and

inflammatory diseases (54). In psoriasis, CCNB1 is closely

associated with cell cycle regulation, highlighting its role in

controlling keratinocytes proliferation (74). Additionally, studies

on celiac disease have shown that CCNB1 is highly expressed in

epithelial cells of affected patients, correlating with increased cell

proliferation and mitosis, which overlaps with features of CD (75).

Therefore, abnormal expression of CCNB1 may accelerate the cell

cycle, contributing to excessive proliferation of keratinocytes in

psoriasis and impaired repair of intestinal epithelial cells in CD.

CEP55 (Centrosomal Protein 55) is implicated in mitosis and

the regulation of the PI3K/AKT pathway. Its dysregulation is

associated with various cancers and inflammatory diseases (76).

Although research on its role in CD is limited, CEP55 has been

identified as a key gene associated with immune responses, cell cycle

regulation, and the Wnt signaling pathway in psoriasis (74).

Immune cell infiltration analysis revealed significant

involvement of 12 immune cell types, including activated CD4+ T

cells, gd T cells, Th17 cells, and regulatory T cells (Tregs). CD4+ T

cells were pivotal in both diseases, promoting keratinocytes

proliferation in psoriasis and exacerbating intestinal inflammation

in CD through cytokine secretion. Dysregulation of Tregs and Th17

cells further amplifies inflammation, highlighting the immune-

mediated mechanisms common to both diseases.

Specifically, in psoriasis, the early infiltration of activated CD4+

T cells into the epidermis acts as a key trigger for inflammation and

keratinocytes hyperproliferation (77, 78). Activated CD4+ T cells

can differentiate into Th17 cells, which secrete pro-inflammatory

cytokines such as IL-17A, IL-17F, and IL-22, directly promoting

keratinocytes proliferation and inflammation (79, 80). Additionally,

gd T cells contribute to psoriasis by secreting pro-inflammatory

cytokines such as IL-17A, IL-17F, and IL-22, promoting

inflammation and keratinocytes proliferation (81–83).

Similarly, in CD, T cell dysregulation, particularly the

imbalance between Th17 cells and Tregs, is a hallmark of

intestinal inflammation (84). The therapeutic potential of Treg

cells in CD has been widely validated (85). The reduction in Treg

cell function exacerbates immune responses, while an increase in

Th17 cells leads to enhanced secretion of pro-inflammatory

cytokines. Recent studies have shown that although regulatory T

cell (Treg) infiltration is elevated in both psoriasis and CD, their

suppressive function is often impaired due to the influence of the

inflammatory microenvironment. In psoriasis, despite an increased

number of Tregs in lesional skin, their anti-inflammatory capacity is

compromised, potentially due to cytokine-induced functional

dysregulation (86). Similarly, in CD, Tregs accumulate in

inflamed intestinal mucosa but fail to effectively restore immune

homeostasis due to functional impairments (85). This paradox of
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increased Treg infiltration alongside persistent inflammation

suggests that Treg expansion may represent a compensatory

response by the immune system to counteract chronic immune

activation. However, the inflammatory milieu likely disrupts their

regulatory function, rendering them unable to effectively suppress

pathogenic immune responses (87).

Currently, while biologic therapies targeting TNF-a and IL-12/

23 have demonstrated efficacy in treating both conditions (88, 89),

paradoxical effects, such as psoriasis exacerbation in IBD patients

(89–93), highlight the need for alternative therapeutic approaches.

Using the DSigDB database, we identified potential small-molecule

drugs, including Etoposide, Lucanthone, and Piroxicam, capable of

modulating cell cycle regulation and inflammatory pathways.

Etoposide, a topoisomerase inhibitor, induces cell cycle arrest and

apoptosis (94), while Lucanthone and Piroxicam exhibit anti-

inflammatory and immunomodulatory properties, and represent

promising therapeutic candidates for further investigation.

Molecular docking simulations revealed that Etoposide exhibited

the strongest binding affinity to core targets, significantly

outperforming Lucanthone and Piroxicam. As an FDA-approved

chemotherapeutic agent, Etoposide benefits from a well-established

manufacturing process and demonstrates high cost-effectiveness.

Etoposide may provide a viable alternative therapeutic option in

certain patients, especially those who develop resistance or

inadequate responses to biologics. However, given its potential

long-term side effects, careful risk-benefit assessment is warranted

in clinical applications.

Our study identified shared biomarkers and pathways between

psoriasis and CD, highlighting the critical roles of cell cycle

dysregulation and immune responses. Additionally, we

preliminarily screened potential therapeutic agents. These findings

lay the foundation for novel therapeutic strategies while also

underscoring several limitations. Reliance on public datasets may

contribute to variability, highlighting the need for further molecular

and clinical validation of the regulatory mechanisms underlying the

identified biomarkers. Future research should focus on elucidating

the intricate interactions among hub genes and immune pathways

to advance our understanding of these interconnected diseases.
5 Conclusion

By integrating bioinformatics, machine learning, and molecular

validation, this study demonstrates that cell cycle regulation, immune

dysregulation, and inflammation represent critical shared pathogenic

mechanisms between psoriasis and CD. Five novel shared biomarkers

—KIF4A, DLGAP5, NCAPG, CCNB1, and CEP55—were identified,

that play significant roles in cell cycle-related processes and exhibit

close associations with CD4+ T cells and gd T cells. Additionally, this

study identified Etoposide, Lucanthone, and Piroxicam as potential

therapeutic candidates targeting these biomarkers. These findings not

only offer valuable insights into the development of therapeutic

strategies for psoriasis and CD but also highlight the potential

clinical diagnostic and therapeutic applications of the identified genes.
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