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Immune-mediated renal injury in
diabetic kidney disease: from
mechanisms to therapy
Lingli Ma, Dianyuan Liu, Yue Yu, Zimeng Li and Qing Wang*

Department of Endocrinology and Metabolism, China-Japan Union Hospital of Jilin University,
Changchun, China
Diabetic kidney disease (DKD) is now recognized as a multifactorial disorder,

driven by the interplay of metabolic dysfunction, chronic inflammation, and

immune-mediated renal injury. This review comprehensively synthesizes recent

advancements in understanding immune dysregulation as a central driver of DKD

pathogenesis, integrating molecular mechanisms with emerging therapeutic

strategies. Innate immune activation, which includes macrophage polarization

and adaptive immune perturbations, exacerbates glomerulosclerosis and

interstitial fibrosis through cytokine storms and mitochondrial oxidative stress.

Despite clinical guidelines emphasizing glycemic control and renin-angiotensin-

aldosterone system (RAAS) inhibition, their limited efficacy in halting immune-

mediated tubular atrophy highlights the unmet need for targeted

immunotherapies. By connecting mechanistic discoveries to clinical

translation, this work establishes a roadmap for the development of immune-

centric therapies. Its critical synthesis of multi-omics data, clinical trial evidence,

and preclinical models bridges the gap between laboratory discoveries and

bedside applications, laying the groundwork for redefining DKD as a treatable

immune-metabolic disorder.
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1 Introduction

DKD, characterized by persistent albuminuria and a progressive decline in the

glomerular filtration rate among diabetic patients (1), Epidemiological studies estimate

that over 40% of diabetic patients develop renal complications within 15 years of diagnosis,

significantly contributing to cardiovascular morbidity and mortality (2), remaining the

predominant cause of chronic kidney disease and end-stage renal failure (3). The

pathogenesis of DKD arises from multifaceted interactions among metabolic

disturbances, inflammatory cascades, and fibrotic remodeling mediated by Transforming

Growth Factor Beta (TGF-b) signaling (4, 5). Historically, hemodynamic factors and

podocyte injury have been emphasized, but emerging evidence highlights the role of both

innate and adaptive immune responses in disease progression (6). Notably, activated

macrophages infiltrate the kidneys of diabetic patients, triggering cytokine storms that
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perpetuate tubular injury and interstitial fibrosis (7, 8). These

discoveries redefine DKD not only as an immunometabolic

disorder but also highlight potential drug targets to halt the

progression of the disease.

The hyperglycemic environment in diabetes triggers glomerular

hyperfiltration and tubular epithelial damage (9), triggering renal

RAAS activation exacerbates monocyte/macrophage infiltration.

This pathogenic cascade amplifies pro-inflammatory cytokine

networks, driving extracellular matrix deposition through TGF-

b1/Smad3 signaling, thereby accelerating glomerulosclerosis and

tubulointerstitial fibrosis (10). Clinical biopsies reveal that elevated

levels of tumor necrosis factor-alpha (TNF-a) correlate with the

severity of albuminuria in diabetic patients (11), while IL-6 activates

signal transducer and activator of transcription 3 (STAT3), thereby

promoting the proliferation of renal fibroblasts (12). Immune cells

play a dual role in the progression of DKD: they are involved in the

protective clearance of apoptotic debris as well as the maladaptive

perpetuation of chronic inflammation (13). CD4+ T-cells infiltrate

diabetic kidneys through the activation of the chemokine ligand 20

(CCL20)/chemokine receptor 6 (CCR6) axis, secreting interferon

gamma (IFN-g) to recruit M1 macrophages that exacerbate

oxidative stress (14, 15). Paradoxically, IL-10 derived from B-cells

mitigates tubular injury while simultaneously increasing

autoantibodies against basement membrane components (16).

Regulatory T-cells (Tregs) are crucial in modulating this balance;

their functional impairment disrupts IL-35-mediated

immunosuppression, leading to Th17-driven interstitial

inflammation (17). These findings emphasize the therapeutic

potential of selectively targeting immune checkpoints while

maintaining renal immunoregulatory functions.

Current therapeutic approaches for DKD primarily focus on the

use of RAAS inhibitors and Sodium-Glucose Cotransporter 2

(SGLT-2) inhibitors, aimed at decelerating glomerular

hyperfiltration and diminishing proteinuria (18). However, these

treatments do not fully control disease progression, with over 30%

of patients still experiencing progressive renal function decline due

to unresolved tubulointerstitial inflammation and macrophage-

driven fibrosis. This limitation arises from the current paradigm’s

insufficient targeting of immune-inflammatory pathways — a

mechanism increasingly recognized in the pathogenesis of DKD

(6, 19, 20). Emerging evidence indicates that immune modulation is

a strategic frontier: preclinical models demonstrate that NOD-like

receptor protein 3 (NLRP3) inflammasome inhibitors decrease

Interleukin-1b (IL-1b) levels and mitigate podocyte injury (21),

Targeting monocyte chemoattractants with chemokine receptor 2

(CCR2) antagonists results in a significant reduction in urinary

excretion of monocyte chemoattractant protein 1 (MCP-1) (22).

Specifically, modulation of macrophage polarization through

inhibition of the TGF-b/Smad3 pathway has been demonstrated

to reduce collagen deposition in the kidneys of diabetic rodents

(23). T-cell subset manipulation also shows promise; adoptive

transfer of Tregs in DKD rat models restored the Th17/Treg

balance and reduced albuminuria (24). These advances necessitate

a paradigm shift—from viewing DKD solely as a metabolic disorder
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to embracing its immune-mediated pathophysiology in

therapeutic innovation.

In summary, the pathogenesis of DKD is complex, with the

immune system playing a crucial role in its development. Future

research should further investigate the specific mechanisms by

which immune cells contribute to DKD, as well as explore how

modulating immune responses can improve patient prognosis. By

gaining a deeper understanding of the pathogenesis of DKD, we aim

to develop more effective therapeutic strategies, ultimately

enhancing the quality of life and health outcomes for patients

with diabetes.
2 Pathogenic mechanisms of DKD

2.1 Impact of hyperglycemia

Persistent hyperglycemia acts as a crucial catalyst for DKD,

initiating pathological cascades via prolonged metabolic

dysregulation and cellular injury (25, 26). Elevated glucose levels

trigger the polyol pathway, in which aldose reductase facilitates the

conversion of glucose into sorbitol and fructose (27). Sorbitol

accumulation disrupts cellular osmotic equilibrium, inducing

intracellular swelling and functional impairment in renal tubular

and glomerular cells. Concurrently, excess glucose promotes the

formation of advanced glycation end products (AGEs) (28), These

substances bind to receptors on renal cells, activating nuclear factor-

kB (NF-kB) and reactive oxygen species (ROS) signaling pathways.

These molecular events promote chronic inflammation, endothelial

dysfunction, and apoptosis—key features of DKD progression.

Notably, AGE-induced oxidative stress exacerbates podocyte loss

and thickening of the glomerular basement membrane (GBM),

accelerating albuminuria and interstitial fibrosis. Emerging

evidence highlights a feedback loop between hyperglycemic ROS

overproduction and insulin resistance, perpetuating renal injury

through mitochondrial dysfunction and reduced nitric oxide

bioavailability (29, 30) (Figure 1).

Hyperglycemia further disrupts immune responses via multi-level

metabolic disturbances: renal intrinsic cells, including tubular

epithelial and mesangial cells, secrete MCP-1 and intercellular

adhesion molecule-1 (ICAM-1) under sorbitol-induced osmotic

stress and endoplasmic reticulum stress, specifically recruiting

circulating monocytes to differentiate into pro-inflammatory M1

macrophages. The interaction between AGEs and their receptors

not only activates NF-kB to drive an explosive secretion of

cytokines but also forms a “cytokine storm” that chemotactically

recruits CD4+ T cells into the renal interstitium, amplifying local

inflammation. Under hyperglycemic conditions, elevated

diacylglycerol (DAG) activates protein kinase C (PKC). This

activation not only promotes mesangial cell proliferation and

extracellular matrix deposition but also enhances NF-kB nuclear

translocation through phosphorylation, thereby sustaining

inflammatory signaling cascades (31). Mitochondrial dysfunction

serves as a critical amplifier: excessive glucose oxidation leads to a
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burst production of mitochondrial ROS, which directly damages

glomerular endothelial cells and podocytes while oxidatively

modifying Toll-like receptor 4 (TLR4), enhancing macrophage

sensitivity to pathogen-associated molecular patterns (PAMPs) and

triggering sterile inflammatory responses (32). This metabolism-

immunity crosstalk disrupts both innate and adaptive immunity: it

drives the aberrant activation of macrophages and neutrophils while

reprogramming T cell metabolism—enhancing glycolysis in pro-

inflammatory Th1/Th17 cells and impairing mitochondrial

oxidative phosphorylation in Tregs—ultimately establishing a

chronic intra-renal inflammatory microenvironment that accelerates

glomerulosclerosis and tubulointerstitial fibrosis.

Podocyte injury serves as a critical connection between

hyperglycemia and immune activation in DKD. Oxidative stress

and metabolic dysfunction, induced by hyperglycemia, directly lead

to podocyte apoptosis, resulting in the release of podocyte-specific

antigens and damage-associated molecular patterns (DAMPs),

including high-mobility group box 1 (HMGB1) and ATP (33).

The recognition of these molecules by renal macrophages triggers

the TLR4/NF-kB pathway, leading to M1 polarization and the

secretion of pro-inflammatory cytokines, which further intensifies
Frontiers in Immunology 03
tubulointerstitial inflammation. Clinical studies and preclinical

models suggest that Tim-3-expressing macrophages, whose renal

expression correlates with the severity of diabetic nephropathy,

induce podocyte injury through the NF-kB/Tumor necrosis factor-

alpha (TNF-a) pathway, with reduced nephrin expression being

inversely associated with macrophage activation (34).

Mechanistically, the phagocytosis of apoptotic podocyte debris by

macrophages triggers the activation of the NLRP3 inflammasome,

which in turn promotes the maturation of IL-1b and IL-18, thereby

establishing a “podocyte-macrophage” interactive damage

cycle (35).
2.2 Metabolic abnormalities and kidney
injury

Metabolic disturbances, including dyslipidemia, hypertension,

and insulin resistance, synergistically exacerbate renal injury in

DKD. Hyperlipidemia promotes intracellular lipid accumulation in

renal tubular cells, triggering lipotoxicity through mitochondrial

dysfunction and endoplasmic reticulum stress (36, 37). Excessive
FIGURE 1

Pathogenic mechanisms of DKD.
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free fatty acids (FFAs) activate peroxisome proliferator-activated

receptors (PPARs) and sterol regulatory element-binding proteins

(SREBPs), which drive pro-apoptotic pathways and fibrosis through

TGF-b1/Smad3 signaling (38, 39). Simultaneously, the components

of metabolic syndrome exacerbate oxidative stress by upregulating

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase

(NOX) isoforms, further damaging glomerular endothelial cells and

podocytes. Byproducts of lipid peroxidation, such as

malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE),

directly modify renal cellular proteins, impairing autophagy and

promoting tubular interstitial fibrosis (40). Importantly,

hypertensive conditions in diabetes increase glomerular capillary

pressure via angiotensin II-mediated vasoconstriction, accelerating

albuminuria and mesangial matrix expansion. These metabolic

cascades intersect with pathways induced by hyperglycemia,

creating a vicious cycle that drives progressive nephron loss.
2.3 Elevated PKC activity in diabetic kidney
disease

PKC is a critical mediator of renal injury in DKD (41). Under

hyperglycemic conditions, elevated intracellular glucose levels lead

to the synthesis of diacylglycerol (DAG), a potent activator of PKC

isoforms, including PKC-a and PKC-b. The activation of PKC

disrupts cellular signaling cascades, directly contributing to

glomerular hypertrophy by promoting mesangial cell proliferation

and extracellular matrix (ECM) deposition (42). For example, PKC-

b enhances the expression of TGF-b1, which stimulates the

synthesis of collagen IV and fibronectin, accelerating the

thickening of the glomerular basement membrane and interstitial

fibrosis (43). Additionally, PKC signaling exacerbates endothelial

dysfunction by upregulating vascular endothelial growth factor

(VEGF), leading to altered renal microvascular permeability and

albuminuria (44). This pathway also contributes to oxidative stress

by activating NADPH oxidase, which generates ROS that further

damage podocytes and tubular cells. Notably, activation of PKC-d
phosphorylates pro-inflammatory transcription factors such as NF-

kB, amplifying cytokine production and sustaining renal

inflammation (45). These interconnected mechanisms highlight

PKC as a crucial therapeutic target for reducing fibrosis and

functional decline in diabetic kidney disease.
2.4 Oxidative stress imbalance in DKD

Oxidative stress is a key contributor to renal injury in DKD

(46). Hyperglycemia stimulates the overproduction of ROS via

mitochondrial dysfunction, NOX activation, and the AGE-

mediated pathways (47). Excessive ROS cause oxidative damage

to cellular components, such as lipid membranes, proteins, and

DNA, thereby inducing podocyte apoptosis and tubular epithelial

cell necrosis (48). Notably, overproduction of mitochondrial ROS in

glomerular endothelial cells disrupts intercellular communication

with podocytes, exacerbating albuminuria. Oxidative stress also
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activates pro-inflammatory NF-kB signaling, increasing renal

expression of IL-6 and TNF-a, which perpetuate inflammation

and fibrosis. Clinical studies reveal elevated urinary 8-hydroxy-2’-

deoxyguanosine (8-OHdG), a biomarker of oxidative DNA damage

(49), correlates with declining glomerular filtration rates in DKD

patients. These data underscore oxidative stress as both a

contributor to and a consequence of metabolic dysregulation in

diabetic renal injury.
3 Role of immune cells in the
pathogenesis of DKD

3.1 Macrophages

Macrophages, which originate from circulating monocytes, are

central innate immune cells that polarize into pro-inflammatory

M1 or anti-inflammatory/pro-fibrotic M2 phenotypes in response

to microenvironmental cues (50). Under physiological conditions,

renal-resident macrophages sustain tissue homeostasis by

phagocytosing debris, regulating extracellular matrix turnover,

and secreting reparative cytokines such as IL-10. In diabetic

kidneys (51), hyperglycemia and AGEs prompt renal tubular cells

to excessively express chemokines and adhesion molecules, thereby

facilitating the recruitment of monocytes and the infiltration of

macrophages into the glomeruli and interstitium.

In the early stages of DKD, M1 macrophages predominate,

secreting pro-inflammatory cytokines and ROS. These substances

exacerbate glomerular endothelial damage, podocyte apoptosis, and

tubulointerstitial inflammation (52). These mediators perpetuate

leukocyte recruitment and activate renal parenchymal cells to

secrete additional inflammatory factors, creating a self-sustaining

inflammatory loop. In contrast, late-stage DKD is characterized by

the accumulation of M2 macrophages (53), which promotes

fibrogenesis through TGF-b1-induced collagen synthesis and the

act ivat ion of myofibroblast s , u l t imate ly resul t ing in

glomerulosclerosis and tubulointerstitial fibrosis. Notably,

galectin-3 derived from M2 macrophages has been identified as a

key regulator of renal stiffening in diabetic contexts.

Macrophage polarization dynamically interacts with the

progression of DKD through bidirectional mechanisms.

Hyperglycemia- and AGE-induced oxidative stress skew

macrophages toward the M1 phenotype via NF-kB/STAT1
signaling (54), while chronic hypoxia in advanced disease

enhances M2 polarization via hypoxia-inducible factor-1a (HIF-

1a). Cytokines derived from M1 macrophages impair tubular

autophagy, exacerbating inflammatory injury, whereas M2-

mediated fibrosis disrupts vascular architecture, creating hypoxic

niches that further drive M2 polarization (55, 56). Targeting

macrophage plasticity through CCR2 inhibition or PPARg
agonists shows therapeutic potential by reducing both

inflammation and fibrosis in preclinical models (57). This

phenotypic plasticity underscores macrophages as the central

o r che s t r a to r s o f immune-med ia t ed rena l in ju ry in

DKD (Figure 2).
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Autophagic dysfunction is pivotal in the dysregulation of

macrophages induced by hyperglycemia. High glucose suppresses

autophagic flux in renal tubular epithelial cells through the

mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1

(ULK1) pathway, resulting in the accumulation of undegraded

protein aggregates and damaged mitochondria (58). This triggers

the release of DAMPs, which activate TLR/NF-kB signaling in

macrophages to promote M1 polarization. Mechanistically,

hyperglycemia enhances M1 macrophage polarization through the

miR-32/Mef2d/cAMP pathway, directly upregulating pro-

inflammatory genes while downregulating autophagy markers,

creating a “autophagic defect-inflammatory amplification” loop (59).

Additionally, impaired autophagy in Tregs disrupts mitochondrial

bioenergetics, reducing FoxP3 expression and weakening suppression

of Th17 cells, further exacerbating renal inflammation (60).

T lymphocytes, which include CD4+ T cells activated by a high-

glucose environment and APCs, as well as CD8+ T cells activated by
Frontiers in Immunology 05
antigens and cytokines, play crucial roles. CD4+ T cells differentiate

into Th1, Th2, and Th17 cells, which secrete cytokines such as IFN-g,
IL-4, and IL-17, respectively, each with distinct effects on

inflammation and renal tissue. B lymphocytes, activated by

antigens and T-cell assistance, form immune complexes that

activate the complement system. Macrophages, recruited by high

glucose and inflammatory factors, polarize into M1 and M2 types.

DCs present antigens to T cells and recruit CD8+ T cells via CCL21.

Neutrophils, recruited by inflammatory factors, damage renal tissue.

NK cells, activated by cytokines, may have dysregulated functions in

DKD. All these immune-cell-mediated effects converge, leading to

glomerular and tubulo-interstitial lesions, ultimately resulting in

proteinuria, a decline in renal function, and the development of

DKD. Abbreviations: DKD (Diabetic Kidney Disease), APC

(Antigen-Presenting Cells), IFN-g (Interferon-g), IL-4 (Interleukin-

4), IL-13 (Interleukin-13), IL-17 (Interleukin-17), DC (Dendritic

Cells), NK Cells (Natural Killer Cells).
FIGURE 2

Role of immune cells in the pathogenesis of DKD.
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3.2 T cells in DKD pathogenesis

T lymphocytes, which originate from bone marrow progenitors

and differentiate in the thymus, consist of heterogeneous subsets

such as CD4+ helper T cells (Th), cytotoxic CD8+ T cells (CTLs),

and Tregs (61). These subsets regulate immune homeostasis by

balancing pathogen clearance and self-tolerance (62). In DKD,

adaptive immune dysregulation disrupts this balance: CD4+ T-

cell infiltration in the glomeruli and tubulointerstitium correlates

with the severity of albuminuria (7). Th1 cells drive pro-

inflammatory responses through the secretion of IFN-g and TNF-

a, which promotes tubular apoptosis and podocyte loss. Meanwhile,

Th17 cells secrete IL-17, recruiting neutrophils and exacerbating

glomerular injury (63). Concurrently, hyperglycemia-induced

oxidative stress impairs Treg function, reducing the production of

TGF-b and IL-10, thereby weakening anti-inflammatory regulation

(64). This imbalance between pro-inflammatory Th1/Th17 cells

and suppressive Tregs creates a pathologic loop that sustains renal

inflammation (65, 66).

The functional dichotomy of T-cell subsets is central to the

progression of DKD. Th1 cells amplify macrophage activation

through IFN-g (67), enhancing M1 polarization and accelerating

glomerulosclerosis. Th17-derived IL-17 stimulates fibroblasts to

secrete collagen, directly promoting tubulointerstitial fibrosis.

Cytotoxic CD8+ T cells induce tubular epithelial cell death via

perforin and granzyme B, contributing to interstitial damage (68).

Additionally, metabolic reprogramming in T cells under diabetic

conditions—shifting from oxidative phosphorylation to glycolysis

—elevates ROS production, further impairing Treg function and

aggravating immune dysregulation (69). Clinical evidence indicates

that increased Th17/Treg ratios and CD8+ cell infiltration are

associated with a decrease in estimated glomerular filtration rate

(eGFR) and proteinuria, underscoring their prognostic importance

(70). Therapeutic approaches aimed at T-cell polarization, such as

restoring Treg function or suppressing Th17 signaling, have shown

promise in preclinical DKD models, suggesting potential pathways

for immune modulation.
3.3 Dendritic cells in DKD pathogenesis

Dendritic cells (DCs), which originate from bone marrow

precursors, are professional antigen-presenting cells that connect

innate and adaptive immunity. They differentiate into

subpopulations, including conventional DCs (cDCs) and

plasmacytoid DCs (pDCs), each with unique tissue-specific niches

in the kidney (71, 72). cDCs activate T cells through MHC-

mediated antigen presentation, whereas pDCs secrete type I

interferons during viral responses. Under hyperglycemic

conditions, renal DCs mature through TLR4/NF-kB signaling,

upregulating co-stimulatory molecules (CD80/86) and secreting

pro-inflammatory cytokines, thereby amplifying local

inflammation (73). Their dual role in immune surveillance and

tolerance disruption establishes DCs as central mediators of

DKD immunopathology.
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Renal DCs drive glomerular injury by recruiting cytotoxic CD8+ T

cells via CCL21 and promoting podocyte apoptosis through FasL-Fas

interactions. In tubular interstitium, DC-derived TGF-b1 and IL-23

activate fibroblasts, accelerating collagen deposition and fibrosis (74).

Additionally, perivascular DCs exacerbate endothelial dysfunction by

upregulating adhesion molecules and facilitating monocyte infiltration.

Single-cell RNA sequencing reveals CKD patients’ kidneys had

decreased CD16+ NK cells while CD4+ naive helper T cells and

CCR7+ DC increased, correlating with microvascular rarefaction and

albuminuria progression (75). Therapeutic targeting of DC plasticity,

such as blocking IL-6/STAT3 signaling, may restore immune balance

and mitigate renal damage in DKD (76, 77).
3.4 B cells in DKD pathogenesis

B cells, which originate from hematopoietic stem cells in the

bone marrow, are essential components of the adaptive immune

system (78). They differentiate into plasma cells that secrete

antibodies and act as antigen-presenting cells (APCs) through

interactions mediated by major histocompatibility complex class

II (MHC-II) with T cells (79). Subsets of B cells include regulatory B

cells (Bregs), which produce anti-inflammatory cytokines, and

follicular B cells, which drive germinal center responses. In the

context of renal homeostasis, Bregs help to reduce tissue injury by

suppressing autoimmune reactions via programmed death-ligand 1

(PD-L1) signaling and by enhancing immune complex clearance

through Fc gamma receptor IIb (FcgRIIb) receptors (80).

Furthermore, B cells contribute to maintaining local tolerance by

promoting the differentiation of Tregs and by scavenging apoptotic

debris in the glomeruli to prevent the formation of autoantibodies.

In DKD, chronic hyperglycemia induces B cell hyperactivity,

characterized by elevated autoantibodies that cross-react with

glomerular antigens, thereby triggering complement activation

and podocyte injury. Non-antibody-dependent mechanisms

involve aberrant B cell cytokine secretion, which exacerbates

endothelial dysfunction by upregulating adhesion molecules and

recruiting macrophages to the renal interstitium (81). Therapeutic

strategies targeting B cell depletion or Breg augmentation

demonstrate potential in reversing renal inflammation in

preclinical models (82).
3.5 Other immune cells

Beyond T cells, B cells, macrophages, and DCs, emerging

evidence implicates neutrophils, mast cells, and the complement

system in the progression of DKD. Neutrophils infiltrate diabetic

kidneys via ICAM-1/MCP-1-mediated chemotaxis, releasing

neutrophil extracellular traps (NETs) enriched in histones and

proteases that induce podocyte detachment and tubular injury

(83, 84). exacerbate renal fibrosis by mediating the activation of

TGF-b1 through tryptase and driving vascular permeability via

histamine (85). The complement system is chronically activated in

hyperglycemic microenvironments, where complement
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components 3a (C3a) and C5a anaphylatoxins enhance

macrophage chemotaxis and stimulate pro-inflammatory cytokine

production, amplifying glomerular endothelial damage (86, 87).

Moreover, neuro-immune crosstalk that involves splenic

sympathetic activation fosters systemic inflammation, which in

turn drives renal immune cell infiltration. Focusing on these less-

s t u d i e d immune c ompon en t s c o u l d p r o v i d e n ew

therapeutic approaches.
4 Current and emerging therapeutic
strategies

4.1 Current pharmacological treatment

4.1.1 Insulin
Insulin therapy continues to be a fundamental element in the

management of DKD, primarily due to its essential function in

glycemic control. By achieving normoglycemia, insulin effectively

decreases the accumulation of AGEs and mitigates mitochondrial

oxidative stress, consequently alleviating glomerular hyperfiltration

and preventing podocyte loss (88). The Diabetes Control and

Complications Trial (DCCT) demonstrated that intensive insulin

regimens reduce the progression of albuminuria and delay

microvascular complications in type 1 diabetes (89). Emerging

evidence underscores the immunomodulatory effects in the
Frontiers in Immunology 07
pathogenesis of DKD. Hyperglycemia-induced interactions

between AGEs and their receptor, receptor for advanced glycation

end products (RAGE), activate NF-kB signaling in renal

macrophages, thereby amplifying pro-inflammatory cytokines and

chemokines that recruit monocytes to the kidney. Insulin

counteracts this by suppressing NLRP3 inflammasome activation

in macrophages, which in turn reduces the secretion of IL-1b and

IL-18, cytokines associated with tubular injury (90). Beyond

glycemic control, insulin promotes podocyte autophagy through

the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT)

pathway, thereby mitigating high glucose-induced apoptosis and

safeguarding cytoskeletal proteins such as nephrin, which in turn

diminishes macrophage recognition of damaged podocytes

(91) (Figure 3).

4.1.2 SGLT2 inhibitors
SGLT2 inhibitors, initially developed for glycemic control, exert

renoprotection in DKD through traditional mechanisms involving

hemodynamic modulation and metabolic improvements. By

inhibiting glucose reabsorption in the proximal tubule, these

agents reduce renal hyperfiltration—a hallmark of early DKD—

via tubuloglomerular feedback, thereby lowering intraglomerular

pressure and albuminuria. The Canagliflozin and Renal Endpoints

in Diabetes with Established Nephropathy Clinical Evaluation

(CREDENCE) trial demonstrated that canagliflozin reduced the

risk of composite renal outcomes and lowered urinary albumin-to-
FIGURE 3

Current pharmacologic treatment of DKD.
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creatinine ratio in patients with DKD (92). Additionally, SGLT2

inhibitors promote natriuresis and weight loss, indirectly mitigating

obesity-related renal inflammation (93).

Beyond these classical effects, emerging evidence underscores

their immunomodulatory actions. SGLT2 inhibitors mitigate renal

NLRP3 inflammasome activation, which is hyperstimulated in

diabetic kidneys, thereby decreasing IL-1b and IL-18 secretion

from macrophages (94). They also suppress the AGE-RAGE-NF-

kB axis, downregulating pro-inflammatory cytokines and

chemokines, which are critical for monocyte recruitment and

interstitial fibrosis. Preclinical studies indicate that these drugs

shift macrophage polarization from a pro-inflammatory M1 to an

anti-inflammatory M2 phenotype through HIF-1a downregulation

and AMPK activation, enhancing tissue repair and reducing

oxidative stress (95, 96). Clinically, dapagliflozin has been shown

to reduce urinary MCP-1 levels in patients with DKD, correlating

with a slowed decline in eGFR (97). The 2025 ADA guidelines

recommend the use of SGLT2 inhibitors for patients with T2DM

and DKD when the eGFR is ≥20 mL/min/1.73m². This

recommendation is primarily based on the proven efficacy of

SGLT2 inhibitors in reducing the progression of CKD and the

risk of major adverse cardiovascular events.

SGLT2 inhibitors also modulate mitochondrial-associated

endoplasmic reticulum membranes (MAMs), critical platforms

for calcium signaling and lipid metabolism at ER-mitochondria

contact sites. In diabetic podocytes, hyperglycemia-induced MAMs

hyperplasia exacerbates mitochondrial dysfunction and ER stress,

promoting podocyte apoptosis and DAMP release. Empagliflozin

treatment and podocyte-specific SGLT2 knockout reduced MAMs

formation via AMPK activation, thereby alleviating mitochondrial

Ca²+ overload and NLRP3 inflammasome activation (98). This

mechanism directly connects SGLT2 inhibition with the

suppression of macrophage-recruiting cytokines and T cell

infiltration, as MAMs-derived ROS and calcium flux are key

drivers of immune cell activation in DKD. Emerging evidence

suggests that the renoprotective effects of SGLT2 inhibitors

extend beyond diabetic nephropathy to autoimmune kidney

diseases. In the case of lupus nephritis (LN), treatment with

empagliflozin has been shown to reduce glomerular and

tubulointerstitial injury. Mechanistically, SGLT2 inhibitors

enhance podocyte autophagy by suppressing mTORC1 activity

and reduce NLRP3 inflammasome-mediated inflammation,

thereby preserving synaptopodin expression and podocyte

integrity. These findings underscore the pleiotropic effects of

SGLT2 inhibitors in autoimmune settings, where they protect

podocytes through dual mechanisms of autophagy promotion and

inflammation attenuation (99).

4.1.3 GLP-1 receptor agonists
Glucagon-like peptide-1 receptor agonists (GLP-1 RAs),

traditionally recognized for glycemic regulation and weight

management, exhibit renoprotective effects in DKD through

multifactorial mechanisms. By enhancing glucose-dependent

insulin secretion and suppressing glucagon release, these agents

reduce chronic hyperglycemia-induced oxidative stress and AGE
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accumulation, thereby attenuating glomerular basement membrane

thickening and albuminuria (100). Clinical trials, such as the

Assessment of the Effects of Efpeglenatide on Cardiovascular and

Renal Outcomes (AMPLITUDE-O) trial, have demonstrated that

GLP-1 RAs reduce the incidence of macroalbuminuria in patients

with DKD, independent of glycemic control (101). GLP-1 RAs exert

their effects through various mechanisms, including the modulation

of renal hemodynamics, reduction of inflammation, and inhibition

of fibrosis within the kidneys. Furthermore, GLP-1 RAs provide

significant cardiovascular benefits, which are mediated by a

combination of pathways. They effectively lower blood pressure,

improve lipid profiles by increasing high-density lipoprotein

cholesterol (HDL-C) levels and decreasing triglycerides, and also

promote weight loss. Additionally, GLP-1 RAs enhance vascular

endothelial function, mitigate systemic inflammation, and

positively impact cardiac function. Collectively, these effects

contribute to the mitigation of systemic risk in diabetic

nephropathy, thereby reducing the overall burden of

cardiovascular disease, a major complication in patients with DKD.

Emerging evidence highlights their immunomodulatory role in

the pathogenesis of DKD. GLP-1 RAs inhibit the TLR4/MYD88/

NF-kB signaling pathway in renal tubular cells, suppressing NLRP3

inflammasome activation and subsequent IL-1b/IL-18 release,

which are key drivers of interstitial inflammation (102).

Preclinical studies indicate that liraglutide directly decreases renal

macrophage infiltration by downregulating the expression of MCP-

1 and CXCL1 chemokines, thereby limiting the recruitment of

monocytes to injured glomeruli (103). Furthermore, GLP-1 RAs

enhance Treg activity while inhibiting Th17 differentiation,

rebalancing the Th17/Treg axis to mitigate podocyte injury and

fibrosis (104). Semaglutide has been shown to decrease urinary

TGF-b1 levels, indicating reduced fibrotic signaling in clinical

cohorts (105). Guidelines from the American Diabetes

Association (ADA) and the European Association for the Study

of Diabetes (EASD) prioritize the use of GLP-1 RAs for patients

with DKD who have cardiovascular comorbidities. This

prioritization is primarily due to the well-established ability of

GLP-1 RAs to reduce the risk of major adverse cardiovascular

events, as evidenced by large-scale clinical trials. Emerging evidence

also suggests that GLP-1 RAs may have beneficial effects on

immune-mediated kidney injury, potentially by modulating

inflammatory pathways within the kidney.

4.1.4 Metformin
Metformin, a first-line therapy for T2DM, exerts renoprotective

effects in DKD through its classical metabolic actions. By activating

adenosine monophosphate-activated protein kinase (AMPK),

metformin suppresses hepatic gluconeogenesis, reduces insulin

resistance, and mitigates hyperglycemia-induced mitochondrial

oxidative stress. These mechanisms collectively decrease AGE

deposition and glomerular hyperfiltration, slowing albuminuria

progression. The United Kingdom Prospective Diabetes Study

(UKPDS) demonstrated that metformin reduced diabetes-related

complications, including kidney disease, in overweight patients

(106). While traditionally contraindicated in advanced chronic
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kidney disease (CKD), updated Kidney Disease: Improving Global

Outcomes (KDIGO) 2024 guidelines now cautiously endorse

metformin for DKD patients with eGFR ≥30 mL/min/1.73m² due

to refined risk-benefit assessments.

Beyond its glucose-lowering effects, metformin modulates

immune-inflammatory pathways in DKD. It inhibits the NLRP3

inflammasome in renal macrophages by enhancing AMPK-

mediated autophagy, thereby reducing caspase-1 activation and

the secretion of IL-1b/IL-18, which are key mediators of

tubulointerstitial injury (107). Metformin also downregulates

TLR4-NF-kB signaling in podocytes , decreasing pro-

inflammatory cytokine production and MCP-1-driven

macrophage infiltration (108). Preclinical studies indicate that

metformin promotes M2 macrophage polarization through

STAT6 activation, which facilitates tissue repair and attenuates

TGF-b1-mediated renal fibrosis (109). In diabetic mouse models,

metformin has been shown to reduce renal NLRP3 expression and

urinary MCP-1 levels.

4.1.5 DPP-4 inhibitors
Dipeptidyl Peptidase-4 (DPP-4) inhibitors, primarily used for

glycemic control in T2DM, exert renoprotective effects through

metabolic stabilization. By inhibiting the degradation of incretins,

these agents enhance insulin secretion, suppress glucagon release,

and reduce postprandial hyperglycemia-dependent oxidative stress,

thereby attenuating AGE accumulation and glomerular endothelial

dysfunction. Although traditional clinical trials, such as the

Saxagliptin Assessment of Vascular Outcomes Recorded in

Patients with Diabetes Mellitus-Thrombolysis in Myocardial

Infarction (SAVOR-TIMI) 53 study, demonstrated neutral effects

on the progression of DKD in non-selective cohorts, certain

subgroup analyses indicated a potential reduction in albuminuria

among early-stage DKD patients (110). Emerging evidence

underscores the immunomodulatory properties of DPP-4

inhibitors in the pathogenesis of DKD. Preclinical studies indicate

that DPP-4 inhibitors suppress NLRP3, TLR4, and IL-1b in human

macrophages by inhibiting PKC activity (111). They also inhibit

CD26-mediated cleavage of chemokines, thereby limiting the

recruitment of monocytes/macrophages into the renal

parenchyma and subsequent interstitial fibrosis. When

considering the use of DPP-4 inhibitors in patients with DKD,

factors such as the patient’s overall health, comorbidities, and

potential drug-specific effects on renal function should be

thoroughly evaluated . Al though there i s no expl ic i t

recommendation regarding their use based on residual b-cell
function in DKD patients, individualized treatment decisions

remain crucial, taking into account aspects such as glycemic

control, cardiovascular risk, and tolerability.

4.1.6 ACEI/ARB
Angiotensin-converting enzyme inhibitors (ACEIs) and

angiotensin II receptor blockers (ARBs) remain cornerstone

therapies for DKD by targeting the RAAS. These agents reduce
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glomerular hypertension through vasodilation of efferent arterioles,

lowering intraglomerular pressure and albuminuria. Landmark

trials, including the Reduction of Endpoints in NIDDM with the

Angiotensin II Antagonist Losartan (RENAAL) and Irbesartan

Diabetic Nephropathy Trial (IDNT) studies, demonstrated that

ARBs reduce progression to end-stage kidney disease (ESKD) in

type 2 diabetes mellitus (T2DM) patients with proteinuria (112).

Guidelines from organizations such as the ADA recommend the use

of ACEIs/ARBs in patients with diabetes mellitus and hypertension

accompanied by albuminuria to delay the progression of kidney

disease. The evidence is strongest in patients with severe

albuminuria. In addition to hemodynamic effects, ACEIs/ARBs

mitigate fibrotic pathways by suppressing angiotensin II-mediated

TGF-b1 overexpression in podocytes and tubular cells. Recent

evidence highlights their immunomodulatory action in DKD.

ACEIs/ARBs, such as enalapril and losartan, differentially inhibit

inflammatory responses by suppressing oxidative stress-induced

NF-kB activation in the kidneys of aged rats (113). Clinical studies

indicate that ramipril decreases urinary MCP-1 excretion in

patients with DKD, which correlates with stabilized renal

function (114). Guidelines emphasize its dual hemodynamic and

anti-inflammatory effects, recommending early initiation even in

normotensive DKD patients with microalbuminuria.

4.1.7 MRAs
Selective mineralocorticoid receptor antagonists (MRAs) like

finerenone show superior renoprotection in DKD by blocking

aldosterone-induced MR overactivation. Unlike non-selective

agents, finerenone exhibits higher tissue selectivity and lower

hyperkalemia risk while effectively reducing albuminuria through

hemodynamic and antifibrotic mechanisms (115). Phase III trials

(FIDELIO-DKD, FIGARO-DKD) demonstrated finerenone

reduced urinary albumin-to-creatinine ratio and delayed renal

composite endpoints in T2D patients with CKD stages 3–4 (116).

MRAs as add-on therapy for DKD patients with persistent

albuminuria despite RAS blockade and SGLT2 inhibitors use,

particularly advocating selective agents for their safer cardiorenal

profile. Mechanistically, they attenuate aldosterone-driven sodium

retention, glomerular hyperfiltration, and TGF-b1-mediated

collagen deposition in mesangial cells (117).

Novel insights reveal that MRAs modulate immune-

inflammatory pathways in DKD. Finerenone downregulates MR-

NF-kB crosstalk in renal fibroblasts, decreasing MCP-1-dependent

monocyte recruitment and interstitial macrophage infiltration.

Additionally, selective MRAs restore podocyte autophagy via

AMPK activation, mitigating immune-mediated cytoskeletal

disruption and slit diaphragm damage (118). Non-selective

MRAs, such as spironolactone, also reduce TLR4-mediated pro-

inflammatory cytokine release; however, their lack of receptor

specificity limits their clinical utility in advanced CKD.

F inerenone o ff e r s dua l benefi t s o f an t ifibro t i c and

immunomodulatory effects, making it a recommended option for

prioritized use in DKD patients with coexisting cardiovascular risks.
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4.1.8 Lipid-lowering agents (statins and PCSK9
inhibitors)

Statins, including atorvastatin and rosuvastatin, primarily exert

renoprotective effects in DKD by lowering low-density lipoprotein

(LDL) cholesterol through the inhibition of 3-Hydroxy-3-

methylglutaryl coenzyme A (HMG-CoA) reductase. This action

mitigates lipid-induced glomerulosclerosis and tubular epithelial

apoptosis. Post hoc analyses of clinical trials, such as CARDS and

PLANET I/II, have demonstrated that intensive statin therapy

reduces albuminuria and decelerates the decline in eGFR in

diabetic patients with moderate CKD (119, 120). Beyond their

lipid-lowering effects, statins stabilize the podocyte actin

cytoskeleton by enhancing nephrin expression and inhibit

mesangial matrix expansion through the downregulation of

TGF-b1.
Emerging evidence underscores the immunomodulatory effects

of statins in DKD. By inhibiting the production of isoprenoids from

the mevalonate pathway, statins prevent the activation of the ras

homolog gene family, member A (RhoA)/rho-associated protein

kinase (ROCK) in renal macrophages, thereby reducing the

assembly of the NLRP3 inflammasome and subsequent

production of IL-1b/IL-18 (121, 122). They suppress TLR4/NF-

kB signaling in proximal tubular cells, which decreases the secretion

of MCP-1 and TNF-a—critical mediators of monocyte infiltration.

Clinical studies indicate that rosuvastatin reduces urinary IL-6 and

CD40 ligand levels in patients with DKD, correlating with a

reduction in macrophage density in renal biopsies (123).

Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors

further augment immunomodulation by promoting hepatic LDL

receptor recycling, thereby diminishing oxidized LDL-induced

NLRP3 activation in glomerular endothelial cells (124). However,

excessive lowering of LDL may paradoxically worsen renal

inflammation by impairing reverse cholesterol transport.

4.1.9 Antioxidant therapies
Antioxidant therapies are a crucial strategy for preventing

immune-mediated renal in jury in DKD by target ing

mitochondrial oxidative stress and suppressing cytokine storms.

Preclinical and early clinical trials have shown that various

antioxidants exert their effects through different mechanisms.

Bardoxolone methyl (BAR), an Nrf2 agonist, mitigates

inflammation by activating nuclear factor erythroid-derived 2-

related factor 2 (Nrf2) and inhibiting NF-kB, thereby decreasing

mitochondrial ROS production and preventing the NF-kB-
mediated release of pro-inflammatory cytokines through the

upregulation of antioxidant enzymes. A phase 3 bardoxolone

methyl evaluation in patients with chronic kidney disease and

T2DM (BEACON) trial (NCT01611569) in 2185 patients with

T2DM and stage 4 chronic kidney disease showed that BAR

transiently increased eGFR and reduced urine albumin-to-

creatinine ratio. Post hoc analyses demonstrated that alterations in

albuminuria were closely associated with eGFR dynamics and

diminished tubulointerstitial inflammation. Specifically,

bardoxolone significantly lowered albuminuria when adjusted for
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eGFR, thereby challenging the traditional belief that increased

albuminuria universally signifies kidney injury (125).

Mitochondria-targeted antioxidant MitoQ, a mitochondria-

specific coenzyme Q10 analog, alleviates podocyte apoptosis and

tubular epithelial necrosis in diabetic kidney disease by scavenging

mitochondrial ROS and restoring mitophagy via the Nrf2/PINK1

signaling pathway. Animal studies in db/db mice revealed that

MitoQ reversed mitochondrial fragmentation, reduced ROS

overproduction, and restored PINK1/Parkin-mediated mitophagy,

accompanied by suppressed NLRP3 inflammasome activation and

decreased secretion of pro-inflammatory cytokines. In high-

glucose-treated HK-2 tubular cells, MitoQ upregulated Nrf2

translocation, inhibited Kelch-like ECH-associated protein 1

(Keap1), and blocked M1 macrophage polarization and Th17 cell

infiltration through mitochondrial quality control mechanisms,

establishing a link between mitochondrial redox balance and

immune cell dysregulation in DKD (126, 127).

Natural antioxidant alpha-lipoic acid (ALA) and its derivative

alpha lipoamide (ALM) exhibit renoprotective effects in DKD (128).

In db/db diabetic mice and high-glucose-treated rat renal tubular

epithelial cell line NRK-52E, ALA/ALM enhances mitochondrial

function by diminishing reactive oxygen species and restoring

mitofusin 1 (Mfn1)/dynamin-related protein 1 (Drp1)-mediated

mitochondrial dynamics. Mechanistically, ALM activates retinoid X

receptor-a (RXRa) through stable hydrogen bond formation, thereby

upregulating caudal-type homeobox transcription factor 2 (CDX2)

and cystic fibrosis transmembrane conductance regulator (CFTR),

while concurrently suppressing b-catenin/Snail-mediated epithelial-

mesenchymal transition (EMT). This dual action effectively inhibits

extracellular matrix deposition and tubulointerstitial fibrosis (129).

These therapies exert a triple effect of “antioxidation, anti-

inflammation, and immunomodulation,” not only resolving

mitochondrial dysfunction but also directly inhibiting excessive

immune cell activation, offering novel directions for the precision

treatment of DKD.
4.2 Renal replacement therapies in DKD:
dialysis and kidney transplantation

Renal replacement therapies, which encompass dialysis and kidney

transplantation, remain crucial for managing end-stage DKD. Both

hemodialysis and peritoneal dialysis alleviate uremia by filtering toxins

and maintaining electrolyte balance, yet they do not address residual

immune-mediated injury. It is noteworthy that the biocompatibility of

dialysis membranes affects systemic inflammation; cellulose-based

membranes provoke complement activation and monocyte IL-6

release, thereby exacerbating DKD-related inflammaging (130).

Kidney transplantation provides superior outcomes by restoring

renal function; however, post-transplant immunosuppressants may

paradoxically exacerbate diabetic microvascular damage through NF-

kB-mediated endothelial dysfunction (131).

Immunologically, dialysis exacerbates innate immune

dysregulation by promoting oxidative stress-driven NLRP3
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activation in circulating monocytes, increasing IL-1b levels.

Persistent TLR signaling in dialysis patients accelerates

inflammasome priming, perpetuating renal fibrosis in remnant

nephrons (132, 133). Transplantation modulates adaptive

immunity by depleting alloreactive T-cells, but it may also impair

macrophage polarization, hindering tissue repair. Emerging

immunomodulatory strategies, such as cytokine adsorbent

columns during dialysis or belatacept-based regimens in

transplantation, aim to achieve a balance in immune homeostasis

(134). Monitoring immune senescence markers to optimize

replacement therapy timing.
4.3 Traditional Chinese Medicine in DKD
management

Traditional Chinese Medicine (TCM) demonstrates

renoprotective effects by modulating multiple targets, primarily

through the regulation of oxidative stress and the mitigation of

glomerulotubular fibrosis. Active compounds, such as astragaloside

IV, attenuate diabetes-related activation of protein kinase B (Akt)/

mammalian target of rapamycin (mTOR), NF-kB, and extracellular

signal-regulated kinases 1 and 2 (Erk1/2) signaling pathways,

thereby decreasing podocyte apoptosis and albuminuria in

preclinical models (135). Clinical trials of TCM formulations

demonstrate synergistic effects with RAS inhibitors, slowing eGFR

decline in DKD patients. TCM should be cautiously recognized as

an adjuvant therapy, with an emphasis on the standardization of

bioactive components and rigorous assessment of drug interactions.

TCM exerts immunomodulatory actions by targeting innate

immune pathways. Berberine has demonstrated its anti-

inflammatory effects through the activation of AMPK-dependent

autophagy in adipose tissue macrophages (ATMs), which leads to a

reduction in urinary IL-1b levels in diabetic mice (136). Astragalus

polysaccharides may modulate the immunity of the host organism

by activating the TLR4-mediated, MyD88-dependent signaling

pathway (137). Notably, compounds from TCM, such as

triptolide, inhibit TLR4/NF-kB signaling in tubular epithelial

cells, thereby reducing CCL2-mediated monocyte recruitment

(138). Nevertheless, the risks of non-specific immunosuppression

remain; excessive use of Tripterygium wilfordii is linked to CD4+ T-

cell lymphopenia.
4.4 Immunotherapy for DKD

4.4.1 Cell therapy
4.4.1.1 Treg therapy

Tregs play a pivotal role in mitigating immune-mediated renal

injury in DKD by suppressing effector T cell activation and

restoring immune tolerance. In diabetic environments, chronic

hyperglycemia disrupts Treg function by downregulating FoxP3

expression and impairing IL-35-mediated immunosuppression,

exacerbating Th17-driven interstitial inflammation. Adoptive Treg

transfer—expanding autologous Tregs ex vivo and reinfusing them
Frontiers in Immunology 11
into patients—has shown promise in preclinical studies (139).

Human placenta-derived mesenchymal stem cells (PMSCs) have

been shown to enhance renal function and alleviate pathological

damage in rats with DKD, while also modulating the Th17/Treg

balance via the PD-1/PD-L1 pathway (24). Mechanistically, Tregs

inhibit Th1/Th17 polarization through cytotoxic T lymphocyte-

associated protein 4 (CTLA-4) and TGF-b signaling, while

promoting anti-inflammatory macrophage (M2) polarization via

IL-10 secretion (140). In animal models of autoimmune diabetes,

Treg therapy has demonstrated safety, with evidence indicating a

reduction in systemic inflammation and the preservation of b-cell
function (141). Further optimization of tissue-targeted Treg

delivery could enhance therapeutic precision while minimizing

off-target immunosuppression. (Figure 4).
4.4.1.2 Mesenchymal stem cell therapy

Mesenchymal stem cells (MSCs) exert dual regenerative and

immunomodulatory effects in DKD by differentiating into renal

progenitor cells and secreting paracrine factors. In hyperglycemic

conditions, MSCs suppress pro-inflammatory cytokines through

NF-kB inhibition and enhance antioxidant defenses by activating

the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway.

Notably, MSC-derived extracellular vesicles (EVs) transfer miR-

let7c to tubular epithelial cells, mitigating mitochondrial ROS

overproduction and apoptosis. Immunologically, MSCs inhibit

dendritic cell maturation and B cell antibody production while

promoting Treg expansion via the prostaglandin E2 (PGE2)/

indoleamine 2,3-dioxygenase (IDO) axis. In diabetic mice,

intrarenal MSC administration has been shown to reduce renal

M1 macrophages and upregulate reparative M2 markers (56). Phase

I trials have demonstrated the safety of MSCs in patients with DKD,

with transient stabilization of eGFR and reduced urinary IL-18

levels (142). Challenges include inefficient homing and the potential

for fibrotic transformation under chronic inflammation,

necessitating the engineering of MSCs with enhanced renal tropism.
4.4.2 Antibody treatment
4.4.2.1 Anti-cytokine antibodies

Targeting pro-inflammatory cytokines such as TNF-a and IL-6

has emerged as a promising strategy for mitigating immune-

mediated renal injury in DKD (143). TNF-a, a central mediator

of the inflammatory cascade, exacerbates renal damage by

promoting podocyte apoptosis, recruiting M1 macrophages, and

activating the NF-kB pathway, which amplifies downstream

cytokine production. Anti-TNF-a monoclonal antibodies

neutralize soluble TNF-a, preventing its binding to TNFR1/2

receptors. In experimental DKD models, infliximab reduced

albuminuria and attenuated glomerulosclerosis via suppression of

ICAM-1-mediated leukocyte adhesion. Similarly, IL-6 drives renal

fibrosis by activating STAT3 in fibroblasts and upregulating

vascular cell adhesion molecule-1 (VCAM-1) expression in

endothelial cells (144). Tocilizumab, an anti-IL-6 receptor

antibody, inhibited IL-6 trans-signaling in diabetic mice,

decreasing renal collagen deposition and improving tubular
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integrity (145). However, systemic immunosuppression risks limit

clinical translation, necessitating kidney-targeted delivery systems.

4.4.2.2 Anti-immune cell surface antibodies

B cell depletion therapy employing anti-CD20 antibodies presents

a novel strategy for modulating adaptive immunity in DKD. CD20+ B

cells play a role in renal injury through the production of

autoantibodies and the release of pro-inflammatory cytokines.

Rituximab selectively depletes CD20+ B cells while preserving Bregs,

thereby restoring immune tolerance. Clinical trials have demonstrated

that rituximab can reduce proteinuria in patients with nephropathy

and concurrent autoimmune disorders (146), correlating with

decreased renal IL-6 and macrophage infiltration. Preclinical studies

in diabetic rats demonstrated that rituximab blunted complement

activation and preserved podocyte density (147). Nonetheless,

concerns remain about hypogammaglobulinemia and compromised

pathogen defense in immunocompromised individuals with diabetes.

Emerging bispecific antibodies that target CD20 and inhibitory

checkpoints could enhance therapeutic precision by localizing

immunosuppressive effects specifically to inflamed kidneys.

4.4.3 Immunosuppressive therapy
4.4.3.1 Calcineurin inhibitors

Calcineurin inhibitors (CNIs), such as cyclosporine A and

tacrolimus, mitigate immune-mediated renal injury in DKD by
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suppressing T cell activation through the blockade of nuclear factor

of activated T cells (NFAT) signaling. Mechanistically, CNIs inhibit

calcineurin, preventing the dephosphorylation and nuclear

translocation of NFAT—a critical step in cytokine transcription.

Tacrolimus has been utilized in the management of immune-

mediated and genetic-mediated nephropathies, with an emphasis

on the restoration of podocyte cytoskeletal integrity and inhibition

of apoptosis. In preclinical studies, researchers constructed

Arginine-Glycine-Aspartic acid-Human Serum Albumin-

Tacrolimus (RGD-HSA-TAC) nanoparticles to target the delivery

of tacrolimus to podocytes, which resulted in a reduction of

podocyte injury and albuminuria in mice with diabetic kidney

disease (148). However, dose-dependent nephrotoxicity and

hypertension limit long-term use, necessitating strict therapeutic

drug monitoring. Emerging modified-release formulations aim to

improve renal distribution and minimize systemic side effects.

4.4.3.2 mTOR inhibitors

mTOR inhibitors, such as sirolimus, mitigate renal

inflammation and fibrosis through the dual inhibition of adaptive

and innate immunity. The mTOR complexes (mTORC1/2) control

the proliferation of T/B cells and the polarization of macrophages;

inhibition leads to a shift in macrophages from a pro-inflammatory

M1 phenotype to a reparative M2 phenotype, mediated by STAT6

activation. Preclinical models demonstrate that sirolimus reduces
FIGURE 4

Immune-related therapies for DKD.
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renal collagen IV deposition and suppresses VEGF-induced

glomerular hypertrophy in diabetic rats (149). Paradoxically,

mTOR inhibitors may exacerbate podocyte apoptosis in advanced

DKD due to disrupted autophagy, highlighting the need for patient

stratification based on disease stage.

4.4.4 Vaccine-based immunotherapy
4.4.4.1 Autoantigen-targeted vaccines

Autoantigen-targeted vaccines represent a novel therapeutic

approach for DKD by restoring immune tolerance to renal-

specific antigens. In cases of diabetic nephropathy, chronic

hyperglycemia induces the formation of autoantibodies against

podocyte antigens, which cross-react with glomerular

components, triggering complement activation and foot process

effacement. Tolerogenic vaccines, loaded with podocyte-derived

peptides, prime dendritic cells to induce antigen-specific Tregs

rather than effector T cells (150). Preclinical studies have shown

that these vaccines enhance renal infiltration of FoxP3+ Tregs and

decrease anti-podocyte IgG titers in streptozotocin-induced diabetic

mice (151). Modified liposome vectors conjugated with CTLA-4-Ig

fusion proteins enhance vaccine efficacy by blocking CD28/B7

costimulatory signals, thereby inhibiting Th17 differentiation and

promoting the production of IL-10-producing Tregs. Multi-epitope

vaccines, which incorporate B cell epitopes from various podocyte

proteins, are under development to broaden immune tolerance.

4.4.4.2 Cytokine-neutralizing vaccines

Cytokine-neutralizing vaccines provide a complementary

strategy by targeting humoral immunity against pathogenic

inflammatory mediators. Vaccines conjugated with TNF-a elicit

neutralizing antibodies that lower circulating TNF-a levels in

primate models, achieving effects comparable to those of

monoclonal antibody therapies, but with the added benefit of

sustained effects lasting at least 12 weeks post-immunization. This

method circumvents the need for frequent dosing, which is often

necessary for biologic agents such as infliximab. Additionally, the

macrophage-stimulating potential of Hsp70 family proteins, when

combined with the proinsulin B-chain peptide B11-23, may

contribute to the immunodominance of this peptide in the

development of beta cell-directed autoimmunity in type 1

diabetes (152). Challenges include cytokine redundancy within

inflammatory networks and the potential for interference with

physiological immune surveillance. Nanoparticle-delivered mRNA

vaccines encoding soluble decoy receptors have shown promise in

preclinical models by providing controlled cytokine neutralization

without depleting essential immune effectors.

4.4.5 Other immunotherapy
4.4.5.1 Complement inhibitors

Complement activation is crucial in the progression of DKD, as

it leads to the deposition of the membrane attack complex (MAC)

and inflammation mediated by C5a. Eculizumab, a monoclonal
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antibody that targets complement protein C5, blocks the formation

of MAC and decreases the release of C5a-driven NETs, thereby

alleviating glomerular endothelial injury. Preclinical studies have

shown that mice deficient in C3aR/C5aR exhibit significantly

reduced proteinuria, lower renal IgA and C3 deposition,

diminished histological damage, and reduced mesangial

proliferation in a Sendai virus-induced IgA nephropathy (IgAN)

model (153). MCC950, an inhibitor of the NLRP3 inflammasome,

suppresses IL-1b production and maintains glomerular integrity

through downstream complement regulatory effects. However, the

increased risk of infection necessitates patient stratification based

on biomarkers of complement activation. Novel nanocarriers

delivering fusion proteins of complement receptor 2 and

complement factor H (CR2-fH) facilitate renal-selective

complement inhibition, thereby reducing the risks associated with

systemic immunosuppression.

4.4.5.2 JAK-STAT pathway inhibitors

Aberrant janus kinase-signal transducer and activator of

transcription (JAK-STAT) signaling exacerbates renal

inflammation in DKD by maintaining prolonged cytokine

receptor activation. Baricitinib, a JAK1/2 inhibitor, diminishes

STAT3 phosphorylation in diabetic kidney fibroblasts, thereby

reducing collagen IV synthesis and tubular epithelial-

mesenchymal transition. In db/db mouse models, Wogonin

mitigates renal inflammation and fibrosis by upregulating

suppressor of cytokine signaling 3 (SOCS3), which inhibits TLR4

and the JAK/STAT pathway (154). Selective tyrosine kinase 2

(TYK2) inhibitors show promise in preserving antiviral immunity

while suppressing IFN-a/b-driven fibrosis (155). Thrombotic risks

associated with JAK inhibitors require careful monitoring in

diabetic populations with preexisting cardiovascular comorbidities.

4.4.5.3 WNT signaling inhibitors

Wingless-type MMTV integration site family member (WNT)

signaling inhibitors hold promise for regulating autophagy and

immune cell polarization. b-catenin, a central mediator of the WNT

pathway, is abnormally activated in DKD, promoting renal fibroblast

proliferation and extracellular matrix deposition while inhibiting

macrophage autophagy through the mTOR pathway, thereby

inducing M1 polarization (156). The WNT inhibitor XAV939

enhances the expression of autophagy-related genes ATG5 and

ATG7 in tubular epithelial cells by inhibiting b-catenin nuclear

translocation, thereby reducing TNF-a-induced M1 macrophage

recruitment (157, 158). Preclinical studies demonstrate that

inhibition of WNT decreases renal WNT3a levels, improves

autophagic flux, and attenuates glomerulosclerosis and interstitial

fibrosis, which are closely correlated with reduced CD68+

macrophage infiltration and IL-17 secretion (159). Notably, SGLT2

inhibitors enhance autophagy by improving mitochondrial function,

and their combined use with WNT inhibitors synergistically

suppresses inflammatory cascades through autophagy-dependent
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mitochondrial quality control, establishing a dual protective

mechanism of “metabolic regulation-immune remodeling” (160, 161).
5 Challenges in immunotherapy for
DKD

The advancement of immune-targeted therapies for DKD faces

multiple intertwined challenges. First, the complex pathogenesis,

which involves crosstalk between hyperglycemia-driven metabolic

disturbances, inflammatory cascades, and immune cell

dysregulation, creates difficulty in identifying singular therapeutic

targets. Second, broad-spectrum immunosuppressants, such as

anti-TNF-a biologics, reduce albuminuria but inadvertently

increase infection risks due to systemic immune suppression,

which is exacerbated by the baseline immune dysfunction in

diabetic patients. Thirdly, patient heterogeneity in terms of

genetic predisposition, renal immune cell infiltration patterns,

and gut microbiota composition results in varying therapeutic

responses. Moreover, traditional biomarkers such as urinary

albumin do not adequately capture dynamic immune changes,

including macrophage polarization or complement activation

(C5b-9), which can lead to delayed treatment adjustments.

Finally, the design of long-term trials with clinically meaningful

endpoints encounters logistical challenges, as demonstrated by the

premature termination of numerous phase III studies due to

insufficient enrollment or delayed therapeutic effects. To address

these challenges, there is a need for kidney-specific drug delivery

systems, multi-omics-guided patient stratification, and validated

composite biomarkers that reflect both metabolic and

immune remodeling.
6 Future directions for immune
therapy

Advancing immune-targeted therapies for DKD necessitates the

integration of precision medicine with technological innovation.

Multi-omics approaches, including single-cell RNA sequencing and

spatial proteomics, facilitate the stratification of patients based on

dominant immune pathways, thereby guiding personalized

therapies. Next-generation agents with renal-specific targeting are

emerging: bispecific antibodies reduce extrarenal toxicity in

preclinical models by selectively modulating macrophages, while

gene-edited chimeric antigen receptor regulatory T cells (CAR-

Tregs) restore immune tolerance by homing to injured glomeruli

via integrin a8b1 ligands. Combinatorial strategies synergize

immunomodulation with metabolic control—renal-tropic

nanoparticles co-delivering SGLT2 inhibitors and NF-kB decoy

oligos enhance glycocalyx repair and reduce IL-6 levels in diabetic

primates. Real-time monitoring innovations, such as urinary

exosomal miRNA panels and renal positron emission
Frontiers in Immunology 14
tomography-magnetic resonance imaging (PET-MRI) with C-X-C

chemokine receptor 4 (CXCR4)-specific tracers, correlate with

histologic inflammation and predict treatment response. Cross-

disciplinary collaboration is critical; integrating immune checkpoint

biology with tubulometabolic profiling identifies novel targets for

antibody-drug conjugate (ADC) development. Decentralized

clinical trial platforms, leveraging artificial intelligence (AI)-based

kidney organoids, will accelerate the validation of these strategies.
7 Conclusions

Current therapies for DKD, which include glycemic control and

RAS inhibition, are limited by their inability to completely halt

immune-mediated renal inflammation and fibrosis. Non-specific

anti-inflammatory approaches risk increasing infection

susceptibility in immunocompromised diabetic populations,

highlighting the inadequacy of broad immunosuppression. In

contrast, emerging immunomodulatory strategies offer precision

by disrupting pathogenic immune cascades while preserving host

defense mechanisms. Preclinical studies demonstrate that therapies

reducing renal macrophage infiltration or repolarizing dendritic

cells alleviate albuminuria and glomerulosclerosis without systemic

toxicity. Clinical trials of inflammasome inhibitors further validate

the therapeutic potential of innate immune pathway modulation.

Future research must prioritize biomarker-driven patient

stratification and combinatorial regimens that integrate immune-

specific agents with conventional therapies. By addressing the

inflammatory axis central to DKD progression, these advances

hera ld a parad igm shi f t toward prec i s ion medic ine

in renoprotection.
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Glossary

DKD Diabetic kidney disease
Frontiers in Immunol
RAAS Renin-angiotensin-aldosterone system
TGF-b Transforming growth factor beta
TNF-a Tumor necrosis factor-alpha
STAT3 Signal transducer and activator of transcription 3
CCL20 Chemokine ligand 20
CCR6 Chemokine receptor 6
IFN-g Interferon gamma
Tregs Regulatory T-cells
SGLT-2 Sodium-glucose cotransporter 2
BAR Bardoxolone methyl
Nrf2 Nuclear factor erythroid-derived 2-related factor 2
BEACON Bardoxolone methyl evaluation in patients with chronic

kidney disease and type 2 diabetes
ALA Alpha-lipoic acid
ALM Alpha lipoamide
NRK-52E Rat renal tubular epithelial cell line NRK-52E
Mfn1 Mitofusin 1
Drp1 Dynamin-related protein 1
RXRa Retinoid X receptor-a
CDX2 Caudal-type homeobox transcription factor 2
CFTR Cystic fibrosis transmembrane conductance regulator
EMT Epithelial-mesenchymal transition
DAG Diacylglycerol
PAMPs Pathogen-associated molecular patterns
ULK1 Unc-51-like kinase 1
DAMPs Damage-associated molecular patterns
WNT Wingless-type MMTV integration site family member
HMGB1 High-mobility group box 1
MAMs Mitochondrial-associated endoplasmic reticulum membranes
LN Lupus nephritis
mTOR Mammalian target of rapamycin
NLRP3 NOD-like receptor protein 3
IL-1b Interleukin-1b
CCR2 Chemokine receptor 2
MCP-1 Monocyte chemoattractant protein 1
AGEs Advanced glycation end products
NF-kB Nuclear factor-kB
ROS Reactive oxygen species
GBM Glomerular basement membrane
FFAs Free fatty acids
PPARs Peroxisome proliferator-activated receptors
SREBPs Sterol regulatory element-binding proteins
NOX NADPH oxidase
MDA Malondialdehyde
4-HNE 4-hydroxynonenal
PKC Hyperactivation of protein kinase C
ogy 19
VEGF Vascular endothelial growth factor
8-OHdG 8-hydroxy-2’-deoxyguanosine
ADA American Diabetes Association
HIF-1a Hypoxia-inducible factor-1a
CTLs Cytotoxic T cells
NADPH Nicotinamide adenine dinucleotide phosphate
T2DM Type 2 diabetes mellitus
DCs Dendritic cells
CDCs Conventional DCs
PDCs Plasmacytoid DCs
APCs Antigen-presenting cells
MHC-II Major Histocompatibility Complex Class II
Bregs regulatory B cells
PD-L1 Programmed death-ligand 1
FcgRIIb Fc Gamma Receptor IIb
ICAM-1 lntercellular adhesion molecule-1
C3a Complement component 3a
DCCT Diabetes Control and Complications Trial
RAGE Receptor for advanced glycation end products
PI3K/AKT Phosphatidylinositol 3-kinase/protein kinase B
CREDENCE Canagliflozin and Renal Endpoints in Diabetes with

Established Nephropathy Clinical Evaluation
NETs Neutrophil extracellular traps
eGFR Estimated glomerular filtration rate
GLP-1 RAs Glucagon-like peptide-1 receptor agonists
AMPLITUDE-O Assessment of the Effects of Efpeglenatide on Cardiovascular

and Renal Outcomes
HDL-C High-density lipoprotein cholesterol
EASD European Association for the Study of Diabetes
AMPK Adenosine monophosphate-activated protein kinase
UKPDS United Kingdom Prospective Diabetes Study
CKD Chronic kidney disease
KDIGO Kidney Disease: Improving Global Outcomes
TLR4 Toll-like receptor 4
DPP-4 Dipeptidyl Peptidase-4
SAVOR-TIMI Saxagliptin Assessment of Vascular Outcomes Recorded in

Patients with Diabetes Mell i tus-Thrombolysis in
Myocardial Infarction
ACEIs Angiotensin-converting enzyme inhibitors
ARBs Angiotensin II receptor blockers
RENAAL Angiotensin II Antagonist Losartan
IDNT Irbesartan Diabetic Nephropathy Trial
ESKD End-stage kidney disease
MRAs Mineralocorticoid receptor antagonists
LDL Low-density lipoprotein
HMG-CoA 3-Hydroxy-3-methylglutaryl coenzyme
RhoA Ras homolog gene family, member A
ROCK Rho-associated protein kinase
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PCSK9 Proprotein convertase subtilisin/kexin type 9
Frontiers in Immunol
TCM Traditional Chinese Medicine
Erk1/2 Extracellular signal-regulated kinases 1 and 2
ATMs Adipose tissue macrophages
PMSCs Placenta-derived mesenchymal stem cells
CTLA-4 Cytotoxic T lymphocyte-associated protein 4
MSCs Mesenchymal stem cells
Akt Protein kinase B
mTOR Mammalian target of rapamycin
Nrf2 Nuclear factor erythroid 2-related factor 2
EVs Extracellular vesicles
PGE2 Prostaglandin E2
IDO Indoleamine 2,3-dioxygenase
VCAM-1 Vascular cell adhesion molecule-1
CNIs Calcineurin inhibitors
ogy 20
RGD-HSA-TAC Arg in ine -Gl yc ine -Aspar t i c ac i d -Human Se rum

Albumin-Tacrolimus
NFAT Nuclear factor of activated T cells
MAC Membrane attack complex
IgAN IgA nephropathy
CR2-fH Complement receptor 2 and complement factor H
JAK-STAT Janus kinase-signal transducer and activator of transcription
SOCS3 Suppressor of cytokine signaling 3
TYK2 Tyrosine kinase 2
CAR-Tregs Chimeric antigen receptor regulatory T cells
PET-MRI Positron emission tomography-magnetic resonance imaging
CXCR4 C-X-C chemokine receptor 4
ADC Antibody-drug conjugate
AI Artificial intelligence.
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