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Background: Osteoarthritis (OA) is a widespread disorder affecting joints, 
recognized for cartilage wear and inflammatory responses, which substantially 
affects patients’ quality of life. This research aim to discover amino acid 
metabolism-related differentially expressed genes (AAMRDEGs) and clarify their 
functions in OA pathogenesis. 

Methods: Herein, we conducted an analysis of combined GEO datasets 
(GSE55457, GSE55235, and GSE12021), identifying 169 AAMRDEGs and 
indicating their importance in chondrocyte function and inflammation. 
Furthermore, significant correlations were observed between various immune 
cell types, underscoring the intricate function of the immune system in OA. 
Thereafter, we developed highly accurate diagnostic models using LASSO 
regression and SVM methodologies, achieving an area under the curve > 0.9. 
Protein-protein interaction analysis revealed significant interactions among 
MTHFD2, PPP1R15A, SLC2A4, and WNT5B, with their expression levels 
corroborated using single-cell datasets, highlighting the potential therapeutic 
targets. To confirm the presence of these hub AAMRGs, real-time polymerase 
chain reaction and immunohistochemistry were employed. 

Results: We identified 2,115 DEGs between OA and control groups, with 1,062 
upregulated and 1,053 downregulated. Enrichment analysis linked AAMRDEGs to 
amino acid catabolism and multiple KEGG pathways, indicating their importance in 
chondrocyte function and inflammation. Furthermore, significant correlations were 
observed between various immune cell types, underscoring the intricate role of the 
immune system in OA. Subsequently, we developed highly accurate diagnostic 
models using LASSO regression and SVM methodologies, achieving an area under 
the curve > 0.9. Protein-protein interaction analysis revealed significant interactions 
among MTHFD2, PPP1R15A, SLC2A4, and  WNT5B, with their expression levels 
corroborated using single-cell datasets, highlighting the potential therapeutic 
targets. Real-time polymerase chain reaction and immunohistochemistry were 
used to validate the expression of these hub amino acid metabolism-related genes. 
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Conclusion: This investigation presents a detailed evaluation of AAMRGs in OA, 
highlighting their roles in disease pathogenesis and offering new insights for 
therapeutic research. Key genes SLC2A4, MTHDF2, and WNT5B might function 
as markers for early identification and personalized OA treatment. 
KEYWORDS 

osteoarthritis, amino acid metabolism genes, weighted gene co-expression network 
analysis, immunity-related genes, immune infiltration, lasso regression, SVM-RFE, 
single-cell analysis 
1 Introduction 

Osteoarthritis (OA) is a widespread disorder affecting joints 
that markedly diminishes the standard of living for millions 
worldwide, resulting in a considerable socioeconomic burden. In 
China, there was a notable rise of prevalent incident cases and years 
lived with disability (YLDs) associated with OA, growing 
significantly from 51.8, 4.6, and 1.8 million, in 1990, to 132.8, 
10.7, and 4.7 million, respectively, in 2019 (1, 2). Despite its high 
prevalence, efficacious therapeutic strategies are limited, 
predominantly focusing on symptomatic management through 
the use of analgesics, anti-inflammatory drugs, physical therapy, 
and, in extreme cases, surgical options such as joint replacement (3). 
However, these approaches frequently provide insufficient relief and 
are accompanied by adverse side effects, underscoring the pressing 
necessity for innovative targeted therapeutics to tackle OA 
fundamental pathophysiological mechanisms. 

Periarticular structures, including the synovium and cartilage, are 
integral to OA pathogenesis. The synovium is responsible for the 
production of synovial fluid, which lubricates the joint and nourishes 
the cartilage. Inflammation of the synovial membrane is a prominent 
feature of OA, marked by immune cell infiltration (ICI) and the 
release of proinflammatory cytokines, further exacerbating cartilage 
degradation and contributing to pain (4). Conversely, cartilage is vital 
for joint function, and its degeneration induces the hallmark 
symptoms of OA. The interaction between synovial inflammation 
and cartilage degradation highlights the necessity of addressing both 
structures in therapeutic strategies to slow OA progression. 
Furthermore, due to the relative accessibility of periarticular tissues, 
the use of multi-omics technologies in research is on the rise. These 
studies investigated the pathological mechanisms underlying OA by 
analyzing the interactions between various biological layers, including 
RNA, proteins, and metabolites (5, 6). This approach improves our 
understanding of the complexity and dynamics of biological networks. 

Recent developments in metabolomics have elucidated the 
impact of metabolic alterations in OA pathogenesis (7, 8). 
Emerging research has highlighted that disruption of amino acid 
metabolism (AAM) is a critical pathophysiological mechanism in 
arthritis. These metabolic pathways offer promising opportunities 
02 
as diagnostic markers and therapeutic targets for OA (9). 
Substantial alterations in the amino acid profile have been 
documented in both local and systemic osteoarthritic joints, as 
evidenced by animal models and human studies. These alterations 
are intricately associated with the inflammatory state of the disease, 
cartilage degradation, and clinical manifestations (10). Fluctuating 
levels of metabolites, including branched-chain amino acids 
(BCAAs), arginine, and alanine, have been implicated in disease 
progression, offering potential avenues for the identification of 
novel diagnostic markers and therapeutic strategies. For instance, 
a recent study employed bioinformatics and machine learning 
methodologies to identify BCAA-related genes, such as SLC3A2 
and SLC7A5, as prospective diagnostic markers for OA (11). 
Animal models are indispensable in elucidating the causal 
relationship between amino acid metabolism disorders and the 
pathogenesis of OA. They also serve to validate novel metabolism­

related therapeutic intervention strategies and enhance the dynamic 
understanding of the disease’s pathological processes. Concurrently, 
multi-omics analyses of human clinical samples have advanced the 
translation of findings from animal model research into clinical 
practice, offering both a theoretical foundation and empirical 
evidence for the personalized diagnosis and treatment of OA. 
Despite these insights, the specific mechanisms by which AAM 
influences OA progression remain unexplored, indicating a 
significant gap in current knowledge. 

In conjunction with metabolic disturbances, epigenetic and 
post-transcriptional regulation are critical factors in OA. Notably, 
miRNAs have been documented to affect inflammation, cartilage 
degradation, and immune cell activity. Incorporating miRNA 
analysis into transcriptomic studies facilitates the elucidation of 
upstream regulatory networks that may contribute to metabolic and 
immune dysfunction in OA (10). 

This investigation aimed to clarify the principal genes and 
pathways linked to OA pathophysiology using an extensive array 
of bioinformatics techniques, with a specific focus on AAM-related 
genes (AAMRGs). This approach facilitates the identification of 
critical molecular components and their interactions within the 
context of OA, thereby offering potential avenues for identifying 
novel diagnostic biomarkers and therapeutic targets. 
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2 Materials and methods 

2.1 Data acquisition 

The OA datasets GSE55457, GSE55235, and GSE12021 (12, 13) 
were downloaded from the GEO database utilizing the R package 
GEO query (Version 2.70.0) (14). Every sample within these 
datasets was derived from Homo sapiens, with synovial 
membrane tissue as the tissue source (Supplementary Table S1). 
A comprehensive search in the GeneCards database yielded 996 
AAMRGs. Furthermore, the relevant literature was extensively 
reviewed in the PubMed database (15), yielding a final 
compilation of 1204 AAMRGs (Supplementary Table S2). The 
combined dataset was derived by de-batching the GSE55457, 
GSE55235, and GSE12021 datasets using the R package sva 
(version 3.50.0) (16). This combined dataset comprised 29 OA 
and 29 control samples. Subsequently, normalization was applied to 
the datasets via the R package limma (version 3.58.1) (17), including 
probe annotation and additional standardization procedures. 
Principal component analysis (PCA) was conducted on the 
expression matrix prior to and following batch-effect removal to 
evaluate the effectiveness of the de-batching process. 
2.2 Delineation of AAMRDEGs of OA 

The samples were classified into OA and control groups 
depending on the categorization of the combined datasets. Using 
the limma, we investigated the differential gene expression. The 
criteria of |logFC| > 0.5 and p < 0.05 were established to identify 
differentially expressed genes (DEGs). The Benjamini-Hochberg 
procedure was applied to correct p-values. The outcomes of the 
differential analysis were presented in volcano plots created via the 
ggplot2 R software (version 3.4.4). In order to find OA-related 
AAMRDEGs, all DEGs that were obtained from the combined 
datasets’ differential analysis and had a |logFC| > 0.5 and a p-value < 
0.05 were intersected with AAMRGs. This intersection was 
represented by a Venn diagram. Subsequently, the AAMRDEGs 
were identified, and a heatmap illustrating the top 20 AAMRDEGs 
was visualized in a heatmap using pheatmap (Version 1.0.12). 
2.3 Gene ontology and Kyoto Encyclopedia 
of Genes and Genomes enrichment 
analyses of AAMRDEGs 

Both GO and KEGG analyses were carried out to clarify the 
biological significance of DEGs and the associated pathways (18, 19). 
The impact of AAMRGs on biological processes (BP), molecular 
functions (MF), and cellular components (CC) was comprehensively 
analyzed via the R package clusterProfiler (version 4.10.0) (20). This 
study aimed to outline the main biological themes and molecular 
pathways affected by these genes, which could improve our 
comprehension of their roles in OA pathology and help identify 
possible therapeutic targets. The item screening criteria were p < 0.05 
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and false discovery rate value < 0.05; the Benjamini–Hochberg 
method was employed for p-value correction. 
2.4 Gene set enrichment analysis and gene 
set variation analysis 

Both GSEA (21) and GSVA (22) were employed to detect 
functional gene sets and pathway alterations across different 
samples in the combined datasets comparing OA and control 
groups. These analyses, performed using R, highlighted the active 
BP and pathways across various risk groups by examining 
AAMRDEGs and their impact on BP, MF, CC, and pathways, 
thereby giving in-depth explanations of disease mechanisms. Both 
GSVA and GSEA analyses yielded p < 0.05, with the Benjamini– 
Hochberg method employed for p-value correction. 
2.5 Weighted correlation network analysis 

The integrated GEO dataset related to OA was assessed via the 
R package WGCNA (23). Correlation coefficients between DEGs 
with |logFC| > 0 and p < 0.05 were calculated to ensure the 
construction of a scale-free network. A hierarchical clustering tree 
was then constructed to identify gene modules, with parameters set 
to a minimum module size of 50 genes and a soft-thresholding 
power of 8. Modules were selected based on their correlation values, 
and all genes within these modules were identified as DEGs that 
were significantly associated with OA. 
2.6 Construction of OA diagnostic model 

To construct a GEO dataset for the OA diagnostic model, 
AAMRDEGs were evaluated using logistic regression, with a 
binary dependent variable distinguishing OA from control. A 
significance threshold of p < 0.05 was employed to filter 
AAMRDEGs for inclusion in the model. To mitigate overfitting, 
LASSO regression with a penalty term was performed using the 
glmnet package (24), incorporating a penalty term. The results were 
visualized using diagnostic plots. The AAMRDEGs were identified 
as model genes for the OA diagnostic model using LASSO analysis. 
The LASSO risk score was derived from the risk coefficients, and an 
SVM model (25) was developed using these AAMRDEGs, with the 
maximum accuracy and minimum error rate in gene selection. 
2.7 Validation of OA diagnostic model 

The R package ‘rms’ (Version 6.7-1) was utilized to create a 
nomogram for key genes, thereby elucidating the correlation 
between independent variables and risk within a regression model 
framework. By comparing the actual and expected probabilities 
through a calibration plot, with a focus on logistic regression, we 
were able to evaluate the model’s prediction accuracy. The clinical 
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value of the prediction models was estimated by decision curve 
analysis, and the accuracy of the logistic regression model was 
established via the ‘ggDCA’ software (Version 1.1). In order to 
estimate the regression model’s diagnostic performance for OA, the 
‘pROC’ package (Version 1.18.5) was employed to generate receiver 
operating characteristic (ROC) curves and calculate the area under 
the curve (AUC) values from combined datasets. Better 
performance was indicated by closer AUC values, which ranged 
from 0.5 to 1. 
 

2.8 Construction of protein-protein 
interaction network 

The PPI network includes distinct proteins that interact with 
each other. To identify known and predicted protein interactions, 
the STRING database was used. This investigation utilized the 
STRING database (26) to create a PPI network centered on key 
genes,  specifying humans as the biological species, with a 
confidence threshold of ≥ 0.150 and limiting the number of 
interactors to a maximum of five. The constructed PPI network 
model was visualized via Cytoscape (27). Additionally, the 
GeneMANIA platform (28) was utilized for the prediction of 
functionally analogous genes associated with the identified key 
genes, thereby constructing an interaction network based on 
these predictions. 
2.9 Construction of RNA regulatory 
network 

To discover the interplay between key genes and miRNAs, the 
TarBase database was utilized to identify key genes, and Cytoscape 
software was utilized for visualizing the mRNA-miRNA regulatory 
network, exploring the interplay between these genes and miRNAs. 
Furthermore, transcription factors (TFs) modulate gene expression 
by engaging with essential genes in the post-transcriptional phase. 
Moreover, we retrieved relevant TFs from ChIPBase and examined 
the regulatory functions they play in important genes. The use of 
Cytoscape  allowed  the  visualization  of  the  mRNA-TF  
control network. 
2.10 Differential expression analysis of OA 
Key genes 

The Mann–Whitney U test was performed to investigate 
expression variations of key genes in combined OA and control 
datasets,  aiming  to  clarify  the  mechanisms,  biological  
characteristics, and pathways linked to DEGs in OA. Afterward, 
ggplot2 comparative mapping was used to illustrate the variance 
analysis results. 
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The variance analysis outcomes were quantitatively assessed 
based on key gene expression levels. This facilitated identifying the 
key genes in the combined dataset, which were subsequently analyzed 
using ROC curve analysis for improved result visualization. The ROC 
curve is a graphical representation tool that aids in choosing the 
optimal model, discarding suboptimal alternatives, or determining 
the best threshold values within a given model (29). This curve 
integrates the sensitivity and specificity of the continuous variables, 
thereby illustrating their interrelationships. The R programming 
package was employed to construct ROC curves following the 
screening of key genes within the integrated dataset. The diagnostic 
effectiveness of key gene expression levels in OA was evaluated using 
the AUC calculation. 
2.11 Immune infiltration analysis 

To measure the relative abundance of numerous ICI, single­
sample GSEA (ssGSEA) (30) was used. Initially, various infiltrating 
immune cells were identified, including but not limited to activated 
CD8+T cells, gamma-delta T cells, natural killer cells, and subtypes 
like regulatory T cells (Tregs). Subsequently, the ssGSEA 
enrichment scores quantified  the relative abundance  of  each
immune cell type across samples, resulting in an ICI matrix for 
the combined GEO datasets. The R package ggplot2 was utilized to 
create comparative graphical representations, highlighting 
differences in immune cell expression across various groups 
within the datasets. 

Immune cells showing significant variations between both 
groups were chosen for further study. The Spearman algorithm 
was used to determine correlations among immune cells. The R 
package pheatmap was then utilized to produce heat maps that 
illustrate the correlation analysis outcomes among the immune 
cells. Besides, based on the Spearman correlation, correlation 
bubble charts were created by the ggplot2 package to depict 
relationships between key genes and immune cells. 
2.12 Construction of OA subtypes 

Consistency Clustering, which is based on a resampling 
algorithm, is used to determine the membership of each 
individual within its respective group and evaluate the validity of 
the clustering process (31). This method, known as consensus 
clustering, involves multiple iterations of dataset subsamples, 
thereby offering a measure of cluster stability and aiding 
parameter selection by introducing sampling variability. Using the 
R package Consensus Cluster Plus, the consensus clustering 
technique focused on key genes to identify combined datasets of 
OA samples across various disease subtypes. In this analysis, the 
count of clusters was predetermined to a range of 2-9, with the 
process being repeated 50 times, extracting 80% of the total sample 
each time. The clustering algorithm was “km,” and the distance 
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metric used was “Pearson.” Subsequently, heatmap analysis was 
performed to estimate the key genes’ expression levels within the 
combined OA datasets, highlighting the expression differences 
among samples from different disease subtypes. The validation of 
key genes was further conducted through comparative expression 
analysis across disease subtypes. 
2.13 Quality control of single-cell dataset 

The GSE152805 dataset (32) from Homo sapiens, sourced from 
synovial tissue via GPL20301, included three OA cases and six 
controls. A Seurat object was created from the count matrix by 
applying additional filters, like Count < 500 and logGenesPerUMI < 
0.8, to identify cells with at least three genes and 200 expressions. 
The scRNA-seq data was normalized via the ‘LogNormalize’ 
method, followed by identifying the top 2000 variable genes with 
‘Find Variable Features’ and subsequent data scaling. The 
“ScaleData” function was used to mitigate the impact of 
sequencing depth. PCA was performed to detect substantial 
principal components (PCs), and the ‘ElbowPlot’ function was 
utilized to visualize p-value distribution. A total of 30 PCs were 
chosen for further analysis using Uniform Manifold Approximation 
and Projection (UMAP) to accomplish dimensionality reduction. A 
PCA-based K-nearest neighbor graph was generated in the 
Euclidean  space  using  the  default  parameters  of  the  
“FindNeighbors” function, incorporating the 30 PCs. The 
“FindClusters” and the “clustree” functions were then used to 
determine that a resolution of 0.6 allowed for the division of cells 
into distinct clusters. To explore and visualize datasets, the 
“RunUMAP” function made dimensionality reduction easier. 
2.14 Cell type annotation and single-cell 
taxa differential genes 

Cell type annotation and identification were performed using 
cell marker genes in the single-cell GSE152805 dataset. 
Subsequently, the “DotPlot” and “FeaturePlot” functions were 
utilized to illustrate the key genes’ expression levels across 
different cell types. To identify variations in gene expression 
across clusters of cells, the “FindAllMarkers” function was utilized 
along with the Wilcoxon rank-sum test. Eventually, we chose the 
top ten DEGs for each cell cluster to serve as representative genes 
for single-cell populations in further studies. 
2.15 AUCell analysis 

AUCell is a tool designed to detect cells with active gene sets in 
single-cell RNA-sequencing data (33). The AUC metric assesses if a 
notable portion of the specified gene set is enriched among the 
Frontiers in Immunology 05 
expressed genes in individual cells. The analysis of AUC score 
distribution facilitated the evaluation of expression properties in all 
cells. Given that the scoring methodology relies on a ranking 
system, AUCell operates based on gene expression units and the 
effects of standardized protocols. Furthermore, since cells are 
evaluated on an individual basis, this approach is readily 
applicable to larger datasets and can accommodate expression 
matrices organized as required. In this study, we selected the top 
10 DEGs for AUCell scoring and subsequently identified the cell 
populations exhibiting elevated scores. 
2.16 Quantitative real-time PCR 

RNA was extracted with a TRIzol reagent (Thermo Fisher, 
USA). Complementary DNA synthesis was conducted via 
PrimeScript™ RT Master Mix (Takara, Japan) per protocols. The 
qRT-PCR was conducted on the QuantStudio 5 system (Thermo 
Fisher, USA) utilizing iTaq™ Universal SYBR Green Supermix 
(Bio-Rad Laboratories, USA). The thermal cycling protocol began 
with a 3-min denaturation at 95°C, then 40 cycles of denaturation 
were carried out for 10 s and annealing/extension for 30 s at 60°C. 
Using internal controls, gene expression was standardized, and the 
2−DDCT technique was used to quantify relative mRNA levels. 
2.17 Immunohistochemical staining 

Paraffin-embedded synovial tissue sections were subjected to 
dewaxing using three cycles of dewaxing solution, each lasting 10 
min. This was followed by three washes in anhydrous ethanol, 
each for 5 min, and a subsequent rinse with distilled water. 
Antigen retrieval was conducted as specified, with careful 
maintenance of moisture in the buffer. Upon natural cooling, 
the sections underwent washes with phosphate-buffered saline 
(PBS) for 5 min. To prevent endogenous peroxidase activity, 
incubation of sections was carried out with 3% hydrogen 
peroxide for 25 min at room temperature. After that, they were 
washed with PBS. For 30 min at room temperature, tissue sections 
were treated with 3% bovine serum albumin (BSA). When 
primary antibodies originating from goats were used, rabbit 
serum was used for blocking. We incubated the sections 
overnight at 4°C with the primary antibody in PBS after 
removing the blocking solution. The slices were washed with 
PBS and then treated with a secondary antibody coated with 
horseradish peroxidase (HRP) for 50 min at room temperature. 
Diaminobenzidine (DAB) was used to achieve color development. 
The reaction was watched under a microscope, and when brown­
yellow staining appeared, the reaction was terminated by washing 
with tap water. Finally, nuclear counterstaining was performed 
with hematoxylin for 3 min, followed by brief differentiation and 
rinsing with tap water until the nuclei returned to a blue hue. 
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2.18 Statistical analysis 

The data analyses were conducted using  the R software.

Statistical significance for normally distributed continuous 
variables between two groups was assessed using the independent 
Student’s t-test unless otherwise specified. The Mann–Whitney U 
test was used to evaluate differences in non-normally distributed 
variables. The Kruskal–Wallis test was deployed to compare 
multiple groups. To evaluate the correlation between various 
molecules, Spearman correlation analysis was used to calculate 
the correlation coefficient. All statistical p-values were two-tailed 
unless indicated otherwise, with p < 0.05 denoting significance. 
Frontiers in Immunology 06
3 Results 

3.1 Data collection and correction 

To achieve consistency and comparability across multiple 
datasets, our initial objective was to integrate and normalize the 
original GEO datasets by eliminating batch effects. The R package 
sva was employed to address batch effects in OA datasets GSE55457, 
GSE55235, and GSE12021, resulting in the generation of combined 
GEO datasets. With the use of distribution boxplots, we compared 
the dataset expression values both before and after batch effect 
removal (Supplementary Figures S1A, B). Before and after batch 
FIGURE 1 

Diagram illustrating the analysis process flow. 
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effect correction, the distribution of low-dimensional features was 
evaluated using PCA plots (Supplementary Figures S1C, D). These 
findings show that the batch effect elimination procedure 
successfully removed batch effects from OA datasets. Figure 1 
displayed the central search. 
 

3.2 OA-associated AAMRDEGs 

Differential expression analysis was conducted to explore OA­
related transcriptomic changes, followed by intersection with amino 
acid metabolism-related genes to identify AAMRDEGs. There were 
two groups created from the combined GEO datasets: the OA and 
control groups. The limma was used for differential analysis to delve 
into the variations in gene expression between the groups. Among 
the 2,115 DEGs that fulfilled the conditions of |logFC| > 0.5 and p < 
0.05, 1,062 genes were found to be upregulated and 1,053 genes to 
be downregulated (logFC < −0.5 and p < 0.05). The dataset’s 
differential analysis findings were used to construct a volcano plot 
(Figure 2A). Moreover, we built a Venn diagram (Figure 2B) to
Frontiers in Immunology 07 
identify 169 AAMRDEGs by intersecting all DEGs with AAMRGs 
that had |logFC| > 0.5 and p < 0.05. Our analysis of the AAMRDEGs 
in the integrated GEO dataset across different sample groups was 
based on the intersection results. The top 20 AAMRDEGs’ 
expression patterns were visualized using a heatmap that was 
built using the pheatmap (Figure 2C). 
3.3 Enrichment analysis of AAMRDEGs 

We next performed GO and KEGG enrichment analyses to 
investigate the functional implications of the identified 
AAMRDEGs in OA progression. A Gene Ontology enrichment 
analysis of the 169 differentially expressed genes associated with 
amino acid metabolism in OA identified significant associations 
across the three GO categories: biological process (BP), molecular 
function (MF), and cellular component (CC). Within the MF 
category, the genes were predominantly implicated in secondary 
active transporter activity and amino acid transmembrane 
transporter activity. The CC category demonstrated enrichment 
FIGURE 2 

Differential gene expression analysis. (A) Volcano plot: DEG analysis between OA and control groups in the combined GEO datasets. (B) Venn 
diagram: DEGs and AAMRGs in the combined datasets. (C) Heatmap of AAMRDEGs in the combined datasets. 
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in the basal plasma membrane and mitochondrial matrix. In the BP 
category, the genes were primarily linked to cellular amino acid 
catabolic and metabolic processes. Furthermore, analysis using the 
KEGG pathway revealed a predominant involvement of these genes 
in tyrosine metabolism (Figure 3A). Figures 3B–E illustrate network 
diagrams for the BP, CC, MF, and KEGG pathways, where the size 
of each node reflects the number of genes associated with each term, 
and the connecting lines denote the relationships between genes 
and their respective annotations. 
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3.4 GSEA and GSVA in combined GEO 
datasets 

To achieve a more thorough comprehension of pathway-level 
alterations associated with OA, we employed GSEA and GSVA to 
identify enriched biological processes and signaling pathways 
within the integrated dataset. The GSEA was employed to 
evaluate the effect of gene expression in the merged datasets on 
OA pathogenesis. The logFC values of all genes in the merged 
FIGURE 3 

GO and KEGG enrichment analyses for AAMRDEGs. (A) Bar graph of GO and KEGG enrichment analysis results of AAMRDEGs: BP, CC, MF, and 
biological pathway. GO and KEGG terms are listed on the abscissa. (B–E) GO and KEGG results of AAMRDEGs: (B) BP, (C) CC, (D) MF and (E) KEGG. 
Pink nodes represent items, blue nodes represent molecules, and lines represent the relationship between items and molecules. The screening 
criteria for GO and KEGG enrichment analyses were p < 0.05 and FDR < 0.05. Benjamini-Hochberg method was used for p correction. 
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datasets were the basis of this analysis to compare between OA and 
control groups. The GSEA was utilized to determine the 
associations between gene expression and the corresponding BP, 
CC, and MF, and a mountain plot was used to visualize these 
associations (Supplementary Figure S2A). Supplementary Table S3 
displays the detailed findings. The findings demonstrated that a 
significant enrichment was found in the genes of the combined 
datasets in the IL6 (Supplementary Figure S2B), the PI3KCI AKT 
(Supplementary Figure S2C), and the Hedgehog signaling paracrine 
Frontiers in Immunology 09
up pathways (Supplementary Figure S2D). Additionally, other 
biologically significant pathways and activities were enhanced, 
including Wnt signaling (Supplementary Figure S2E). 

All genes in the integrated GEO dataset were subjected to GSVA 
in order to examine any variations in the c2.cp.v2023.2.Hs. 
symbols.gmt gene set between the OA and control groups 
(Supplementary Table S4). Afterward, the top 20 pathways (p < 
0.05) were chosen and arranged in descending order by logFC 
absolute value. A heatmap was used to assess and illustrate the 
FIGURE 4 

WGCNA analysis identified co-expression modules in the dataset. (A) Sample modules for OA combined datasets screening threshold scale-free 
network presentation. (B) OA integration of combined dataset DEGs module clustering and correlation analysis between different grouping results. 
(C) DEG module clustering results in OA-integrated GEO datasets (combined datasets). (D–J) OA integration of GEO dataset (combined datasets) of 
DEGs with (D) MEblue, (E) MEmagenta, (F) MEblack, (G) MEgreen, (H) MEyellow, (I) MEbrown, and (J) Venn diagram of MEturquoise. 
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differential expression of the top 20 pathways between the OA and 
control groups (Supplementary Figure S3A). A comparative group 
diagram was used to show the data (Supplementary Figure S3B), 
and the Mann-Whitney U test was employed to examine the 
variations. Between the OA and control groups, there were 
statistically significant variations in pathways, including the 
Mitochondrial Complex I Assembly Model OXPHOS System and 
Complex I Biogenesis, according to the GSVA results (p < 0.05). 
 

3.5 WGCNA analysis identified co­
expression modules in the dataset 

A weighted gene co-expression network was constructed to 
identify OA-related gene modules and reveal potential co­
regulatory patterns among AAMRDEGs. In order to find co­
expression modules, we applied WGCNA to all DEGs found in the 
combined datasets that were discovered from the differential 
expression analysis between the OA and control groups (|logFC| > 
0 and  p < 0.05). The hierarchical clustering tree was used to cluster 
the OA and control groups, with the grouping data annotated 
without a cut height specified. A screening criterion of 0.9 was then 
used to find the best number of modules. The DEGs between the 
investigated groups were then organized into distinct modules based 
on their co-expression patterns (Figure 4A). Afterwards, the DEGs 
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were reclustered, and the connections between the genes and their 
respective new modules were shown (Figure 4B). After that, the cut 
height for merging modules was set to 0, and any modules having a 
cut height less than zero were combined (Figure 4C). According to 
the results, a correlation between OA and the seven modules was 
found to be significant (p < 0.05, |correlation| ≥ 0.3). The DEGs 
within these seven modules were then analyzed. By intersecting the 
previously identified 169 AAMRDEGs with the DEGs present in the 
seven modules, a Venn diagram was generated (Figures 4D–J) to

identify module-specific AAMRDEGs. Seventy-eight DEGs linked to 
modular AAM were detected (Supplementary Table S5). 
3.6 OA diagnosis model construction 

Leveraging machine learning approaches, we developed LASSO 
and SVM-based diagnostic models using the selected AAMRDEGs. 
To estimate the diagnostic potential of 78 AAMRDEGs in OA, a 
univariate logistic regression model was developed using these 
genes. The analysis revealed that all 78 genes demonstrated 
statistical significance within the model (p < 0.05; Supplementary 
Table S6). Subsequently, a diagnostic model for OA was constructed 
via LASSO regression analysis based on the 78 AAMRDEGs. The 
results were visualized using the LASSO regression model diagram 
(Figure 5A) and the variable trajectory diagram (Figure 5B). The 
FIGURE 5 

Construction of OA diagnostic model. (A) AAMRDEGs in combined datasets using the LASSO regression diagnosis model. (B) LASSO diagnosis 
model: Variable trajectory. (C) SVM algorithm: The count of genes with the minimum error rate. (D) SVM algorithm: The count of genes with the 
maximum accuracy. (E) Venn diagram: Intersection between LASSO and SVM algorithms. 
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findings indicate that the model comprised 14 genes: MTHFD2, 
PPP1R15A, GABBR1, GAMT, DPYS, SLC2A4, RPL3L, SLC6A11, 
CSN1S1, FBP1, RPL27A, IBA57, DNAJC12, and WNT5B. 

Then, an SVM model was built according to the 14 
AAMRDEGs and the SVM algorithm. When the count of genes 
was optimized, the model achieved the minimum error rate 
(Figure 5C) and maximum accuracy (Figure 5D). The findings 
indicated that the highest accuracy of the SVM model was obtained 
when the count of genes was reduced to 12. The 12 identified 
AAMRDEGs include: MTHFD2, PPP1R15A, WNT5B, BMP2, 
VEGFA, SLCO4A1, SLC7A5, SLC2A4, ETFB, SFTPD, ATF3, 
and MYC. 

AAMRDEGs derived from LASSO regression and SVM models 
were employed for the identification of key genes. By determining 
the intersection of these gene sets, four AAMRDEGs were identified 
as key candidates for further investigation. A Venn diagram 
illustrating this intersection is presented in Figure 5E. The four 
key genes that were identified were MTHFD2, PPP1R15A, SLC2A4, 
and WNT5B. 
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3.7 OA diagnosis model validation 
To systematically assess the reliability and clinical utility of the OA 
diagnostic model, we conducted a series of evaluation approaches 
including nomogram visualization, calibration analysis, DCA, and 
ROC curve assessment. A nomogram was constructed depending on 
the key genes to elucidate their relationships within the combined 
GEO dataset to improve the validation of the OA diagnostic model 
(Figure 6A). The results established that the model gene WNT5B 
expression level showed a significant elevation compared to other 
variables, underscoring its utility in the OA diagnostic model. Then, 
calibration analysis was employed to generate a calibration curve that 
was utilized to compare the model’s prediction performance with the 
actual outcomes by comparing the observed probabilities to the 
model’s predicted probabilities under numerous circumstances 
(Figure 6B). The results demonstrated that the calibration line 
deviated slightly from the ideal model’s diagonal but remained 
closely aligned with it. Figure 6C displays the results of our decision 
FIGURE 6 

Diagnostic and validation analysis of OA. (A) Nomograms in combined datasets of key genes in OA diagnostic models. (B) OA diagnosis model based 
on combined datasets of key genes from the calibration curve, and (C) DCA. (D) Logistic regression model of linear predictors in the combined 
datasets of ROC analysis. The DCA y coordinate represents the net income figure, and the abscissa represents the probability threshold or threshold 
probability. 
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curve analysis, which we conducted using the model genes from the 
combined datasets to evaluate the OA diagnostic model’s clinical 
value. According to the results, the model’s curve always outperforms 
the “All Positive” and “All Negative” standards within a certain range, 
showing that it is more effective and provides a better net benefit. 
Additionally, we generated the ROC Curve for the logistic regression 
model’s linear predictors across various groups within the combined 
datasets, with the outcomes depicted in Figure 6D. This figure 
demonstrates that the logistic regression model exhibits robust 
diagnostic performance within the combined datasets. 
3.8 PPI network construction 

As interactions among diagnostic genes may reveal underlying 
molecular crosstalk in OA, we constructed PPI networks to identify 
potential functional associations.  The PPIs of  four key  genes (MTHFD2, 
PPP1R15A, SLC2A4, and  WNT5B) were assessed via the STRING 
database. The criteria implemented included the lowest required 
interaction score of > 0.150, which indicates low confidence, and a 
maximum of five interactors. Based on these criteria, a PPI network was 
constructed and visualized (Supplementary Figure S4A). Following this, 
we utilized the GeneMANIA website to identify potential genes that 
were related to the four key genes. Then, we constructed an interaction 
network to study the physical interactions, shared protein domains, and 
gene interactions (Supplementary Figure S4B). 
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3.9 RNA regulatory network construction 

To gain insight into the upstream regulatory landscape of the 
diagnostic genes, we explored miRNA–mRNA and transcription 
factor–mRNA interactions using publicly available databases and 
network visualization. Here, we used the StarBase database to 
obtain 70 miRNAs linked to the four key genes (MTHFD2, 
PPP1R15A, SLC2A4, and WNT5B). Then, we built an mRNA­

miRNA regulatory network and displayed it using Cytoscape 
(Supplementary Figure S5A). Supplementary Table S7 provides 
detailed data. The ChIPBase database was also accessed to find 
TFs that were linked to these four key genes. Next, Cytoscape was 
deployed to build and display an mRNA-TF regulatory network. 
This network included 82 TFs and three key genes (MTHFD2, 
PPP1R15A , and  WNT5B) (Supplementary  Figure  S5B).  
Supplementary Table S8 lists detailed data. 
3.10 Differential expression analysis of key 
genes between different groups 

Expression differences of the key diagnostic genes were further 
examined across OA and control samples, accompanied by correlation 
analysis and ROC curve evaluation to assess their clinical predictive 
value. Our results revealed that three genes (MTHFD2, PPP1R15A, 
and WNT5B) exhibited significant differences in expression (p < 
FIGURE 7 

Key gene analysis of expression differences between different groups. (A) Group comparison plots of control and OA groups for the combined 
dataset. (B) Correlation analysis of key genes. (C) Chromosomal mapping of key human genes Key genes (D) WNT5B, (E) PPP1R15A, (F) MTHFD2, and 
(G) SLC2A4 in combined datasets of ROC curve analysis. *p < 0.001, *p < 0.05. 
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0.001), whereas SLC2A4 demonstrated a moderately significant 
difference (p < 0.05, Figure 7A). A correlation analysis was 
conducted using the expression matrix of four key genes from the 
combined datasets, and a heatmap was employed to show the results 
(Figure 7B). This analysis illustrated a positive correlation between 
PPP1R15A and MTHFD2, whereas  WNT5B was negatively correlated 
with both MTHFD2 and PPP1R15A. Additionally, the chromosomal 
locations of the four genes were annotated and visualized (Figure 7C). 
MTHFD2 is located on chromosome 2, WNT5B on chromosome 11, 
SLC2A4 on chromosome 17, and PPP1R15A on chromosome 19. The 
ROC curves for the four key genes in the combined datasets were 
generated (Figures 7D–G). The expression differences of the key genes 
MTHFD2 , PPP1R15A , and  WNT5B  demonstrated  high  
discriminatory accuracy between several groups, with AUC > 0.9. 
Conversely, the difference in expression of SLC2A4 exhibited lower 
discriminatory accuracy, with AUC values ranging between 0.5 
and 0.7. 
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3.11 Immune infiltration analysis 

Given the pivotal role of immune dysregulation in OA, this 
section evaluates immune cell infiltration patterns using ssGSEA 
and explores their associations with key gene expression. Using the 
expression matrix derived from the combined datasets, the ICI 
abundance of 28 distinct immune cell types was determined using 
the ssGSEA algorithm. First, a group comparison chart was 
generated to demonstrate the differential expression of ICI 
abundance across various groups. The group comparison chart 
(Figure 8A) revealed that 15 immune cell types exhibited 
statistically significant differences (p < 0.05), including activated B 
cells, activated CD8+T cells, and CD56bright natural killer cells, 
among others. Subsequently, the correlation outcomes of the 
infiltration abundance of the 15 immune cell types in the 
combined datasets (Figure 8B). The outcomes show that there 
was a strong positive association among immune cells but a 
FIGURE 8 

Immune infiltration analysis by ssGSEA algorithm. (A) Comparison chart of immune cells between control and OA groups. (B) Heatmap: Correlation 
of ICI abundance in combined datasets. (C) Bubble chart: Correlation between key genes and abundance of ICI in integrated datasets. ns: p ≥ 0.05, 
not statistically significant; *p < 0.05, **p < 0.01, ***p < 0.001. 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1588072
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2025.1588072 
strong negative association among type 2 T helper cells and 
macrophages (r = −0.762, p < 0.05). Moreover, a correlation 
bubble chart illustrates the association between key genes and the 
abundance of ICI (Figure 8C). According to the correlation bubble 
chart, the majority of immune cells showed a strong relationship, 
with the gene WNT5B showing the most positive association with 
effector memory CD4 T cells (r = 0.662, p < 0.05). 
 

 

 

3.12 OA subtypes construction 

Based on the expression patterns of key genes, molecular 
subtypes of OA were identified through consensus clustering, 
followed by PCA and differential analysis to uncover their distinct 
biological characteristics. To determine the subtypes of OA within 
the sample cohort, the R package ConsensusClusterPlus was used 
to perform a consensus clustering analysis based on the levels 
of four key genes: MTHFD2, PPP1R15A, SLC2A4, and WNT5B 
(Figures 9A–C). This analysis delineated two distinct subtypes: A 
(cluster 1, comprising 15 samples) and B (cluster 2, comprising 14 
samples). The PCA revealed significant differences between these 
subtypes (Figure 9D). Furthermore, a comparative analysis of the 
groups revealed a significant difference in the expression of the key 
gene SLC2A4 between the subtypes (p < 0.001; Figure 9E). 
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3.13 IIA based on OA subtypes 

Building on the identified OA subtypes, we further investigated 
immune infiltration  differences and  their associations with key  genes,  
aiming to delineate subtype-specific immune regulatory patterns. The 
expression matrix obtained from the combined datasets was employed 
to measure the abundance of 28 different immune cell types in OA 
samples via the ssGSEA technique. In order to illustrate how different 
groups’ expressions of ICI abundance varied, a group comparison 
chart was first  constructed.  One type of immune cell,  CD56bright 

natural killer cells, presented a significant difference (p < 0.05) 
according to the group comparison chart (Figure 10A). Then, a 
correlation heatmap was used to show the findings of the 
association between the infiltration  abundance of 28 immune cell

types in OA samples (Figures 10B, C). Cluster 1 of OA samples 
showed strong associations for the majority of immune cells. With an 
r-value of 0.879 and a p < 0.05, the most significant positive association 
was observed between  activated dendritic  cells  and central  memory

CD4 T cells. In cluster 2, there was a highly significant positive 
association (r = 0.938, p < 0.05;  Figure 11C) between the majority of 
immune cells and Tregs and natural killer cells. Furthermore, a 
correlation bubble chart (Figures 10D, E) shows  the link  between
the infiltration abundance of four key genes and immune cells, 
showing that cluster 1 had the majority of immune cells with 
FIGURE 9 

Consensus clustering analysis for OA. (A) Heatmap: Consistency clustering results matrix for OA samples. (B) Consistency cumulative distribution 
function and (C) Delta plot of consistency clustering analysis. (D) PCA plot: Two subtypes of OA. (E) Comparison chart of key genes in OA between 
the two subtypes. Subtype A (Cluster1) is depicted in blue, and subtype B (Cluster2) in pink. ***p < 0.001. 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1588072
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2025.1588072 
substantial correlations. Notably, PPP1R15A showed a significantly 
negative relationship with immature B cells (r = −0.829, p < 0.05). In  
contrast, the majority of immune cells in cluster 2 showed high 
associations, with the WNT5B gene showing a significant positive 
relationship with mast cells (r = 0.859, p < 0.05).  
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3.14 Quality control of single-cell dataset 

Prior to single-cell level analysis, we performed rigorous quality 
control, dimensionality reduction, and clustering of scRNA-seq 
data, followed by cell type annotation based on canonical marker 
FIGURE 10 

Risk group immune infiltration analysis by ssGSEA algorithm. (A) Comparison of immune cell grouping in Cluster1 and Cluster2 of OA samples. 
Results of correlation analysis of immune cell infiltration abundance in (B) Cluster 1 and (C) Cluster 2. Bubble plot of correlation between immune 
cell infiltration abundance and key genes in (D) Cluster1 and (E) Cluster2. ssGSEA: Single-Sample Gene-Set Enrichment Analysis; ns: p ≥ 0.05, not 
statistically significant; *p < 0.05, statistically significant. The absolute value of the correlation coefficient below 0.3 indicated weak or no correlation, 
0.3–0.5 indicated weak correlation, 0.5–0.8 indicated moderate correlation, and > 0.8 indicated strong correlation. Blue represents Cluster 1, and 
pink represents Cluster 2. Pink represents a positive correlation, blue represents a negative correlation, and the depth of the color represents the 
strength of the correlation. 
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genes. The “CreateSeuratObject” function from the Seurat v4.0 R 
package was used to import the counts matrix of three OA samples 
from the GSE152805 dataset. The import parameters included 
genes expressed in a minimum of three cells and cells expressing 
at least 200 genes. The distribution of gene features per cell and 
an average number of genes per UMI are illustrated in the 
violin plot (Figure 11A). Subsequently, quality control was carried 
out on the GSE152805 dataset, and cells with < 500 counts, 
log10GenesPerUMI < 0.8, or < 250 features were excluded. The 
cell expression profiles across different samples were analyzed using 
PCA (Figure 11B). Following the application of UMAP for 
dimensionality reduction with a resolution parameter set to 0.6, 
the cells were categorized into 14 clusters (Figure 11C). Four 
specific cell types were identified through manual annotation 
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using cell marker genes (Figure 11D): Chondrocytes, monocytes, 
endothelial cells, and T cells. A bar chart illustrating the cell 
proportions across different groups (OA/control) (Figure 11E) 
indicated that the variations in cell proportions were minimal. 
The expression of the four key genes within the single-cell dataset 
is depicted using a bubble plot (Figure 11F) and UMAP plots 
(Figures 12A–D). 
3.15 Differential genes of single-cell 
clusters and AUCell analysis 

Differentially expressed genes among cell types were identified, 
and AUCell scoring was applied to assess gene set activity across 
FIGURE 11 

Quality control of GSE152805. (A) Violin plot of gene expression for the GSE152805 dataset. (B) Visualization of PCA of cell expression in different 
samples. (C) The cells were divided into 14 clusters using UMAP. (D) The cells were annotated into four cell types using cell marker genes: 
Chondrocytes, monocytes, endothelial cells, and T cells. (E) Bar graph of cell ratio between OA and control groups. (F) Bubble plot visualization of 
expression levels of key genes in the four cell types. The darker the color, the higher the expression level, and the larger the circle, the higher the 
expression proportion of genes within the cell population. 
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individual cells, offering insights into the distribution and potential 
functions of key genes at the single-cell level. Herein, we identified 
DEGs between cell types using the R package FindAllMarkers, 
applying thresholds of |logFC| > 2.00 and adjusted p < 0.05. A 
volcano plot was created to show these DEGs (Figure 13A). A 
heatmap was employed to depict the expression levels of the top 10 
upregulated genes across cell types (Figure 13B). The outcomes 
illustrated that FRZB, HLA−DRB5, and ITIH6 were predominantly 
expressed in chondrocytes; FRZB, ITIH6, and COL2A1 were 
primarily expressed in monocytes; FRZB, TM4SF, and SELE were 
mainly expressed in endothelial cells; and COL2A1, ACAN, and 
HAPLN1 were primarily expressed in T cells. The R package AUCell 
was employed to quantify the expression levels of the top 10 
upregulated genes identified as single-cell differential genes for 
each cell within the GSE152805 dataset. The results are visualized 
using UMAP plots (Figure 13C) and  group comparison plots

(Figure 13D). Our findings indicated that chondrocytes exhibited 
the highest AUC score. To further explore the biological functions 
of these genes, we performed GO and KEGG enrichment analyses, 
and the results are shown in Figure 13E. 
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3.16 Verification of differential expression 
of four key genes using qRT-PCR analysis 
and IHC staining 

Experimental validation was conducted using qRT-PCR and 
immunohistochemistry (IHC) on clinical synovial samples to 
confirm the differential expression and potential roles of the key 
genes in OA pathogenesis. Synovial tissues were harvested from the 
medial and lateral tibiofemoral compartments, as well as the 
suprapatellar regions. Samples from patients with osteoarthritis 
(n = 5) were collected during total knee arthroplasty, while control 
synovial samples (n = 5) were obtained from individuals undergoing 
arthroscopic procedures for non-inflammatory orthopedic 
conditions, devoid of clinical or histological evidence of active 
synovitis. Efforts were undertaken to ensure the comparability of 
anatomical sites across both groups. Figures 14A–C depict the 
outcomes of our qRT-PCR analysis. MTHFD2, SLC2A4, and

WNT5B were identified as DEGs using bioinformatics and qRT-
PCR analyses. The synovium of OA patients showed significantly 
lower levels of  MTHFD2 and SLC2A4 expression compared to the 
FIGURE 12 

UMAP of key genes. UMAP depicting the expression levels of four key genes in the single-cell dataset: (A) MTHFD2, (B) PPP1R15A, (C) SLC2A4, and 
(D) WNT5B. The shade of pink represents the expression levels of genes in the single-cell dataset. 
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control group (Figures 14A, B), but WNT5B expression was 
significantly higher (Figure 14C). Actin was applied as a reference 
gene to normalize the qRT-PCR expression levels of the candidate 
genes. Figures 14D–F demonstrate the outcomes of our IHC analysis. 
In alignment with the qRT-PCR results, relative to the control group, 
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both MTHFD2 and SLC2A4 expression levels were significantly 
elevated in the OA synovium (Figures 14D, E), while the WNT5B 
expression level was significantly diminished (Figure 14F). In 
addition, the PPP1R15A expression level did not significantly differ 
between OA and control groups. 
FIGURE 13 

Differential gene expression and AUCell analysis for GSE152805. (A) . Volcano plot: Differential gene expression in cells. Pink denotes genes with 
elevated expression in that cell, while blue signifies genes with suppressed expression in that cell. (B). Heatmap: Differential gene expression in a 
single cell group. The AUC score of the single-cell group differential genes was visualized using the (C) UMAP map and (D) group comparison map 
between different cell clusters. A lighter color on the UMAP map indicates a higher AUC score. (E) GO and KEGG enrichment of histogram analysis: 
Differential genes in single-celled groups: BP, CC, MF, and biological pathways. GO and KEGG terms are depicted on the abscissa. 
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4 Discussion 

On a global scale, OA is a prevalent joint disorder that 
considerably diminishes the quality of life of older people and 
imposes a considerable socioeconomic burden, as evidenced by the 
significant increase in healthcare expenditures due to increased 
medical consultations, therapeutic interventions, and rehabilitation 
services. In Spain, for instance, the healthcare burden associated 
with OA-related pain is significant, with expenses related to 
outpatient consultations constituting a major component (34). 
With its increasing incidence in the aging population, there is an 
imperative need for comprehensive research to improve diagnostic 
techniques and develop targeted therapeutic interventions. 

Currently, therapeutic modalities for OA predominantly 
include pharmacological interventions, physical therapy, and 
surgical procedures (35, 36). However, these strategies only 
temporarily alleviate the symptoms and fail to fundamentally halt 
disease progression, with prolonged use potentially resulting in 
adverse effects (37). Consequently, it is imperative to thoroughly 
elucidate the pathological mechanisms of OA to devise more 
effective and targeted treatment strategies. The association 
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between aberrant AAM and OA pathogenesis has attracted 
scholarly attention in recent years (38). Current research indicates 
that dysregulated AAM may significantly contribute to cartilage 
degradation and initiation of joint inflammation (39). However, the 
precise mechanisms underlying AAM during the pathological 
progression of OA remain poorly understood. Furthermore, the 
roles and regulatory networks of the associated DEGs remain to be 
elucidated, representing a significant gap in the existing body of 
research. This study aimed to identify AAMRDEGs and determine 
their roles in OA through comprehensive multi-level and multi­

faceted bioinformatic analyses. 
In this study, AAMRGs in OA were systematically analyzed. A 

subset of AAMRDEGs in OA was identified using differential 
expression analysis. The results of GO and KEGG analyses 
illustrated the predominant enrichment of these genes in different 
BP, including cellular AAM and catabolism. Our results 
demonstrated that amino acid synthesis is impaired in OA, 
thereby influencing various metabolic pathways associated with 
amino acids. Certain amino acids that are closely linked to the 
pathophysiology of OA, namely arginine, proline, and glutamic 
acid, are significantly affected. Arginine and proline are crucial for 
FIGURE 14 

Experimental validation in clinical samples. (A–C) Relative mRNA expression levels of three key genes (A) SLC2A4, (B) MTHFD2, and (C) WNT5B in 
clinical samples. (D–F) Immunohistochemical staining: Expression of (D) SLC2A4, (E) MTHFD2, and (F) WNT5B in clinical tissue samples. The upper 
row corresponds to the control group, whereas the lower row pertains to the OA group. Positive staining is indicated by a brown-yellow coloration, 
signifying the localization of the target protein, while the nuclei are counterstained blue with hematoxylin. Bar = 20 mm. *p < 0.05, **p < 0.01. 
frontiersin.org 

https://doi.org/10.3389/fimmu.2025.1588072
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhu et al. 10.3389/fimmu.2025.1588072 

 

chondrocyte metabolism. Nitric oxide (NO), a metabolic product of 
arginine, contributes significantly to the inflammatory response in 
arthritis. The breakdown of the cartilage matrix and chondrocyte 
apoptosis may be caused by an excess of NO generation (40). 
Furthermore, proline metabolism is intricately related to the 
synthesis and breakdown of the cartilage matrix. Abnormalities in 
proline metabolism could compromise the structural and functional 
integrity of cartilage, thereby expediting the progression of OA. 
Additionally, existing literature indicates that glutamate influences 
the activity of osteoblasts and osteoclasts. Dysregulation of 
glutamate metabolism following the onset of OA might disrupt 
the dynamic equilibrium of bone remodeling, thereby exacerbating 
disease progression (41). Dysregulation of glutamate metabolism 
following the onset of OA might disrupt the dynamic equilibrium of 
bone remodeling, thereby exacerbating disease progression (39). 
Moreover, the pathways enriched in OA, such as cellular amino acid 
catabolic processes, provide insights into the biochemical 
alterations that might exacerbate cartilage degradation and 
inflammation. It is imperative to examine the interactions 
between AAMRDEGs and cellular pathways in cartilage and 
synovial tissues, as their dysregulation could initiate a cascade of 
events that contribute to OA progression. Elucidating these 
mechanisms could enhance our comprehension of OA pathology 
and potentially aid in the discovery of new treatment targets for 
modulating AAM. 

Our diagnostic model, developed using LASSO regression and 
validated through SVM analysis, presents promising opportunities 
for early detection of OA. The identification of 14 AAMRDEGs as 
key diagnostic markers, including MTHFD2, PPP1R15A, and

WNT5B, represents an innovative approach to OA diagnosis by 
harnessing molecular signatures to improve clinical decision­
making. MTHFD2 is a mitochondrial enzyme that has a critical 
function in folate and one-carbon metabolic pathways. Several 
malignancies have been linked to it, including glioblastoma, 
breast cancer, and hepatocellular carcinoma (42–44). However, its 
precise role in OA pathogenesis remains poorly understood. Yu 
et al. have identified MTHFD2 as an apoptosis-associated gene that 
may influence OA progression[(44). Our results demonstrated that 
this influence is intricately associated with the disruption of AAM, 
particularly one-carbon metabolism. This disruption may have 
profound implications for the mitochondrial function of 
chondrocytes, potentially affecting cartilage proliferation and 
metabolic processes (45). Our research suggests that this influence 
is intricately associated with the disruption of AAM, particularly 
one-carbon metabolism. This disruption may have profound 
implications for the mitochondrial function of chondrocytes, 
potentially affecting both cartilage proliferation and metabolic 
processes (46). The SLC2A4, a key glucose transporter in muscle 
and adipose tissues, is essential for glucose metabolism and energy 
homeostasis. Initially, we observed a reduction in SLC2A4 
expression in patients with arthritis, which was potentially linked 
to the dysregulation of AAM signaling pathways. In OA patients, 
the reduced SLC2A4 expression in the cartilage might impair 
glucose metabolism, adversely affecting chondrocyte function and 
viability. This deficiency was associated with increased chondrocyte 
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apoptosis and inflammation. Furthermore, SLC2A4 dysfunction 
might result in decreased synthesis of the cartilage matrix, 
thereby affecting the structural integrity and functionality of the 
joints (47). The PPP1R15A is a regulatory subunit of the 
intracellular eIF2a phosphatase, playing a critical role in 
modulating cellular stress responses. By facilitating the 
dephosphorylation of eIF2a, it aids in the resolution of the 
integrated stress response, thereby influencing apoptotic pathways 
(48). Although its specific role in OA remains unexplored, 
PPP1R15A levels decrease following the onset of OA. This 
reduction might contribute to the dysregulated cellular stress 
responses, potentially leading to chondrocyte apoptosis and 
subsequent joint tissue damage. WNT5B, a member of the WNT 
family, participates in the non-canonical WNT signaling pathway, 
which is independent of b-catenin and often antagonizes canonical 
WNT signaling. Several physiological activities, such as cell 
migration, proliferation, and differentiation, have been linked to 
this protein (49). Recent investigations have demonstrated that 
WNT5B might serve as a critical node in the inflammatory signaling 
pathways that exacerbate OA pathology. Specifically, miR-140-3p 
and circ-PREX1 modulate WNT5B expression, thereby influencing 
chondrocyte apoptosis and inflammatory responses (50). 
Furthermore, WNT5B has been considered as a target of miR­

374a-3p, and its downregulation mitigates lipopolysaccharide­
induced damage in chondrocytes, underscoring its involvement in 
inflammatory pathways (51). Our results demonstrate that WNT5B 
may be involved in the dysregulation of AAM, potentially 
intensifying the inflammatory response observed in arthritis. To 
improve predictive capabilities further, future research should 
prioritize the optimization of model parameters and the 
exploration of integrating additional biomarkers, particularly 
those identified through metabolomic profiling of OA. The 
translation of this diagnostic model into clinical practice could 
revolutionize OA management, shifting the healthcare paradigm 
towards a more personalized and proactive approach. 

The PPI network analysis revealed significant interactions among 
the key AAMRDEGs, thereby laying the foundation for understanding 
the molecular interactions that underlie OA pathogenesis. The notable 
association between MTHFD2, PPP1R15A, and  SLC2A4 indicates the 
existence of a highly regulated network, with each gene potentially 
interacting with ATF4. The ATF4 is  an essential TF in the  endogenous  
stress response, primarily facilitating cellular adaptation to 
environmental stressors. It has a crucial function in chondrocyte 
survival by modulating the endoplasmic reticulum stress and 
apoptotic pathways (52, 53). These observations imply that these key 
genes might interact with ATF4 to orchestrate essential processes like 
metabolism and inflammation in arthritis. These interactions offer 
valuable visions into the techniques by which perturbations in these 
networks might facilitate OA progression. 

Recent studies have demonstrated that dysregulated amino acid 
metabolism significantly impacts immune cell function and infiltration, 
thereby shaping the immunological microenvironment in OA. For 
instance, arginine metabolism is crucial for regulating T cell 
proliferation and cytokine production, and its depletion can impair T 
cell receptor signaling and suppress immune responses. Similarly, the 
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availability of glutamine is essential for the differentiation and function 
of Th17 cells, which play a pivotal role in OA-associated inflammation 
(54). Additionally, tryptophan catabolism via the kynurenine pathway 
influences immune homeostasis by promoting the development of 
regulatory T cells and suppressing effector responses (55). These 
mechanisms indicate that alterations in amino acid metabolism may 
drive immune cell infiltration and polarization within OA joints. In line 
with these mechanistic insights, our study investigated the relationship 
between amino acid metabolism–related gene expression and immune 
cell infiltration in OA synovial tissues. 

By analyzing gene–immune correlations, we sought to further 
understand how amino acid metabolic alterations might modulate 
the local immune microenvironment in OA. The immunological 
landscape of OA is a key aspect elucidated by our findings. T cells 
are critically involved in OA pathogenesis. Empirical evidence 
indicates that the T cell stimulation and proliferation are 
intimately related to the inflammatory response characteristic of 
OA, with pronounced polarization towards the proinflammatory 
Th1 subset (56). This phenomenon was corroborated by our IIA, 
which revealed a significant increase in effector memory T cells, 
central memory T cells, gd T cells, Tregs, and Th1 cells in OA 
patients. These infiltrating T cells not only secrete numerous 
proinflammatory cytokines, such as tumor necrosis factor a and 
interleukin-17 but also augment the activity of other immune cells 
by promoting intercellular interactions, thereby intensifying joint 
inflammation and damage (57). The interaction between WNT5B 
and immune cells, particularly CD4 T cells, is of particular interest. 
CD4 T cells are pivotal in orchestrating immune responses, and 
their effector memory subset responds rapidly upon re-exposure to 
antigens. The positive relationship between WNT5B expression and 
effector memory CD4 T cells suggests that WNT5B might be 
involved in the stimulation and proliferation of these cells within 
the osteoarthritic milieu. This hypothesis is further supported by 
current investigations that have reported the polarization of 
proinflammatory T cells in the peripheral blood of individuals 
with early-stage knee OA, demonstrating that WNT5B may have 
a function in T cell polarization (56). Consequently, investigating 
the immune regulatory interactions between WNT5B and T cells 
could be a novel therapeutic approach for treating OA. The role of B 
cells is of comparable importance. Recent studies indicate that B 
cells have a dual function, involved in humoral immune responses 
and the regulation of cartilage repair mechanisms via the secretion 
of antibodies and cytokines. B cells can produce specific antibodies 
that neutralize proinflammatory factors, thereby mitigating 
the inflammatory response (58). Conversely, hyperactivation of 
B cells might induce autoimmune responses, exacerbating 
cartilage damage (59). The increase in macrophages during IIA 
in patients with OA might be attributed to the substantial 
recruitment of chemokines. Macrophages can be categorized into 
M1 and M2 phenotypes, where M1 macrophages mainly facilitate 
proinflammatory responses, and M2 macrophages participate in 
tissue repair and anti-inflammatory processes (60, 61). The 
polarization state of these macrophages directly influences the 
inflammatory response and cartilage degradation. An increased 
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number of M1 macrophages, which are linked to faster cartilage 
degradation and worsening joint inflammation, is found in the 
joints of OA individuals. The potential of immune modulation as a 
therapeutic strategy could be elucidated by investigating the 
dynamics of immune cells across various stages of OA. 
Furthermore, identifying specific immunological profiles 
associated with varying severities of OA could inform targeted 
interventions aimed at restoring homeostasis within the immune 
microenvironment, potentially mitigating the inflammatory aspects 
of OA. Using immunosuppressants or biological agents to reduce 
the secretion of proinflammatory factors might be an effective 
approach for modulating the immune response in OA. However, 
it is imperative to comprehensively evaluate the long-term effects 
and safety of these interventions (62). 

This research has enhanced our comprehension of the role of 
AAMRDEGs in OA. Despite the application of batch effect 
correction measures during data processing, the complete 
elimination of potential inter-batch differences requires further 
validation. Moreover, our diagnostic model was developed and 
validated using a combined GEO dataset and has not yet been 
evaluated in an independent external cohort. As a result, its 
generalizability and applicability in real-world clinical settings 
require further assessment. Future research should prioritize 
ensuring the stability and reproducibility of the results by 
employing more rigorous multi-batch data integration methods. 
It should be noted that, the principal conclusions of this study are 
predominantly based on transcriptomic analyses of synovial tissue 
and multi-omics bioinformatic correlation analyses. However, 
there is a significant absence of direct functional and 
mechanistic  experimental  validation.  Furthermore,  the  
expression profiles examined were restricted to synovial tissue, 
despite OA impacting the entire joint, including cartilage and 
subchondral bone. Future investigations should aim to validate 
these findings across various joint compartments and further 
elucidate their functional relevance through both in vitro and in 
vivo experiments. The specific molecular mechanisms and 
regulatory networks involving key genes such as MTHFD2, 
SLC2A4, and WNT5B in OA remain to be comprehensively 
elucidated. Subsequent research should utilize cellular and 
animal models to systematically investigate the functional roles 
of these genes in modulating chondrocyte metabolism, apoptosis, 
inflammatory  signaling,  and  immune  cell  interactions.  
Additionally, investigating their downstream signaling pathways 
and interactions with the immune microenvironment may offer a 
more robust theoretical and experimental basis for precise 
molecular subtyping and targeted therapy of OA. 

In conclusion, this study was initiated with metabolomics of 
clinical samples, identifying a series of significant molecular 
markers closely associated with OA through comprehensive 
multi-level data integration and analysis. Consequently, an 
efficient and accurate diagnostic model was developed. These 
results improve our understanding of the pathogenesis of OA and 
its intricate regulatory networks and offer a solid foundation for 
future precision medical. 
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