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The global immune landscape of SARS-CoV-2 has progressively shifted from a

naïve population several years ago to a population that possesses immunity to

the virus through infection, vaccination, or a combination of both, known as

hybrid immunity. Hybrid immunity offers a prolonged period of transmission-

blocking activity, likely related to enhanced tissue-resident immunity, but also

has been shown to be linked to broader humoral and cellular immune responses.

Compared with vaccination or infection alone, the collective data have

demonstrated that hybrid immunity offers enhanced protection against

disease. Yet, despite the benefits of hybrid immunity, perpetual evolution of

variants and the natural waning of immunity in vulnerable populations provides a

strong rationale for revaccination. This article reviews the benefits of

revaccination, including updating variant-specific immunity, bolstering humoral

and cellular immune frequencies in those with hybrid immunity, and overcoming

immune imprinting and enhancing effector mechanisms to raise surveillance and

defense against the virus. As SARS-CoV-2 continues to evolve, updated booster

vaccinations remain essential to enhance and sustain protection from disease by

ensuring that the immune system is equipped to respond to contemporary

strains, thereby reducing the impact of future outbreaks and mitigating the

burden of COVID-19, especially among vulnerable populations.
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1 Introduction

Several years after the first emergence of SARS-CoV-2 in 2019 (1), the global immune

landscape has progressively evolved from a SARS-CoV-2–naïve population to one with

hybrid immunity (2–5). Today, most of the world’s population has experienced a SARS-

CoV-2 infection and/or received vaccination (2–4). The rapid and effective spread of SARS-

CoV-2 is largely attributable to the unrelenting adaptation of the virus to population-level

immunity, with an accumulation of escape mutations in the Spike antigen enabling

successive surges of reinfections (6–8). While the majority of the world now possesses

some level of immunity to the virus, these waves of reinfections continue to pose a real risk

to vulnerable groups, including the aging population and individuals with compromised
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immunity, due to an inability of the immune system to adapt and

block viruses with enhanced transmissibility or to respond with

sufficient speed to contain the virus and prevent severe clinical

outcomes (3, 6). In fact, older adults, those who are

immunocompromised, and those with certain comorbid

conditions continue to be hospitalized at the highest rates (9, 10),

and COVID-19 continues to have a greater impact than influenza in

terms of morbidity and mortality in the United States (11).

Moreover, in the absence of robust immunity, these vulnerable

populations are susceptible to post-acute sequelae, such as long

COVID or post-COVID conditions, resulting in increased health

burden and the risk of mortality (12, 13). Yet, the public health

challenge is further complicated by the fact that the circulation of

SARS-CoV-2 does not follow typical seasonality, but instead new

variants emerge unpredictably throughout the year, rendering it

difficult to time vaccine updates (14, 15).

Compared with vaccination or infection alone, emerging data

have clearly demonstrated the superior level of protection conferred

by the combination of vaccination and infection, termed hybrid

immunity (5). Specifically, hybrid immunity offers a prolonged

period of transmission-blocking activity (16, 17), likely related to

enhanced tissue-resident immunity (18, 19), but also has been

shown to be linked to broader humoral (20–22) and cellular

immune responses (17, 23, 24). However, even in the setting of

hybrid immunity, vulnerable populations continue to suffer from

more severe disease and death, potentially related to reduced

durability, compromised or senescent cellular immunity, or

compromised capacity to elicit neutralizing antibodies in response

to SARS-CoV-2 variants (25). SARS-CoV-2 variants are genetically

mutated versions of the original virus that may have differing viral

features, and are defined according to their lineages based on the

genetic sequence of the Spike protein (26). Since the original SARS-

CoV-2 was detected in 2019 (1), several variants have emerged, such

as Alpha, Delta, and Omicron, each with varying degrees of

transmissibility and disease severity (27). Development of first-

generation COVID-19 vaccines targeting the original SARS-CoV-2

were proven to be effective, with subsequent development of

variant-targeting vaccines as a response to manage emerging

variants (28). Vaccination with the current COVID-19 seasonal

vaccine provides an opportunity to not only bolster titers and

effector cell frequencies, but also to reeducate and update the

adaptive immune system to respond to the to the updated

variant-focused vaccine (29–31). These more recently primed and

educated immune responses create a higher barrier of immunity

within these vulnerable populations and have the potential to

reduce the risk of acute and post-acute COVID-19 events (32–35).

This review focuses on real-world evidence as well as the

mechanisms of protection afforded by revaccination in individuals

with hybrid immunity. We aim to explore and inform on the

strategic use of vaccination to boost immunity and increase the

window of protection, particularly among populations at higher risk

for COVID-19. We also place this information in the context of

subsequent protection against SARS-CoV-2 variants, particularly

during multiple waves of omicron variants given the recent global

recommendations for monovalent variant-updated vaccines (36).
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2 Updating immunity to overcome
imprinting

In October 2021, prior to the emergence of the highly

transmissible omicron variant, global SARS-CoV-2 seroprevalence

was estimated at 67% (37). SARS-CoV-2 seroprevalence in the

United States has been largely attributed to vaccination (38).

However, the steep increase in infections following the emergence

of omicron in November 2021, due in part to the ineffectiveness of

previous infection–induced immunity to protect against omicron,

and expanded vaccine coverage led to increased vaccine- and

infection-induced seroprevalence of >90%, with increases in

hybrid immunity of 51%-60% by mid-2022 (37, 39–46). While it

is difficult to determine the cause of seroprevalence at a population

level, following repeated waves of global omicron sublineage

evolution and transmission, it has been estimated that upwards of

90% of the globe has detectable SARS-CoV-2 antibodies from

infection, vaccination, or hybrid immunity (46–49). The

extraordinary speed of global transmission events coupled with

the unprecedented speed of vaccine development, updating, and

deployment has created remarkable heterogeneity in the frequency

of vaccine and infection events across the population (40, 43, 47, 48,

50). However, emerging data suggest that the sequence and type of

immune exposures substantially influence the quality of the

immune response. For instance, the timing of vaccination

following SARS-CoV-2 infection may influence post-vaccine IgG

levels in hybrid immune individuals (51).

As SARS-CoV-2 continues to evolve, selective pressure through

host immune responses can influence pathogen evolution to evade

preexisting immunity (52). In the evolutionary arms race, the

immune system rapidly adapts to respond to newly evolving

variants, but often is heavily biased by preexisting memory B-cell

specificities, also known as immune imprinting, that prevents the

generation of truly de novo responses that find novel means to

respond to evolving variants (53). This bias is due to the existence of

a population of memory B cells that have high affinity and

specificity to the initial strain, that compete aggressively for

antigen in the germinal centers, preventing naïve B cells from

competing for signals to proliferate and expand (53).

Despite the evolution of novel variants of concern and the

inclusion of updated sequences in vaccines, both revaccination and

reinfection result in the recall of the original virus-specific response

to which an individual was first exposed (53). This imprinting

manifests due to the rapid and preferential binding of preexisting

SARS-CoV-2–specific B cells to shared epitopes on the circulating

and original strain to which the individual was exposed (53).

However, the non-shared, or escape, mutations found on the

contemporaneous strain represent the critical immune targets for

control, clearance, and future immunity against the current variant

(54). Reinfection naturally stimulates evolution of the immune

response to the circulating virus (55). However, for vulnerable

populations that are susceptible to potential complications of

infection, vaccination with updated strains represents a key

approach to rapidly update and educate the immune response to

adapt to respond to the evolving viral variants.
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The importance of overcoming imprinting was clearly illustrated

following the evolution of the delta and then omicron SARS-CoV-2

lineages (53). While vaccination with the original antigenic sequence

conferred protection against delta variant infection, protection

against omicron was reduced, and neutralizing antibody titers

waned more quickly (56). This differential protection across the

variants of concern was likely related to the higher conservation of

delta to the original strain, resulting in more cross-reactive antibodies

from the original Wuhan-based vaccine with the ability to neutralize

delta compared with the more distant and less cross-reactive omicron

(57–62). The critical importance of sequence degree of similarity

between the variants became increasingly evident as reinfection rates

were estimated to have increased from alpha-dominated periods

(0.57, 95% confidence interval [CI]: 0.28–0.94]), through delta

(1.25, 95% CI: 0.97–1.55), and through the initial wave of the

highly divergent omicron (3.31, 95% CI: 1.15–6.53) (63). Of note,

while comparing rates of re-infection across variants, the likelihood of

exposure to the virus due to masking, social distancing, quarantining,

etc. should be considered (64). The efficacy of infection-induced

immunity alone against reinfection was estimated to be 65%

(incidence rate ratio [IRR] = 0.35, 95% CI: 0.26–0.47), with the

pooled IRRs for the alpha (IRR = 0.11), delta (IRR = 0.19), and

omicron (IRR = 0.61) variants indicating progressively lower

effectiveness (65). Despite widespread global immunity, the

continued evolution of omicron subvariants JN.1, KP.2, and KP.3

subverted previous vaccine- and infection-induced immunity,

necessitating updating the monovalent XBB.1.5-targeting vaccine.

Although genetic evolution occurs across the entire viral

genome, continual changes in the receptor binding domain

(RBD) of the Spike protein lead to evasion of population-level

immunity to previous strains and are particularly relevant for

vaccine-induced immunity (8, 36, 66). However, beyond their

ability to evade preexisting humoral immune responses, several

mutations, including those in the XBB variant and more recently in

the KP sublineages of omicron, also exhibit increased

transmissibility compared with SARS-CoV-2 variants that

emerged during earlier phases of the pandemic (67, 68). This

increased transmissibility has led to widespread waves of global

infection (69). Yet, in the wake of these waves of infection and

despite reduced neutralization of new variants, COVID-19

vaccination provided protection against severe disease and was

associated with greater point estimates of protection against

hospitalization among cases with XBB/XBB.1.5 versus non-XBB/

XBB.1.5 cases (52). The XBB/XBB.1.5 lineage was more sensitive to

immune responses triggered by vaccination than to those triggered

by prior infection with pre-omicron or BA.4/BA.5 (52). However,

updates to vaccine composition resulted in approximately 60%

increased protection against infection caused by XBB.1.5, the

variant targeted by the monovalent mRNA vaccine. The

protection against infection provided by the monovalent

XBB.1.5–targeting vaccine was only 49% against the emerging

JN.1 variant (70), highlighting the critical importance of updating

immunity to the more contemporaneously circulating variant. As

such, the World Health Organization (WHO) recommended the

inclusion of JN.1 antigen in vaccines to enhance protection against
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the JN.1 variant (71). Yet, JN.1 is now being replaced by JN.1

subvariants with mutations in the Spike protein, including FLiRT

variants, KP.2, KP.3, and LB.1, which may have an even higher viral

fitness (49). KP.2 has shown an almost 3-fold resistance to

neutralization following XBB.1.5 vaccination and almost 2-fold

resistance following previous infection (72). For the 2024–25

COVID-19 vacc ine update , the US Food and Drug

Administration (FDA) recommended including the KP.2 strain,

intended to expose the immune system to the most recent dominant

circulating variant to mount a variant-specific immune response

(73). Particularly in vulnerable populations, updated vaccination

may critically promote enhanced antibody titers to highly variable

regions of the viral Spike glycoprotein, replenish effector T cell

numbers, and update memory B cell clonal repertoires, enabling

these cells to respond more effectively upon encounter with the next

viral variant (31, 74).

Vaccination has been shown to provide protection from infection

and enhance protection against illness in previously infected

individuals (75). Conversely, in New Zealand, where vaccination

rates were high with low levels of infection, the omicron wave early in

2022 led to nearly 24,000 daily cases and significant increases in

hospitalization and intensive care unit admission, arguing that a

combination of both infection and vaccination provided enhanced

protection against severe disease (76). Omicron infected large swaths

of the population globally, resulting primarily in upper respiratory

disease (77, 78); however, the lack of concomitant increases in

hospitalizations in vaccinated people (79) demonstrated the impact

of vaccine-induced immunity against severe outcomes. In contrast,

unvaccinated individuals in Hong Kong experienced high rates of

hospitalization, severe disease, and death (80), highlighting the

pathogenicity of omicron in non-immune populations. Moreover,

additional revaccination with a fourth mRNA vaccine dose resulted

in enhanced relative vaccine effectiveness against severe COVID-19

in adults aged ≥40 years, irrespective of infection history (81). The

precise mechanism by which revaccination confers maximal

protection against infection and disease in hybrid-immune

individuals is likely via both quantitative and qualitative changes to

the neutralizing/non-neutralizing antibody and adaptive cellular

SARS-CoV-2–specific responses both peripherally and at mucosal

barriers responsible for maximal immunity against this evolving

pathogen. An overview of the features of SARS-CoV-2 infection-

induced immunity, vaccination-induced immunity, and hybrid

immunity is presented in Table 1.
2.1 Revaccination as a mechanism to
update neutralizing antibody responses

A significant number of studies have noted the critical immune

synergy created by combined natural and vaccine-mediated

protection in hybrid immunity, related to: broader proteomic

coverage of humoral and cellular immune responses (74),

improved breadth and magnitude of the neutralizing antibody

response (51), enhanced B-cell affinity maturation (82, 83), shift

in humoral immunodominance to more conserved regions of the
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Spike antigen (84, 85), and mucosal immune induction (86). As

such, hybrid immunity allows for a broader, more diverse, and

mucosally enriched humoral immune response compared with

immunity from vaccination or infection alone (20, 24) (Figure 1).

Specifically, vaccination alone induces highly potent but narrowly

focused neutralizing antibody responses due to the stabilized

presentation of the Spike antigen following COVID-19

vaccination (87). These responses are largely focused on the

immunodominant RBD domain of the Spike antigen (88, 89), the

primary region involved in attachment to the host angiotensin-

converting enzyme 2 (ACE-2) receptor (90). However, infection
Frontiers in Immunology 04
alone or the combination of infection and vaccination results in an

expansion of the humoral immune response to additional domains

of the Spike antigen, including enhanced responses to the less

mutable N-terminal (NTD) and S2 domains of the Spike antigen

(85, 91). Despite their lower potency, expanded S2 responses have

been shown to exhibit enhanced breadth of coverage across

sarbecoviruses, and these findings may guide effective vaccine

strategies for protection against evolving variants (92).

Critically, revaccination drives rapid and highly productive

evolution of RBD-specific antibodies away from historical variants

(93, 94) (Figure 1). Early revaccination data suggested that inclusion

of the ancestral strain, in a combination vaccine, resulted in the

continued selection and expansion of poorly cross-reactive,

previously primed, B-cell responses (95, 96). Conversely,

revaccination with updated variant vaccines only, ensured the

evolution of the previously primed response towards the newer

variant (97). However, the combination of infection and

revaccination clearly illustrated the greatest increase in breadth of

neutralization (98). The evolution of enhanced breadth of

neutralization following breakthrough infection likely arose due to

a combination of an updated Spike antigen, multiple structural

presentations of the antigen on a virus or virally infected cell, the

additional innate immune signals that are induced following infection

(98), and potentially expanded T-cell helper signals. Together, these

factors drive enhanced B-cell selection in the setting of hybrid

immunity. However, upon revaccination, recall of these previously

vaccine- and infection-primed B cells expands robustly, leveraging

the rich preprogrammed memory B cells that can now adapt rapidly

and robustly to potentially new viral variant sequences (98).

Mounting evidence suggests that hybrid immunity results in the

presence of higher frequencies of memory B cells compared with
Infection

variable type-specific
functional humoral 

immunity

robust type-specific
functional humoral 

immunity

diversified cross-reactive 
functional humoral immunity

diversified affinity-matured 
cross-reactive functional 

humoral immunity

Vaccination Hybrid Immunity Re-vaccination of Hybrid Immunity

narrow specificity broad specificity

FIGURE 1

Functional humoral immunity varies across different immune scenarios. Infection produces a variable response with broad specificity, but limited
affinity maturation. Vaccination elicits robust and specific antibodies, but narrowly focused protection. While hybrid immunity combines the
strengths of both infection and vaccination, revaccination of hybrid-immune individuals further diversifies and matures the humoral response,
leading to affinity-matured, highly cross-reactive antibodies. This approach optimally updates the immune repertoire to respond effectively to
emerging variants, especially through improved mucosal and systemic functional immunity.
TABLE 1 Comparative features of SARS-CoV-2 immunity types.

Immune
Effectors

Infection Vaccination Hybrid
Immunity

Neutralizing
antibodies

+ ++ +++

Fc-effector antibodies ++ + +++

B-cell frequencies + ++ +++

CD4+ T-
cell responses

+ ++ +++

CD8+ T-
cell responses

++ -/+ +++

Mucosal
immune responses

++ -/+ +++
"+" → Low level immune response
"++" → Moderate level immune response
"+++" → High level immune response
"++++" → Very high or enhanced immune response
"-/+" → Variable or inconsistent response
"-" or "---" → Absent or no detectable immune response.
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infection or vaccination alone (22, 82); the B cells are primed for a

more robust response upon revaccination (22) (Figure 2).

Moreover, deeper B-cell clonal repertoire analyses illustrated that

hybrid immunity resulted in the recruitment of broader, more

affinity-matured, clonal repertoires that are resilient to evolving

variants (99, 100). Specifically, RBD-specific neutralizing antibodies

isolated from unvaccinated individuals following infection tend to

show little or no somatic mutation, whereas antibodies following

three doses of mRNA vaccine or breakthrough infection show high

levels of somatic mutation, leading to greater cross-neutralization

(101). These broader, richer, clonal repertoires still vary across

hybrid populations, depending on the variant that caused infection.

However, hybrid immunity likely provides a broader repertoire

upon which novel variant boosting may help adapt immune

responses more contemporaneously (93, 94, 99, 100).

Revaccination in a hybrid-immune individual furthermore is likely

to recall memory B-cell responses that were programmed at the

mucosal barrier in the setting of previous infection (102). Specifically,

while vaccination alone does not elicit high immunoglobulin A (IgA)

titers that are critical for mucosal protection, infection elicits high levels

of systemic and mucosal IgA responses (103). Notably, revaccination

elicited higher titers of IgG and IgA in saliva compared with primary

immunization (104), arguing that revaccination has the capacity to

bolster mucosal humoral immunity. Furthermore, hybrid immunity

was associated with an enrichment of mucosal B-cell responses (MBCs)

and tissue-resident CD4 and CD8 T-cell responses in the

bronchioalveolar lavage (BAL) not observed in individuals that had

only received a vaccine (105).

Studies have shown the cross-recognition potential of memory

B cells primed by vaccination alone, particularly those exposed

initially to the ancestral Wuhan-Hu-1 strain. In vaccine-only

individuals, memory B cells elicited by the original mRNA

vaccines retain the ability to recognize and respond to diverse

SARS-CoV-2 variants, though with reduced breadth and potency

compared with those with hybrid immunity (83, 106). The effect of
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re-vaccination using either monovalent (Wuhan-Hu-1) or bivalent

(Wuhan-Hu-1 + Omicron BA.4/5) mRNA boosters has been shown

to expand memory B cell breadth (107). Importantly, individuals

with hybrid immunity demonstrate superior somatic

hypermutation and affinity maturation in memory B cells, with

improved recognition of divergent Spike proteins (108, 109). This

evolution of the B cell response is particularly relevant in

immunocompromised populations, where both the magnitude

and quality of vaccine-induced memory B cells are often impaired.
2.2 Revaccination as a mechanism to drive
non-neutralizing antibodies

Beyond the ability of highly affinity-matured antibodies to

neutralize the virus, emerging data suggest that additional properties

of antibodies may contribute to attenuation of disease. Specifically,

beyond their ability to block infection, once complexed with a virus or

virally infected cell, antibodies are able to rapidly interact with Fc-

receptors found on all innate immune cells and drive rapid clearance or

destruction of the complex (110). Importantly, naturally produced

non-neutralizing antibody functions during infection have been linked

to protection against severe disease and death (111). Additionally,

convalescent plasma with the ability to drive antibody-mediated

cytotoxicity was associated with protection against disease (112), and

therapeutic monoclonal antibodies targeting the Spike protein

depended on the ability to recruit the innate immune system via Fc-

receptors to provide protection against disease (110). Interestingly,

while these non-neutralizing antibody functions are induced by

vaccination and infection, hybrid immunity has been shown to

bolster these responses (113).

Unlike neutralizing antibodies that must target sites involved in

host-cell binding or fusion mechanisms, non-neutralizing

antibodies can target the whole surface of the Spike antigen (114).

Both vaccination and infection have the potential to expand
Infection Vaccination Hybrid Immunity Re-vaccination of Hybrid Immunity

variable frequencies of 
type-specific memory 

B cells

robust frequencies of 
largely type-specific 

memory B cells

robust and diversified broadly 
reactive peripheral and 

mucosal memory B cells

robust diversified affinity-matured 
cross-reactive peripheral and 

mucosal memory B cells

narrow specificity broad specificity mucosal & broad

FIGURE 2

Varying immune exposures differentially characterize functional B-cell responses. Infection produces variable frequencies of memory B cells, with
some broad reactivity due to exposure to diverse viral antigens, but typically limited by lower somatic hypermutation and affinity maturation.
Vaccination induces robust frequencies of memory B cells that are largely type-specific and focused on the vaccine antigen, with limited breadth
and minimal mucosal targeting. Hybrid immunity results in a robust and diversified memory B-cell pool, encompassing both peripheral and mucosal
compartments. This broad reactivity enables improved protection across variants and sites of viral entry. Revaccination of hybrid-immune individuals
enhances the diversity, affinity maturation, and mucosal targeting of memory B cells, producing a highly cross-reactive and protective memory
B-cell repertoire optimized for variant recognition and clearance.
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antibody function and responses across the Spike protein; however,

infection-induced non-neutralizing antibodies may target a broader

array of Spike antigen presentation states (pre- and post-fusion) as

well as other virally encoded antigens (110, 115). Moreover, hybrid

immunity has the potential to benefit from both vaccine- and

infection-associated immune programming, inducing functional

antibodies focused on an array of Spike antigen presentation

states, programmed to elicit diverse antibody effector functions

due to priming/boosting across inductive sites (22). Additionally,

because non-neutralizing antibodies can target epitopes outside of

the RBD, emerging data suggest that non-neutralizing functional

antibodies are more resilient (85, 111, 113, 116), targeting less

mutable segments of the Spike antigen. Thus, revaccination has the

capacity to rapidly recall and boost variant-resilient, highly

functional, humoral immune responses.

As mentioned above, revaccination in hybrid-immune populations

is associated with the induction of broader antibody isotypes, including

IgA, due to preexisting priming within mucosal inductive sites (117–

122). Within mucosal tissues, IgA typically dimerizes, forming a

quadrivalent molecule, able to bind incoming virus with higher

avidity, which may enable IgA to continue to neutralize even in the

setting of viral evolution (123, 124). Moreover, monomeric IgA may

also interact with neutrophils that may be rapidly recruited to the

mucosal barrier upon infection and drive rapid opsonophagocytosis of

the virus (125–128). The importance of IgA responses to protection

against COVID-19 was illustrated among healthcare workers in

Barcelona, where higher IgA responses were observed among those

with hybrid immunity compared with vaccination alone (129).

Additionally, higher levels of IgG and IgA antibodies were shown to

be a correlate of protection against breakthrough infection following

revaccination (129, 130). While IgA responses in the nasal washes are

higher in individuals following infection compared with vaccination,

significantly higher levels of IgA and IgG are detectable in the nasal

washes following boosting in individuals with hybrid immunity, with

IgA antibodies contributing dominantly to neutralization in the

mucosa (103).

Collectively, revaccination of hybrid-immune individuals leverages

key humoral immune features that are likely key for protection against

infection and disease: rapid affinity maturation and clonal

diversification, enabling the rapid adaptation and updating of the

humoral immune response for the most current viral variant (120,

131, 132), and expansion of functional humoral immunity to the whole

surface of the Spike antigen, resulting in a highly resilient immune

response able to rapidly capture and clear the infection (22). Thus,

boosting of hybrid-immune B-cell repertoires is likely able to elicit more

contemporaneously adapted immune responses at the mucosal barrier

thatmay be essential to protect thosemost vulnerable in our population.
2.3 Revaccination as a mechanism to
bolster T-cell immunity

As novel variants arose, protection against hospitalization and

death in vaccinated populations also pointed to a potential role for

T cells as key correlates of protective immunity against COVID-19
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disease (133). Along the same lines, early in the pandemic, studies

highlighted an association between preexisting cross-reactive

human coronavirus T cells and reduced risk of severe COVID-19

disease (134–137), due to conserved T-cell targets across previously

circulating coronaviruses and SARS-CoV-2 (138). Moreover, the

fact that vaccination provided benefit from severe disease and death

in individuals lacking B cells due to treatments for autoimmunity or

malignancies (111, 139) and was demonstrated to be effective in

individuals with inborn errors of B-cell development (e.g., X-linked

agammaglobulinemia) (140), further highlights the importance of

T-cell immunity in disease attenuation (141, 142). Unlike

neutralizing antibodies, vaccine-induced T-cell responses have

exhibited remarkable resilience across variants (143–146),

demonstrating persistent recognition of variant sequences (138).

In the setting of hybrid immunity, T-cell–mediated immunity was

characterized by detectable viral proteome-wide T-cell responses

(147–149), broader clonal composition (150, 151), enhanced

cytotoxic CD8 T-cell responses (150), and presence of T cells at

mucosal sites (18) (Figure 3). Revaccination resulted in increased

expansions of both CD8 and CD4 T-cell receptor (TCR) clonal

repertoires and large numbers of CD8 T-cell responses (117–121),

arming the immune system with a diverse and rich repertoire of

T cells primed for antiviral activity upon viral re-exposure.

Importantly, after priming or revaccination, T-cell immune

responses reach maximal numbers of both memory and effector

cells. However, over time, terminally differentiated effector cells

contract, resulting in the persistence of largely central memory

T cells (152). Thus, while T-cell responses appear to persist over

time following vaccination, infection, as well as in the setting of

hybrid immunity (153), effector cell responses contract in all

populations, resulting in the circulation of only memory T cells,

and not armed effector cells ready to respond immediately upon

reinfection. Activation of memory T cells occurs in response to

active viral replication or following vaccination. However, the speed

of activation and conversion of memory, also known as anamnestic

immunity, is a critical determinant of the ability of T cells to control

and clear infection (154, 155). Due to age- or inflammation-

associated senescence, anamnestic immunity is dampened in

older and immunocompromised individuals (156, 157). Instead,

revaccination is able to bolster T-cell numbers, and particularly

effector cells, ready to act upon encounter with a virally infected cell,

which may be of the utmost importance in vulnerable populations

that exhibit delayed proliferative kinetics and/or require higher

frequencies of T cells due to compromised humoral immune

responses (158). Within the cellular arm of the immune response,

cytotoxic T cells (CD8 T cells) play a role in viral control and

clearance by directly interacting with SARS-CoV-2–infected cells to

suppress viral replication or kill the infected cells (159). In contrast,

CD4 T cells play diverse roles, as helpers for B- and T-cell

programming (159), but can also differentiate into cytotoxic cells

that are induced at higher levels with hybrid immunity and are

linked to protection against symptomatic disease (22). Importantly,

among the CD4 T-cell subpopulations, follicular helper (Tfh)

subpopulations play a key role in promoting effective humoral

immune responses (160, 161). While vaccination alone was shown
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to elicit robust SARS-CoV-2 Spike-specific CD4 T-helper responses

and low-level CD8 T-cell immunity (162–164), infection induces

enhanced CD8 T-cell immunity (150). This observation argues that

viral infection may promote enhanced cytotoxic CD8 T-cell

responses (150). However, vaccination following infection and

revaccination of hybrid-immune individuals resulted in a robust

expansion of both cytotoxic CD4 and CD8 T-cell responses (117–

121) (Figure 3) as well as Tfh levels (160, 161) that are likely key to

robust affinity maturation and evolution of neutralizing

antibody responses.

Additionally, unlike vaccination alone, hybrid immunity results

in the induction of tissue-resident T-cell populations that can

respond rapidly to infection (18, 19), pointing to a critical

opportunity for revaccination to increase the number of effector

cells at the site of viral replication. A study evaluating phenotype,

specificity, function, and persistence of nasal-resident SARS-CoV-

2–specific T cells showed almost exclusive detection of SARS-CoV-

2–specific CD4 and CD8 T cells in nasal mucosa among individuals

with hybrid immunity versus those with only vaccine-induced

immunity (18), with nasal-resident T-cell responses persisting for

≥140 days post infection (18). Differences observed in hybrid

immunity compared with vaccine-only immunity may be related

to critical signals delivered to T cells during SARS-CoV-2 infection

within the mucosa, which may be key to retaining T cells at the site

of infection. Along these lines, preclinical studies have suggested

that, following infection, nasal-associated lymphoid aggregates

remain active in the tissue, supporting the persistence of virus-

specific T cells (18, 165), particularly in the lower respiratory tract

(105). Because memory T cells perpetually survey tissues,

revaccination is likely to bolster both systemic and tissue-resident

immunity, amplifying the number of effector cells able to respond

to infection.

Both infection- and vaccine-induced T cells exhibit broad cross-

reactivity against newly emerging variants (86), including XBB.1,
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BA.2.86, and beyond (87). Interestingly, the order of vaccination/

infection appears to affect the CD8 T-cell response (166).

Additionally, the frequency and functional diversity of T cells

expands with successive doses of mRNA vaccination in a hybrid-

immune population (121). Importantly, these expanded CD4 and

CD8 T-cell responses lead to increased viral control and

clearance (159).

In addition to enhanced humoral responses, hybrid immunity is

associated with robust and sustained cellular immune responses,

particularly characterized by elevated interferon-gamma (IFN-g)
secretion by antigen-specific CD4+ and CD8+ T cells. These T-cell

responses are often polyfunctional, co-expressing IFN-g, IL-2, and
TNF-a, and display greater breadth and magnitude than those

elicited by vaccination or infection alone (135). Importantly, IFN-g
production remains detectable for several months following antigen

exposure and appears to be less affected by Spike protein mutations,

contributing to more durable and cross-variant protection in

hybrid- immune individuals (167, 168). Moreover, evidence

suggests that different cytokine profiles lead to various helper

functions, with similarities across both vaccinated and hybrid

individuals (169). This enhanced T cell–mediated immunity likely

plays a critical role in limiting disease severity, especially in the

context of emerging variants with partial escape from

neutralizing antibodies.

Overall, revaccination significantly enhances T-cell responses

following infection, particularly within the mucosal compartments,

leading to increased numbers of both CD4 and CD8 T cells at the

sites of viral replication. This augmentation is critical for vulnerable

populations, as it improves the body’s ability to rapidly respond to

and clear infections, including by highly mutated SARS-CoV-2

variants. Thus, boosting not only strengthens the overall T-cell–

mediated immune response but also ensures a robust and versatile

defense mechanism against emerging variants of concern, as T-cell

epitopes are more conserved across viral variants (170).
Infection Vaccination Hybrid Immunity Re-vaccination of Hybrid Immunity

CD4
CD8CD4 CD4 CD4CD8 CD8

peripheral CD4 T cells peripheral CD8 T cells tissue-resident CD4 T cells tissue-resident CD8 T cells

variable frequencies of 
peripheral and mucosal 
CD4 and CD8 T cells

robust frequencies of 
largely peripheral 

CD4 T cells

robust frequencies of 
peripheral and tissue-resident 

CD4 and CD8 T cells

robust diversified frequencies of 
peripheral and tissue-resident CD4 

and CD8 T cells

FIGURE 3

The landscape of functional T-cell immunity is shaped by varying immune scenarios. T-cell responses (CD4 and CD8) differ in frequency and
localization across immune scenarios, impacting protection at peripheral and mucosal sites. Infection generates variable frequencies of peripheral
and mucosal CD4 and CD8 T cells, influenced by the severity and location of infection, with limited consistency in tissue-resident T-cell
populations. Vaccination induces robust frequencies of largely peripheral CD4 T cells, with limited impact on CD8 or tissue-resident T cells,
providing systemic protection but minimal mucosal immunity. Hybrid immunity combines features of infection and vaccination, resulting in robust
frequencies of both peripheral and tissue-resident CD4 and CD8 T cells, enhancing protection at mucosal sites and against reinfection.
Revaccination of hybrid-immune individuals further diversifies and amplifies frequencies of both peripheral and tissue-resident CD4 and CD8 T cells,
driving optimal immune surveillance and response at systemic and mucosal sites.
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2.4 Revaccination as a mechanism to
improve immune durability

The benefits of revaccination in hybrid-immune populations

over time was modeled in the setting of individuals living in prison

settings (171). Specifically, the impact of infection alone,

vaccination alone, hybrid immunity, and revaccination on

reducing the risk of infection in their close contacts was assessed

(171). While hybrid immunity provided the greatest and most

durable level of indirect protection, additional vaccine doses,

especially those targeting circulating variants, provided additive

benefits in those with infection-acquired immunity (171). Whether

this enhanced durability of protection was due to characteristics of

the infecting variant, improved quality of the immune response, or

simply higher levels of antibody titers or T-cell frequencies remains

incompletely defined.

Vaccination-induced immunity, while initially highly effective

in limiting COVID-19 (172), clearly wanes over time, both due to

decreasing systemic antibody concentrations but also due to the

emergence of viral variants (132, 173). Importantly, the same trend

of waning immunity was observed with infection-induced

immunity, which has been shown to initially provide a high

degree of protection against reinfection, but over time provides

incomplete protection against emerging SARS-CoV-2 variants

(174). Specifically, titers following vaccine-induced immunity

have been shown to be more durable than those following

infection, particularly with mRNA-based COVID-19 vaccines,

with a median duration of 29.6 months (175). In comparison,

infection offered a substantial initial immune response, but with a

shorter median durability of 21.5 months (175). Hybrid immunity,

resulting from infection followed by vaccination, shows enhanced

and more durable immune responses than either vaccination or

infection alone, leading to higher antibody titers and better cross-

reactivity against different variants (176, 177). However, strikingly,

following a third vaccine dose, waning declined, and after a fourth

dose antibody titers remained remarkably stable (173).

Furthermore, boosting of individuals with hybrid immunity

exhibited more durable protection from reinfection (39), both in

the pre-omicron and post-omicron era, suggesting that COVID-19

mRNA vaccination induces long-lasting transmission-blocking

activity (178).

Beyond the effects of high-titer antibodies that provide a first

line of defense against an incoming infection, the anamnestic

immune response has been linked to long-term protection against

COVID-19 (179). Higher frequencies of the circulating memory

T and B cells that survey for infection increase the probability of a

rapid and effective response to infection (152, 180, 181). Along these

lines, the speed of the anamnestic antibody response was a critical

predictor of viral control 1 year after mRNA vaccination in a non-

human primate model (182). Importantly, the speed of the

humoral, but not the T cell, response was a key determinant of

viral load control in this preclinical model (182). Similarly, a rapid

immune response upon reinfection with SARS-CoV-2 has been

shown to be improved with hybrid immunity compared with

vaccination alone in humans (22, 117), potentially via the rapid
Frontiers in Immunology 08
generation of germinal centers able to quickly adapt to the incoming

variant resulting in accelerated generation of antibody-secreting

cells producing up-to-date RBD-specific antibodies (22). Moreover,

revaccination, as described above, increases both the frequency and

quality of memory B cells and T cells, providing the potential for

effective immune recall of diverse and high-quality memory cells in

response to reinfection (16, 24, 82, 178). These data point to 2

potential mechanisms underlying durable immunity: 1) the

persistence of a strong initial defense against the virus,

characterized by sustained antibody titers and effector T cells, and

2) the maintenance of an expanded pool of memory B and T cells

that can be quickly recalled. These memory cells are capable of

rapidly recognizing and adapting to sequence changes, as well as

proliferating in response to viral exposure with the capacity to traffic

and respond rapidly at the site of infection. Routine revaccination is

likely a key mechanism by which both of these lines of defense may

be bolstered to provide both a first and second line of defense

against SARS-CoV-2.

Among immunocompromised individuals, dampened antibody

responses following SARS-CoV-2 infection and vaccination have

been well established. Immunocompromised individuals often

required multiple vaccine doses (up to 4 or 5) to achieve antibody

titers comparable to those of immunocompetent individuals (183).

Revaccination after a SARS-CoV-2 infection offers substantial

benefits to these individuals by significantly enhancing both

humoral and cellular immune responses (183). The combination

of infection and vaccination has been shown to lead to a significant

increase in neutralization capacity and cross-protection against

emerging variants, including omicron variants, which have been

more challenging due to their antigenic drift from the original virus

strain (184). T-cell activation and memory T-cell formation were

also stronger following revaccination in this group, providing a

more robust and long-term immune defense against SARS-CoV-2

(158, 185). Moreover, this improved immune response translated

into more favorable clinical outcomes for immunocompromised

individuals with hybrid immunity compared with those who did

not receive a vaccine post-infection, where individuals with hybrid

immunity showed lower hospitalization rates and a reduced risk of

severe COVID-19 complications (186). Yet, revaccination of

immunocompromised populations with hybrid immunity was

shown to update and replenish rapidly waning humoral immune

responses (187), suggesting that such revaccination may be key to

ensuring that these individuals experience mild or moderate

symptoms when subsequently exposed to SARS-CoV-2.
2.5 Revaccination to prevent post-acute
sequelae of COVID-19

In addition to acute phase outcomes, it is important to consider

the post-acute sequelae of COVID-19. Long COVID, or post-acute

sequelae of COVID-19, includes a myriad of complications affecting

multiple organ systems, which, beyond 30 days after COVID-19

diagnosis, cause a substantial burden of health loss and increased

risk of mortality (12). Findings from a cohort study utilizing
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electronic health record databases in the United States showed that

risk of post-acute sequelae and death were substantially lower in

individuals with hybrid immunity versus those with infection alone

(188). Similarly, findings from a prospective study showed that

unvaccinated individuals reported higher rates of post-acute

sequelae at 6 months compared with those who were vaccinated

(45.2% vs. 33.3%; p = 0.018) (189). However, additional doses of

vaccine in those with hybrid immunity was shown to provide a

protective effect in a large study of over 109,000 individuals in

Germany, with a direct protective effect against post-COVID

condition observed following a fourth vaccination (190).

Several hypotheses have been raised to explain the etiology of

long COVID, including the potential persistence of viral reservoirs

in specific organs/tissues that may lead to persistent inflammation

and tissue damage (191, 192). Additionally, the association of long

COVID with the emergence of pathological immune responses

following resolution of acute infection remains a critical area of

research in the field. However, the ability to improve immune

surveillance, across all organs and tissues, to both prevent an initial

acute tissue pathological insult or to contribute to persistent

surveillance and elimination of reservoirs likely could play an

important role in limiting long COVID. Vaccination after

recovery from COVID-19 boosts the immune response (39),

potentially helping to clear any residual virus and preventing its

reactivation, which could contribute to prolonged symptoms. Thus,

the expanded T- and B-cell responses observed with revaccination,

in addition to hybrid immunity, may offer a critical means to not

only provide protection against the acute inflammatory

consequences of COVID-19, but also provide an additional

defense against post-acute consequence of infection (121, 189).
3 Discussion

The global SARS-CoV-2–specific immune landscape has

progressed to one that is largely hybrid immune (2–4). However,

hybrid immunity is highly heterogenous due to exposure to different

variants and differences in vaccination history, as well as differences

in levels of natural antigen exposure. Conversely, annual

revaccination robustly raises immunity across all populations,

bolstering humoral and cellular immunity irrespective of infection

and vaccination history and thereby providing protective immunity

across vaccinees. Yet, revaccination with variant-updated vaccines

also provides critical value, inducing an immune response to protect

against novel SARS-CoV-2 variants, reinforcing the need for updated

booster vaccines as new variants of concern emerge (5).While there is

no distinct seasonality to COVID-19, similar to other respiratory

viruses, peaks are typically seen in the winter (50). As such, preseason

boosting can play a critical role in harmonizing the magnitude,

breadth, and contemporaneousness of the immune response,

equipping revaccinated individuals with more effective immunity

when there is a higher probability of exposure to the virus. While

immune imprinting provides a critical evolutionary mechanism to

rapidly adapt and expand a new antibody-secreting response from

memory B cells, the narrower range of potential B-cell responses may
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incompletely explore the potential landscape of more potent humoral

immune responses that may provide the highest level of protection

(53). Thus, while vaccine design is underway to define novel antigen

design approaches to overcome imprinting, boosting with

contemporaneous variants provides a means to rapidly update a

memory B-cell population and create a broader repertoire of clones.

Although this repertoire may not be perfectly matched to the next

strain that may emerge, it provides a mechanism to shift the response

to accumulating mutations in the variant evolutionary landscape.

Additionally, revaccination may increase the population of tissue-

resident effector T cells, which are crucial for a rapid and timely

response to infection (18, 19). As such, updated variant–containing

booster vaccines are needed to avoid perpetual recall of archived

immune responses, and instead enable preexisting immunity to adapt

and provide optimal protection against newly circulating strains.

Accordingly, global recommending bodies have begun to harmonize

COVID-19 vaccine composition to more closely match the

predominantly circulating variants and simplify the vaccine

schedules (8, 36). Monovalent variant–updated vaccines are

currently recommended to continue to shift the humoral immune

response forward and avoid back-boosting, to protect against the

currently circulating sublineages (36).

Future strategies should consider the prospect of blocking

transmission of SARS-CoV-2 by modulating immune responses

in the respiratory mucosa to provide localized protection and recall

responses at the sites of viral entry (193). However, given that a vast

majority of the population has hybrid immunity with both systemic

and mucosal immune responses to SARS-CoV-2, repeated

intramuscular vaccination may be sufficient for continued

protection from COVID-19. A more thorough understanding of

the extent and duration of protection against reinfection through

hybrid immunity is crucial for continued public health planning, as

such information may guide recommendations for optimal

COVID-19 vaccine timing following SARS-CoV-2 infection (66).

Although hybrid immunity confers broader and more durable

immune protection than either modality alone, it is increasingly

challenged by the rapid antigenic evolution of SARS-CoV-2.

Variants such as XBB.1.5, EG.5, and JN.1 exhibit substantial

immune escape from neutralizing antibodies generated by

previous exposures, even in individuals with hybrid immunity

(107, 194). While cellular responses (e.g., memory T cells)

provide protection against severe disease, these responses alone

do not prevent infection or transmission, and the growing

frequency of reinfections illustrates this limitation, highlighting

the need for continued vaccination against the current variants.

Epidemiological data show that reinfections are rising in

frequency and occurring at shorter intervals, with some

individuals experiencing three or more infections within a two-

year span, particularly during periods of Omicron subvariant

dominance (195, 196). Furthermore, while prior immunity

continues to reduce the risk of hospitalization and death,

susceptibility to symptomatic infection remains significant with

each new wave of antigenically distinct variants (197). In hybrid-

immune populations, susceptibility to symptomatic reinfection

persists, particularly among older adults, immunocompromised
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individuals, and those with comorbidities (25). This highlights the

critical limitation of relying solely on existing immunity shaped by

outdated antigen exposures.

This ongoing pattern of reinfection underscores a critical problem:

current vaccine-induced and infection-induced immunity is often

based on outdated antigenic exposures. Immune imprinting—where

immune memory preferentially targets epitopes from the original viral

strain—may further limit the effectiveness of responses to new variants

(198). Re-vaccination with updated formulations is therefore essential

to realign the immune response to the circulating virus. In the context

of hybrid immunity, re-vaccination can amplify and refocus immune

memory, mitigating the risk of breakthrough infections and potentially

curbing onward transmission. Revaccination in hybrid-immune

individuals drives the maturation and expansion of neutralizing and

non-neutralizing antibodies, and enhancing mucosal and tissue-

resident immunity. It facilitates rapid adaptation of pre-existing

memory B cells, promotes the development of broader and more

variant-resilient antibody repertoires, and boosts mucosal IgA and

effector T-cell responses at key sites of viral entry. Importantly, updated

boosters have been shown to improve protection against highly

immune-evasive strains such as XBB.1.5 and KP.2 (72, 199).

Revaccination also improves the durability of immune protection,

enhances immune responses in immunocompromised individuals,

and reduces the risk of post-acute sequelae such as long COVID (12,

16, 81). Thus, in the context of an ever-shifting viral landscape,

revaccination with updated formulations is not only a mechanism to

restore and broaden protection but also a critical tool to reduce

infection, transmission, severe disease, and long-term complications

in both general and vulnerable populations.
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