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Laryngeal squamous cell carcinoma (LSCC) is a prevalent malignancy with high

mortality and recurrence rates, necessitating novel therapeutic strategies. Recent

research highlights the pivotal role of metabolic reprogramming and immune

microenvironment alterations in LSCC pathogenesis, providing promising

avenues for targeted therapy. This review summarizes the metabolic

characteristics of LSCC, including glycolysis, lipid metabolism, and amino acid

biosynthesis, and their implications for tumor progression and therapeutic

resistance. Addit ional ly , this review further describes the tumor

microenvironment’s immunosuppressive landscape, including immune

checkpoint regulation, tumor-associated macrophages, and T-cell dysfunction.

The integration of metabolic and immune-targeted strategies represents a

promising frontier in LSCC treatment, warranting further investigation.
KEYWORDS
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1 Introduction

Laryngeal squamous cell carcinoma (LSCC) is a prevalent and aggressive malignancy,

representing approximately one-third of head and neck cancers (1, 2). Recent research

highlights the pivotal roles of metabolic reprogramming and the tumor immune

microenvironment (TME) in cancer progression (3–6). Metabolic reprogramming,

involving alterations in glucose, lipid, and amino acid metabolism, supports tumor

growth, survival, and therapy resistance (7–12). Simultaneously, the TME, comprising

immune cells, stromal components, and extracellular matrix elements, facilitates immune
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evasion and tumor progression (13–15). Immunotherapy, especially

immune checkpoint inhibitors (ICIs) like pembrolizumab and

nivolumab, has transformed the treatment of recurrent or

metastatic LSCC, improving survival and quality of life (16).

However, variability in treatment response and resistance

mechanisms necessitate a deeper understanding of the metabolic

and immune landscape of LSCC to optimize therapeutic outcomes.

This review summarizes the metabolic characteristics of LSCC,

including glycolysis, lipid metabolism, and amino acid biosynthesis,

and their implications for tumor progression. We also examine the

immunosuppressive features of the TME, such as immune

checkpoint regulation and T-cell dysfunction, and their impact on

immunotherapy. Final ly, we provide the advances in

immunotherapy and the potential of integrating metabolic and

immune-targeted strategies to enhance precision medicine in LSCC

management. By synthesizing current knowledge, this review aims

to guide the development of more effective treatments for LSCC.
2 The tumor microenvironment in
laryngeal squamous cell carcinoma

2.1 Composition of the tumor
microenvironment in laryngeal squamous
cell carcinoma

The tumor microenvironment is a complex ecosystem shaped

by interactions among malignant cells, cancer stem cells (CSCs),

and stromal components, including vascular-associated cells and

extracellular matrix (ECM) elements, during tumorigenesis and

progression (17–20). This environment undergoes metabolic

reprogramming, influencing gene expression, cel lular

differentiation, and tumor cell functionality. CSCs, a rare but

critical subpopulation with self-renewal capacity (3, 7), play a key

role in tumor recurrence and metastasis. The stromal compartment

of the TME includes non-immune and immune cells. Non-immune

stromal cells, such as fibroblasts, endothelial cells, and pericytes,

provide structural and metabolic support. Immune cells, including

lymphocytes and macrophages, facilitate immune evasion and

promote immune tolerance (13). Cancer-associated fibroblasts

(CAFs) are particularly significant due to their role in ECM

remodeling and supporting LSCC proliferation. Key immune

subsets, such as dendritic cells, tumor-infiltrating lymphocytes

(TILs), and tumor-associated macrophages (TAMs), exert diverse

immunomodulatory effects (16).

Non-cellular TME components include ECM proteins,

cytokines, chemokines, growth factors, proteases, and non-coding

RNAs (21–29). ECM proteins regulate biomechanical properties,

influencing cancer cell adhesion, survival, differentiation, and

invasion. Secreted factors create a pro-angiogenic and

immunosuppressive landscape, promoting tumor progression.

Non-coding RNAs, implicated in LSCC radio-resistance (30),

show potential as diagnostic and prognostic biomarkers, with

their downregulation linked to reduced tumor proliferation

and metastasis.
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2.2 Tumor microenvironment and the
development of laryngeal squamous cell
carcinoma

Cancer progression involves genetic alterations (31, 32), such as

oncogene overexpression and tumor suppressor gene silencing,

leading to epithelial cell changes and precancerous lesions (33–35).

TME promotes tissue invasion, metastasis, and immune evasion,

facilitating malignant transformation (36–40). Recent studies

highlight key TME components in laryngeal squamous cell

carcinoma (LSCC) progression, identifying potential therapeutic

targets (Table 1). Genomic analyses link LSCC risk to

overexpression of SRY-box transcription factor 2 (SOX2), cortactin

(CTTN), and focal adhesion kinase (FAK) (41, 42). SU (43) identified

CD163+ TAMs and Ki-67 proliferation as dysplasia severity

indicators, with Ki-67 facilitating spheroid formation, offering new

predictors for LSCC risk stratification. LSCC invasion and metastasis

involve complex mechanisms. KLOBUCAR (44) linked ladinin-1 to

MIF-CD44-b1 integrin signaling, increasing LSCC cell motility.

TOPF (45) demonstrated LSCC-derived factors in lymph nodes

promote CD163+ TAMs, raising nodal metastasis risk. Immune

evasion is critical in LSCC. Elevated Tregs in LSCC patients

suppress CD4+ and CD25+ T cell proliferation (46). WEN (47)

found IL-33 increases Foxp3+ GATA3+ Tregs and suppresses T cell

proliferation via IL-10 and TGF-b1, with ST2 inhibition reversing

this effect. PD-L1 overexpression in LSCC binds PD-1, inducing T

cell anergy or apoptosis. Yu et al. (48) noted higher PD-L1 levels in

LSCC, negatively correlating with CD8+ TILs and CD16+ M1 TAMs

but positively with CD206+ M2 TAMs.

These findings illustrate the multifaceted mechanisms by which

LSCC invades surrounding tissues and metastasizes. Building upon

this mechanistic understanding, recent studies have identified

biomarkers that may assist in risk stratification and prognosis of

LSCC. Prognostic biomarkers in LSCC include CD3, CD8, CD57,

and S100, correlating with better outcomes, while CTLA-4 predicts

poor prognosis (49). Tumor-stroma interactions, including stroma-

rich tumors and fibroblastic patterns, indicate aggressive disease

(50). Inflammatory factors regulate disease progression and

significantly influence the efficacy of therapies (51–56). Vassil

et al. (57) found PD-L1 expression correlates with TIL density

and survival, which was also observed in IL-12Rb2+ TILs (58).

Further, Schulter et al. (59) identified CD31-positive vasculature

and VEGF as markers for recurrence risk.
3 Metabolic characteristics of the
microenvironment in laryngeal
squamous cell carcinoma

The tumor microenvironment (TME) in cancer undergoes

dynamic alterations in cellular and extracellular components,

driving metabolic reprogramming—a hallmark of malignancy

(60–63). Metabolomics, utilizing mass spectrometry (MS) or

nuclear magnetic resonance (NMR) spectroscopy, enables

comprehensive profiling of metabolites in biological specimens,
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aiding in biomarker identification and elucidating disease

mechanisms (64). NMR was used to analyze LSCC tissues,

revealing elevated lactate, amino acids, choline compounds,

creatine, taurine, and glutathione, alongside reduced triglycerides

(64). Fei et al. (65) employed GC-TOF-MS and UPLC-TOF-MS to

identify 41 differentially expressed metabolites in LSCC tissues,

including upregulated TCA cycle intermediates, lactate, purine, and

pyrimidine metabolites, and downregulated fatty acid derivatives.

Urine metabolomics further distinguished LSCC patients from

controls, highlighting pantothenic acid, palmitic acid, myristic

acid, oleamide, sphingosine, and phytoglycine as potential

diagnostic biomarkers (66). These findings underscore the role of

lipid metabolism in bio-membrane biosynthesis and cancer cell

proliferation. Current studies emphasize glycolysis, lipid

metabolism, and amino acid biosynthesis as key metabolic

features of LSCC, aligning with genomic and proteomic insights

(67). These findings highlight the importance of metabolic

reprogramming in LSCC pathogenesis and the potential of

metabolomics for identifying therapeutic targets and biomarkers.
3.1 Glucose metabolism

The Warburg effect, as a hallmark of cancer metabolism, involves

a preference for glycolysis over oxidative phosphorylation for ATP

production, even under aerobic conditions (68). This metabolic shift

promotes radiation resistance and malignant progression in cancers

like LSCC. Glycolysis is initiated by glucose uptake via glucose

transporter-1 (Glut-1) and phosphorylation by hexokinase-II (HK-

II), with pyruvate converted to lactate by lactate-dehydrogenase

(LDH) and exported via monocarboxylate transporter-4 (MCT-4)

to prevent intracellular acidification (69). Glut-1, a key driver of the
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Warburg effect, was studied by WANG (70) in Hep-2 cells, revealing

that aberrant WISP1 expression enhanced glucose uptake, lactate

production, and cisplatin resistance by upregulating YAP1 and

TEAD1. LU (71) demonstrated that CRISPR/Cas9-mediated

knockout of HIF-1 and Glut-1 impaired glucose uptake and LSCC

progression. HU (72) linked PCK2 downregulation to suppressed

LSCC progression and Glut-1 interaction.

HK-II, regulated by lncRNA loc285194 (73), miR-125a (74),

and miR-125b-5p (75), is central to glycolysis. XU (76) found that

lncRNA PCAT19 suppresses PDK4 via the miR-182/PDK4 axis,

promoting glycolysis. LIU (77) showed that FOXJ1 knockdown

attenuates glycolysis by inhibiting the Wnt/b-catenin pathway.

MCT-4 facilitates lactate efflux, while MCT-1 mediates uptake,

creating metabolic coupling (78). CURRY (79) observed high

MCT-4 and low MCT-1 expression in tumor cells, promoting

glycolysis. Targeting MCT-4 offers therapeutic potential. WANG

(69) linked Glut-1, MCT-4, and CAIX expression to LSCC grade,

with combined inhibition suppressing glycolysis. LIU (67)

identified RASSF1, PGK1, CAII, and CAXII as key metabolic

regulators in LSCC.
3.2 Lipid metabolism

Lipid-mediated signaling pathways are crucial in LSCC

pathogenesis. Cancer cells upregulate fatty acid and phospholipid

biosynthesis, producing metabolites that modify membrane

components and act as signaling molecules. Fatty acid

biosynthesis begins with citrate export from mitochondria,

converted to acetyl-CoA by ATP citrate lyase. Acetyl-CoA

carboxylase (ACC) then generates malonyl-CoA, which fatty acid

synthase (FAS) converts to palmitic acid, a precursor for other fatty
TABLE 1 Key components of the LSCC tumor microenvironment and their functional roles.

Component Subtype/Category Functional Role in LSCC
Clinical/Therapeutic
Implications

Immune Cells

CD8+ T cells
Primary antitumor effector cells; often functionally
exhausted in TIME

Target for
checkpoint inhibitors

Tregs (Foxp3+)
Immunosuppression via IL-10/TGF-b; correlate with
advanced stage

ST2/IL-33 axis
inhibition potential

M2 TAMs (CD163+/CD206+)
Promote angiogenesis, metastasis; associate with
nodal involvement

CSF1R inhibitors in
clinical trials

Stromal Cells

Cancer-associated fibroblasts
ECM remodeling, cytokine secretion (TGF-b, HGF);
drive treatment resistance

FAK targeting strategies

Endothelial cells
Angiogenesis (VEGF-dependent); lymphatic
spread facilitation

VEGF inhibitors
(e.g., bevacizumab)

Soluble Factors

PD-L1 Immune checkpoint ligand; induces T cell anergy
Predictive biomarker for anti-
PD-1 response

Lactate
Metabolic byproduct; promotes M2 polarization and T
cell dysfunction

MCT4 inhibitors
in development

ECM Components
Collagen fibers Physical barrier; mechanosignaling via integrins LOX family inhibitors

Fibronectin Metastatic niche formation a5b1 integrin antagonists
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acids. FAS (80) and ACC (81) are overexpressed in LSCC,

highlighting their role in fatty acid biosynthesis and potential as

prognostic markers. Fatty acid desaturase 1 (FADS1), a key enzyme

in polyunsaturated fatty acid biosynthesis, converts linoleic acid to

arachidonic acid (AA). Zhao (82) found elevated FADS1 in LSCC

tissues, with knockdown impairing cell proliferation, migration,

and invasion, suggesting FADS1 promotes LSCC via AKT/

mTOR signaling.

Lipid metabolism plays a crucial role in laryngeal squamous cell

carcinoma (LSCC) progression through its interplay with

inflammation and oncogenic signaling pathways. Arachidonic acid

(AA), released from membrane phospholipids by phospholipase A2

(PLA2), serves as a substrate for cyclooxygenase (COX) and

lipoxygenase (LOX) to generate pro-inflammatory eicosanoids (83,

84). Studies have demonstrated elevated expression of PLCg-2 and

LOX-12 in LSCC, which correlates with advanced clinical stage, poor

differentiation, and metastatic potential, while COX-2 overexpression

has been associated with tumor recurrence (85). Early-stage LSCC

exhibits increased levels of linoleic acid (LA), AA, and saturated fatty

acids that enhance LOX and COX-2 activity, driving oxidative stress,

inflammatory responses, angiogenesis, and immune evasion through

upregulation of NF-kB and Bcl-2 (86, 87). Notably, reduced PTEN

expression in LSCC tissues serves as a prognostic indicator, and DJ-1

silencing has been shown to restore PTEN expression, thereby

inhibiting tumor cell proliferation and invasion (88–90). These

findings collectively identify FAS, ACC, LOX-12, COX-2, and

PTEN as critical regulators in LSCC lipid metabolism, highlighting

the therapeutic potential of targeting fatty acid biosynthesis, AA

metabolism, and the PTEN/PI3K/AKT/mTOR axis in LSCC

treatment (86).
3.3 Nitrogen metabolism

Nitrogen is essential for proteins, DNA, and RNA. In humans, it

is primarily used for urea biosynthesis in the liver, with disruptions

in the urea cycle common in tumors, leading to upregulated

pyrimidine biosynthesis and amino acid metabolism (91). The

lysyl oxidase (LOX) family stabilizes collagen and elastic fibers,

regulating EMT and tumor progression (92). Elevated LOX

expression correlates with poor prognosis and metastasis in LSCC

(93). Tryptophan metabolism via indoleamine 2,3-dioxygenase

(IDO) produces kynurenine, an immunosuppressive metabolite.

ENGIN (94) found higher IDO activity in advanced LSCC, with

elevated serum neopterin post-resection indicating poor outcomes.

Adenosine, an extracellular signaling molecule, activates tumor cell

receptors, promoting growth. WILKAT (95) showed A2B receptor

inhibition reduces tumor growth and vascularization. Hypoxia and

inflammation in the TME increase adenosine production,

enhancing immunosuppression. CD39 and CD73, elevated in

head and neck cancer, accelerate ATP hydrolysis, increasing

adenosine and reinforcing immunosuppression (96).

Moreover, metabolic reprogramming shapes the immune

microenvironment by modulating nutrient availability, altering

metabolite composition, and producing immunosuppressive
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byproducts. For instance, lactate accumulation due to enhanced

glycolysis impairs CD8+ T cell and NK cell cytotoxicity while

promoting regulatory T cell (Treg) differentiation. Lipid

accumulation in the TME compromises dendritic cell function

and fosters M2-like macrophage polarization, promoting immune

evasion. Elevated IDO activity in tryptophan metabolism generates

kynurenine, suppressing T cell proliferation and driving Treg

expansion. These alterations jointly contribute to immune

dysfunction and resistance to immune checkpoint inhibitors in

LSCC (Table 2).
4 Advances in immunotherapy for
laryngeal squamous cell carcinoma

4.1 Cytotoxic agent

Cytotoxic agents such as cisplatin, 5-fluorouracil (5-Fu), and

docetaxel play a central role in laryngeal preservation strategies,

exerting antineoplastic effects through mechanisms involving DNA

damage or inhibition of protein synthesis (97). Cisplatin, a

cornerstone in the treatment of LSCC, demonstrates substantial

efficacy but is limited by dose-dependent nephrotoxicity. Similarly,

5-Fu, a widely utilized chemotherapeutic for solid tumors, carries a

cardiotoxicity risk ranging from 0% to 35% (98). Docetaxel, effective

against various metastatic malignancies, is frequently associated

with peripheral neuropathy, alopecia, and neutropenia—adverse

effects that often necessitate dose modifications (99). Clinical

studies have provided supportive evidence for laryngeal

preservation. Urba et al. Urba et al. (100) reported a 3-year

laryngeal preservation rate of 70% using induction chemotherapy,

exceeding the 64% rate observed in the Veterans Affairs trial (101).
TABLE 2 Metabolic reprogramming In LSCC.

Metabolic reprogramming
pathway

Regulatory
targets

Change

Glycolysis Glut-1, HK-II, PDK4,
MCT-4, CAIX ↑

WISP1/YAP1/TEAD1 ↑

HIF-1, Glut-1 ↑

PCK2 ↓

Lipid Metabolism FAS, ACC, FADS1 ↑

LOX-12, COX-2 ↑

PI3K/AKT/mTOR axis ↑

PTEN ↓

Nitrogen Metabolism LOX ↑

IDO ↑

CD39 ↑

CD73 ↑
fro
↓ means downregulated, ↑ means upregulated.
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The RTOG 91–11 trial and its follow-up corroborated these

findings (102, 103). Notably, incorporation of docetaxel into the

cisplatin and 5-Fu induction regimen—forming the TPF regimen—

has demonstrated superior outcomes. The TPF regimen yielded

improved laryngeal preservation rates at both 5 years (74% vs. 58%)

and 10 years (70% vs. 47%) compared to PF alone (104),

establishing TPF as a more effective induction strategy (105, 106).

However, concerns regarding patient selection and

generalizability have emerged. Olsen (107) emphasized that

participants in these trials were generally younger and presented

with limited nodal disease, potentially limiting the applicability of

findings to broader patient populations. Furthermore, conflicting

evidence has challenged the universal adoption of laryngeal

preservation protocols. For instance, Nocon (108) and Bates (109)

reported improved survival with total laryngectomy. Dyckhoff (110)

further noted that patients with T4-stage LSCC treated with

chemoradiotherapy exhibited a twofold increase in mortality risk

compared to those receiving total laryngectomy followed by

adjuvant radiotherapy. Collectively, these findings underscore the

importance of individualized treatment planning, as the

heterogeneity in tumor staging, patient characteristics, and

treatment response continues to constrain the universal

implementation of induction chemotherapy or concurrent

chemoradiotherapy as a standard approach.
4.2 Epidermal growth factor receptor
monoclonal antibodies

Monoclonal antibodies targeting the EGFR, such as cetuximab

and nimotuzumab, are the only clinically approved targeted

therapies for head and HNSCC (111). EGFR is overexpressed in

approximately 90% of HNSCC cases, and its aberrant activation in

laryngeal carcinoma promotes uncontrolled proliferation,

radiotherapy resistance, and poor prognosis (112, 113).

Physiologically, EGFR regulates epidermal cell development, with

expression limited to undifferentiated basal keratinocytes and

diminishing as cells migrate to the epithelial surface. Activation

by ligands like epidermal growth factor (EGF) and TGF-a triggers

tyrosine kinase signaling, driving growth-associated transcription in

normal and malignant cells. Cetuximab and nimotuzumab

competitively inhibit EGFR activation, disrupting downstream

signaling, reducing cellular survival, and enhancing tumor-

targeting efficacy compared to conventional chemotherapy.

EGFR inhibition enhances radiosensitivity in laryngeal

carcinoma, improving radiotherapy outcomes (114). Cetuximab

combined with radiotherapy extended locoregional control to

24.4 months versus 14.9 months with radiotherapy alone, likely

due to enhanced apoptosis without increased toxicity (115). Bonner

et al. (116) reported a 3-year laryngeal preservation rate of 87.9%

with cetuximab plus radiotherapy, compared to 76.8% with

radiotherapy alone. Similarly, Noronha et al. (117) observed a

74.1% laryngeal preservation rate with nimotuzumab combined

with cisplatin and 5-fluorouracil (5-FU), supporting anti-EGFR

antibodies’ role in organ preservation (118). However, the RTOG
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10–16 trial found lower 5-year overall survival with cetuximab plus

radiotherapy (77.9%) versus cisplatin plus radiotherapy (84.6%) in

HPV-positive laryngeal carcinoma (119). While cetuximab is less

effective than cisplatin in cisplatin-tolerant patients, it remains a

viable alternative for cisplatin-resistant or intolerant individuals.

Despite its clinical utility, cetuximab benefits only a subset of

patients, underscoring the importance of patient selection in

optimizing EGFR-targeted therapy.
4.3 Immune checkpoint inhibitors

Immune checkpoint inhibitors have significantly advanced the

treatment of cancer (120–123), particularly for recurrent or

metastatic cases. In 2016, the FDA approved PD-1 inhibitors

nivolumab and pembrolizumab for platinum-refractory recurrent/

metastatic HNSCC (124). These inhibitors counteract tumor

immune evasion by restoring T-cell-mediated cytotoxicity,

targeting the PD-1/PD-L1 axis, a key regulator of T-cell

activation. PD-1, expressed on immune cells, interacts with PD-

L1 to suppress T-cell activity via the PI3K-AKT pathway,

promoting immune tolerance (125, 126). Nivolumab and

pembrolizumab block PD-1, preventing immune suppression and

enhancing antitumor immunity.

Pembrolizumab’s efficacy was first shown in the KEYNOTE-

012 trial (127), with the phase III KEYNOTE-048 trial (128)

confirming its role as a first-line treatment. Recently, a

randomized, double-blind, phase 3 trial evaluated the efficacy and

safety of the PD-1 monoclonal antibody finotonlimab (SCT-I10A)

combined with cisplatin plus 5-fluorouracil (C5F) as first-line

treatment for recurrent HNSCC (NCT04146402). In the

finotonlimab plus C5F group, the median OS was 14.1 months,

compared with 10.5 months in the placebo plus C5F group. This

study highlights the effectiveness of immunotherapy combined with

chemotherapy in recurrent or metastatic head and HNSCC (129).

Furthermore, clinical studies have shown that PD-L1-high HNSCC

patients treated with a PD-L1 inhibitor combined with 5-

azacytidine (5-aza) experienced a significant extension in overall

survival (OS) (NCT03019003) (130). To date, numerous clinical

trials are still underway, evaluating the efficacy and optimal dosage

of immune checkpoint inhibitors, exploring other immune targets,

and providing new therapeutic targets for the treatment of laryngeal

cancer. In addition to PD-1, other immune checkpoints such as

cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and

lymphocyte activation gene-3 (LAG-3) are being investigated

(131, 132).
5 Conclusion

Laryngeal squamous cell carcinoma (LSCC) is characterized by

profound metabolic reprogramming and an immunosuppressive

tumor microenvironment, both of which contribute to disease

progression and therapeutic resistance. Immunotherapy,

particularly immune checkpoint inhibitors (ICIs), has
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demonstrated substantial promise in treating recurrent or

metastatic LSCC. However, limitations in response rates and the

development of resistance necessitate combinatorial strategies.

Recent preclinical and early-phase clinical studies have

highlighted the potential of combining metabolic inhibitors with

ICIs to enhance antitumor immunity. For instance, co-

administration of PD-1 inhibitors with glycolytic inhibitors such

as 2-deoxy-D-glucose (2-DG) has been shown to restore CD8+ T

cell function and reduce tumor burden in murine models of head

and HNSCC, including LSCC. Similarly, targeting lipid metabolism

using fatty acid oxidation (FAO) inhibitors like etomoxir in

combination with PD-1 blockade has led to augmented T cell

infiltration and enhanced antitumor efficacy in preclinical studies.

In clinical contexts, a phase I trial combining pembrolizumab with

the glutaminase inhibitor CB-839 (telaglenastat) in solid tumors

demonstrated favorable safety and preliminary antitumor activity,

supporting the translational relevance of metabolic-immune co-

targeting strategies. These findings underscore the therapeutic

potential of dual modulation of tumor metabolism and immune

checkpoints, offering a promising avenue for overcoming immune

resistance and improving clinical outcomes in LSCC. Future

research should aim to delineate optimal combinations, identify

predictive biomarkers, and validate efficacy through large-scale

clinical trials. Integrating metabolic and immune-targeted

therapies represents a rational and potentially transformative

approach for precision medicine in LSCC treatment.
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phase 2 open label, single-arm trial to evaluate the combination of cetuximab plus
taxotere, cisplatin, and 5-flurouracil as an induction regimen in patients with
unresectabl e squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol
Phys. (2016) 94:289–96. doi: 10.1016/j.ijrobp.2015.10.019

98. More LA, Lane S, Asnani A. 5-FU cardiotoxicity: vasospasm, myocarditis, and
sudden death. Curr Cardiol Rep. (2021) 23:17. doi: 10.1007/s11886-021-01441-2

99. Amaya C, Smith ER, Xu XX. Low intensity ultrasound as an antidote to taxane/
paclitaxel-induced cytotoxicity. J Cancer. (2022) 13:2362–73. doi: 10.7150/jca.71263
frontiersin.org

https://doi.org/10.1007/s00018-024-05114-5
https://doi.org/10.1172/jci.insight.151819
https://doi.org/10.1158/1078-0432.CCR-15-1543
https://doi.org/10.1016/j.oraloncology.2017.10.006
https://doi.org/10.1186/s12885-018-4180-5
https://doi.org/10.1186/s12885-018-4180-5
https://doi.org/10.1016/j.oraloncology.2018.05.018
https://doi.org/10.1016/j.oraloncology.2018.05.018
https://doi.org/10.1186/s12903-023-03138-0
https://doi.org/10.1186/s12903-023-03138-0
https://doi.org/10.3389/fimmu.2023.1264325
https://doi.org/10.3389/fimmu.2024.1516362
https://doi.org/10.1021/pr200800w
https://doi.org/10.1021/pr200800w
https://doi.org/10.13201/j.issn.1001-1781.2017.20.005
https://doi.org/10.13201/j.issn.1001-1781.2017.20.005
https://doi.org/10.1016/j.jpba.2019.01.035
https://doi.org/10.3892/ol.2016.4750
https://doi.org/10.1016/j.biocel.2012.06.025
https://doi.org/10.13201/j.issn.1001-1781.2017.07.005
https://doi.org/10.13201/j.issn.1001-1781.2017.07.005
https://doi.org/10.1002/jcp.v234.9
https://doi.org/10.1002/jcp.v234.9
https://doi.org/10.2147/CMAR.S183859
https://doi.org/10.3892/etm.2019.7761
https://doi.org/10.1186/s13578-017-0178-y
https://doi.org/10.1016/j.biopha.2018.04.098
https://doi.org/10.1002/jcb.v120.8
https://doi.org/10.1002/jcb.v120.9
https://doi.org/10.1016/j.devcel.2020.06.018
https://doi.org/10.1016/j.devcel.2020.06.018
https://doi.org/10.4161/cc.24092
https://doi.org/10.1158/1055-9965.EPI-17-1082
https://doi.org/10.1158/1055-9965.EPI-17-1082
https://doi.org/10.7717/peerj.7037
https://doi.org/10.1038/s41419-020-2457-5
https://doi.org/10.1016/j.plefa.2007.10.007
https://doi.org/10.1016/S1470-2045(24)00486-8
https://doi.org/10.1016/S1470-2045(24)00486-8
https://doi.org/10.1002/lary.v119:9
https://doi.org/10.1159/000099229
https://doi.org/10.21873/anticanres.11983
https://doi.org/10.21873/anticanres.11983
https://doi.org/10.1186/1746-1596-5-35
https://doi.org/10.3892/mmr.2015.3617
https://doi.org/10.3892/mmr.2015.3617
https://doi.org/10.1016/j.cell.2018.07.019
https://doi.org/10.2217/fon.12.105
https://doi.org/10.1158/0008-5472.CAN-07-6345
https://doi.org/10.1158/0008-5472.CAN-07-6345
https://doi.org/10.1515/pterid-2017-0004
https://doi.org/10.1002/ijc.v147.1
https://doi.org/10.1158/1078-0432.CCR-09-1143
https://doi.org/10.1158/1078-0432.CCR-09-1143
https://doi.org/10.1016/j.ijrobp.2015.10.019
https://doi.org/10.1007/s11886-021-01441-2
https://doi.org/10.7150/jca.71263
https://doi.org/10.3389/fimmu.2025.1589243
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Ma et al. 10.3389/fimmu.2025.1589243
100. Urba S, Wolf G, Eisbruch A, Worden F, Lee J, Bradford C, et al. Single-cycle
induction chemotherapy selects patients with advanced laryngeal cancer for combined
chemoradiation: a new treatment paradigm. J Clin Oncol. (2006) 24:593–8.
doi: 10.1200/JCO.2005.01.2047

101. Ji Z, Wang X, Xin J, Ma L, Zuo D, Li H, et al. : Multiomics reveals tumor
microenvironment remodeling in locally advanced gastric and gastroesophageal
junction cancer following neoadjuvant immunotherapy and chemotherapy. J
Immunother Cancer. (2024) 12:e010041. doi: 10.1136/jitc-2024-010041

102. Forastiere AA, Zhang Q, Weber RS, Maor MH, Goepfert H, Pajak TF, et al. :
Long-term results of RTOG 91-11: a comparison of three nonsurgical treatment
strategies to preserve the larynx in patients with locally advanced larynx cancer. J
Clin Oncol. (2013) 31:845–52. doi: 10.1200/JCO.2012.43.6097

103. Forastiere AA, Goepfert H, Maor M, Pajak TF, Weber R, Morrison W, et al.
Concurrent chemotherapy and radiotherapy for organ preservation in advanced
laryngeal cancer. N Engl J Med. (2003) 349:2091–8. doi: 10.1056/NEJMoa031317

104. Janoray G, Pointreau Y, Garaud P, Chapet S, Alfonsi M, Sire C, et al. Long-term
results of a multicenter randomized phase III trial of induction chemotherapy with
cisplatin, 5-fluorouracil, +/- docetaxel for larynx preservation. J Natl Cancer Inst.
(2016) 108:djv368. doi: 10.1093/jnci/djv368
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