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Cristina Cristofoletti 1†, Giulia Salvatore1†, Cristian Bassi2,
Massimo Negrini2, Giovanni Luca Scaglione3, Luca Mazzarella4,
Gianmaria Frigè4, Ylenia Aura Minafò1, Martina Fioretti 1,
Alessandro Monopoli5, Maria Pina Accetturi5,
Maria Antonietta Pilla5, Cosimo Di Raimondo6,
Alessandra Frezzolini7, Enrico Scala7, Stefania D’Atri1,
Giandomenico Russo1 and Maria Grazia Narducci1*

1Laboratory of Molecular Oncology, Istituto Dermopatico dell'Immacolata IDI-IRCCS, Rome, Italy,
2Department of Translational Medicine and Laboratorio per le Tecnologie delle Terapie Avanzate
(LTTA) Centre, University of Ferrara, Ferrara, Italy, 3Bioinformatics Unit, Istituto Dermopatico
dell'Immacolata IDI-IRCCS, Rome, Italy, 4Department of Experimental Oncology, European Institute
of Oncology (IEO) IRCCS, Milano, Italy, 5Department of Dermatology, Istituto Dermopatico
dell'Immacolata IDI-IRCCS, Rome, Italy, 6Dermatology Unit, Policlinico Tor Vergata, University of Tor
Vergata, Rome, Italy, 7Clinical and Laboratory Molecular Allergy Unit, Istituto Dermopatico
dell'Immacolata IDI-IRCCS, Rome, Italy
Background: Sézary syndrome (SS) is an aggressive and leukemic variant of

Cutaneous T-cell Lymphoma (CTCL) with an incidence of 1 case per million

people per year. It is characterized by a complex and heterogeneous profile of

genetic alteration ns that has so far precluded the development of a specific and

definitive therapeutic intervention.

Methods: Deep-RNA-sequencing (RNA-seq) data were used to analyze the

single nucleotide variants (SNVs) carried by 128 putative CTCL-driver genes,

previously identified as mutated in genomic studies, in longitudinal SS samples

collected from 17 patients subjected to extracorporeal photopheresis (ECP) with

Interferon-a. Results obtained were integrated with Whole Exome Sequencing

(WES) data. SNVs were validated using the Sanger method. Pathway analysis was

performed with g:Profiler web server (https://biit.cs.ut.ee/gprofiler/gost).

Statistical analyses were performed with GraphPad PRISM 8 software.

Results: Nonsynonymous SNVs were identified in 56 genes. Integration of RNA-

seq with WES data revealed that about half of these genes contained somatic

mutations. Among them, the most frequently transcribed mutated genes were

TET2, JAK3, NCOR1, PDCD11, RHOA, and TP53. Nearly all the remaining genes

had germline-restricted mutations, and included ARID1A, ATM, ATR, CREBBP,

POLD1, and POT1 genes, which are involved in DNA repair, homologous

recombination, and chromatin remodeling, and the CROCC gene, implicated

in centrosome cohesion. Monitoring of the mutated genes, identified within an

enlarged panel of CTCL associated genes, revealed their reduction in almost 70%
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of SS patients as well as a significant decline of total number of mutations (SNVs)

during ECP treatment. Several mutated genes persisted post-therapy,

representing novel candidates associated with ECP resistance that could also

have a potential prognostic relevance. Notably, these genes mainly converge on

pathways related to DNA repair (ATR, ATRIP, POLD1, TP53, TP53BP1/2) which

might represent novel targets to be explored in combination with ECP.

Conclusions: This is the first evaluation in SS of expressed mutations in a large

panel of CTCL-driver genes. Also innovative is the monitoring of mutated genes

in patients’ malignant lymphocytes during ECP, a first-line treatment of CTCL,

which highlights novel candidates associated with ECP resistance that might

unmask novel pharmacological vulnerabilities to be exploited during ECP for a

personalized treatment.
KEYWORDS

cutaneous T-cell lymphoma, Sezary syndrome, RNA-seq, whole exome sequencing,
extracorporeal photopheresis, candidates associated with therapy resistance and
personalized treatment
Introduction

Cutaneous T-cell lymphoma (CTCL) is a rare tumor

characterized by the expansion of malignant T lymphocytes in

the skin. Among them, Sezary syndrome (SS) is the rarest but the

most aggressive variant characterized, at the onset of the disease, by

the co-presence of neoplastic lymphocytes, the Sezary cells, mainly

in the blood, lymph-nodes and skin. Patients affected by SS have a

poor prognosis with a 5-years survival as low as 24% (1).

Molecular events implicated in SS pathogenesis are multiple

and heterogeneous among patients, with recurrent genetic events of

gains/losses affecting mainly chromosome 8, 9, 10, and 17 (2–5).

Recently, next-generation sequencing (NGS) studies showed

somatic copy-number variations (SCNVs) and somatic single-

nucleotide variants (SSNVs) in a broad number of genes in

different pathways mainly implicated in T-cell activation and

apoptosis, JAK/STAT signaling, activation of NF-kB, chromatin

remodeling, and DNA damage response (6–14). Most of these

studies employed whole genome (WGS) or whole exome (WES)

sequencing data (6–14). However, DNA-based procedures may

detect many SSNVs within exons located in the non-transcribed

alleles or that have low expression, possibly representing mutations

with scarce biological significance (15). An alternative strategy to

identify mutations in transcribed genes that might be clinically

relevant is represented by RNA sequencing (RNA-seq), commonly

used for gene expression profiling (16).

We recently conducted deep RNA-seq of serial SS samples

derived from 17 patients treated with extracorporeal photopheresis

(ECP) in combination with Interferon-a (IFNa) to determine their

gene expression profiles (manuscript in preparation). Taking

advantage of these RNA-seq data, we performed a Variant Calling
02
Analysis (VCA) to identify transcribed single-nucleotide variants

(SNVs) in 128 putative CTCL-driver genes found mutated by

previous genomic studies (6–14) and in an enlarged set of genes

sharing similar domains and/or belonging to the same families or

implicated in the same pathways of the 128-gene panel. Moreover,

we investigated the effect of ECP treatment on tumor mutational

burden and its possible prognostic value.
Materials and methods

Patients

This study, approved by the Ethical Committee of the Istituto

Dermopatico dell’Immacolata (ID n.4/CE/2015 and n.37/CE/2023),

was conducted on 35 SS samples derived from 16 SS patients with 2

serial samples and 1 patient with 3 serial samples. Three control

samples were obtained from 3 Healthy Donors (HD).

The diagnosis of SS was based on the criteria described (17).

Retrospective samples were obtained from patients uniformly

treated with INFa (Roferon-A, 3 million IU, three times a week)

and ECP performed for 2 consecutive days every month.

Specifically, from SS patients 67, 78, 81, 83, 84, 85, 87, and 94 the

first sample (T1) was collected before the start of therapy (baseline)

or after the 1st or 2nd cycle of ECP, while the second sample (T2)

was obtained after a mean number of ECP cycles of 19.5. For SS

patient 67 an additional sample (T3) was collected after 74 ECP

cycles. These patients were considered “naïve”. From SS patients 32,

45, 50, 60, 69, 76, 77, 88, and 92, T1 samples were collected after an

average of 9.7 ECP cycles and T2 samples after an average of 28 ECP

cycles. This second group of patients were referred as “pretreated”.
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More detailed patient information is available in Supplementary

Table S1.
Tumor cell isolation and RNA and DNA
extraction

Fluorescence activated cell sorting (FACS) for clinical routine

was employed to measure the absolute counts of circulating

patient’s neoplastic lymphocytes (i.e. SS cells) by the detection of

specific TCR-Vb+ rearrangement (IO Test beta mark, Beckman

Coulter, Fullerton, CA) in combination with anti-CD3 and anti-

CD4 and/or with anti-CD3, anti-CD4, anti-CD26 and anti-CD7

monoclonal antibodies (BD Bioscience) as shown in Supplementary

Figure S1.Circulating tumor burden, expressed as percentage of

clonal CD3+CD4+TCRVb+ and/or CD3+CD4+CD26-CD7- cells

calculated within the total CD4+ T cells for each patient is shown in

Supplementary Table S1. Isolation of SS cells from peripheral blood

(PB) was performed using the untouched human CD4+ T Cell

Isolation Kit (Miltenyi Biotech, Germany) following the

manufacturer instructions. Purity of samples measured by FACS

assessed >90% of CD4+ T cells for each patient analyzed in this

study. Matched granulocytes or CD4- T lymphocytes (normal

counterpart) were obtained from each patient and their purity

was confirmed by FACS (% CD4+ <4%). RNA and DNA from SS

cells and matched normal cells were isolated, quantified and

evaluated for integrity as previously described (18, 19).
RNA sequencing

TruSeq Stranded mRNA transcriptome analysis was performed

on tumor (n=35) or normal (n=3) purified samples following the

Illumina recommendations (Illumina, Inc). An equimolar libraries

pool, measured by Bioanalyzer High Sensitivity DNA 1000 Assay

and Qubit® RNA HS Assay Kit, was loaded onto Illumina NextSeq

500 platform according to the manufacturer’s recommendations.

To obtain a high percentage of sequencing reads, we pooled 8

library samples per run into a High Output Kit v2.5 cartridge

(paired-end sequencing with about 50 million clusters per sample).

Base-calling was performed by Illumina Real-Time Analysis

software and NextSeq Control Software.
Variant calling analysis from RNA-seq data

The raw RNA-seq reads from all samples were quality assessed

using FastQC v. 0.11.5 a quality control tool available online at

http://www.bioinformatics.babraham.ac.uk/projects/fastqc. We

obtained a median of 43.5 million 74 bp paired end reads per

sample. To assess the presence of variants we used the GATK Best

Practices workflow for SNP and indel calling on RNA-seq data.

Briefly, after the alignment, reads were split into exon segments and

hard-clipped to remove any sequence overhanging into the intronic

region. A base quality score recalibration algorithm adjusted the
Frontiers in Immunology 03
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Variants (SNVs) were called using the HaplotypeCaller tool

(Calling Variants in RNA-seq: Methods and Workflows. https://

www.broadinstitute.org/gatk/guide/article?id=3891). Variants were

filtered by excluding clusters of at least 3 SNPs within a window of

35 bases (using the parameters -window 35 -cluster 3) and based on

quality metrics, removing those with Fisher Strand values (FS) >

30.0, which indicate a high probability of strand bias at the site, and

Qual By Depth values (QD) < 2.0. Resulting variants were

subsequently filtered to retain only those with a Variant Allele

Frequency (VAF) greater than 15% and a sequencing depth higher

than 20x. To identify pathogenic variations, mutations also

occurring in healthy donors’ samples were filtered out.
Whole exome sequencing

WES libraries were generated using Twist comprehensive

exome kit (Twist biosciences) according to the manufacturer’s

protocol. Briefly, 50 ng of gDNA was enzymatically fragmented

and adaptor sequences were added to the ends. The fragmented

DNA was amplified by PCR followed by purification. Target regions

were captured with Twist Comprehensive Exome Panel probes

followed by PCR amplification and purification of the enriched

library. Quantification of enriched libraries was performed with

Qubit dsDNA High Sensitivity quantification assay kit (Thermo

Fisher Scientific) and library size distribution was measured with

Bioanalyzer 2100 and High Sensitivity DNA Kit (Agilent

Technologies). Final DNA libraries sequencing was performed in

Illumina NovaSeq 6000 platform using the S4 Reagent Kit 300

cycles (2 x 150 paired-end reads) (Illumina).

WES data were mapped against hg38 genome using

DRAGMAP aligner (DRAGEN Illumina). SNV and Indel variant

calling was performed with Illumina DRAGEN Bio-IT Platform

v4.0 using proprietary pipelines.

After variant calling, data were collected in maf file. For

downstream analyses, we filtered germline variants with a

minimum coverage (DP) of 30x and variant allele frequency

(VAF) higher than 20%. For somatic variants, we set our filters to

100x DP an 5% of VAF. Data were aggregated using Rstudio

software embedded with maftools library. (maftool ref

10.1101/gr.239244.118).

The matched normal samples were sequenced to achieve a

mean target coverage of approximately 50x. Somatic variant calling

was performed using the Illumina DRAGEN Somatic Pipeline

(v4.2) in tumor-normal mode with default parameters, including

a VAF threshold of 0.2% in the normal sample to exclude potential

germline variants.

DRAGEN employs an internal probabilistic model that

integrates tumor and normal read data, base quality, mapping

quality, allele frequency, and background noise estimation to

identify somatic variants. The pipeline applies multiple default

filters, including minimum supporting reads, variant allele

frequency thresholds in both tumor and normal samples, and

quality score cutoffs. It also accounts for known problematic
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regions through a statistical noise model, rather than fixed

exclusion lists.

All filtering steps were performed using the default settings provided

by the DRAGEN pipeline, which are designed to ensure high-confidence

somatic mutation calls. Complete details of DRAGEN’s variant calling

and filtering logic can be found in the official documentation here:

https://supportdocs.illumina.com/SW/dragen_v42/Content/SW/

DRAGEN/GPipelineSomCom_appDRAG.htm.
Sanger sequencing

Genomic PCR products were subjected to direct Sanger

nucleotide sequencing. Primers’ sequences are reported in

Supplementary Table S2. The sequenced PCR products were

analyzed by Chromas Lite software (Technelysium Pty Ltd, South

Brisbane, Australia).
Over-representation analysis

Biological pathways over-representation was performed with g:

Profiler web server (https://biit.cs.ut.ee/gprofiler/gost) utilizing g:

GOst with Reactome as data source and Benjamini-Hochberg FDR

for multiple testing correction.
Statistical analysis

Statistical analyses were performed with GraphPad PRISM 6

software (GraphPad Software Inc., La Jolla, CA). Differences were

evaluated with paired/unpaired two-tailed Student’s t test,

correlation test by simple linear regression and Kaplan-Meier

(KM) estimator by Log-rank test/Log-rank test for trend. p≤ 0.05

was considered significant. (Mantel-Haenszel) statistical approach

in survival analyses was used to estimate the Hazard Ratios (HR)

with 95% confidence intervals (95% CIs) and class risk at various F-

UP intervals.
Results

Identification of SNVs in SS by RNA-seq
and WES: a comparison with literature

Several studies that have analyzed the genome of SS cells have

reported several mutations. However, an extensive exploration of

transcribed and thus potentially disease-relevant mutations has not

yet been conducted.

With this purpose, we performed a VCA using RNA-seq data of

35 serial SS samples derived from 17 patients under ECP and INFa
treatment and of 3 samples from HD used as control. As a first step,

we evaluated the global mutational spectrum of our sample set that

revealed that 50% of SNVs were synonymous substitutions while
Frontiers in Immunology 04
the remaining were missense (44%), frameshift (5%) and stop-gain

(1%) mutations (Supplementary Figure S2).

We next focused our VCA on 128 candidate CTCL-driver genes

identified as mutated in nine independent studies conducted by

WGS or WES (6–14) (Supplementary Table S3). To implement the

strength of our data, we filtered for nonsynonymous SNVs with

coverage>20 and excluded those occurring in HD samples. As a

result, 56 of the selected 128 genes were found mutated in our

sample set (Figure 1). Among these genes, 24 (42%) showed a low

mutation frequency, ranging from 3% to 6% of the samples, results

that, except for a few genes, agree with the genomic data from

literature (Figure 1).

For the 56 mutated genes, we also analyzed WES data derived

from the same SS samples and paired normal counterparts. This

approach allowed us to compare the mutation frequency detected

by RNA-seq and WES, and to distinguish genes bearing variants

with somatic or/and germline origin for the first time in detail. As

shown in Figure 1, 25 of the 56 genes analyzed by WES had a

somatic mutation frequency, obtained by filtering out germline

variants, consistent with those observed in the nine reference

studies (Figure 1, sky-blue lines). Considering the mutation

frequencies obtained from the RNA-seq data for this group of

genes, we also observed that JAK3, NCOR1, PDCD11, RHOA,

TET2 and TP53, all strongly implicated in SS, had a higher

mutation frequency (≥17% of the samples), a finding that reflects

both the presence of their unfiltered germline variants and, more

importantly, their effective transcription in SS cells.

WES analyses performed on paired tumor-normal samples then

identified 26 genes (46.4%) carrying only mutations of germline

origin (Figure 1, white lines). Among them, ARID1A, ATM, ATR,

POLD1 and POT1 genes, all involved in genome maintenance and

DNA repair (20), showed, with exception of POT1, a high

frequency of mutation according to RNA-seq (ranging from 14%

to 23%), suggesting a transcriptional active role in SS cells

potentially favoring the onset of this lymphoma. Noteworthy,

ARID1A at 1p36.11 and ATM at 11q22.3 both map on significant

narrow chromosome focal deletions in SS (6), a finding that further

underlines the pathogenic role of these two genes in this lymphoma.

Within the genes carrying only germline-derived mutations we

also found the CROCC, D2HGDH, GIMAP4, and IQSEC1 genes,

rarely reported previously and never studied in detail in SS. These

genes resulted to be the most mutated by RNA-seq, with a

frequency ranging from 29% to 37% of the samples, suggesting

their involvement in SS pathobiology.

For the remaining ARID5B, BRD9, CARD11, IL32 and

SLAMF6 genes, we were unable to detect somatic or germline

mutations by WES. (Figure 1, in italic). This finding can be

explained by the incomplete overlap between the SNVs called by

the two techniques, as already demonstrated elsewhere (15).

In general, it’s interesting to note that 16 of the 56 genes

analyzed (28%) map on chromosomal regions frequently lost or

gained in SS (2, 3), Figure 1, suggesting that biallelic damage could

contribute to the etiology of the disease in patients carrying

mutations in these genes.
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FIGURE 1

Comparison between the mutation frequencies of 56 CTCL driver genes resulting from our RNA-seq and WES data and those reported in the
literature. Genes common in at least two authors are highlighted in bold. Genes without mutations detected by our WES are highlighted in italics.
RNA-seq samples: n=35; WES somatic samples: n=35; WES germline samples: n=17. The reported frequencies for CTCL literature refer to the Sezary
samples of each study. >5; >10: Frequency reported in more than 5% or 10% of samples investigated. *: Extension cohort (N=68 patients); NR:
Frequency not reported; -: chromosome region frequently lost in SS; +: chromosome region frequently gained in SS.
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Validation of SNVs affecting CROCC and
other genes

The CROCC gene, mapping at 1p36.13 locus, resulted one of

the most frequently mutated genes at germline level in our SS

samples as assessed by RNA-seq and WES data. Specifically, 13

different SNVs were detected in 17 SS samples obtained from 9

patients (Figure 2A; Table 1). Importantly, all SNVs identified for

this gene, except for one, were mutated more often than expected by

chance (gnomAD score <0.05), which is consistent with the rarity of

the disease (Table 1).

Nine of the 13 mutations were confirmed to be of germline

origin by WES (Table 1). Notably, two mutations, namely R855W

and R1593Q are predicted to be deleterious by the SIFT and

Polyphen algorithms (21, 22) (Supplementary Table S4).

Since CROCC gene is implicated in centrosome cohesion and

disjunction (23), and its mutation could play a pathogenic role in

SS, we decided to further validate the mutations detected by RNA-

seq data also by Sanger sequencing of patient tumor and matched

normal cells. Sufficient amount of DNA extracted from purified SS
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cells was available only for patients 45 and 67 (T1 samples), patient

77 (T2 sample), The sequenced PCR products confirmed the

presence of a benign missense R372Q (G1115A, exon 9) in T1

sample of patient 45, a deleterious missense R347W (C1039T, exon

9) in T1 sample of patient 67 and three benign missense mutation in

T2 sample of patient 77, namely: T1361A (A4081G, exon 27),

G1471R (G4411A, exon 28) and V1110M (G3328A, exon 23). All

five mutations were present at germline level (Figure 2B).

To further confirm the robustness of our RNA-seq data, we also

validated, by Sanger, a mutation in DH2GDH, which turns out to be

another of the most mutated genes as well as a mutation occurring

in TP53 for the crucial oncogenic role it plays in tumors. As shown

in Supplementary Figure S3, we validated both at somatic and

germline level, the missense mutation Y266C (A797G, exon 8) for

the DH2GDH gene occurring in patient 60 (T1 sample) and the

missense mutation F302C (T905G, exon 6) for TP53 gene occurring

in patient 87 (T1 sample). Note that this latter mutation was not

detected by WES, indicating that RNA-seq and WES methods, are

not completely overlapping as already reported (15)

(Supplementary Table S4). Conversely, WES confirmed the
FIGURE 2

Validation of CROCC SNVs identified by RNA-Seq. (A) Chromosome localization (1p36.13) and gene structure of CROCC showing SNVs detected by
RNA-seq (modified from NCBI). (B) Chromatograms showing the sequencing of the nucleotides surrounding the highlighted SNVs (relative peak
indicated by the arrow) in CROCC gene. Sequencing of the tumor sample (top, frequencies of the SNVs according to RNA-seq in brackets) and of
the matched normal cells represented by granulocytes or CD4- T-cells (bottom), whose purity was confirmed by cytofluorimetric analysis (% CD4+

<4%). G, germline.
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TABLE 1 CROCC SNVs in SS patients.

SS ID Chr. Position Ref. Alt. ExonicFunc.refGene AA Change. refGene dbSNP IMPACT CADD SIFT PolyPhen WES Sanger

NM 014675:exon9:c.G1115A:p.R372Q rs57442576 Moderate 12.47 T B G G+S

NM_ 014675:exon13:c.T1718C:p.L573P – Moderate 24.9 D Pr – n.a.

NM_ 014675:exon9:c.C1039T:p.R347W rs145088791 Moderate 23.6 D Po G G+S

NM_ 014675:exon36:c.5942_5943del: p.Q1981 fs – High – – – – n.a.

NM_014675:exon32:c.A5230G:p.S1744G rs56278097 Moderate 19.83 T Po G n.a.

NM_014675:exon27:c.A4081G:p.T1361A rs76576326 Moderate 10.4 T B G G+S

NM_014675:exon28:c.G4411A:p.G1471R rs78888579 Moderate 16.1 T B G G+S

NM_014675:exon19:c.C2752T:p.R918W rs143866013 Moderate 29 D Pr G n.a.

NM_014675:exon23:c.G3328A:p.V1110M rs41272737 Moderate 15.5 T B G G+S

NM_014675:exon36:c.T5838G:p.D1946E – Moderate 0.001 T B – n.a.

NM_014675:exon25:c.T3812C:p.V1271A – Moderate 23 D B – n.a.

NM_014675:exon18:c.C2563T:p.R855W rs200026680 Moderate 25.2 D Po G n.a.

NM_014675:exon30:c.G4778A:p.R1593Q rs763364549 Moderate 28.4 D Po G n.a.

line; S: somatic.
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45T1 1 17263290 G A nonsynonymous_SNV

60T2 1 17266498 T C nonsynonymous_SNV

67T1/T3 1 17263214 C T nonsynonymous_SNV

69T2 1 17298116 CAG C frameshift_deletion

77T1/T2 1 17295764 A G nonsynonymous_SNV

77T2 1 17287301 A G nonsynonymous_SNV

77T2 1 17292223 G A nonsynonymous_SNV

77T2 1 17275337 C T nonsynonymous_SNV

77T2 1 17281235 G A nonsynonymous_SNV

78T1 1 17298013 T G nonsynonymous_SNV

83T1 1 17282599 T C nonsynonymous_SNV

88T1/T2 1 17274874 C T nonsynonymous_SNV

94T1/T2 1 17292984 G A nonsynonymous_SNV

B, Benign; T, Tolerated; Po, Possibly Damaging; Pr, Probably Damaging; D, Damaging; G, germ
- = not present.
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missense mutation Y266C for the DH2GDH gene (Supplementary

Table S4).

WES also confirmed two deleterious missense mutations

detected by RNA-seq, namely the Q61X (C181T) mutation for

the TP53 gene detected at somatic level in patient 84, as well as the

P626S (C1876T) mutation for the IQSEC gene at germline level of

patients 60, 81, 84, 85 and 88. WES also detected this mutation in

patient 67 while RNA-seq did not (Supplementary Table S4).
ECP therapy reduces the mutational load
in SS

We next investigated whether ECP can affect the tumor

mutational burden in SS cells. To reinforce our analysis, the

initial list of 128 candidate CTLC-driver genes was manually

extended to include genes sharing similar domains and/or

belonging to the same families or implicated in the same

pathways. We identified 104 additional genes carrying non-

synonymous SNVs according to RNA-seq data. The frequency of

SNVs in those genes and in the 56 gene previously identified

(Figure 1) is reported in Supplementary Table S5.

Notably, among these 160 genes, those mutated with a

percentage ranging from 23% to 57% of samples resulted involved

in: DNA damage response (ATR), centrosome assembly (CROCC

and TP53BP1), epigenetic regulation (ATRX, NCOR1 and TET2),

ribosomal RNA processing (HEATR1), focal adhesion and motility

(IQSEC1 and RHOA), mitochondrial enzyme activity (D2HGDH)

and cell homeostasis (TMEM160, TMEM131).

We then, monitored the number of mutated genes within the

160-gene panel for each patient’s samples (T1 and T2), with the

only exception of patient 76 (without mutation at T1) and the T3

sample of patient 67 (total patients: n.16; total samples: n. 32).

We observed a reduction of the total number of mutated genes

in most of SS patients (11 out of 16 patients) during the ECP

treatment, with a mean of 19.1 and 13.6 mutated genes in T1 and T2

samples, respectively (Figure 3A). A significant decline was also

observed when we compared the total number of mutations (SNVs)

observed at T1 with those observed at T2(p<0.05) (Figure 3B).

. We then compared the effect of ECP on tumor mutational

burden of naïve patients (n=8) assessed at T1 (baseline or after the

1st or 2nd ECP treatment), and at T2 (after a mean number of 19.5

ECP cycles) with that of pretreated patients (n=8) assessed at T1

(after a mean number of 8.5 ECP cycles) and T2 (after a mean

number of 24.9 ECP cycles) (Supplementary Table S1).

Fixing an arbitrary cut-off of ±3 genes with SNVs as difference

between T2 and T1 (DSNVs), 3 out of 8 naïve patients showed a

small increase in the number of mutated genes (DSNVs between 3

and 6), one patient (94) did not achieve the fixed threshold whereas

the remaining four patients showed a reduction of mutated genes

that appeared very marked for patient 78, showing a DSNVs of -12

genes (Figure 3C, left). As shown, the overall SNV reduction found

at T2 vs T1 did not reach statistical significance.

Conversely, all pretreated patients, except for patients 69 and 88

not reaching the fixed threshold, showed a reduction of mutational
Frontiers in Immunology 08
load. Indeed, patients 32, 45, 60, 77 and 92 showed a DSNVs between

-3 and -6 genes, whereas patient 50 presented a noticeable DSNVs of

-15 genes (Figure 3C, right). Overall, a significant decline of the

number of SNVs found at T2 vs T1 was observed (p<0.05).Taken

together, these results indicate that: 1) increasing the number of

ECP cycles decreases the mutational load significantly; 2)

nevertheless, a substantial proportion of mutated genes identified

in T1 samples, persists after therapy (T2 samples) in both naïve and

pretreated patients.
Persistent mutated genes after ECP have a
potential prognostic relevance

The presence of mutated genes persisting in T2 samples of SS

patients undergoing ECP could represent an index of resistance to

treatment and assume a prognostic significance. We thus looked at

genes carrying SNVs that were present in both T1 and T2 samples

derived from all patients analyzed (naïve and pretreated). Results

revealed a heterogeneous percentage of persistent mutated genes in

both groups, with a mean percentage of 53% ± 27% for naïve and of

43% ± 21% for pretreated patients (Figure 4A).

We then wondered if there was any relationship between tumor

burden, evaluated as number of circulating neoplastic cells at T1,

expressed as percentage of clonal CD4+TCRVb+ calculated within

total CD4+ T cells, and the number of persistent mutated genes found

in each patient. Results obtained revealed a significant positive

correlation between these two variables (n=16, r2 = 0.3049,

p=0.0266), indicating that as tumor burden increases, the percentage

of persistent genes found after ECP also increases (Figure 4B).

We also asked if an association existed between patients’ overall

survival (OS) and the percentage of persistent mutated genes. To

this end, patients were clustered into two groups based on the

median values (i.e. 50%) of the percentage of persistent mutated

genes calculated for everyone.

KM survival analysis revealed that patients with more than 50%

of persistent mutated genes at T2 had a worse prognosis (median

OS 42.3 ± 15.4 months, n=7) compared to patients whose

percentage of persistent mutated genes was ≤50% (median OS

78.9 ± 46.9, n=9) (P=0.04 for Log-rank test) (Figure 4C). and had

an increased risk of death (HR: 3.57. 95% CI: 1.043-12.26) also

shown by the risk table Supplementary Table S6A.

Finally, to identify the mutated genes that most frequently

persisted after ECP, we focused on those found in both T1 and

T2 samples in at least three patients. Applying this rule, we

highlighted 15 commonly persistent mutated genes (carrying the

same SNV or different SNVs) that are listed in Table 2. As shown,

almost all mutations were also detected by WES, confirming the

reliability of our RNA-seq data (Table 2).

Then, we asked whether the presence of persistent mutated

genes belonging to this more restricted panel might also have

prognostic significance. To this end, patients were stratified into

quartiles according to the percentage of persistent mutated genes

belonging to the 15-gene panel (Q1 = 20.25%; Q2 = 29%; Q3 =

37.5%; Q4 = 50%). KM survival analysis (Figure 4D) revealed that
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patients with <20.25% of these mutated genes at T2 (1st quartile)

had the best prognosis compared with all other patients with ≥

20.25% at T2. (2nd- 4th quartile) (p=0.03 for log rank test.). An

increased risk of death (HR: 3.4. 95% CI: 1.13-10.45) was also

evidenced for this latter group of patients and the relative risk is

shown in Supplementary Table S6B.
Analysis of pathways affected by mutated
genes detected in patients under ECP
treatment

To understand which biological effects could be influenced most

by the mutated genes within the 160-gene panel, we used g:Profiler

to perform over-representation analysis of Reactome pathways. To
Frontiers in Immunology 09
perform this analysis, we queried the Reactome with the lists of

genes found mutated mainly at T1 (n=46), T1 and T2 (n=67) or

mainly at T2 samples (n=35) retrieved considering the totality of

patients (Supplementary Table S7; Figure 5). Our manually

extended gene set was set as custom statistical domain. Note that

12 genes were excluded from this survey because they were found

with the same frequency in either T1 or T2 samples (Supplementary

Table S7).

Considering the genes mutated mostly in T1 samples, we

detected a significant over-representation of pathways mainly

related to tyrosin kinase receptor and VEGF signaling, RUNX1

activity and Netrin1 signaling. (Padj ≤2.5x10-2).

For the persistent genes, an over-representation approaching

the statistical significance was observed for TP53-mediated

transcriptional regulation of death genes (receptors, ligands and
FIGURE 3

Mutation tracking in patient’s malignant lymphocytes during ECP treatment. (A) Histograms showing the number of mutated genes in T1 and T2
samples calculated on the total number of patients studied (n=16). (B) Dot plot showing mutation number (SNVs) at T1 and T2. *p<0.05 according to
Paired Student’s t-test. (C) Histogram plots related to naïve and pretreated patients showing the difference in the number of genes affected by SNVs
between T1 and T2. Patient number is on the x axis. DSNVS = difference in the number of mutated genes between T1 and T2 samples. In the boxes,
dot plots showing SNV number at T1 and T2 detected in naïve and pretreated patients, respectively. *p<0.05 according to Paired Student’s t-test.
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effectors), DNA double-strand break repair, G2/M DNA damage

checkpoint, Homology-Directed Repair (HDR) and INFa/b
signaling pathways (Padj ≤ 6.5x 10-2) The genes restricted to the

T2 samples resulted mainly implicated in DNA repair, cellular

senescence, HDR, IL-35/27 signaling and resolution of D-loop

structures pathways, without reaching statistical significance.

Similar, though not entirely overlapping, results were obtained

when the Reactome analysis was restricted to the naïve group

(Supplementary Figure S4). The main divergence concerns the

HDR and DNA damage repair (DDR) signaling pathways mainly

found over-represented in T2-associated genes (Padj 4.8x10-2) and

not within persistent genes as seen in the total of patients, indicating

that these pathways are engaged after exposure to ECP. Exclusive of

the naïve-T2 samples appears Notch signaling. Notably, over-

representation of all pathways identified in T2-associtated genes

were significant, possibly reflecting a greater homogeneity of

naive samples.

Finally, for the 15 persistent genes most frequently mutated we

did not find any over-represented functional pathway, a result that

may be due to the limited number of genes analyzed.
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Discussion

SS presents a complex and highly heterogeneous genomic

landscape, with diverse driver gene mutations identified by

several NGS studies (24, 25). However, the relevance of these

mutations for SS biological behavior and response or resistance to

therapy remains largely unclear. Since the biological significance of

genetic changes depends on whether the mutated genes are

expressed or not, here we used RNA-seq data of 35 longitudinal

SS cell samples obtained from 17 patients treated with ECP and

IFNa to identify transcribed SNVs in 128 CTCL-driver genes found

mutated by previous genomic studies (6–14) and more recent

investigations (26, 27). Among these, we identified 56 genes

carrying mutations altering the amino-acid sequence of the

encoded protein (nonsynonymous SNVs).

WES analyses of tumor-normal matched samples revealed that,

after filtering out the germline SNVs, 25 of these 56 genes, were

affected by somatic mutations while nearly all the remaining genes

had only germline-derived mutations. Considering the RNA-seq

data, we observed that 40% of the 56 mutated genes had a low
FIGURE 4

Persistent and common genes emerging after ECP treatment have a prognostic relevance for SS patients. (A) Histogram plot showing the number of
genes affected by SNVs at T1 and T2. Hatched bars represent persistent mutated genes, i.e. genes that present SNVs at both T1 and T2. (B) Dot plot
showing the positive Pearson’s correlation between tumor burden at T1, expressed as percentage of clonal CD4+TCRVb+ T-cells calculated within
total CD4+ T-cells, and percentage of persistent mutated genes calculated on total mutated genes at T2 for each individual. (C) Kaplan-Meier
analysis comparing OS between patients bearing more than 50% of persistent mutated genes at T2 (red, n=7) and patients for whom the percentage
was less than or equal to 50% (green, n=9). Significance was calculated by the log-rank test. Patients with >50% of mutations showed an increased
risk of death (HR: 3.57. 95% CI: 1.043-12.26). (D) Kaplan-Meier analysis comparing survival between patients with <20.25% of 15-commonly mutated
genes at T2 (1st quartile) and all other patients with ≥20.25% of mutations at T2 (2nd-4th quartile). Significance was calculated by the log-rank test.
Patients with ≥20.25% of mutations showed an increased risk of death (HR: 3.4. 95% CI: 1.13-10.45).
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TABLE 2 Integration of RNA seq and WES data for fifteen persistent mutated genes commonly found in patients after ECP.

Patients
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CADD

(PHRED)
SIFT
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Effect
32 45 60 67 69 7

chr3:
142178144

ATR
NM_001184:exon43:
c.G7274A:p.R2425Q

M 7.66 T B missense

chr2:
27439751

ATRAID
NM_001170795:exon7:
c.G625T:p.A209S

M 18.01 T B missense • •
chr1:
17274874

CROCC
NM_014675:exon18:
c.C2563T:p.R855W

M 25.2 D Po missense

chr1:
17292984

CROCC
NM_014675:exon30:
c.G4778A:p.R1593Q

M 28.4 D Po missense

chr1:
17295764

CROCC
NM_014675:exon32:
c.A5230G:p.S1744G

M 19.83 T Po missense

chr2:
242690745

D2HGDH
NM_001287249:exon7:
c.C680T:p.A227V

M 0.002 T B missense

chr2:
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D2HGDH
NM_001287249:exon8:
c.A797G:p.Y266C

M 24.4 D Po missense •
chr2:
242695394

D2HGDH
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M 13.03 T B missense • •
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M 2.78 T B missense •
chr1:
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HEATR1
NM_018072:exon34:
c.G4676A:p.S1559N

M 8.55 T B missense

chr3:
12962074

IQSEC1
NM_001134382:exon6:
c.C1876T:p.P626S

M 23.80 D Po missense •
chr19:
17950294

JAK3
NM_000215:exon10:
c.G1433A:p.R478K

M 16.30 T B missense

chr19:
17945696

JAK3
NM_000215:exon16:
c.G2164A:p.V722I

M 8.63 T B missense •
chr19:
17942142

JAK3
NM_000215:exon21:
c.A2873C:p.E958A

M 23.0 T B missense

chr4:
106196951

TET2
NM_001127208:exon11:
c.A5284G:p.I1762V

M 0.07 T B missense •
•

•

•
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RNAseq data are represented by dots; WES data are indicated by green box (germline) and by yellow box (somatic).
HGVS, Human Genome Variation Society Database; Impact: M, moderate; H, high; The CADD-SV scores on the PHRED scale range fro
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mutation frequency, suggesting that they might have little relevance

to the SS pathobiology or that these genes might be less transcribed

due to the reported mutations.

Among the genes harboring somatic mutations, TET2, JAK3,

NCOR1, PDCD11, RHOA and TP53 showed the highest rate of

mutations (≥17%) according to RNA-seq data, a result reflecting

their implication in the pathogenesis of SS as already described (28).

Within the genes carrying a high rate of only germline-derived

mutations we observed ATM and ATR, involved in DNA-damage

responses, POLD1, which participates in homologous

recombination and ARID1A and CREBBP, both involved in

chromatin remodeling (29). Notably, germline-derived alterations

in ATM, ATR and POLD1 genes could amplify the TP53 mutations

detected in our samples and therefore contribute to the known

genomic instability of SS (28). Similarly, germline mutations in

ARID1A and CREBBP could contribute to epigenetic defects arising

from alterations in the NCOR1, TET2, and DNMT3A genes,

implicated in histone acetylation and DNA methylation

mechanisms, reported here and by others (30).

Within genes harboring only germline-derived mutations, we

also found a subset of novel or poorly studied genes, such as

CROCC, D2HGDH, GIMAP4, and IQSEC1, showing the highest

mutation rate (≥29%). Notably, CROCC gene, which codes for an

important component of the ciliary root, a structure involved in

centrosome cohesion prior to mitosis (23), could play a pathogenic

role in SS similarly to what has been observed in colorectal cancer

(31). This hypothesis finds support in the quality of CROCC

mutations detected here since at least two of them result

deleterious according to SIFT and Polyphen algorithms. It should

be noted that centrosome abnormalities are frequently found in

both solid and hematologic cancers and can cause a failure of
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spindle assembly, resulting in unbalanced segregation of

chromosomes during mitosis and genomic instability (23), a

characteristic of SS (9).

Overall, the results of RNA-seq and WES conducted in our set

of samples not only identify mutated genes that are effectively

transcribed, but also highlights an abundance of germline

mutations that, occurring at the exome level might affect the

function of the encoded proteins thus promoting tumorigenesis.

However, functional studies such as cell-based assays, gene

overexpression or knockdown, or CRISPR gene editing are

needed to determine the actual biological significance or

pathogenic role in SS of the mutations identified here and,

therefore, their clinical relevance.

Although new therapies and treatment combinations have

recently emerged (32), ECP remains a safe and well tolerated

first-line treatment for aggressive CTCLs (33, 34). It is based on

the collection of patients’ leukocytes that are first treated with a

photoactivatable drug, the 8-methoxypsoralen (8-MOP), and then

exposed to ultraviolet A (UVA) light radiation before being

reinfused into patients (33, 34). Recently, a phase I/II clinical

trial, involving ECP in combination with 5-aminolevulinic acid, a

drug that is more selective in targeting neoplastic T cells than 8-

MOP, has also been conducted in patients with CTCL

(ClinicalTrials.gov ID NCT03109353), proving to be safe and well-

tolerate (35). The mechanism of action of ECP is still under

investigation however it is well established that ECP treatment

induces apoptosis of CTCL neoplastic cells, normalize the

imbalance of Th1/Th2 cytokine profile and increases the number

and the activation of NK and T-reg cells (36). A recent study

demonstrated that normal lymphocytes exposed to ECP show an

increased number of DNA double-strand breaks accompanied by
FIGURE 5

Pathways most affected by mutated genes found in naïve and pretreated patients during the disease course. Figure showing the top 10 pathways for
each gene list queried: genes mutated mostly at T1, at both T1 and T2 (persistent) and mostly at T2. Pathways in bold are those significantly over-
represented. Padj = False Discovery Rate (FDR).
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enhanced expression of g-H2AX and TP53BP1, which are

biomarkers of DNA repair (37). In addition to genotoxicity,

DNA-damaging therapy can stimulate anticancer immune-

responses by inducing the expression of INF through the

Stimulator of Interferon Genes (STING) pathway, which is

activated when DNA is detected in the cytoplasm after

chemotherapy and radiotherapy (38, 39). It is noteworthy that the

expression of type III INF via STING pathway is induced in CTCL

cells exposed to 8-MOP and UVA, indicating that this circuit is

activated also by ECP (40).

ECP leads to prolonged disease control (41) and recent studies

have investigated hematological parameters (42) and cytokines (36)

as predictive biomarkers of response to therapy. However, the

mechanisms underlying the efficacy of ECP and tumor cell

acquired resistance to this therapy need to be further investigated

(43). To shed light on these mechanisms, we monitored the number

of mutated genes in SS cells during ECP therapy. We found that the

mutational load was reduced by ECP, particularly in patients who

had received a greater number of ECP cycles. We also observed that

a lower initial tumor burden was correlated with a lower rate of

persistent mutations after therapy. This finding is consistent with

two large retrospective cohort studies (41, 44), showing that ECP is

particularly effective when administered early, i.e. in patients with a

low tumor burden, and as a first-line treatment, i.e. when an

appreciable healthy immune counterpart is still present in

the patients.

Although ECP produces a reduction of the mutation load, a

consistent number of mutated genes continue to be present after

therapy, suggesting that these could represent candidates associated

with ECP resistance. Importantly, persistent mutated genes showed

a prognostic relevance, as evidenced by the shorter survival and the

increased risk of death of patients carrying a higher percentage of

them within all those detected post-therapy. These findings, while

promising, should be however interpreted with caution and

confirmed in a larger cohort of patients.

Interestingly, patients with worse prognosis showed a

mutational profile post ECP (T2) that was largely shared with

that observed at the beginning of therapy (T1), suggesting the

presence of clonal cells basically unaffected by treatment. In

contrast, patients with a better prognosis displayed a more

heterogeneous and broader mutational profile after therapy,

suggesting the appearance of new, probably less aggressive sub-

clones, under ECP pressure, as previously documented at the single-

cell level in SS after histone deacetylase inhibitor (HDACi)

treatment employed alone or in combination with ECP (45, 46).

Reactome analysis allowed us to identify the pathways most

affected by the mutated genes here identified. In T1 samples we

detected an overrepresentation of pathways involving signaling by

tyrosine kinases, VEGF, RUNX1 and Netrin1, indicating an active

interaction between neoplastic cells and tumor microenvironment

(TME). These signals appear disused during subsequent ECP cycles

possibly due to the elimination of SS cell sub-clones. Alternatively,

TME changes caused by ECP, such as the Th2-Th1 cytokine profile

shift (36), may preclude the crosstalk between TME and SS cells

leading to transcriptional changes. This hypothesis is consistent
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with the expression profile changes found in SS cells after ECP

exposure (47).

Persistent mutated genes result mainly implicated in TP53

transcriptional regulation of death genes (receptors, ligands,

cytochrome release) in agreement with the up-regulation of TP53

and FAS/FAS ligand observed in SS following ECP exposure (47).

An enrichment of mutated genes involved in DNA-double strand

break repair, G2/M DNA damage checkpoint and HDR pathways

were also detected, suggesting that the mutations/dysfunction of

TP53 and DNA repair pathways can promote resistance of

malignant cells to ECP-induced DNA damage.

Mutated genes restricted to T2 samples are implicated in DNA

repair and senescence, a stress-inducible state of terminal cell cycle

arrest which had been previously observed in ECP-treated cells (48,

49). Mutations in genes involved ILs signaling and in resolution of

D-loop structures emerging during DNA repair synthesis were also

detected suggesting cell attempt to repair the DNA damage caused

by ECP treatment.

Altered DNA damage responses (DDRs) represent an

opportunity to fight cancer. Indeed, defective DDRs influence

both the anti-tumor immune-response by activating the INF

pathway (40) and the immune-surveillance, through the

accumulation of neo-antigens induced by expressed somatic

mutations (38, 39) that can enhance the efficacy of immune-

checkpoint (IC) inhibitors, therapeutics also used to treat SS (50).

DNA repair and DNA proofreading activity are the two main

mechanisms to ensure the fidelity of DNA replication. In this

scenario, mutation of POLD1 gene, which has a DNA-

proofreading function, is strongly correlated with high mutation

load and neo-antigen generation, thus representing a potential

marker for predicting the efficacy of IC inhibitor therapy in

different types of cancer (51), including SS (50). Thus, it is

interesting to point out that we found that the POLD1 gene

carries germline-restricted mutations with a high frequency in our

sample-set.

Cells use different pathways to repair distinct forms of DNA

damage, and, in general, tumors that lack specific DDR pathways

often depend on other intact DDR pathways for survival, thus

unmasking new therapeutic targets through the principle of

synthetic lethality (52). Novel compounds against DDR pathways,

already suggested for the treatment of hematological cancers (52),

including SS (9, 28), might be specifically used in combination with

ECP. This approach might represent a novel therapeutic strategy to

treat SS, in line with the increased sensitivity to phototherapy

observed in CTCL cell lines concurrently treated with small

molecules against ATR signaling (53). Notably, a phase 1 clinical

study involving the ATR kinase inhibitor ceralasertib used alone or

in combination with radio-therapy (54) (ClinicalTrials.gov ID

NCT02223923) has been conducted in advanced solid tumors

based on the hypothesis that tumors lacking important DNA

repair functions can be responsive to ceralasertib, accordingly to

the principle of synthetic lethality, and that the drug may increase

the efficacy of radiotherapy by preventing repair of DNA damage.

The recently published results of the study (55) have indeed shown

that ceralasertib monotherapy was associated with durable
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responses in tumors with defects in DDR and, interestingly in

ARID1A that we found frequently mutated at germline level in our

SS samples.

Although our study provides novel information about SS

mutational landscape and suggests future treatment options for

this lymphoma, it has some limitations that need to be considered.

It is a retrospective investigation that, nevertheless, included a fair

number of samples, given the rarity of the disease. Furthermore,

studies are required to functionally characterize the mutations

found in our cohort of patients. Pre-clinical studies are also

needed to verify the value of the potential therapeutic targets

highlighted here.

To our knowledge, this is the first evaluation in SS of expressed

mutations in a large panel of putative CTCL-driver genes.

Integration of RNA-seq and WES data revealed an abundance of

genes with mutations of exclusive germline inheritance that could

potentially represent risk factors for the development of this

lymphoma, such as those affecting the CROCC gene. Future

functional studies are, however, required to validate this hypothesis.

Another novel feature of the present study is the monitoring of

mutated genes in patients’ malignant lymphocytes during ECP

treatment. Emerging findings highlight new candidates associated

with ECP resistance that converge mainly on DNA repair pathways

which could increase the load of tumor neoantigens potentially

enhancing ECP-mediated anti-clonal immunity in SS. Our results

also suggest that therapies targeting DNA repair pathway could be

exploited in combination with ECP for the treatment of SS.
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