
TYPE Original Research 
PUBLISHED 16 July 2025 
DOI 10.3389/fimmu.2025.1589563 

OPEN ACCESS 

EDITED BY 

Jiao Hu,
 
Central South University, China
 

REVIEWED BY 

Dingfan Guo,
 
Nanchang University, China
 
Luzhe Yan,
 
Central South University, China
 

*CORRESPONDENCE 

Jian Wu 

wujian3@mail.sysu.edu.cn 

Qi Zhou 

hnzhouqi@163.com 

Jiehui Tan 

tanjh59@mail.sysu.edu.cn 

†These authors have contributed equally to 
this work 

RECEIVED 07 March 2025 
ACCEPTED 24 June 2025 
PUBLISHED 16 July 2025 

CITATION 

Lei K, Zhao Y, Li S, Liu J, Chen W, Zhou C, 
Zhang Y, Tan J, Wu J, Zhou Q and Tan J 
(2025) Integrative spatial and single-cell 
transcriptomics elucidate programmed cell 
death-driven tumor microenvironment 
dynamics in hepatocellular carcinoma. 
Front. Immunol. 16:1589563. 
doi: 10.3389/fimmu.2025.1589563 

COPYRIGHT 

© 2025 Lei, Zhao,  Li, Liu, Chen,  Zhou, Zhang,  
Tan, Wu, Zhou and Tan. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License (CC BY). 
The use, distribution or reproduction in other 
forums is permitted, provided the original 
author(s) and the copyright owner(s) are 
credited and that the original publication in 
this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms. 

Frontiers in Immunology 
Integrative spatial and 
single-cell transcriptomics 
elucidate programmed cell 
death-driven tumor 
microenvironment dynamics 
in hepatocellular carcinoma 
Kai Lei1,2†, Yutong Zhao3†, Shumin Li3†, Jiawei Liu4, 
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Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China, 6Department 
of Intensive Care Unit, Wuchuan People’s Hospital, Zhanjiang, Guangdong, China 
Purpose: Programmed cell death (PCD) mechanisms play crucial roles in cancer 
progression and treatment response. This study aims to develop a PCD scores 
prediction model to evaluate the prognosis of hepatocellular carcinoma (HCC) 
and elucidate the tumor microenvironment differences. 

Methods: We analyzed transcriptomic data from 363 HCC patients in the TCGA 
database and 221 patients in the GEO database to develop a PCD prediction 
model. Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics 
sequencing (ST-seq) data from HCC patients were analyzed to investigate the 
tumor microenvironment and functional disparities. The oncogenic role of the 
key gene UBE2E1 in the model was explored in HCC through various in 
vitro experiments. 

Results: Seventeen PCD-related genes were identified as significant prognostic 
indicators, forming the basis of our PCD prediction model. High-PCD scores 
correlated with poorer overall survival (OS) and exhibited significant predictive 
capabilities. scRNA-seq analysis revealed distinct tumor cell characteristics and 
immune microenvironment differences between high- and low-PCD groups. 
High-PCD tumors showed increased cell proliferation and malignancy-

associated gene expression. T cells in high-PCD patients were more likely to 
be exhausted, with elevated expression of exhaustion markers. ST-seq data also 
confirmed these results. Among the genes associated with the PCD prognostic 
model, UBE2E1 was identified as a key oncogenic marker in HCC. 
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Conclusions: The PCD prediction model effectively predicts prognosis in HCC 
patients and reveals critical insights into the tumor microenvironment and 
immune cell exhaustion. This study underscores the potential of PCD-related 
biomarkers in guiding personalized treatment strategies for HCC. 
KEYWORDS 

hepatocellular carcinoma, programmed cell death, prediction model, tumor 
microenvironment, Ube2E1 
Introduction 

Liver cancer ranks as the sixth most prevalent cancer globally 
and stands as the third highest cause of cancer-related deaths, 
preceded only by lung and colorectal cancer (1). Hepatocellular 
carcinoma (HCC) emerges as the predominant form of primary 
liver cancer. Over the past two decades, substantial progress in 
systemic therapies has markedly improved the prognosis for 
advanced-stage HCC patients (2–4). However, the high 
heterogeneity of cancer remains a central challenge, complicating 
the search for effective therapeutic strategies (5). This problem is 
not limited to HCC; similar issues are faced by other cancer types, 
such as muscle-invasive bladder cancer (MIBC), where neoadjuvant 
combination therapies have shown promising efficacy, with HER2 
and HSPA1A expression emerging as potential biomarkers for 
treatment response (6, 7). Personalized treatment plans tailored to 
individual patient conditions are therefore imperative. Additionally, 
identifying reliable biomarkers for high-risk populations is crucial 
for enhancing diagnostic accuracy, treatment specificity, and 
prognosis. These efforts aim to broaden the spectrum of strategies 
available to combat cancer. 

Resisting cell death is a hallmark of cancer, pivotal at various 
stages of its progression (8). Evading cell death is a key 
characteristic of cancer. Cell death can be classified into two 
categories based on different triggering stimuli: accidental cell 
death (ACD) and programmed cell death (PCD). ACD occurs 
spontaneously due to severe physical, chemical, or mechanical 
damage, while PCD relies on specialized molecular mechanisms 
and can be modulated pharmacologically or genetically (9, 10). 
Fifteen types of programmed cell death (PCD) have been identified, 
including: anoikis (ANK), apoptosis-like morphology (ALM), 
autophagy (ATG), cuproptosis (CUP), entotic cell death (ENT), 
extrinsic apoptosis (EAP), ferroptosis (FPT), immunogenic cell 
death (ICD), intrinsic apoptosis (IAP), lysosome-dependent cell 
death (LDC), necroptosis (NPT), necrosis-like morphology (NLM), 
necrosis (NCR), parthanatos (PRT), and pyroptosis (PYR) (9, 
11–13). 

Recent studies highlight the significance of PCD mechanisms in 
liver cancer treatment. Pyroptosis, mediated by gasdermin E 
(GSDME),  i s  a  promis ing  molecular  mechanism  for  
chemotherapy drugs in tumor treatment, particularly in liver 
02 
cancer. This process inhibits tumor growth and induces 
apoptosis,  offering  potential  therapeutic  benefits  (14).  
Additionally, intra-tumor NF-kB-pyroptosis correlates with poor 
prognosis in liver cancer patients. Inactivation of NF-kB has been 
shown to accelerate necroptosis, thereby mitigating inflammation 
and liver cancer progression (15). Moreover, ferroptosis has been 
implicated in sorafenib resistance, radioresistance, and immune 
evasion in HCC (16–18). 

Given the fundamental role of various PCD mechanisms in the 
development and progression of HCC, we propose a novel 
approach utilizing PCD-related molecules to establish a predictive 
indicator for PCD risk scoring, which is crucial for determining the 
prognosis of HCC patients. Leveraging single-cell RNA sequencing 
(scRNA-seq) technology and spatial transcriptomics sequencing 
(ST-seq) techniques, we aim to delineate the cellular composition 
of the tumor microenvironment and discern functional disparities 
in tumor cells between high-risk and low-risk patients. 
Additionally, we intend to conduct detailed analyses of T cells 
using scRNA-seq and ST-seq technology, thereby shedding new 
light on how PCD influences the prognosis of HCC patients. Most 
notably, we elucidated the oncogenic function of the model key gene 
UBE2E1 in HCC through in vitro experimentation. 
Materials and methods 

Data collection 

Essential genes associated with 15 PCD patterns were compiled 
from various sources. We sourced the essential genes from different 
established databases and publications, including the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) for comprehensive 
genetic information, the Molecular Signatures Database (MSigDB, 
accessible at http://software.broadinstitute.org/gsea/msigdb/ 
index.jsp), various peer-reviewed articles, and a meticulously 
curated collection from the Genecards website (refer to https:// 
www.genecards.org/ for detailed genetic profiles) (10, 11, 19). Our 
comprehensive analysis encompassed a range of genes, including 27 
genes in anoikis, 146 genes in apoptosis-like morphology, 222 genes 
in autophagy, 17 genes in cuproptosis, 23 genes in entotic cell death, 
500 genes in extrinsic apoptosis, 283 genes in ferroptosis, 500 genes 
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in immunogenic cell death, 500 genes in intrinsic apoptosis, 194 
genes in lysosome-dependent cell death, 500 genes for necroptosis, 
73 genes involved in necrosis-like morphology, 500 genes in 
necrosis, 23 related to parthanatos, and 388 associated with 
pyroptosis (Supplementary Table S1). After the removal of 
duplicates, we incorporated a total of 2159 unique PCD-related 
genes into our analysis. Transcriptomic data of the TCGA cohort 
was downloaded from the University of California Santa Cruz 
(UCSC) Xena data portal (https://xenabrowser.net) (20). After 
excluding duplicate samples, samples lacking clinical information, 
and samples with a survival time of zero, 363 HCC samples 
were ultimately included in the study. Additionally, we obtained 
microarray data and clinical characteristics (GSE14520) from 
the Gene Expression Omnibus (GEO) database (https:// 
www.ncbi.nlm.nih.gov/geo/). 

To address the technical heterogeneity between the RNA-seq 
(TCGA) and microarray (GEO) platforms, we applied Z-score 
normalization to the expression matrix of each cohort 
individually. Additionally, to remove batch effects and harmonize 
data distributions across platforms for model application, we used 
the ComBat function from the sva R package (version 3.48.0), 
following standard procedures. Genes were intersected between 
platforms before normalization to ensure compatibility. This 
preprocessing allowed for consistent calculation and application 
of the PCD-based scoring system across cohorts. 

ScRNA-seq data of HCC patients were collected from 
GSE151530, GSE125449, and GSE149614. The ST-seq data were 
collected from HRA000437 (https://ngdc.cncb.ac.cn/gsa-human/ 
browse/HRA000437). 
 

Construction of the PCD scores prediction 
model 

Initially, through univariate Cox analysis, we preliminarily 
identified PCD-related genes with prognostic value. To avoid 
omission, we set the cut-off p-value at 0.1. Further, multivariate 
Cox analysis was employed to determine PCD genes of prognostic 
significance, with the cut-off p-value set at 0.05. Subsequently, the 
LASSO was utilized to establish a penalty function, and a more 
precise model was obtained through the “glmnet” package (21). 
Ultimately, the model outputted the PCD score for each patient 
using the following formula: 

PCD score =  i=1Coef (bi)*Exp(Xi)o n 

In the formula, Coef (bi) represents the risk coefficient, and Exp 
(ci) denotes the expression of each gene, with n indicating the 
number of genes in the model. The PCD score cut-off value in each 
cohort was defined as the median score within that cohort to ensure 
internal consistency and avoid information leakage across datasets. 
Full PCD score details and stratification information for each 
sample are provided in Supplementary Tables S3–S5. We used the 
“survival” and “survminer” packages to perform Kaplan-Meier 
analysis to investigate the correlation between overall survival 
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(OS)  time  and  PCD.  Additionally,  Receiver  Operating  
Characteristic (ROC) curves have been generated to assess the 
prognostic efficacy of the PCD. 
scRNA-seq data preprocessing 

The unique molecular  identifier (UMI) count matrix was 
converted into a Seurat object using the R package “Seurat” 
(version 4.3.0). Subsequent quality control was conducted, 
excluding low-quality cells based on the following criteria: 
samples with fewer than 500 cells and cells with fewer than 300 
detected genes were excluded, and the percentage of mitochondrial 
genes was maintained below 15%. “DoubletFinder” was utilized to 
identify potential doublets within the samples. The expected 
doublet rate was adjusted to align with the Poisson doublet 
formation rate, which was determined through a calculation that 
took into account cell concentration (22). Following quality control, 
a dataset comprising 41,301 cells and 25,714 genes was obtained for 
downstream analysis. 
Unsupervised cell clustering, marker 
Identification, and differential gene 
expression 

The Seurat (version 4.3.0) R package was utilized for the 
analysis of scRNA-seq data (23). We normalized the expression 
measurements of each cell’s features relative to their  total
expression levels using the ‘LogNormalize’ methodology. First, we 
scaled the data by multiplying it by a factor of 10,000. Then, we 
performed a logarithmic transformation on the scaled results. Based 
on the normalized gene expression matrix, we identified 2,000 
highly variable genes using the “FindVariableFeatures” function 
and the variance stabilizing transformation (VST) method. 
Subsequently, we performed Principal Component Analysis 
(PCA) on these genes with significant variation. The number of 
principal components (PCs) suitable for downstream analysis was 
determined using an Elbowplot, which was set to 35 in this case. We 
used the default parameters of Harmony (version 0.1.1) to correct 
batch effects (24). Subsequently, we performed graph-based 
clustering using shared nearest neighbor (SNN) and the Louvain 
graph-based algorithm. We implemented clustering using the 
FindNeighbors and FindClusters functions of the Seurat package. 
The t-distributed Stochastic Neighbor Embedding (t-SNE) and 
Uniform Manifold Approximation and Projection (UMAP) were 
utilized to visualize the clustering results. 

To better define distinct clusters, we identified differential genes 
using the FindAllMarkers function from the Seurat R package. Only 
genes with a log fold-change greater than 0.25 between the two 
groups and detectable expression in more than 25% of cells in either 
population were considered differentially expressed. Subsequently, 
we annotated the clusters based on the expression profiles of known 
canonical marker genes. The marker genes for each cluster are 
presented in Supplementary Table S2. 
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Copy number variation analysis using 
CopyKAT 

To further distinguish malignant tumor cells from non­
malignant populations, we performed CNV inference using 
CopyKAT (v1.1.0) (25). CopyKAT applies integrative Bayesian 
approaches on single-cell RNA-seq data to identify large-scale 
chromosomal copy number aberrations and distinguish aneuploid 
tumor cells from diploid normal cells. Given that all samples were 
derived from tumor tissue, we used T cells, which are typically 
diploid and genetically stable, as a reference population for CNV 
analysis. CopyKAT was run following the standard pipeline and 
parameters as described in the official tutorial. The results provided 
genome-wide CNV profiles, allowing us to confirm the malignancy 
of  cells  annotated  as  tumor  subpopulations  based  on  
gene expression. 
 

Calculation and grouping of PCD scores 
for single-cell samples 

We aggregated the gene counts of all cells using the 
AggregateExpression function in the Seurat R package, resulting 
in a gene expression profile for each sample. Subsequently, we 
calculated the risk value for each sample using a well-established 
formula and grouped them accordingly. Specifically, the top 14 
samples were defined as the high PCD risk group, while the bottom 
14 samples were designated as the low PCD risk group. 
Differentially expressed genes and pathway 
enrichment analysis 

To evaluate the biological functional differences within each cell 
type (tumor cells and T cells) between the high-PCD group and the 
low-PCD group, we conducted differential expression analysis and 
pathway enrichment analysis. The analysis was based on the 
Wilcoxon Rank-Sum test using the “FindMarkers” function in the 
Seurat package. DEGs were defined with an adjusted p-value 
threshold of 0.05. These DEGs were then utilized in the 
clusterProfiler R package (version 4.8.3) for KEGG pathway 
enrichment analysis (26–28). Pathways with an adjusted p-value< 
0.05 were considered significantly enriched. 
Metabolic pathway activity analysis 

The weighted relative pathway activity algorithm was employed 
to assess the metabolic pathway activity in both high-PCD and low-
PCD groups (29). For each cell type, we calculated the average 
expression level of metabolic genes pertinent to that cell type. This 
was followed by a comparison of each gene’s expression level in a 
given cell type with its average expression across all cells, yielding 
the relative expression level. For every metabolic pathway, we 
computed the weighted average of the relative expression levels of 
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the genes constituting that pathway. To reduce the impact of genes 
with either low expression levels or high missing data rates on the 
pathway activity assessment, outliers were excluded-specifically 
those with relative expression levels exceeding three times the 
75th percentile or falling below one-third of the 25th percentile in 
each pathway. 

A random permutation test was utilized to evaluate the 
statistical significance of the pathway activity in distinct cell types. 
By randomly shuffling cell labels 5,000 times, we simulated a null 
distribution of the pathway activity scores. These scores were then 
contrasted with those in the original, non-rearranged dataset to 
compute p-values. 
Cellchat analysis 

We used the cellchat R package (version 1.6.1) to infer cell 
communication between different groups of tumor cells and all types 
of T cells (30). Following the official workflow, we constructed CellChat 
objects for the two groups of single cells using the “createCellChat” 
function. Subsequently, the “computeCommunProb” function was 
employed to infer communication probabilities. To ensure robust 
analysis of cell-cell communication within our  dataset,  we  further
filtered out interactions where fewer than ten cells per cell type were 
involved, using the “filterCommunication” function. This rigorous 
approach allowed us to focus on the most reliable and biologically 
meaningful cellular interactions. 
Developmental trajectory inference 

To investigate the functional variations and potential lineage 
differentiations among CD8+ T cells, we employed the “Monocle2” 
R package (version 2.28.0) to reconstruct the cellular differentiation 
trajectory of CD8+ T cell subsets (31). The single-cell expression 
matrix data of CD8+ T cells were converted into the CellDataSet 
class using the newCellDataSet function within the “Monocle2” R 
package for subsequent analysis. Subsequently, we utilized the 
VariableFeatures function to identify highly variable genes, which 
were used to define the cellular processes. DDRTree within the 
reduceDimension function was applied for data dimensionality 
reduction. Based on the Reversed Graph Embedding algorithm, 
cells were arranged in pseudotime order along the trajectory. 
Spatial transcriptomics integration and risk 
score assessment 

Given the current ST resolution, each spot is estimated to 
contain approximately 8 to 20 cells, which precludes the 
assignment of specific cell types to each spot. To elucidate the 
cellular composition of each spot, we integrated HCC single-cell 
data with spatial transcriptomics data using SPOTlight (32). 
SPOTlight employs non-negative matrix factorization (NMF) 
regression to derive cell type-specific gene signatures. 
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Subsequently, we defined spots with the highest tumor 
proportion as “malignant regions”, while the remaining spots 
were categorized as “other regions”. By calculating the risk score 
for each spot, we identified the top and bottom 5% of spots with the 
highest and lowest risk scores, respectively. The AUCell R package 
was then utilized to evaluate the characteristics of each group of 
spots (33). 
Differential expression and prognostic 
association of UBE2E1 in HCC 

Using the GEPIA2 (http://gepia2.cancer-pku.cn/) database, we 
verified the differential expression of UBE2E1 between HCC 
samples and peri-tumor as well as normal samples. Kaplan-Meier 
analysis was performed to calculate survival estimates, and a 
Kaplan-Meier survival curve was generated. 
Cell lines and culture 

Human HCC Huh-7 cells Huh7 cells and SNU-449 cells were 
obtained from the China Center for Type Culture Collection 
(Shanghai, China). Huh-7 cells were cultured in Dulbecco’s 
modified Eagle’s medium (DMEM, Gibco) supplemented with 
10% fetal bovine serum (GIBCO, USA) and 1% penicillin-
streptomycin (GIBCO, USA). The cells were grown in a 5% CO2 

incubator (Thermo Scientific, USA) at 37°C. 
Knockdown of UBE2E1 in HCC cells 

The pLKO.1 lentiviral vectors expressing short hairpin RNA 
(shRNA) targeting UBE2E1 were purchased from Umine 
Biotechnology Co., LTD (China). The shRNA constructs, along with 
the packaging plasmid (pCMV-DR8.9) and the envelope plasmid 
(pCMV-VSVG), were co-transfected into HEK293T cells using 
Lipofectamine 3000 (Invitrogen,  USA). After 48 hours of incubation, 
the viruses were collected and used to infect Huh-7 cells with polybrene 
(8 mg/ml) (Solarbio, China). Stable infected cells were then selected 
with puromycin (2.5 mg/ml) for 48 hours. The shRNA sequences used 
in this study are as follows: shUBE2E1-1: CCCAAGAAGAAGGA 
GAGTAAA; shUBE2E1-2: CTTGGTAAAGAGTAGGGTATT. 
Western blot 

After homogenization and centrifugation, the supernatant was 
collected for total protein quantification using the BCA protein 
assay kit (Solarbio, China). Fifty micrograms of protein from each 
sample were loaded onto sodium dodecyl sulfate-polyacrylamide 
gel electrophoresis (SDS-PAGE), followed by transfer to 
polyvinylidene difluoride (PVDF) membranes. Nonspecific 
binding sites were blocked with 5% bovine serum albumin (BSA) 
prior to antibody incubation. The membranes were then incubated 
Frontiers in Immunology 05 
with primary antibodies (Proteintech, China) overnight at 4°C. 
Subsequently, the membranes were washed with TBS and incubated 
with horseradish peroxidase (HRP)-conjugated secondary 
antibodies in blocking buffer for 1 hour at room temperature. 
After three washes, the protein bands were visualized using an 
enhanced chemiluminescence detection kit (Solarbio, China). 
Clone formation, cell proliferation, viability 
and migration assays 

In the clonogenic assay, 1000 cells/well were seeded into six-well 
plates containing fresh medium. After 2 weeks, colonies were 
stained with 0.5% crystal violet and counted. For viability 
assessment, 2000 cells/well were plated in 96-well plates with 
fresh medium. Cell viability was evaluated at 6, 24, 48, 72, 96 and 
120 hours using the Cell Counting Kit-8 (Dojindo, Japan) according 
to the manufacturer’s instructions. 

A total of 5 × 10^4 cells suspended in 500 ml of serum-free fresh 
medium were added to the upper chamber of transwell inserts 
(Corning Falcon, USA), which were then placed in wells containing 
fresh medium with 20% fetal bovine serum to induce cell migration. 
For the migration assay, an equal number of cells were seeded into 
chambers. After 48 hours, cells that had migrated to the outer 
surface were stained with 0.5% crystal violet and counted to analyze 
cell migration. 
Determination of apoptosis 

Huh7 cells and SNU-449 cells were seeded into six-well plates. 
Apoptosis was tested using an apoptosis detection kit according to 
the manufacturer’s instructions (Dojindo, Japan). Cells in the six-
well plates were collected and cell subpopulations were analyzed. 
Initially, cells were gated based on forward scatter (FSC−) versus 
side scatter (SSC−) characteristics. Subsequently, doublets were 
excluded using consecutive gating on FSC-Area versus FSC-
Width and SSC-Area versus SSC-Width plots. Quadrants were set 
on the Annexin V/PI dot plot. Living cells (Annexin V−/PI−), early 
apoptotic cells (Annexin V+/PI−), late apoptotic cells (Annexin V 
+/PI+), and necrotic cells (Annexin V−/PI+) were distinguished. 
Afterwards, the proportions of annexin V+/PI−, annexin V+/PI+, 
annexin V−/PI+, and annexin V−/PI− cell populations were 
calculated using quadrant gates. Data were analyzed using FlowJo 
v 9.6.3 (TreeStar, Inc). 
Animal model and tumor xenograft 
implantation 

NCG mice (Strain No. T001475) were purchased from 
GemPharmatech. For the subcutaneous transplantation, a total of 
10 mice were used, with 5 mice injected with Huh7 cells transfected 
with shNC (control) and 5 mice injected with Huh7 cells transfected 
with shUBE2E1. A total of 5 × 10^6 cells in 200 μL PBS were 
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injected subcutaneously into the right flank of each mouse. After 2 
weeks, the mice were euthanized, and the subcutaneous tumors 
were harvested. Tumor images were captured and tumor volume 
was measured for subsequent analysis. This methodology follows 
ethical guidelines for the use of animals in research and ensures that 
all procedures comply with approved protocols. The animal 
experiments were approved by the Institutional Animal Care and 
Use Committee (IACUC) at Sun Yat-sen University, under the 
Affidavit of Approval of Animal Use Protocol (Approval No. SYSU­
IACUC-2025-001259). 
Statistical analysis 

Statistical analyses were performed using R (version 4.1.2). 
Comparisons for categorical variables were conducted using the 
Chi-square test or Fisher’s exact test, while the Student’s t-test or 
Wilcoxon rank-sum test was employed for continuous variables. A 
p-value less than 0.05 was considered statistically significant. 
Results 

Study cohorts and workflow 

In this study, we identified 363 hepatocellular carcinoma (HCC) 
patients from TCGA and 221 HCC patients from GSE14520 for 
training and validation cohorts, respectively. Among the 363 HCC 
patients from TCGA, a 7:3 random split was applied to allocate 
them into a training set (TCGA_TrainSet) and an internal 
validation set (TCGA_TestSet), while the 221 HCC patients from 
GSE14520 served as an external validation set. For the scRNA-seq 
cohort, 5 patients with HCC were collected from GSE125449, 10 
patients from GSE149614, and 13 patients from GSE151530. For 
the spatial transcriptomics sequencing (ST-seq) cohort, the ST-seq 
data of 3 HCC patients were obtained from HRA000437. The 
workflow of this study is illustrated in Figure 1. 
Construction of a PCD scores prediction 
model for HCC patients 

In the training set, univariate Cox regression analysis was 
utilized for the preliminary screening of genes associated with 
overall survival (OS) among the 2159 genes retrieved for 15 PCD 
patterns. Genes with a p-value less than 0.1 underwent further 
analysis using multivariate Cox regression related to OS. 
Subsequently, genes with a p-value less than 0.05 underwent 
LASSO regression to select the most predictive genes serving as 
OS-related indicators. Ultimately, 17 PCD-related genes (ENO1, 
CDK4, RPS17, PDLIM1, KLHDC10, IGFBP3, UBE2E1, CBS, UBB, 
YWHAQ, SPP1, USF2, STAT6, PCK2, CACYBP, HDAC1, CD79A) 
associated with OS were identified (Figure 1 and Supplementary 
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Figure S1). Among the 17 PCD-related genes, 1 gene originated 
from ATG (HDAC1), 5 genes from EAP (CDK4, IGFBP3, SPP1, 
STAT6, YWHAQ), 1 gene from FPT (PCK2), 3 genes from ICD 
(CD79A, CDK4, SPP1), 4 genes from IAP (CDK4, HDAC1, 
IGFBP3, YWHAQ), 3 genes from LDC (CDK4, UBB, UBE2E1), 2 
genes from NPT (KLHDC10, RPS17), 2 genes from NLM (ENO1, 
PDLIM1), 3 genes from NCR (CBS, IGFBP3, SPP1), and 1 gene 
from PYR (USF2). 

HCC patients in the TCGA_test cohort were stratified into 
high-PCD group (n = 127) and low-PCD group (n = 127) using the 
median of the PCD scores as the cut-off value. To compare the OS 
among HCC patients with varying PCD scores, the results revealed 
that individuals with a high PCD scores had a lower survival rate 
compared to those with a low PCD scores (Figure 2A). 
Furthermore, a notable disparity in OS was noted between these 
two groups, indicating that patients in the high-PCD group 
exhibited a higher probability of experiencing poorer OS 
outcomes (p = 7.327e-14) (Figure 2B). The receiver operating 
characteristic (ROC) curve analysis revealed that the PCD scores 
could assess 1-, 2-, and 3-year OS with an AUC value of 0.809, 
0.816, and 0.828, respectively, indicating a significant predictive 
capability of the PCD scores (Figure 2C). 
Internal and external validation of the PCD 
scores prediction model 

The patients with HCC in both the internal and external 
validation sets were similarly categorized into high-PCD and low-
PCD groups using a predetermined cut-off derived from the 
median. When evaluating the predictive performance of the PCD 
scores in estimating OS among HCC patients, both internal and 
external validation sets demonstrated consistent trends. Within the 
internal validation set, patients with a high PCD score exhibited a 
markedly lower survival rate compared to those with a low PCD 
score, illustrating a substantial prognostic difference (Figure 2A). 
This observation was further supported by the pronounced contrast 
in OS outcomes between the high and low-PCD groups (p = 1.207e­
03), suggesting a higher likelihood of adverse OS outcomes in 
patients with elevated PCD scores (Figure 2B). Similarly, the 
external validation set corroborated these findings, showing a 
consistent association between PCD scores and OS (Figure 2A). 
Patients with high PCD scores displayed a significantly inferior OS 
compared to those with low PCD valuse (p = 2.496e-07), reinforcing 
the robustness of the predictive model across different patient 
cohorts (Figure 2B). 

The ROC curve analysis highlighted the predictive efficacy of 
the PCD scores prediction model, yielding AUC values of 0.822, 
0.781, and 0.777 for 1-, 2-, and 3-year OS predictions, respectively, 
in the internal validation set (Figure 2C). In the external validation 
set, corresponding AUC values of 0.717, 0.751, and 0.726 were 
observed for 1-, 2-, and 3-year OS predictions (Figure 2C), affirming 
the robustness of the model across different validation cohorts. 
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Profiling of tumor microenvironment in 
high- and low-PCD groups by scRNA-seq 

To explore the detailed distinction of the tumor immune 
microenvironment in high- and low-PCD groups among HCC 
patients, we leveraged publicly available single-cell transcriptome 
datasets (GSE125449, GSE151530, and GSE149614) for analysis. 
Following quality control and filtering, a total of 71799 high-quality 
cells were obtained, with an average of 2564 cells per sample and an 
average detection of 25714 genes per cell. Based on typical 
individual marker genes, the total cells were partitioned into six 
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major cell types using UMAP, including immune cells (T/NK cells, 
myeloid cells, B and plasma cells), tumor cells, and stromal cells 
(endothelial and fibroblasts cells) (Supplementary Figure S2A). 
Tumor cells were identified using EPCAM, KRT18, and AFP as 
markers, while T/NK cells were identified by using the markers 
CD3D, CD3E, and GZMA (Supplementary Figure S2B). To further 
validate the malignant identity of tumor cell subpopulations, we 
applied CopyKAT, which infers genome-wide large-scale copy 
number aberrations from single-cell transcriptomic profiles 
without requiring prior tumor annotations. The resulting UMAP 
embedding based on ploidy predictions revealed a distinct cluster of 
FIGURE 1 

Flowchart illustrating the comprehensive analysis of diverse programmed cell death (PCD) patterns in hepatocellular carcinoma (HCC) patients. 
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aneuploid cells (red), corresponding to the transcriptomically 
defined tumor population. In contrast, diploid cells (blue) were 
enriched in T/NK cell clusters, supporting their non-malignant 
identity. The clear segregation between aneuploid and diploid 
populations reinforces the validity of our tumor cell classification 
strategy (Supplementary Figure S2C). In the immune cell 
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population, T cells comprise the largest proportion, with the 
proportion of T cells in the high-PCD group being significantly 
lower than that in the low-PCD group (Supplementary Figure S2D). 
Cell cycle states were identified among all available cells across the 
two groups, revealing a higher proportion of cells in the G2/M state 
in the high-PCD group compared to the low-PCD group, 
FIGURE 2 

Development and validation of the PCD scores prediction model. (A) Distribution of PCD scores by survival time and survival status in the training set 
(TCGA_TrainSet), internal validation set (TCGA_TestSet), and external validation set (GSE14520). (B) Overall survival (OS) of HCC patients in the low-
and high-PCD groups in the training set (TCGA_TrainSet), internal validation set (TCGA_TestSet), and external validation set (GSE14520). (C) Receiver 
Operating Characteristic (ROC) analysis for the PCD scores prediction model evaluating 1-, 2-, and 3-year OS in the training set (TCGA_TrainSet), 
internal validation set (TCGA_TestSet), and external validation set (GSE14520). 
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suggesting a greater degree of active cell proliferation in the high-
PCD group (Supplementary Figures S2E, F). 
Distinguishing characteristics of tumor 
cells in high- and low-PCD groups 

To investigate the distinguishing tumor-intrinsic features 
between high- and low-PCD groups, a total of 9611 tumor cells 
were identified across 28 samples, comprising 5460 tumor cells in 
the high-PCD group and 4151 tumor cells in the low-PCD group 
(Figure 3A). The cell cycle states of all tumor cells in both groups 
were identified, with a higher proportion of tumor cells in the G2/M 
phase observed in the high-PCD group compared to the low-PCD 
group, indicating a more active proliferation of tumor cells in this 
group (Figure 3B). 

Through differential analysis of the two groups of tumor cells, 
we observed a significant upregulation of metabolism-associated 
genes (e.g., APOE, FABP1) in the low-PCD group, whereas a diverse 
array of cancer-promoting genes (e.g., S100A11, LDHA) exhibited 
heightened expression levels in the high-PCD group (Figure 3C). 
The KEGG pathway enrichment analysis revealed that metabolic 
pathways, such as those associated with glycine, serine and 
threonine metabolism, fatty acid metabolism, and carbon 
metabolism, were predominant in the tumor cells of the low-PCD 
group (Figure 3D). Furthermore, we conducted further analysis on 
metabolism-related signatures. In concordance with the findings of 
KEGG pathway enrichment analysis, we observed a significant 
increase in metabolism-related signatures in tumor cells in low-
PCD group versus high-PCDscore group (Figures 3E, F). 
Functionally, tumor cells in the high-PCD group exhibited 
significantly higher expression levels of stemness, proliferation, 
and metastatic signatures compared to those in the low-PCD 
group, suggesting a higher degree of malignancy (Figure 3G). 
Exhaustion of T cell function in the high-
PCD group 

T cells were functionally annotated and reclustered into five 
distinct clusters, including T_C0_Memory, T_C1_Cytotoxic, 
T_C2_Naive, T_C3_Exhaustion, and MAIT (Figures 4A, B). The 
UMAP plots depict the expression levels of representative marker 
genes (ANXA1, GZMB, IL7R, TIGIT, SLC4A10) for each of the five 
defined T cell subpopulations mentioned above (Figure 4C). In the 
low-PCD group, there was an increase in the proportion of anti-
tumor cells such as T_C1_Cytotoxic cells, whereas the high-PCD 
group showed an enrichment of T_C3_Exhaustion cells 
(Figure 4D). Further analysis demonstrated that exhaustion 
markers such as LAG3, HAVCR2, CTLA4, TIGIT, and CXCL13 
were relatively predominant in T cells from the high-PCD group 
(Figure 4E). These results suggest that the high-PCD group is more 
likely to exhibit an exhausted antitumor immune environment. 

To investigate interactions exhibiting significant changes between 
cell populations, CellChat analyzes the number and strength of these 
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interactions among different cell populations. Circle plots (Figure 4F) 
and heatmaps (Figure 4G) revealed that the number and strength of 
interactions in the cell-cell communication network between tumor 
cells and T_C3_Exhaustion cells were increased in the high-PCD 
group compared to the low-PCD group. 

Next, T cells were further classified into CD4+T cell subtypes 
and CD8+T cell subtypes based on the expression levels of CD4 and 
CD8. By performing reclustering analyses of scRNA-seq data, we 
identified five subtypes of CD4+ T cells: CD4+T_C0_CCR7 (CD4+ 
naive T cells), CD4+T_C1_RUNX3 (CD4+ helper T cells), CD4+T_ 
C2_CTLA4 (CD4+ exhausted T cells), CD4+T_C3_NKG7 (CD4+ 
effector T cells), and CD4+T_C4_CXCL13 (CD4+ regulatory T 
cells) (Figures 5A–C). Importantly, the proportions of exhausted 
CD4+T_C2_CTLA4 cells and regulatory T cells (Tregs) CD4 
+T_C4_CXCL13 were significantly higher in the high-PCD 
group, while the proportion of effector CD4+T_C3_NKG7 cells 
was enriched in the low-PCD group (Figure 5D). Subsequently, we 
investigated dynamic immune states and cell transcriptional profiles 
in CD4+ T cells. The results indicated that CD4+ T cells exhibited 
similar transition trajectories in both high-PCD and low-PCD 
groups, albeit in distinct states. This transition was identified as 
progressing from CD4+ naive T cells (CD4+T_C0_CCR7) and CD4 
+ effector T cells (CD4+T_C3_NKG7), through intermediate 
transitional states characterized by CD4+ helper T cells (CD4 
+T_C1_RUNX3)  and  CD4+  regulatory  T  cel l s  (CD4  
+T_C4_CXCL13), to an exhausted state characterized by CD4+ 
exhausted T cells (CD4+T_ C2_CTLA4) (Figure 5E). It is 
noteworthy that early-stage CD4+ T cells and terminally 
exhausted CD4+ T cells were primarily found in the low-PCD 
group, whereas CD4+ T cells in transitional and terminally 
exhausted states were predominantly observed in the high-PCD 
group (Figures 5E, F). Furthermore, marker gene trajectory analysis 
affirmed a heightened state of terminally exhausted CD4+ T cells in 
the high-PCD group (Figure 5G). 

CD8+ T cells were also identified into 5 subtypes, namely CD8 
+T_C0_CCL5 (effector memory CD8+T cells), CD8+T_C1_GNLY 
(effector memory CD8+T cells), CD8+T_C2_IL7R (naive CD8+T 
cells), CD8+T_C3_GZMK (effector CD8+T cells), and CD8 
+T_C4_CTLA4 (exhausted CD8+T cells) (Supplementary Figures 
S3A-C). Similarly, the proportion of exhausted CD8+ T cells (CD8 
+T_C4_CTLA4) was significantly higher in the high-PCD group 
compared to the low-PCD group (Supplementary Figure S3D), and 
the exhaustion score of CD8+ cells in the high-PCD group was 
significantly higher (Supplementary Figure S3E). 
Profiling of tumor microenvironment in 
high- and low-PCD spots by ST-seq 

Similarly, the ST-seq analysis of three representative HCC 
samples revealed distinct differences in tumor microenvironment 
features between high-PCD and low-PCD spots. Representative 
hematoxylin and eosin (H&E) stainin and spatial feature plots 
indicate variations in spatial transcriptomic features distribution 
across malignant and non-malignant areas (Figures 6A, D, G). 
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FIGURE 3 

Deciphering the molecular characteristics of tumor cells in high-PCD and low-PCD groups based on scRNA-seq data. (A) The t-distributed 
stochastic neighbour embedding (t-SNE) plot of patients subgroups in tumors cells. (B) Proportions of cells with different cell cycle phases in high-
and low-PCD groups. (C) jScatter plots depicting the significantly differentially expressed genes in tumor cells from high-PCD and low-PCD groups. 
(D) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis in tumor cells in low-PCD group versus high-PCD group. 
Heatmap (E) and violin plot (F) illustrating the differences in metabolic pathway activity scores among tumor cells between the high-PCD and low-
PCD groups; p value from the Wilcoxon test. (G) Violin plots displaying the expression scores of stemness, proliferation, and metastatic signatures in 
tumor cells from the high-PCD and low-PCD groups; p values from the Wilcoxon test. 
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FIGURE 4 

Landscape of tumor-infiltrating T cells in high- and low-PCD groups. (A, B) UMAP plot displaying five cell subtypes of T cells. (C) UMAP visualization 
plot depicting the expression patterns of selected marker genes for the defined T cell subtypes. (D) Bar plots illustrating the proportions of T cell 
subtypes in the high-PCD and low-PCD groups. (E) Violin plots depicting the distribution of expression levels for exhaustion-related genes. (F) The 
circle plots illustrate the differences in interaction number and strength among various cell populations. Red edges indicate increased signaling, 
while blue edges indicate decreased signaling in the high-PCD group compared to the low-PCD group. (G) The heatmaps illustrate differences in 
interaction number and strength among various cell populations. The top colored bar plot shows the sum of each column’s absolute values 
(incoming signaling), while the right colored bar plot shows the sum of each row’s absolute values (outgoing signaling). In the color bar, red 
represents increased signaling, whereas blue represents decreased signaling in the high-PCD group compared to the low-PCD group. 
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FIGURE 5 

Characteristics of CD4+ T cells in high- and low-PCD groups. (A, B) t-SNE plot illustrating five cell subtypes of CD4+T cells. (C) t-SNE plot 
illustrating the expression patterns of selected marker genes for defined CD4+ T cell subtypes. (D) Bar plots depicting the proportions of CD4+ T 
cell subtypes in the two groups. (E) Heatmap illustrating the dynamic changes in gene expression of CD4+ T cells along the pseudotime. The upper 
panel displays the distribution of CD4+ T cell subsets, while the lower panel shows the distribution of total CD4+ T cells across the two groups 
along the pseudotime. (F) Pseudotime-ordered analysis of CD4+ T cells. (G) Two-dimensional plots displaying the expression of selected marker 
genes for defined CD4+ T cell subtypes along the pseudotime. 
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Functionally, high-PCD spots demonstrated significantly elevated 
expression levels of tumor stemness, proliferation, and metastatic 
signatures compared to low-PCD spots, indicating a greater degree 
of malignancy (Figures 6B, E, H). Compared to the spots 
surrounding low-PCD spots, the spots surrounding high-PCD 
spots exhibited significantly higher exhaustion scores, suggesting 
an immunosuppressive microenvironment around high-PCD spots 
(Figures 6C, F, I). 
 

Oncogenic role of the prognostic marker 
gene UBE2E1 in HCC 

To gain deeper insights into the underlying mechanisms of the 
PCD prognostic model, we further investigated the genes associated 
with the model. Among these, UBE2E1, which has been less studied, 
is highly expressed in tumors and significantly impacts prognosis 
(Supplementary Figures S4A, B). We subsequently explored the 
function of UBE2E1 in the progression of HCC. We employed two 
independent shRNAs to knock down UBE2E1 expression in the 
HCC cell line Huh7 Huh7 cells and SNU-449 cells (Figure 7A; 
Supplementary Figure S4C). Our data demonstrated that knocking 
down UBE2E1 in the Huh7 cell and SNU-449 cell lines inhibited 
cell growth (Figure 7B; Supplementary Figure S4D), colony 
formation (Figures 7C, D; Supplementary Figures S4E, F), and 
significantly reduced cell migration capabilities (Figures 7E, F; 
Supplementary Figures S4G, H). Furthermore, UBE2E1 
knockdown markedly increased apoptosis in Huh7 cells and 
SNU-449 cells (Figures 7G, H; Supplementary Figures S4I, J). In 
addition to these in vitro findings, we further validated the 
functional role of UBE2E1 using a xenograft model. We injected 
Huh7 cells with UBE2E1 knockdown into the subcutaneous space 
of NCG mice and observed a significant inhibition of tumor growth 
in vivo (Figures 7I, J). 
Discussion 

In this study, we developed and validated a prognostic gene 
signature based on PCD-related genes to predict OS in HCC 
patients. The high-PCD group consistently demonstrated poorer 
survival outcomes across both internal (TCGA_TestSet) and 
external (GSE14520) validation cohorts, underscoring the 
signature’s predictive accuracy and potential clinical utility. This 
could facilitate more accurate risk stratification and individualized 
treatment plans for HCC patients, aligning with the broader 
movement towards precision oncology. Furthermore, our findings 
underscore the importance of PCD mechanisms in HCC prognosis 
and reveal distinct cellular and molecular characteristics between 
high- and low-PCD groups. 

PCD,  a  cell  death  mechanism  regulated  by  diverse  
biomacromolecules, constitutes a key feature in tumorigenesis, 
potentially informing varied therapeutic strategies (34). In our 
study, we developed a signature comprising 17 PCD-related genes 
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(ENO1, CDK4, RPS17, PDLIM1, KLHDC10, IGFBP3, UBE2E1, 
CBS, UBB, YWHAQ, SPP1, USF2, STAT6, PCK2, CACYBP, 
HDAC1, CD79A), which demonstrated predictive capability for 
OS in patients with HCC. ENO1, a glycolytic enzyme, plays crucial 
roles in multiple pathological processes, particularly cancer 
development (35). Its upregulation is common in HCC, especially 
in highly metastatic cells or tissues, and is closely associated with 
advanced tumor-node-metastasis (TNM) stage, low differentiation 
grade, and unfavorable prognosis in HCC patients (36). CDK4 
stands for Cyclin-Dependent Kinase 4, which is a protein involved 
in cell cycle regulation. It forms complexes with cyclin D proteins, 
facilitating the transition from the G1 phase to the S phase of the 
cell cycle, promoting cell division. Dysregulation of CDK4, 
commonly observed in cancer, contributes to uncontrolled cell 
growth, making it a prime target for cancer treatment strategies, 
especially those focused on inhibiting cell proliferation (37). 

The high-PCD group not only exhibited worse OS but also 
displayed distinctive tumor-intrinsic features and immune 
microenvironment characteristics. Tumor cells in this group 
showed heightened expression of signatures linked to cancer 
stemness, proliferation, and metastasis, suggesting a more 
aggressive tumor phenotype. This aligns with the  increased
prevalence of markers like S100A11 (38) and LDHA (39) in the 
high-PCD group, known for their roles in malignant progression. 
The KEGG pathway enrichment analysis highlighted significant 
metabolic activity in the low-PCD group, with pathways such as 
glycine, serine, and threonine metabolism being predominant. This 
metabolic profile is often associated with less aggressive tumors 
(40), potentially explaining the better survival outcomes observed in 
the low-PCD group. The metabolic reprogramming in the low-PCD 
tumors suggests a reliance on oxidative phosphorylation and other 
metabolic processes that may be less conducive to rapid tumor 
growth and metastasis (41). In contrast, the high-PCD group’s 
upregulation of genes involved in glycolysis and other proliferative 
pathways points to a Warburg-like metabolic phenotype, 
commonly associated with aggressive cancer behavior (42). This 
distinction underscores the potential of targeting metabolic 
pathways as part of a therapeutic strategy (42), particularly in 
high-PCD group HCC patients. 

The exploration of the tumor immune microenvironment using 
scRNA-seq data revealed marked differences between high- and 
low-PCD groups. A striking finding was the differential distribution 
of T cell subtypes. While anti-tumor T cell subsets, such as 
T_C1_Cytotoxic cells, were enriched in the low-PCD group, the 
high-PCD group exhibited a significant accumulation of exhausted 
T cells, characterized by the expression of exhaustion markers such 
as LAG3, HAVCR2, CTLA4, TIGIT, and CXCL13. The high-PCD 
group’s immune landscape suggests an immune microenvironment 
where chronic antigen stimulation has driven T cells into a state of 
functional exhaustion, posing a key barrier to effective anti-tumor 
immunity and potentially explaining the poorer clinical outcomes 
observed in these patients. Targeting these exhaustion pathways 
with immune checkpoint inhibitors or other immunomodulatory 
therapies could potentially reinvigorate these T cells, restoring their 
ability to combat tumor cells (43, 44). 
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Our detailed analysis of CD4+ T cells further illuminated the 
immune landscape in HCC. The high-PCD group exhibited an 
increased proportion of terminally exhausted CD4+ T cells, 
indicating a state of immune exhaustion that compromises anti-
tumor immunity (45). Conversely, the low-PCD group primarily 
Frontiers in Immunology 14 
harbored early-stage naive and effector CD4+ T cells, implying a 
potentially more robust anti-tumor response (46). Supporting these 
findings, in the transition trajectory path, a progression from naive 
and effector states through intermediate states to terminal 
exhaustion in CD4+ T cells. This progression was more 
FIGURE 6 

Spatial transcriptomics analysis of HCC samples. (A, D, G) Representative H&E-stained images of HCC tissues (left), spatial transcriptomic feature 
counts (middle), and classification of malignant and non-malignant areas (right) based on nFeature_Spatial counts. (B, E, H) Violin plots displaying 
the expression scores of stemness, proliferation, and metastatic signatures in high-PCD and low-PCD spots, with p-values from the Wilcoxon test. 
(C, F, I) Violin plots depicting the exhaustion signature scores in high-PCD and low-PCD spots, with p-values from the Wilcoxon test. 
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FIGURE 7 

UBE2E1 depletion impedes HCC cells survival, proliferation and migration. (A) Western blotting confirmation of UBE2E1 depletion using two 
independent short hairpin RNAs (shRNAs) in Huh7 cells. (B) Cell Counting Kit-8 assay (CCK8) of UBE2E1-depleted and control Huh7. (C, D) Colony-
formation assay of UBE2E1-depleted and control Huh7. Left panels: representative images with a 200 mm scale bar. Right panels: quantification data. 
(E, F) Transwell cell migration analysis of UBE2E1-depleted and control Huh7 cells. Left panels: representative images with a 6 mm scale bar. Right 
panels: quantification data. (G, H)Annexin V/PI analysis of UBE2E1-depleted and control Huh7 cells. Left panels: representative images. Right panels: 
quantification data. (I, J) Tumor growth analysis in UBE2E1-depleted and control Huh7 cells. Left panels: representative image of tumor xenografts 
from shNC and shUBE2E1 groups with a scale bar in cm. Right panels: tumor volume measurements for each group. Data are presented as mean ± 
SD. *p < 0.05, **p < 0.01, **** p < 0.001, ****p < 0.0001 (one-way ANOVA; Student’s t test). Sh1, shUBE2E1-1; sh2, shUBE2E1-2; shNC, negative 
control shRNA. All in vitro assays were biologically repeated three times. 
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pronounced in the high-PCD group, suggesting that these CD4+ T 
cells are more likely to undergo exhaustion (45, 46). This finding is 
significant as it highlights potential intervention points where 
therapeutic strategies could be employed to alter the course of 
CD4+ T cell exhaustion, potentially improving patient outcomes. 

Similarly, CD8+ T cells were categorized into five subtypes, with 
the high-PCD group exhibiting a higher proportion of exhausted 
CD8+ T cells (CD8+T_C4_CTLA4) and higher exhaustion scores. 
This finding reinforces the notion that elevated PCD scores 
correlate with a more exhausted immune microenvironment, 
thereby impairing the overall anti-tumor immune response. The 
presence of multiple subtypes of CD8+ T cells, including effector 
memory, naive, effector, and exhausted T cells, provides a detailed 
picture of the functional states within the tumor microenvironment. 
The high proportion of exhausted CD8+ T cells in the high-PCD 
group highlights the potential for therapeutic interventions aimed 
at reversing exhaustion and restoring cytotoxic function (47). For 
instance, therapies combining checkpoint inhibitors with agents 
that promote T cell activation and proliferation might be 
particularly effective in these patients (48). 

The ST-seq analysis reveals spatial heterogeneity in the tumor 
microenvironment, with high-PCD spots exhibiting higher 
stemness, proliferation, and metastatic signatures, along with 
higher exhaustion scores compared to low-PCD spots. This 
spatial variation in transcriptomic features underscores the 
complexity of the tumor microenvironment and the importance 
of considering spatial context in understanding tumor biology. The 
immunosuppressive microenvironment around high-PCD spots 
suggests potential strategies for spatially targeted therapies to 
overcome local immune evasion mechanisms. 

UBE2E1, a member of the ubiquitin-conjugating enzyme E2 
class involved in the sequential enzymatic cascade of protein 
ubiquitination (E1, E2, and E3) (49), emerged as a pivotal 
prognostic marker with oncogenic properties among the PCD-
related genes. Functional validation revealed that UBE2E1 
knockdown significantly suppressed HCC cell growth, colony 
formation, and migratory capacity, while concurrently inducing 
apoptosis. These findings underscore UBE2E1’s critical role in HCC 
progression and its potential as a therapeutic target, further 
supported by its elevated expression in tumors and strong 
association with poor prognosis in our study. 

The robust predictive capability of the PCD-related gene 
signature for HCC patient prognosis has several clinical 
implications. First, it could serve as a valuable tool for stratifying 
patients and tailoring therapeutic interventions based on individual 
risk profiles. High-PCD patients, characterized by aggressive tumor 
biology and immune exhaustion, may benefit from combinatorial 
therapies aimed at reinvigorating the immune response, such as 
immune checkpoint inhibitors. Conversely, patients with low PCD 
scores might respond better to therapies targeting metabolic 
pathways, reflecting their distinct tumor biology. Our findings 
underscore the importance of further research into the 
mechanisms underlying PCD and its interplay with the immune 
microenvironment. Understanding how different PCD pathways 
contribute to immune exhaustion and tumor progression could 
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unveil new therapeutic targets and strategies. Additionally, 
integrating PCD-related biomarkers into clinical practice could 
enhance the precision of existing prognostic models and inform 
more nuanced treatment decisions. Our findings also suggest 
avenues for integrating PCD-related insights with emerging 
therapeutic modalities. For instance, the observed differences in 
metabolic and immune profiles between high- and low-PCD groups 
could inform the development of combination therapies. Targeting 
metabolic vulnerabilities in low-PCD tumors while simultaneously 
addressing immune exhaustion in high-PCD tumors could enhance 
therapeutic efficacy. Furthermore, the dynamic nature of T cell 
states revealed by our single-cell analyses points to the potential of 
temporal modulation of the immune response. Therapies that 
sequentially target different stages of T cell activation and 
exhaustion could provide a more comprehensive approach to 
restoring anti-tumor immunity. This could involve initial 
strategies to boost T cell activation and proliferation, followed by 
interventions to prevent or reverse exhaustion. 
Conclusions 

In summary, our study provides a comprehensive analysis of the 
role of PCD-related genes in predicting HCC prognosis and 
highlights the distinct tumor and immune characteristics associated 
with different PCD scores. The identified gene signature offers a 
powerful prognostic tool and opens new avenues for personalized 
treatment strategies in HCC, emphasizing the need for continued 
research into the molecular mechanisms of cell death and immune 
regulation in cancer. Integrating PCD-related biomarkers into clinical 
workflows could significantly enhance the precision of HCC 
prognostication and treatment. By leveraging scRNA-seq and ST-
seq analysis, we have delineated the cellular composition of the tumor 
microenvironment and identified functional disparities in tumor and 
immune cells between high- and low-PCD patients. These insights 
pave  the way  for more targeted and  effective therapeutic

interventions, potentially improving outcomes for HCC patients. 
Limitations 

Despite the promising results, there are several limitations to 
this study that should be addressed in future research. One 
limitation is the use of publicly available datasets, including 
TCGA and GEO, which may not fully represent the diversity of 
the general population. The inclusion of only a limited number of 
datasets, particularly in specific subgroups, could potentially limit 
the generalizability of our findings. Furthermore, differences in the 
data acquisition methods between the TCGA (RNA-seq) and GEO 
(microarray) platforms, though addressed by normalization and 
batch effect correction, could still influence the robustness of the 
model’s predictions across diverse populations. 

Another limitation is the reliance on bioinformatics models, 
which may not completely reflect the complexity of tumor biology 
in clinical settings. While we have demonstrated the predictive 
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value of the PCD-based scoring system in stratifying patients based 
on prognosis, the clinical implementation of this model faces several 
challenges. The integration of such models into routine clinical 
practice requires further validation in multi-center clinical trials 
and standardization across different healthcare settings. 
Additionally, clinical implementation requires practical 
considerations such as the cost-effectiveness of high-throughput 
techniques (e.g., scRNA-seq and spatial transcriptomics) and their 
accessibility in routine diagnostics. 

Lastly, while we identified UBE2E1 as a key oncogenic marker, 
further research is needed to understand its precise role and how its 
inhibition may affect therapeutic outcomes. The validation of specific 
biomarkers and their mechanisms in the clinical context, including drug 
development targeting PCD-related pathways, remains a challenge. 
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SUPPLEMENTARY FIGURE 1 

Development and validation of the PCD scores prediction model. (A) A plot of 
partial likelihood deviance versus log(l) was generated using LASSO 
regression. (B) The coefficients of the selected features are depicted based 
on the lambda parameter. 

SUPPLEMENTARY FIGURE 2 

Single-cell RNA sequencing (ScRNA-seq) landscape of high-PCD and low-

PCD HCC patients. (A) The Uniform Manifold Approximation and Projection 
(UMAP) plot represents six major cell types across all HCC samples. (B) Cells 
are colored by predicted ploidy status: red indicates aneuploid cells 
(predicted tumor cells), blue indicates diploid cells (primarily T/NK cells), 
and gray represents cells not included in CopyKAT analysis (e.g., other stromal 
or immune cells). Copy number was annotated using CopyKAT, which 
predicts aneuploid cells independent of prior tumor cell identification. 
(C) Dotplot illustrating the expression patterns of signature genes in the 
specified cell types. (D) Bar plots depicting the proportions of high-PCD and 
low-PCD groups in each cell type. Cell cycle heterogeneity (E) and the 
respective proportions of cells (F) within the high- and low-PCD groups. 

SUPPLEMENTARY FIGURE 3 

Landscape of CD8+ T cells in high- and low-PCD groups. (A, B) t-SNE plot 
displaying five cell subtypes of CD8+ T cells. (C) t-SNE plot illustrating the 
expression patterns of selected marker genes for defined CD8+ T cell 
subtypes. (D) Bar plots illustrating the proportions of CD8+ T cell subtypes 
in the high-PCD and low-PCD groups. (E) Violin plots depicting the 
exhaustion signature scores in CD8+ T cells from the high-PCD and low-

PCD groups; p values from the Wilcoxon test. 
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SUPPLEMENTARY FIGURE 4 

Functional validation of UBE2E1 knockdown in HCC. (A) The relative 
expression of UBE2E1 in HCC (red point) and peri-tumor or normal 
tissues (blue point). (B) The Kaplan-Meier survival curve of OS and 
UBE2E1 expression. (C) Western blotting confirmation of UBE2E1 
depletion using two independent shRNAs in SNU-449 cells. (D) CCK8 of 
UBE2E1-depleted and control SNU-449 cells. (E, F) Colony-formation 
assay of UBE2E1-depleted and control Huh7. Left panels: representative 
images with a 200 mm scale bar. Right panels: quantification data. (G, H) 
Transwell cell migration analysis of UBE2E1-depleted and control Huh7 
cells. Left panels: representative images with a 6 mm scale bar. Right 
panels: quantification data. (I, J) Annexin V/PI analysis of UBE2E1­

depleted and control Huh7 cells. Left panels: representative images. Right 
panels: quantification data. Data are presented as mean ± SD. **p< 0.01. 
***p< 0.001. ****p< 0.0001 (one-way ANOVA; Student’s t test).  Sh1,
shUBE2E1-1; sh2, shUBE2E1-2; shNC, negative control shRNA. All in vitro 
assays were biologically repeated three times. 

SUPPLEMENTARY TABLE 1 

Programmed cell death (PCD) signatures. A comprehensive list of 2159 
genes associated with 15 distinct forms of programmed cell death, 
including anoikis, apoptosis-like morphology, autophagy, cuproptosis, 
entotic cell death, extrinsic apoptosis, ferroptosis, immunogenic cell 
death, intrinsic apoptosis, lysosome-dependent cell death, necroptosis, 
necrosis-like morphology, necrosis, parthanatos, and pyroptosis. Gene 
sets were curated from KEGG, MSigDB, peer-reviewed publications, and 
the GeneCards database. 
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SUPPLEMENTARY TABLE 2 

Marker genes of identified cell types in scRNA-seq data. Marker genes of 
identified cell types in single-cell RNA sequencing (scRNA-seq) data. Key 
marker genes used to annotate major cell types identified in the scRNA-seq 
analysis of HCC tissues, including tumor cells, NK/T cells, myeloid cells, B cells, 
endothelial cells, and fibroblasts. Marker selection was based on established 
literature and validated cell type–specific gene expression patterns. 

SUPPLEMENTARY TABLE 3 

Risk Scores and Clinical Information for TCGA-HCC Training Set Patients, 
Stratified by PCD Scores. The risk scores (PCD scores), risk group assignments 
(high- or low-PCD), and relevant clinical information for each patient in the 
training set (TCGA-HCC cohort). Patients were dichotomized using the 
median PCD score (1.9013) as the cut-off value. 

SUPPLEMENTARY TABLE 4 

PCD Scores and Group Classifications for TCGA-HCC Internal Validation Set 
Patients. Detailed PCD scores and group classifications for patients in the 
internal validation set (TCGA-HCC internal test cohort). The median PCD 
score (1.9227) within this cohort was used as the cut-off to define high- and 
low-PCD groups. 

SUPPLEMENTARY TABLE 5 

PCD Scores and Risk Group Labels for GSE14520 External Validation Set 
Patients. PCD scores and risk group labels for patients in the external 
validation cohort (GSE14520 dataset). A cohort-specific median PCD score 
(1.9039) was applied to stratify patients into high- and low-PCD groups. 
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