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The malignant signature gene of
cancer-associated fibroblasts
serves as a potential prognostic
biomarker for colon
adenocarcinoma patients
Hao Zhang †, Zirui Zhuang †, Li Hong †, Ruipeng Wang †,
Jinjing Xu and Youyuan Tang*

Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
Background: Colon adenocarcinoma (COAD) is the most frequently occurring

type of colon cancer. Cancer-associated fibroblasts (CAFs) are pivotal in

facilitating tumor growth and metastasis; however, their specific role in COAD

is not yet fully understood. This research utilizes single-cell RNA sequencing

(scRNA-seq) to identify and validate gene markers linked to the malignancy

of CAFs.

Methods: ScRNA-seq data was downloaded from a database and subjected to

quality control, dimensionality reduction, clustering, cell annotation, cell

communication analysis, and enrichment analysis, specifically focusing on

fibroblasts in tumor tissues compared to normal tissues. Fibroblast subsets

were isolated, dimensionally reduced, and clustered, then combined with copy

number variation (CNV) inference and pseudotime trajectory analysis to identify

genes related to malignancy. A Cox regression model was constructed based on

these genes, incorporating LASSO analysis, nomogram construction, and

validation.Subsequently, we established two FNDC5-knockdown cell lines and

utilized colony formation and transwell assays to investigate the impact of

FNDC5 on cellular biological behaviors.

Results: Using scRNA-seq data, we analyzed 8,911 cells from normal and tumor

samples, identifying six distinct cell types. Cell communication analysis

highlighted interactions between these cell types mediated by ligands and

receptors. CNV analysis classified CAFs into three groups based on malignancy

levels. Pseudo-time analysis identified 622 pseudotime-related genes and

generated a forest plot using univariate Cox regression. Lasso regression

identified the independent prognostic gene FNDC5, which was visualized in a

nomogram. Kaplan-Meier survival analysis confirmed the prognostic value of

FNDC5, showing associations with T stage and distant metastasis. In vitro

experiment results demonstrated a strong association between FNDC5

expression levels and the proliferative, migratory, and invasive abilities of colon

cancer cells.
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Conclusion: We developed a risk model for genes related to the malignancy of

CAFs and identified FNDC5 as a potential therapeutic target for COAD.
KEYWORDS

FNDC5, single-cell RNA sequencing, colon adenocarcinoma, tumor microenvironment,
cancer-associated fibroblasts, risk model
1 Introduction

Colon adenocarcinoma (COAD), the most prevalent subtype of

colon tumor, has seen advancements in early detection and treatment

over recent years, enhancing clinical outcomes for patients (1, 2).

Despite these improvements, some individuals still face challenges with

recurrence and metastasis (3, 4). Investigating the molecular

mechanisms that drive the initiation and progression of COAD is

crucial, as is the development of more effective therapies to improve

survival in advanced cases (5). Tumor microenvironment (TME)

consists of a diverse array of cells (6), including tumor cells (7–9),

immune cells (10, 11), and stromal components (12, 13). Tumor

metastasis is a multifaceted process driven by various factors, where

interactions among these diverse cell types are critical for cancer

progression (14, 15). As essential constituents of the TME, cancer-

associated fibroblasts (CAFs) arise from multiple sources, such as bone

marrow-derived mesenchymal stem cells, hematopoietic stem cells,

adipocytes, endothelial cells, and even cancer cells (16). Widely present

in various cancers, CAFs significantly contribute to cancer progression

through their interactions with tumor cells (17). CAFs affect tumor cell

behavior, such as proliferation, metastasis, and response to

chemotherapy, by secreting growth factors and cytokines (18, 19).

The differentiation state of CAFs is a determining factor in the

aggressiveness of tumors (20). Therefore, investigating the

differentiation pathways and potential molecular mechanisms of

CAFs, as well as identifying CAF-related diagnostic and therapeutic

targets, will provide new hope for the treatment of COAD.

Single-cell RNA sequencing (scRNA-seq) is a robust technique that

allows for detailed gene expression analysis at the single-cell level (21),

aiding in the identification of cellular subtypes and offering insights

into cellular heterogeneity (22, 23). In recent years, numerous studies

on single-cell gene analysis have identified key diagnostic and

therapeutic targets, as well as immune treatment targets for COAD.

For instance, Xu et al. clearly identified S1PR5, CMC1, and ASAH1 as

potential targets for diagnosis, immune therapy, and treatment of

COAD through single-cell and bulk RNA sequencing analyses (24).

Additionally, Wu et al. constructed a prognostic model for colon

adenocarcinoma by integrating single-cell analysis with molecular

docking technology, revealing inhibin subunit bb as a novel

therapeutic target (25). Furthermore, Wu et al. identified ASCL2 as a

target for immune therapy in colon adenocarcinoma based on single-

cell RNA sequencing analysis (26). Comprehensive analyses of single-

cell transcriptomes fromCOAD primary tumors have revealed a highly
02
diverse immune and stromal landscape within each patient (27).

Nevertheless, research remains limited in classifying and investigating

specific cell subpopulations within single-cell transcriptomes, especially

CAFs (28, 29). Consequently, our goal is to leverage scRNA-seq

technology to conduct a more comprehensive investigation into the

role of CAFs within the TME and their influence on tumorigenesis and

progression (30).

In this study, we conducted a thorough analysis of TME in both

tumor and normal intestinal tissues from COAD patients. Using

scRNA-seq, we examined the distribution of distinct cell populations

within tumors compared to normal tissues, as well as the interactions

among these populations. Our findings not only highlighted the diverse

transcriptome profiles of various tumor cells but also identified specific

marker genes associated with the progression of CAFs towards

malignancy. These insights provide valuable knowledge for

unraveling the mechanisms underlying COAD progression and

developing personalized therapies for individuals with colon cancer.
2 Materials and methods

2.1 Processing of data sets

The scRNA-seq dataset GSE231559 for colon cancer was

sourced from the GEO database. RNA sequencing data and

clinical information for survival analysis were obtained from The

Cancer Genome Atlas Colon Adenocarcinoma (TCGA-COAD)

dataset. Additionally, three other colon cancer cohorts

(GSE39582, GSE33113, and GSE17536) were utilized to confirm

the robustness of the screening findings.
2.2 Quality control and processing of
scRNA-seq data

The analysis was conducted by the Seurat R package (version

5.0.1). Downstream analyses included Uniform Manifold

Approximation and Projection (UMAP) and principal component

analysis (PCA) (31). Cells were filtered using specific thresholds: those

with more than 5000 genes, over 10% mitochondrial genes, fewer than

300 genes, or less than 3% red blood cells were excluded. A total of

8,911 cells met these criteria and were included. Data normalization

was conducted using the ‘LogNormalize’ method. Subsequently, using
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the ‘vst’ method to identify highly variable genes (HVGs), with 3,000

genes selected per sample. To mitigate batch effects, cell cycle scoring

and batch correction were performed by the Harmony package

(version 1.2.0) (32). UMAP dimensionality reduction and clustering

were applied, resulting in cell classification into 14 distinct clusters via

the FindClusters function with a resolution setting of 0.5.
2.3 Cell annotation of scRNA-seq data

Marker genes for each cluster were identified using the SingleR

package (version 2.6.0) (33). Cell type determination was achieved

by calculating the Spearman correlation coefficient between single

cells and the built-in database. This information was then integrated

with the FindAllMarkers function to confirm cell types and

differentially expressed genes (DEGs) in each cluster.
2.4 Enrichment analysis

Functional enrichment analysis of differentially expressed genes

(DEGs) from normal and tumor tissues was conducted by the

‘ClusterProfiler’ and ‘enrichplot’ packages in R (34, 35). This

involved Kyoto Encyclopedia of Genes and Genomes (KEGG)

and Gene Ontology (GO) pathway analyses (36–38). Additionally,

Gene Set Enrichment Analysis (GSEA) was used to investigate

molecular mechanisms, with terms showing statistical significance

at p < 0.05 considered meaningful (39, 40).
2.5 Cell communication analysis

Intercellular communication was investigated by CellChat

(version 1.6.1), a publicly available database containing information

on ligands, receptors, cofactors, and their interactions (41). A notable

feature of CellChat is its consideration of the composition of known

ligand-receptor complexes, including ligand and receptor multimers,

as well as various types of auxiliary factors.
2.6 Pseudotime trajectory analysis

Pseudotime trajectory analysis enables the inference of cell

differentiation pathways during development or the evolution of

cell types by analyzing changes in gene expression across different

cell subpopulations over time. This analysis was conducted using

Monocle2 (version 2.24.0) (42).
2.7 Prognostic analysis and nomogram
model construction

The “survival” package was employed to perform Cox

regression and Kaplan-Meier (KM) survival analyses (43).

Furthermore, the “rms” package facilitated the creation of a
Frontiers in Immunology 03
nomogram, and the “regplot” function was employed to predict

1-, 3-, and 5-year overall survival (OS) rates of COAD patients (44).
2.8 Cell culture and transfection

We obtained human colon cancer cell lines HCT-116 and HT-29

from the Shanghai Cell Bank, Chinese Academy of Sciences (Shanghai,

China). HT-29 was cultured in Roswell Park Memorial Institute-1640

(RPMI-1640, HyClone, USA) medium supplemented with 1%

penicillin-streptomycin (HyClone) and 10% fetal bovine serum (FBS,

Excellbio, USA), while HCT-116 was cultured in Dulbecco’s Modified

Eagle Medium (DMEM, HyClone, USA) with the same supplements.

Both cell lines were maintained under conditions of 37°C and 5% CO2

for subsequent analysis. Cell transfection was performed using

SuperKine™ Lipo3.0 (Abbkine, China) according to the

manufacturer’s instructions. FNDC5 siRNA was designed and

synthesized by GenePharma. The sequences of the siFNDC5 are

provided in Table 1.
2.9 Western blotting

Proteins were extracted from cells by RIPA buffer (P0013B,

Beyotime, China). Protein concentrations were determined using a

BCA protein assay kit (A55864, Thermo Fisher Scientific, USA).

Subsequently, proteins were separated via SDS-PAGE and

transferred to polyvinylidene fluoride (PVDF) membranes. The

membranes were blocked with 5% nonfat milk for 2 hours to

prevent nonspecific binding, followed by overnight incubation with

primary antibodies. Afterward, secondary antibodies were applied and

incubated at room temperature for 1 hour. Signals were detected using

an enhanced chemiluminescence (ECL) kit (Millipore, USA) and

analyzed with ImageJ software. The FNDC5 antibody (1:1000, No.

23995-1-AP, Proteintech) was sourced from Proteintech.
2.10 Colony formation assay

Cells were seeded into 6-well plates and incubated for 14 days.

After incubation, cells were fixed using methanol and subsequently

stained with a 0.1% crystal violet solution. Cell observations and

counting were conducted using an Olympus microscope.
TABLE 1 The sequences of the siFNDC5.

Small interfering RNA (siRNA) of FNDC5

siRNA#1
sense (5’-3’) GGAGGAGGAUACGGAGUACTT

antisense (5’-3’) GUACUCCGUAUCCUCCUCCTT

siRNA#2
sense (5’-3’) CCAAGAACAAAGAUGAGGUTT

antisense (5’-3’) ACCUCAUCUUUGUUCUUGGTT

siRNA#3
sense (5’-3’) CAAGGACAAUGAACCCAAUTT

antisense (5’-3’) AUUGGGUUCAUUGUCCUUGTT
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2.11 Transwell assay

Transwell assays were performed to assess cell migration and

invasion, using Transwell Petri dishes with or without Matrigel

coating (Corning, Inc.) Briefly, transfected colon cancer cells

(2×104) were resuspended in 100 µl of serum-free medium

(Gibco; Thermo Fisher Scientific, Inc.) and seeded into the upper

chamber. The lower chamber was filled with 500 µl of DMEM

containing 10% serum (Shanghai ExCell Biology, Inc.). After 24

hours of incubation at 37°C in a 5% CO2 atmosphere, cells in the

upper chamber were fixed with 4% paraformaldehyde (Beyotime

Institute of Biotechnology) for 10 minutes at room temperature.

Cells were stained with 0.2–0.5% crystal violet (Sigma-Aldrich;

Merck KGaA) for 10 minutes and visualized under an inverted

optical microscope (Shanghai Optical Instrument Factory) for

statistical analysis. The migration assay followed the same

protocol as the invasion assay, except that Matrigel was omitted.
2.12 Statistical analysis

The GraphPad Prism10.0 software was utilized for the analysis

of the data. The Student’s t-test and Wilcoxon rank sum test were

used to analyze the differences between the two groups. P-values

below 0.05 were considered statistically significant.
3 Results

3.1 ScRNA-seq atlas and cell typing in
COAD

The scRNA sequencing dataset GSE231559 was analyzed,

retaining 8,911 cells after quality control filtering. This included

7,335 cells from tumor tissues and 1,576 cells from normal tissues.

The expression profiles of each sample are displayed in Figure 1A.

Figure 1B illustrates the top 15 highly variable genes (HVGs), with

CCL4 and AREG ranking as the top two. These genes play roles in

inflammatory cell chemotaxis, cell proliferation, apoptosis, and

migration. The cell cycle score was calculated and visualized using

CellCycleScoring, as depicted in Figure 1C. Harmony batch

correction was applied to improve data integration, shown in

Figure 1D. Using the ElbowPlot function, a cutoff value of 20 was

selected (Figure 1E), leading to the identification of 14 distinct cell

clusters. Clustering based on dimensionality reduction was

conducted by UMAP and t-distributed stochastic neighbor

embedding (t-SNE), as illustrated in Figure 1F.
3.2 Cell annotation

Using SingleR and insights from previous research, these

clusters were linked to established cell lineages through marker

genes (45). UMAP analysis identified and visualized six distinct cell

types (Figures 2A, B). To confirm the accuracy of cell annotation, a
Frontiers in Immunology 04
heat map was employed to illustrate the highly expressed marker

genes in each cell type (Figure 2C). Figure 2D illustrates the

proportions of each cell type.
3.3 Enrichment analysis of fibroblasts

Fibroblasts were isolated, and differential expression analysis

comparing normal and tumor tissues identified 1,319 DEGs (|

log2FC| > 2 and p.value< 0.01). As shown in Figure 3A, the

volcano plot was used to visualize the differential expression

results. GO analysis showed that the DEGs are linked to cell-

substrate adhesion, extracellular structure, and extracellular

matrix composition (Figure 3B). KEGG analysis indicated that

the DEGs are linked to the cytoskeleton, focal adhesion, and Rap1

signaling pathways in muscle cells (Figure 3C). Furthermore, GSEA

enrichment analysis demonstrated that CAFs showed upregulation

in the ECM-receptor interaction, IL-17 signaling pathway, and

chemokine signaling pathway, while showing downregulation in

fatty acid degradation (Figures 3D, E).
3.4 CNV inference and fibroblast re-
annotation

After dimensionality reduction offibroblasts in the dataset, we re-

clustered them and identified five distinct cell clusters. Clusters 0 and

3 predominantly originated from normal tissues, whereas clusters 1,

2, and 4 mainly derived from tumor tissues (Figures 4A, B). Figure 4C

shows that normal fibroblast (NF) marker genes (DCN, IGFBP6,

MFAP5) exhibited high expression in clusters 0 and 3, while CAF

marker genes (CTHRC1, RGS5, TAGLN, ACTA2) exhibited high

expression in clusters 1, 2, and 4. By selecting cells from clusters 0 and

3 as reference normal cells, we conducted CNV inference on clusters

1, 2, and 4. The results indicated that cells in cluster 1 had the highest

CNV score, followed by those in cluster 2, and then cluster 4

(Figures 4D, E). Based on CNV inference, we classified clusters 0

and 3 as NF, cluster 1 as high malignancy CAF (HM-CAF), cluster 2

as moderate malignancy CAF (MM-CAF), and cluster 4 as low

malignancy CAF (LM-CAF) (Figure 4F).
3.5 Cell communication analysis

We analyzed the cell crosstalk network among six cell types and

found significant differences between tumor and normal tissues. Both

the frequency and strength of cellular interactions are significantly

higher in tumor tissues than in normal tissues (Figure 5A). This

suggests that tumor development is accompanied by enhanced

intercellular interactions. In tumor tissues, there is a notable

upregulation in signaling pathways such as Wnt, VEGF, and

NOTCH (Figure 5B). A closer examination of specific cell types

revealed that CAFs exhibit significantly increased interaction

intensity with other cells, highlighting their critical role in tumor

tissues (Figure 5C). Figure 5D outlines the potential pathways
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through which each cell type participates in these interactions, with

CAFs likely being involved in the COLLAGE pathway. Furthermore,

Figure 5E demonstrates that CAFs interact with endothelial cells,

myeloid cells, and T cells via the COLLAGE pathway. The ligand-

receptor relationships within this pathway are detailed in Figure 5F.
Frontiers in Immunology 05
3.6 Pseudotime analysis of fibroblast and
screening of pseudotime-related genes

We used quasi-chronological analysis to identify signature

genes that represent the development of malignant characteristics
FIGURE 1

Analysis of scRNA-seq dataset GSE231559. (A) The expression profiles of each sample. (B) Top 15 highly variable genes (HVG), highlighting CCL4 and
AREG. (C) Cell cycle scores visualized using CellCycleScoring. (D) Data integration improved by harmony batch correction. (E) ElbowPlot selecting a
cutoff of 20 for cell clustering analysis. (F) t-SNE and UMAP cell clustering analysis.
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in CAFs. First, we reduced the dimensionality of the fibroblast data

set and selected the top 1000 characteristic genes based on p < 0.01

(Figure 6A). We then performed a simulation analysis of cell

trajectory differentiation (Figures 6B, C). The darker the blue, the

earlier the cells differentiate, indicating that CAFs differentiate from

left to right over time, with the degree of malignancy gradually

increasing. Next, we identified pseudotime-correlated genes in

CAFs, screening 622 pseudotime-correlated genes based on p <

0.05, and visualized them using a heat map (Figure 6D). The heat

map in Figure 6E illustrates genes related to the differentiation

branches of CAFs.
3.7 Development and validation of
prognostic analysis models

We collected gene expression data and prognosis-related

information from 376 COAD patients in the TCGA database to

investigate pseudotime-related genes associated with patient

prognosis. Cox regression analysis was performed, and forest

plots of pseudotime-related genes were generated (Figure 7A).

FNDC5 showed the highest hazard ratio (HR), followed by

THBS3, while SNX7 appeared to act as a protective factor for

COAD. Using LASSO regression, we identified two prognostic-

related genes (FNDC5, THBS3) (Figures 7B, C). Based on median
Frontiers in Immunology 06
risk score, COAD samples were categorized into low-risk and high-

risk groups (Figure 7D), with the low-risk group demonstrating

superior survival outcomes compared to the high-risk group

(Figure 7E). To predict 1-, 3-, and 5-year overall survival (OS), a

nomogram was constructed by integrating risk scores and

clinicopathological characteristics (Figure 7F). To validate FNDC5

as a prognostic marker for COAD, we analyzed data from the GEO

database (GSE39582, GSE33113, and GSE17536). Patients were

categorized into high and low expression groups based on the

median FNDC5 expression level, and Kaplan-Meier (KM) survival

analysis was performed. Figures 8A, B illustrate that the low-

expression group exhibited improved recurrence-free rates and

survival outcomes relative to the high-expression group.

Moreover, advanced T and M stages were more commonly

observed in the high-expression group compared to the low-

expression group (Figures 8C, D).
3.8 Knocking down FNDC5 inhibits the
metastasis of colon cancer cells

To explore the role of FNDC5 in colon cancer, knockdown

experiments were conducted using HT-29 and HCT-116 cell lines.

Western blot analysis showed that siFNDC5#1 and siFNDC5#2

were the most effective among the three knockdown constructs
FIGURE 2

Cell type identification and annotation. (A, B) UMAP showing six cell types identified by marker genes. (C) Heatmap of marker genes for each cell
type. (D) Proportions of each cell type for each sample.
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(Figures 9A, B). The impact of FNDC5 knockdown on cell

proliferation was evaluated through colony formation assays. The

assays revealed a significant reduction in proliferative capacity

(Figures 9C, D). Additionally, Transwell assays were used to

evaluate the migration and invasion abilities.The results

demonstrated that FNDC5 knockdown markedly decreased both

processes (Figures 9E–H).
Frontiers in Immunology 07
4 Discussion

COAD, a common and aggressive malignancy of the digestive

tract, is characterized by high rates of metastasis and mortality (46).

While surgical removal remains the standard treatment option for

COAD, numerous patients receive their diagnosis at a later stage,

making them ineligible for surgical procedures (47). In this context,
FIGURE 3

Differential expression genes and functional enrichment analysis of fibroblasts. (A) Volcano plot of 1,319 DEGs of CAFs (Normal vs. Tumor). (B) GO
analysis results of CAFs-related DEGs. (C) KEGG analysis results of CAFs-related DEGs. (D, E) GSEA analysis results of CAFs-related DEGs.
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targeted therapy has become a promising treatment strategy for

COAD (48). Therefore, identifying novel biomarkers associated

with COAD is crucial for enhancing therapeutic outcomes in

affected patients.

CAFs are key components of the TME in solid tumors. In certain

cancers, CAFs represent the dominant stromal cell type, and their
Frontiers in Immunology 08
presence correlates with a poor prognosis (49, 50). CAFs display

considerable heterogeneity in phenotype, origin, and function. This

heterogeneity is reflected in the diverse roles they play in tumor

progression and metastasis, such as promoting cell proliferation,

angiogenesis, and ECM remodeling (51–53). Despite their

significance, few studies have explored predictive markers for the
FIGURE 4

Fibroblast clustering analysis and malignancy classification. (A, B) Fibroblast dimensionality reduction clustering and origin distribution. (C) Expression
patterns of NF and CAF marker genes in clusters. (D, E) CNV inference and CNV score comparison in clusters 1, 2, and 4. (F) Malignancy
classification of fibroblasts based on CNV inference.
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malignancy of CAFs. To address this, we employed scRNA-seq

technology, combined with CNV inference and pseudotime analysis,

to identify relevant biomarkers and develop predictive models.

In this study, we screened 622 pseudotime-related genes from a

scRNA-seq dataset and integrated this data with patient survival

information from TCGA database to explore the prognostic
Frontiers in Immunology 09
significance of markers associated with the malignancy of CAFs.

We constructed a prognostic model using FNDC5 as a marker to

predict OS in COAD. FNDC5 is a transcriptional coactivator

induced in muscle during exercise, also referred to as peroxisome

proliferator-activated receptor gamma coactivator 1a (54). It plays

a role in adipocyte browning, metabolic regulation, bone
FIGURE 5

Cell communication analysis and the role of CAFs. (A, B) Comparison of cellular interactions and signaling pathways between tumor and normal
tissues. (C) Interaction intensity of CAFs with other cells. (D) Potential signaling pathways involved in cell communication across various cell types.
(E) Cell types interacting with CAFs through the COLLAGE pathway. (F) Ligand-Receptor relationships in the COLLAGE pathway.
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metabolism, and nervous system functions (55, 56). In cancer,

FNDC5 inhibits the transcription of the gene encoding E-

cadherin and participates in the expression of the epithelial-

mesenchymal transition (EMT) transcription factor Snail, which
Frontiers in Immunology 10
consequently inhibits migration, proliferation, and invasion in vitro

(57, 58). Based on the median risk scores of pseudotime-related

genes, COAD samples were classified into low-risk and high-risk

groups. The low-risk group demonstrated significantly better
FIGURE 6

Quasi-chronological analysis and malignant characteristic development. (A) Dimensionality reduction and feature gene selection in the fibroblast
dataset. (B, C) Simulation analysis of cell trajectory differentiation in CAFs (pseudotime trajectory). (D) Heatmap of pseudotime-correlated genes in
CAFs. (E) Heatmap of genes related to differentiation branches in CAFs.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1589678
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhang et al. 10.3389/fimmu.2025.1589678
overall survival (OS) compared to the high-risk group. FNDC5 was

confirmed as an independent prognostic factor by Cox regression

analysis. Validation results from the GEO database demonstrated a

significant association between FNDC5 and both recurrence-free
Frontiers in Immunology 11
survival (RFS) and overall survival (OS) in COAD. Patients

with high FNDC5 expression exhibited poorer recurrence-free

and survival rates. Additionally, FNDC5 was related to tumor

T stage and M stage, suggesting a potential role in COAD
FIGURE 7

Prognostic model for COAD based on pseudotime-related genes. (A) Forest plot of cox regression analysis for pseudotime-related genes.
(B, C) Screening of prognostic-related genes by LASSO regression. (D, E) Division of COAD patients into high-risk and low-risk groups based on
survival time. (F) Nomogram for predicting 1-, 3-, and 5-year overall survival.
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metastasis. To further assess the potential function of FNDC5 in

tumor T and M stages, we incorporated in vitro experiments. These

results revealed a significant association between FNDC5 expression

levels and the invasion, migration, and proliferation capacities of

tumor cells.

Enrichment analysis revealed that CAFs are closely linked to

ECM pathways. During cancer progression, CAFs interact with

immune cells through the COLLAGEN pathway, influencing tumor

initiation and development. The ECM undergoes structural

alterations, particularly in collagen content and distribution
Frontiers in Immunology 12
within cancerous tissues (59). These alterations critically regulate

key biological features of cancer cells, including signaling pathways,

transcription factors, gene mutations, and receptors, all of which are

strongly associated with CAFs (60, 61). Cancer cells initiate and

maintain the activation of CAFs, which subsequently promote

cancer cell proliferation, migration, and invasion, contributing to

tumor progression, metastasis, and chemotherapy resistance (62).

The adhesion between collagen and cancer cells, impacts cancer

metastasis. Furthermore, collagen activates various signaling

pathways in tumors, including the PI3K/AKT, MAPK, and
FIGURE 8

Validation and clinical significance of FNDC5 as a prognostic marker for COAD. (A, B) Recurrence-free and Overall survival analysis of high and low
FNDC5 expression groups. (C, D) T and M stage distribution between high and low FNDC5 expression groups. (*p<0.05).
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NOTCH pathways, which mediate diverse cellular functions (63,

64). Therefore, whether FNDC5 is involved in the communication

between CAFs and other cellular components, and its potential role

in this process, is a key area for future research.
Frontiers in Immunology 13
In this study, we validated this novel characteristic in the TME

through bioinformatics analysis. Nevertheless, it is important to

recognize a number of limitations. To begin with, further external

validation with additional prospective clinical datasets is required
FIGURE 9

In vitro experiments analyze the proliferative and metastatic abilities of FNDC5 in colon cancer cells. (A, B) Western blot analysis of FNDC5
knockdown efficiency. (C, D) Colony formation assays of the impact of FNDC5 knockdown on the proliferation of colon cancer cells. (E-H)
Transwell assays analysis of the impact of FNDC5 knockdown on the migration and invasion of colon cancer cells. (ns=p>0.05, ***p<0.001).
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to substantiate the FNDC5-related prognostic model .

Additionally, the ways in which FNDC5 impacts tumor

metastasis in the TME have yet to be thoroughly explained. As a

result, it is crucial to develop more experimental studies that will

allow for a more in-depth investigation of its functions and the

mechanisms behind them.
5 Conclusion

We identified FNDC5 as a biomarker significantly correlated

with the prognosis and malignancy of CAFs to establish a

prediction model. Moreover, FNDC5 can serve as an independent

prognostic factor for COAD patients by integrating molecular and

clinical features.
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