
Frontiers in Immunology

OPEN ACCESS

EDITED BY

Fabio Fiorino,
LUM University Giuseppe Degennaro, Italy

REVIEWED BY

Piergiuseppe De Berardinis,
Consiglio Nazionale delle Ricerche
(Napoli), Italy
Even Fossum,
Norwegian Institute of Public Health
(NIPH), Norway

*CORRESPONDENCE

Maurı́cio Lacerda Nogueira

mauricio.nogueira@edu.famerp.br

Rafaella Fortini Queiroz e Grenfell

rafaella.queiroz@fiocruz.br

†These authors share first authorship

‡These authors share senior authorship

RECEIVED 07 March 2025
ACCEPTED 14 May 2025

PUBLISHED 15 July 2025

CITATION

Corsini CA, Campos GRF, Martins PFdS,
Filgueiras PS, Lima AEdS, Gomes SVC,
Curimbaba CDAL, Lorencini DA,
Morandi Junior E, da Silva VM, Cervi MC,
Borges MdC, de Lima PR, Nascimento JPRd,
Correa PRL, Castilho LdR, de Oliveira JG,
Filho OAM, Nogueira ML, Immunita team and
Grenfell RFQe (2025) Neutralizing antibody
response to Omicron subvariants BA.1
and BA.5 in children and adolescents
following the two-dose CoronaVac
protocol (Immunita-002, Brazil):
a 12-month longitudinal study.
Front. Immunol. 16:1589733.
doi: 10.3389/fimmu.2025.1589733

COPYRIGHT

© 2025 Corsini, Campos, Martins, Filgueiras,
Lima, Gomes, Curimbaba, Lorencini,
Morandi Junior, da Silva, Cervi, Borges,
de Lima, Nascimento, Correa, Castilho,
de Oliveira, Filho, Nogueira, Immunita team
and Grenfell. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 15 July 2025

DOI 10.3389/fimmu.2025.1589733
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to Omicron subvariants BA.1 and
BA.5 in children and adolescents
following the two-dose
CoronaVac protocol (Immunita-
002, Brazil): a 12-month
longitudinal study
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(UFMG), Belo Horizonte, Minas Gerais, Brazil, 11Department of Infectious Diseases, College of
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Introduction: The covid-19 pandemic prompted an unprecedented global effort

to develop and deploy vaccines, including CoronaVac, an inactivated virus-based

vaccine. While these vaccines effectively reduced severe cases and

hospitalizations, limited data exists on their immunogenicity in younger

populations, particularly children and adolescents. Understanding the immune

response in these groups is essential to guide vaccination strategies and assess

protection against emerging variants of concern, such as Omicron subvariants

BA.1 and BA.5. This study evaluated the neutralizing antibody response in children
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and adolescents aged 3–17 years over 12 months following the two-dose

CoronaVac protocol in Brazil.

Methods: A cohort of 108 children (3–11 years) and adolescents (12–17 years)

from Serrana, Brazil, received two doses of CoronaVac. Peripheral blood samples

were collected at baseline, and at 1, 3, 6, and 12 months after the second dose.

Participants were stratified by serostatus prior to vaccination. Neutralizing

antibodies against Omicron BA.1 and BA.5 were assessed using

microneutralization assays.

Results: Neutralizing antibody titers increased significantly after vaccination in

both seronegative and seropositive individuals. For seronegative participants,

seroconversion rates for BA.5 rose from 16.6% pre-vaccination to 93.3% one

month after the second dose in children, and from 50% to 92% in adolescents,

with sustained levels for 12 months. Seropositive participants also showed

enhanced antibody titers, particularly against BA.5. No significant differences in

neutralization between BA.1 and BA.5 were observed post-vaccination, contrary

to prior literature, suggesting uniform effectiveness against these subvariants.

Discussion: This study demonstrates that CoronaVac significantly enhances and

sustains neutralizing antibody titers in children and adolescents for up to one

year, including against immune-evading subvariants like BA.5. The robust

response highlights the vaccine’s potential as a critical tool for reducing SARS-

CoV-2 transmission and preventing severe disease, particularly in regions with

limited access to updated vaccines. Further studies with larger cohorts are

needed to validate these findings and inform vaccination strategies for

immunoresistant variants.
KEYWORDS

vaccine, covid-19, SARS-CoV-2, neutralizing antibody, Omicron, children
and adolescents
1 Introduction

For According to the World Health Organization (WHO), as of

January 5, 2025, more than 777 million cases of COVID-19 had

been confirmed worldwide. In Brazil, the number of confirmed

cases surpassed 37 million, with approximately 702,000 deaths

recorded by that date, making it the second country in terms of

deaths from the disease, behind only the United States (1). In an

unprecedented effort, covid-19 vaccines were rapidly developed and

approved for emergency use, with notable examples including

vaccines based on inactivated viruses, mRNA, and non-replicating

adenoviral vectors (2). These vaccines demonstrated efficacy in

reducing cases and deaths. However, the pandemic persisted due

to the emergence and spread of SARS-CoV-2 variants characterized

by higher transmissibility, infectivity, and the ability to evade both

immunity induced by previous infections and immunity provided

by available vaccines (3–5).

The inactivated virus vaccine platform used by CoronaVac has

been shown to induce a robust immune response against various
02
viral proteins, including the S (Spike), N (Nucleocapsid), and M

(Membrane) proteins (6). Furthermore, CoronaVac has proven to

be effective and safe, inducing high levels of neutralizing antibodies,

with good tolerability and no severe adverse events or vaccine-

related fatalities reported during clinical trials (7, 8). Its efficacy was

reported as 83.5% against symptomatic COVID-19 among

volunteers aged 18 to 59 years (7, 8).

By January 2022, approximately 85 million doses of this vaccine

had been administered to the Brazilian population (9). In the same

year, Anvisa (Brazil’s National Health Surveillance Agency) expanded

the vaccination protocol to include children and adolescents

nationwide (10). Although CoronaVac is no longer the primary

vaccine used in Brazil, data from its widespread application

continues to contribute to public health strategies worldwide (11).

The immune response induced by COVID-19 vaccines remains

under investigation, particularly in children and adolescents. In this

age group, the duration and intensity of immune protection, as well

as its efficacy against different variants of concern (VOCs), are not yet

fully defined (11). These aspects are essential for determining the
frontiersin.org
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need for booster doses and supporting evidence-based decisions by

healthcare managers (12). Based on this, the objective of the present

study was to comprehensively evaluate the neutralizing antibody

response in children and adolescents aged 3 to 17 years over 12

months following the administration of the primary two-dose

CoronaVac protocol in Brazil against the Omicron subvariants

BA.1 and BA.5 circulating in the country during 2022.
2 Methods

2.1 Ethics statement and participants

This study was approved by the Research Ethics Committee

involving Human Subjects at the Oswaldo Cruz Foundation, the

Ethics Committee of the Hospital das Clıńicas of the Faculty of

Medicine of Ribeirão Preto, University of São Paulo, and the National

Council of Ethics in Research (CAAE 55183322.6.0000.5091). The

study was supervised by the National Health Surveillance Agency.

Inclusion criteria included children and adolescents aged 3 to 17

years who were unvaccinated for covid-19 and who voluntarily

participated in the study with the agreement of their parents or legal

guardians, signing the informed consent and assent forms (ICF/IAF).

Exclusion criteria included children and adolescents aged 6 to 17 years

with immunosuppression, who were not eligible for participation.

Additionally, children and adolescents who reported COVID-19

infection during the study were not included in the statistical analyses.
2.2 Participant recruitment, sample
collection, and follow-up

Participants were invited to join the research at a public

healthcare center located in Serrana, São Paulo, Brazil. A total of

108 participants who met the inclusion criteria were followed for

twelve months after completing the two-dose primary protocol of

the CoronaVac vaccine (Sinovac, Butantan Institute), administered

with a 28-day interval between doses.

Peripheral blood samples were collected at multiple time points:

prior to vaccination, on the day of the second dose administration,

and at one, three, six, and twelve months post-second dose, relative

to the date of administering the second dose of the CoronaVac

vaccine (Sinovac, Butantan Institute). A 10 mL whole blood sample

was obtained via venous puncture from each participant following

biosafety standards and subsequently centrifuged at 3,000 g for

5 min to obtain serum for immunogenicity analyses. Samples were

collected from March 2022 to July 2023.
2.3 Assessment of anti-S and anti-N IgG
antibodies via ELISA for defining baseline
seroreactivity

To assess baseline seroreactivity, enzyme-linked immunosorbent

assays (ELISAs) were performed to detect IgG antibodies specific to
Frontiers in Immunology 03
the SARS-CoV-2 Spike (anti-S) and Nucleocapsid (anti-N) proteins.

All serum samples obtained from the study participants were tested

for total IgG antibodies specific to the Spike (S) and Nucleocapsid (N)

proteins of SARS-CoV-2. Participants who tested reactive in both

ELISA assays at the first time point of the study (detection of anti-S

and anti-N IgG antibodies), before receiving the first dose of the

vaccine, were classified as seropositive, while those who were non-

reactive in both ELISA assays were classified as seronegative. These

proteins, used as antigens, were derived from the Wuhan reference

strain (B.1), and were generated in stable recombinant HEK293 cells,

as described by Alvim et al. (2022) (13). Antibody detection was

performed using standardized ELISA assays, following the

methodology established by GRENFELL et al. (2022), which had

been validated by the National Institute of Health Quality Control of

the Oswaldo Cruz Foundation (INCQS/Fiocruz) (14). The cutoff

value adopted for the determination of positivity was 0.1508. This

cutoff value was previously established based on validated positive

and negative controls. These controls were derived from samples of

individuals with SARS-CoV-2 infection confirmed by RT-PCR,

ensuring adequate sensitivity and specificity for the detection of

IgG antibodies in the assay (14).
2.4 Viral neutralization assays to SARS-
CoV-2 variants (BA.1 and BA.5)

All serum samples across all time points were subjected to

neutralizing antibody assays (VNT50) to detect antibodies against

the Omicron variant, subvariants BA.1 (HIAE –W.A) and BA.5

(EPI_ISL_18277186), as outlined by CAMPOS et al. (2022) (9).

VNT50 was performed as published before (9, 11). Serum samples

from children and adolescents were collected before and after

vaccination, inactivated at 56°C for 30 minutes, and serially

diluted two-fold (1:20 to 1:2560). Diluted samples were incubated

for 1 hour at 37°C with 50 TCID50 of SARS-CoV-2 subvariants

BA.1 and BA.5. After incubation, 100 μl of these solutions were

transferred to Vero cell-seeded 96-well plates and incubated in

supplemented DMEM for 72 hours at 37°C with 5% CO2. The

median neutralization titer (VNT50) was determined as the

reciprocal dilution providing 50% protection against cytopathic

effects, calculated using the Spearman-Karber method. Each

sample was tested in triplicate (15, 16). A dilution of 1:20 was

established as the cutoff point for seroconversion.
2.5 Statistical analysis

Data analyses were performed using GraphPad Prism®

software version 8.0. The median neutralization titer (VNT50)

was determined as the reciprocal of the dilution that provided

50% protection against cytopathic effects, calculated using the

Spearman-Karber method. Antibody titer quantification results

were analyzed statistically using the Kruskal-Wallis test, while

pairwise comparisons were conducted using the Mann-Whitney

test. A significance level of p < 0.05 was applied for all analyses. The
frontiersin.org
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correlation between neutralizing antibodies against BA.1 and BA.5

subvariants was evaluated using Spearman’s rank correlation

coefficient, with statistical significance set at p < 0.05.
3 Results

3.1 Baseline characteristics of participants

In total, 108 individuals were included in this study, 60 (55.56%)

children aged 3 to 11 years, and 48 adolescents aged 12 to 17 years

(44.44%). For the seronegative group, 60 participants were included,

and for the seropositive group, 48 participants were included,

covering both age ranges. The remaining characteristics of the

cohort, such as biological gender and comorbidities, are presented

in Table 1.
3.2 Neutralization levels against BA.1 and
BA.5 variants before and after vaccination

The viral microneutralization assay enabled the evaluation of

seroconversion rates and the determination of mean neutralizing

antibody titers against the Omicron subvariants BA.1 and BA.5 in

children and adolescents over 12 months following the primary

CoronaVac vaccination protocol.

In the evaluation of neutralizing antibodies in seronegative

individuals, a significant increase in antibody titers was observed

after the primary CoronaVac vaccination protocol, both for the

BA.1 and BA.5 subvariants, in children aged 3 to 11 years

(Figure 1A). Notably, seropositivity for the BA.5 subvariant

increased from 16.6% prior to vaccination to 93.3% one month

after the second vaccine dose and remained high up to the last

follow-up point (12 months post-second dose).
Frontiers in Immunology 04
In the evaluation of seronegative adolescents (aged 12–17;

Figure 1B), no significant difference in neutralizing antibody titers

against the BA.1 subvariant was observed after the primary

vaccination protocol. However, for the BA.5 subvariant,

seropositivity increased significantly from 50% to 92% after

vaccination, remaining elevated until the study’s last follow-

up point.

When comparing neutralizing antibody titers against BA.1 and

BA.5 separately by age group (Figures 2A, B) and by subvariant

(Figures 2C, D) in seronegative individuals, higher antibody titers

against BA.1 were observed in adolescents before receiving the first

dose of CoronaVac (V1). This finding may indicate prior infection

with this subvariant in this group.

In the evaluation of neutralizing antibodies in seropositive

individuals prior to receiving the primary protocol, a significant

increase in neutralizing antibody titers post-CoronaVac vaccination

was observed only for the BA.5 subvariant. Seropositivity increased

from 86.6% to 100% in children aged 3 to 11 years (Figure 3A) and

from 93.3% to 100% in adolescents aged 12 to 17 years (Figure 3B).

When comparing neutralizing antibody titers against BA.1 and

BA.5 separately by age group (Figures 4A, B) and by subvariant

(Figures 4C, D) in seropositive individuals, higher neutralizing

antibody titers against the BA.1 subvariant were observed in both

children and adolescents before receiving the first dose of

CoronaVac (V1). This finding may also suggest prior infection

with this subvariant in these groups.
3.3 Correlation between neutralizing
antibodies against BA.1 and BA.5 variants

When evaluating the correlation between neutralizing

antibodies against BA.1 and BA.5 in seronegative children by

ELISA, a moderate and statistically significant positive correlation
TABLE 1 General characteristics of the included participants.

Epidemiological data Seronegative before vaccination¹ (n,%) Soropositive before vaccination² (n,%) Total (n=108)

Age, years

3-11 30, 27.78 30, 27.78 60, 55.56

12-17 30, 27.78 18, 16.67 48, 44.44

Biological gender

Male 32, 29.63 18, 16.67 50, 46.30

Female 28, 25.93 30, 27.78 58, 53.70

Comorbidities

Allergic rhinitis 3, 2.78 6, 5.56 9, 8.33

Asthma 1, 0.93 1, 0.93 2, 1.85

Obesity 0, 0 2, 1.85 2, 1.85

Hypothyroidism 0, 0 1, 0.93 1, 0.93

No comorbidities 56, 51.85 38, 35.19 94, 87.04
¹Seronegative for SARS-CoV-2 anti-S and anti-N IgG antibodies by ELISA prior to the CoronaVac primary vaccination protocol.
²Soropositive for SARS-CoV-2 anti-S and anti-N IgG antibodies by ELISA prior to the CoronaVac primary vaccination protocol.
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FIGURE 1

Viral microneutralization assay against Omicron subvariants to evaluate neutralization titers (VNT50) and seroconversion rates over 12 months in
children and adolescents vaccinated with the CoronaVac primary protocol. The Omicron subvariants BA.1 and BA.5 are represented in green and
purple, respectively. (A) Neutralizing antibodies in children aged 3 to 11 years seronegative for SARS-CoV-2 S and N antibodies before the
CoronaVac primary protocol. (B) Neutralizing antibodies in adolescents aged 12 to 17 years seronegative for SARS-CoV-2 S and N antibodies before
the CoronaVac primary protocol. The sample size (n), VNT50 means, and geometric mean titers for each group are highlighted below the graphs.
Dashed lines represent the seroconversion dilution cutoff (1:20), while seroconversion rates are expressed as percentages. Significance lines indicate
differences among the mean neutralization titers of the groups. P-values lower than 0.05 were considered significant.
Frontiers in Immunology frontiersin.org05
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was observed in most time points analyzed after vaccination

(Figure 5). In adolescents, a strong positive correlation was

identified at the first pre-vaccination time point (Spearman r =

0.6381, p = 0.0001) and further intensified three months after

receiving the second dose of CoronaVac (Spearman r = 0.7551, p

< 0.0001), suggesting a consistent association between these

parameters (Figure 6).

Conversely, among seropositive individuals, only a moderate

correlation between these neutralizing antibodies was observed

before the administration of the first dose (Spearman r = 0.4569,

p = 0.0111) in children aged 3 to 11 years (Figure 7). In adolescents,

however, no significant correlation was found between BA.1 and

BA.5 neutralizing antibodies at pre- and post-vaccination time

points, indicating a weak or nonexistent association within this

group across the evaluated periods (Figure 8).
Frontiers in Immunology 06
4 Discussion

The COVID-19 pandemic reshaped immunization strategies,

accelerating vaccine development and distribution to curb viral

spread and new variants. Global collaboration among institutions,

scientists, and regulatory agencies enabled the rapid rollout of safe

and effective vaccines, allowing mass immunization within a year of

the pandemic’s onset, significantly reducing cases, hospitalizations,

and deaths (7, 17–25).

Initially, phase II and III clinical trials prioritized adults and the

elderly, as they were the most affected (18, 21). Consequently,

vaccines were first approved for adults, while children and

adolescents relied on non-pharmacological measures during early

waves of infection (26–28). Clinical trials for younger populations

began later, following safety and efficacy data from adult studies
FIGURE 2

Comparison of the kinetics of neutralizing antibodies against BA.1 and BA.5, stratified by age group and subvariant, in children and adolescents
seronegative for SARS-CoV-2 S and N antibodies before the CoronaVac primary protocol, over 12 months following the administration of two doses
of the CoronaVac vaccine. (A) Comparison of the kinetics of neutralizing antibodies against BA.1 and BA.5 in children aged 3 to 11 years.
(B) Comparison of the kinetics of neutralizing antibodies against BA.1 and BA.5 in adolescents aged 12 to 17 years. (C) Comparison of the kinetics of
neutralizing antibodies against the BA.1 subvariant in children and adolescents aged 3 to 17 years. (D) Comparison of the kinetics of neutralizing
antibodies against the BA.5 subvariant in children and adolescents aged 3 to 17 years. Dashed lines represent the seroconversion dilution cutoff
(1:20), while seroconversion rates are expressed as percentages. Significance lines indicate differences among the mean neutralization titers of the
groups. P-values lower than 0.05 were considered significant.
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FIGURE 3

Viral microneutralization assay against Omicron subvariants to evaluate neutralization titers (VNT50) and seroconversion rates over 12 months in
children and adolescents vaccinated with the CoronaVac primary protocol. The Omicron subvariants BA.1 and BA.5 are represented in green and
purple, respectively. (A) Neutralizing antibodies in children aged 3 to 11 years seropositive for SARS-CoV-2 S and N antibodies before the CoronaVac
primary protocol. (B) Neutralizing antibodies in adolescents aged 12 to 17 years seropositive for SARS-CoV-2 S and N antibodies before the
CoronaVac primary protocol. The sample size (n), VNT50 means, and geometric mean titers for each group are highlighted below the graphs.
Dashed lines represent the seroconversion dilution cutoff (1:20), while seroconversion rates are expressed as percentages. Significance lines indicate
differences among the mean neutralization titers of the groups. P-values lower than 0.05 were considered significant.
Frontiers in Immunology frontiersin.org07
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(29–31). As mass vaccination advanced, younger age groups gained

attention, particularly during the Delta variant surge, when adults

and the elderly were fully immunized, leaving individuals under 18

as the most exposed group (32, 33). Beyond direct clinical impacts,

their lack of immunization sustained viral transmission, potentially

contributing to new variant emergence (34).

This shift in vaccination priority diverged from traditional

immunization programs, such as in Brazil, where most vaccines

are administered within the first 15 months of life to ensure early

protection (35, 36). However, prioritizing high-risk groups—elderly

individuals with immune senescence and middle-aged adults with

frequent exposure—was a logical and effective approach,

demonstrating success in controlling the pandemic (23, 37–40).

A key concern regarding childhood and adolescent

immunization was the potential herd immunity from prior SARS-

CoV-2 exposure. The delayed vaccination in this group led to

increased infections, resulting in a significant number of
Frontiers in Immunology 08
individuals with prior virus contact. This background informed

the study’s design, distinguishing groups based on confirmed

previous infection.

Our data shows that neutralizing antibodies against Omicron

variants, especially BA.1, were also detected prior vaccination in

children and adolescents without history of previous infection,

indicating the occurrence of asymptomatic cases. Some studies

highlight that youngsters, when compared to adults and elderly

people, are more likely to develop asymptomatic infections (41, 42),

and this scenario represents a great challenge in determining the

real infectiousness of this age group since these infections are

mostly under-reported (43, 44).

On the other hand, despite neutralizing antibodies being

detected in seropositive and seronegative groups prior

vaccination, our results suggest an important contribution of

immunization in the improvement of serological response. When

compared to V1 (time-point before immunization), neutralization
FIGURE 4

Comparison of the kinetics of neutralizing antibodies against BA.1 and BA.5, stratified by age group and subvariant, in children and adolescents
seropositive for SARS-CoV-2 S and N antibodies before the CoronaVac primary protocol, over 12 months following the administration of two doses
of the CoronaVac vaccine. (A) Comparison of the kinetics of neutralizing antibodies against BA.1 and BA.5 in children aged 3 to 11 years.
(B) Comparison of the kinetics of neutralizing antibodies against BA.1 and BA.5 in adolescents aged 12 to 17 years. (C) Comparison of the kinetics of
neutralizing antibodies against the BA.1 subvariant in children and adolescents aged 3 to 17 years. (D) Comparison of the kinetics of neutralizing
antibodies against the BA.5 subvariant in children and adolescents aged 3 to 17 years. Dashed lines represent the seroconversion dilution cutoff
(1:20), while seroconversion rates are expressed as percentages. Significance lines indicate differences among the mean neutralization titers of the
groups. P-values lower than 0.05 were considered significant.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1589733
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Corsini et al. 10.3389/fimmu.2025.1589733
titers were significantly enhanced in children and adolescents by

CoronaVac vaccination, especially against BA.5 subvariant. These

data corroborate with some studies in the literature, where COVID-

19 vaccination significantly improved the antibody response in

individuals previously infected by SARS-CoV-2 when compared

to vaccinated naïve individuals (45–47). Additionally, it is described

that this hybrid immunity also showed higher serological protection

in the respiratory tract, the main infection route of SARS-CoV-2,

especially due to elevated levels of IgA antibody response in the

mucosa after vaccination (48, 49).

A similar pattern was observed in individuals vaccinated with

CoronaVac, the same immunizing platform used in this study. A

study performed by Niyomnaitham et al., in 2022, evaluated the

impact of different vaccines in naïve and previously infected

participants. As expected, CoronaVac showed lower responses

when compared to other vaccines, but using a SARS-CoV-2

pseudo virus neutralization assay, the authors observed that a

single dose of CoronaVac was able to induce the same

neutralization titer, against Omicron variant, as naïve individuals

vaccinated with two doses of BNT162b2 (50). Our results
Frontiers in Immunology 09
corroborate and reinforce this observation, since we performed all

neutralization assays using infectious particles instead of pseudo

virus platform, showing that a two doses immunization with

CoronaVac was capable to enhance and maintain high levels of

antibody response against Omicron subvariants, independently of

previous contact with SARS-CoV-2.

Other vaccination platforms, using attenuated adenoviral vector

or mRNA as the immunizing agent, presented the same trend on

improving immune protection (51, 52). A study performed in the

United Kingdom, conducted with more than 35 thousand

asymptomatic healthcare workers, showed that both serological

and cellular immunity acquired only by previous infection decay

after 1 year. However, after full vaccination of these seropositive

individuals with ChAdOx1 nCoV-19 or BNT162b2 vaccines,

protection levels remained high and consistent over time (90% of

effectiveness on preventing subsequent infections) (53).

From the serological response perspective, our findings

highlight that vaccination of children and adolescents, with

CoronaVac, induced high levels of neutralizing antibodies against

BA.1 and BA.5, two Omicron subvariants with different
FIGURE 5

Correlation between neutralizing antibody titers against BA.1 and BA.5 in seronegative children (aged 3 to 11 years), assessed at different time points:
before vaccination (A), one month (B), three months (C), six months (D), and twelve months (E) after receiving the second dose of CoronaVac. Each
point represents an individual sample from a participant. The assay cutoff value of 20 is indicated by the dashed lines on the x and y axes.
Spearman’s correlation coefficient was used, with statistical significance set at p < 0.05.
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immunological features that influence on neutralization escape (54).

Some studies, including a previous one from our group, showed that

BA.5 is less neutralized by previous infection (55) and vaccination

induced antibodies (11, 56, 57) than BA.1, the first omicron

subvariant that emerged.

In this study, the correlation between neutralizing antibodies

against BA.1 and BA.5 in seronegative children and adolescents,

revealing a moderate and statistically significant positive correlation

at most time points analyzed post-vaccination. Additionally,

interestingly, the data presented here showed that, when

comparing neutralization levels against BA.1 and BA.5 in children

and adolescents, no significant differences were observed after

CoronaVac administration, and this response was maintained

over time. This finding contrasts with previous reports from in

vitro and cohort studies, which suggest differential neutralization

efficacy against these subvariants (58, 59). As an example, a study

conducted in Japan with 13 thousand individuals, during BA.1/

BA.2 and BA.5 infection waves, showed that vaccination protection

against BA.5 was short-lasting and probably contributed to BA.5

infection peak (60).
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This induction and maintenance of considerable titers of

neutralizing antibodies in both age groups, independently of

infection history, could suggest new perspectives on vaccination

protocols for immunoresistant subvariants such as BA.5.

In a scenario where SARS-CoV-2 continues to circulate and

evolve, updated monovalent vaccines, specifically targeting

currently circulating variants, have replaced the previous bivalent

Wuhan/BA.5 vaccines and are now considered essential tools. Some

of these updated vaccines have already been tested and approved

(61–65). Although CoronaVac is no longer the primary vaccine

used in Brazil, the accumulated data from its widespread

application continue to inform public health strategies globally.

Moreover, CoronaVac, as a safe and effective inactivated virus

vaccine, remains a valuable tool for controlling SARS-CoV-2

infection and preventing progression to severe disease,

particularly in countries where updated vaccines are not yet

readily available (11).

As a limitation of our study, since our data showed no difference

on neutralization titers, after immunization, between subvariants,

and this opposes the literature regarding BA.5 immune escape, an
FIGURE 6

Correlation between neutralizing antibody titers against BA.1 and BA.5 in seronegative adolescents (aged 12 to 17 years), assessed at different time
points: before vaccination (A), one month (B), three months (C), six months (D), and twelve months (E) after receiving the second dose of
CoronaVac. Each point represents an individual sample from a participant. The assay cutoff value of 20 is indicated by the dashed lines on the x and
y axes. Spearman’s correlation coefficient was used, with statistical significance set at p < 0.05.
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increase in the number of samples could strengthen even more the

findings about vaccination and protection of youth population. As a

methodological limitation of the study, regarding the criterion

adopted to define prior SARS-CoV-2 infection, based on

simultaneous positivity for anti-S and anti-N IgG antibodies

detected by ELISA using antigens from the Wuhan reference

strain, although this approach was chosen to ensure greater

specificity, it is possible that it led to the misclassification of some

previously infected individuals as seronegative . This

misclassification may result from both the natural waning of total

antibody levels over time and the attenuated immune response

induced by variants such as Omicron, which may elicit antibodies

with low affinity for ancestral strain antigens, thus hindering their

detection by ELISA-based assays. The presence of relatively high

neutralizing antibody titers in some participants classified as

seronegative prior to vaccination reinforces this possibility,

suggesting the occurrence of asymptomatic infections that were

not serologically detected. Therefore, we acknowledge that this

approach may have underestimated the proportion of individuals

with prior infection, which should be considered when interpreting
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the immunological results observed after vaccination. In addition, it

is important to consider that the neutralization assays performed in

this study used total serum samples, without prior separation by

immunoglobulin isotype. Therefore, it is not possible to attribute

the observed neutralizing activity exclusively to the IgG fraction.

Other isotypes, such as IgM and especially IgA, the latter

particularly relevant in mucosal immune responses, may have

contributed to the detected neutralization titers, particularly

during the early stages of the immune response following

vaccination. This potential interference should be considered

when interpreting the data, as the total neutralizing activity

measured does not necessarily reflect only the long-term humoral

memory response mediated by IgG.

The results presented here highlight important and necessary

information regarding vaccination of children and adolescents. A

full immunization protocol with CoronaVac contributed to a

significant enhancement of serological response for naïve and

previous infected individuals, including against immunoresistant

subvariants such as BA.5, and this robust antibody neutralization is

stable for one year after vaccination. This positive response, in a
FIGURE 7

Correlation between neutralizing antibody titers against BA.1 and BA.5 in seropositive children (aged 3 to 11 years), assessed at different time points:
before vaccination (A), one month (B), three months (C), six months (D), and twelve months (E) after receiving the second dose of CoronaVac. Each
point represents an individual sample from a participant. The assay cutoff value of 20 is indicated by the dashed lines on the x and y axes.
Spearman’s correlation coefficient was used, with statistical significance set at p < 0.05.
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population that was vaccinated later, could be crucial to

deaccelerate SARS-CoV-2 circulation and reduce the emergence

of new subvariants. In addition, an inactivated viral vaccine showed

to be an interesting tool to increase immunity of less protected

individuals, especially in regions where new and updated vaccines

are not available yet.
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Camargos1, Raquel Amorim1, Érica Louback de Oliveira1, Clara
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