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The barrier to HIV cure is the HIV reservoir, which is composed of latently infected

CD4+ T cells and myeloid cells that carry stably integrated and replication-

competent provirus. The gastrointestinal tract (GIT) contains a substantial part of

the HIV reservoir and its immunophysiology could be especially conducive for HIV

persistence and reactivation. However, the exact cellular microenvironment and

molecular mechanisms that govern the renewal of provirus-harboring cells and

proviral reactivation in the GIT remain unclear. In this review, we outline the

evidence supporting an overarching hypothesis that interferon activity driven by

specialized enterocytes creates a microenvironment that fosters proliferation of

latently infected CD4+ T cells and sporadic HIV reactivation from these cells. First,

we describe unique immunologic features of the gastrointestinal associated

lymphoid tissue (GALT), specifically highlighting IFN activity in specialized

enterocytes and potential interactions between these cells and neighboring HIV

susceptible cells. Then, we will describe dysregulation of IFN signaling in HIV

infection and how IFN dysregulation in the GALTmay contribute to the persistence

and reactivation of the latent HIV reservoir. Finally, we will speculate on the clinical

implications of this hypothesis for HIV cure strategies and outline the next steps.
KEYWORDS

HIV latency, interferon, enterocytes, microfold cell (M-cell), interferon stimulated
gene (ISG)
1 Introduction

Except for a few isolated cases,HIV infectionhas never been cured (1). This is becauseHIV

integrates into the host genome (becoming a “provirus”), evading the immune response and

escaping antiretroviral therapies (ART) (2, 3).WhenART is stopped, reactivationof proviruses

in some latently infected cells leads to rebound viremia (4, 5). HIV latency is established very

early during acute HIV infection, either through direct infection of resting memory CD4+ T

cells or through infection of actively replicating CD4+ T cells that are later induced to a resting
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state (6–10). Latently infected cells are present in numerous

microanatomical environments, including the blood, lymph nodes,

brain, and gut (11–15). Tissue-specific factors like cell signaling, cell-

cell interactions, and local antiretroviral drug concentration are critical

to understanding the persistence and reactivation of latent HIV

infection (14, 15).

Given its constant exposure to commensal bacteria andpathogens,

the GIT is a highly immunologically active site. Previously, we found a

population of cells in the intestinal epithelium producing extremely

high levels of type I/III interferon (IFN)-stimulated proteins, including

IFN-stimulated gene 15 (ISG15) (16). Co-expression of glycoprotein 2

suggests that some of these cells are microfold cells (M cells) (17). In

response to viral pathogens, secreted IFNs upregulate the expression of

interferon-stimulated genes (ISGs) to inhibit viral replication and

prevent further cellular infection (18). However, in chronic HIV, the

antiviral effect of the interferon system becomes pathological due to

years of overstimulation (19, 20).This dysregulationof the IFN system,

termed “interferonopathy,” has been posited to antagonize a potential

HIVcure bydrivingbystanderT cell proliferation, including of latently
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infected cells, thus contributing to HIV reservoir persistence (21–23).

CD4+ T cell proliferation is thought to be the most important

mechanism sustaining the HIV reservoir (24–38). There is also

evidence that IFN efficiently reactivates HIV-1 (39). Therefore, the

high IFN signaling activity observed in the intestinal epithelium led us

to hypothesize that these immunologically active enterocytes play a

role in the persistence and spontaneous reactivation of the HIV

reservoir in the GIT (Figure 1).
2 The gastrointestinal tract, especially
the gut-associated lymphoid tissue of
the small intestinal tract, contains the
largest HIV reservoir

Numerous studies in humans and non-human primates (NHP)

have demonstrated that the largest HIV reservoir resides in the

GALT. An analysis by Yukl et al. in people living with HIV (PLH)
FIGURE 1

M cells or ISGhigh enterocytes may foster HIV latency and reactivation. Top schema. The epithelium of the intestinal mucosa contains a population of
cells expressing extremely high levels of type I/III interferon-stimulated genes (ISGs). Notably, this ISG expression appears independent of direct
interferon (IFN) stimulation and also does not coincide with IFN expression by these cells. Co-expression of glycoprotein 2 suggests that many of
these enterocytes are microfold cells (M cells). M cells are ~10% of all enterocytes; they are most numerous in the epithelium covering lymphoid
follicles (the follicle-associated epithelium, “FAE”) and Peyer’s patches in the small intestine. They transport pathogens and other foreign materials
from the lumen to underlying antigen-presenting cells (APCs) to initiate immune responses. They also influence APCs and lymphocytes via cytokines
(e.g., IL-1, ISG15) and chemokines (e.g., CCL9 and CXCL16), as well as by expressing HLA-II molecules for direct interaction with T cells. M cells have
a large basolateral invagination that amplifies the cell surface and usually contains B and/or T cells. While the significance of ISG15 and other M cell-
associated ISGs for the HIV reservoir remains to be investigated, stimulation of type I/III IFN pathways has been shown to play an important role
supporting HIV reservoir persistence, likely via T cell proliferation, and HIV-1 reactivation. Our overarching hypothesis is that immunologically
hyperactive M cells in the gut create a microenvironment that fosters proliferation of latently infected bystander CD4+ T cells, sporadic HIV
reactivation from these cells, or both. Thus, M cells and, more broadly, ISGhigh enterocytes may play a role in HIV persistence and/or viral rebound
post-ART cessation. Bottom right image. Immunostaining of a duodenal biopsy for ISG15 (ISGhigh enterocytes, yellow) and CD68 (macrophages, red);
DAPI signal denoted in teal. A formalin-fixed paraffin-embedded (FFPE) section was analyzed from a study participant that was exposed to PrEP (a
combination of tenofovir disoproxil fumarate and emtricitabine) for two months (16).
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on ART estimated that 83-95% of HIV-infected cells reside in the

GIT (40). Likewise, a survey in SIV-infected NHP on ART showed

that ~98% of SIV vRNA+ (indicating active transcription and

possibility for rebound) cells resided in the GIT (41). This

continued low level production of SIV RNA, despite ART, also

correlated with the presence of a large pool of SIV DNA+ cells (41).

Studies in PLH on ART analyzing only the rectum have consistently

found HIV DNA-containing cells (42, 43). The few studies of the

upper GIT of PLH consistently identified the small intestinal tract

as an important site for harboring HIV DNA+ and RNA+ cells (40,

44–51). HIV DNA (both clade B (46, 48–50) and C (47)) is present

at higher levels in the small intestine than the blood. In addition,

HIV RNA is more often found in the small intestine than the blood,

and the RNA/DNA ratio is higher (40, 49). This site also has higher

levels of activated CD4+ T cells than blood, which are suitable

targets for infection (40, 49, 50). Thus, a large portion of the HIV

reservoir resides in the GIT and HIV reactivation occurs at this site

even during treatment.

Additional studies suggest that the HIV reservoir is further

compartmentalized within the GIT, although there is some

disagreement regarding which section of the GIT harbors the

largest reservoir (44–46, 50–52). A recent study by Vellas et al.

demonstrated an enrichment of intact proviruses in the ileum and

colon compared to the duodenum of virally suppressed PLH (52).

Another study identified increased HIV DNA concentrations along

the GIT (40), while others found comparable levels in the ileum and

rectum (45, 46, 50). With regards to viral transcription, studies

agreed that higher levels of HIV RNA are present in the ileum

compared to the rectum (40, 45). Further evidence of ongoing

productive infection events in the small intestine during ART comes

from an ART intensification study, where addition of raltegravir

with or without a second antiretroviral drug caused a decrease of

unspliced HIV RNA only in the ileum and not in other sites

(peripheral blood, duodenum, colon, or rectum) (44). Overall,

many studies point to the small intestine as an important and

likely functionally unique HIV reservoir site, in particular as a

hotspot for viral reactivation.

Several factors could explain the large latent HIV reservoir in the

GIT compared to other anatomical sites. The GIT and GALT tissues

are seeded rapidly and massively during the initial HIV infection

phase, before ART is started (53–55). Compared to blood, a larger

proportion of CD4+ T cells in the GIT express the HIV co-receptors

CCR5 and CXCR4 and the gut homing receptor a4b7, making them

highly susceptible to HIV infection (55–57). Furthermore, GALT

contains many B cell follicles, which have been characterized as HIV

“sanctuary” sites due to CD8+ T cell depletion, enabling continued

productive infection of T follicular helper cells (58). Lastly, once ART

is started, some areas of the GIT may experience incomplete tissue

penetration of ART drugs (59, 60).
3 GALT immunological function

Here, we review GALT-specific cell types and immunological

functions that may contribute to maintaining the HIV reservoir in
Frontiers in Immunology 03
the GIT. We specifically highlight microfold (M) cells,

immunologically active cells that are especially enriched in the

small intestine and interact closely with cell types known to harbor

latent HIV.

GALT is distributed throughout the GIT and consists of multi-

follicular structures (Peyer’s patches, cecal patches, colonic patches)

and isolated lymphoid follicles (61–63). The immune structures and

cell populations vary substantially along the length of the GIT

(reviewed by Mowat et al (61)). Multi-follicular structures are most

concentrated in the ileum and consist of germinal centers rich in

naïve B cells and follicular dendritic cells surrounded by T cell-rich

regions (61, 62, 64). Isolated lymphoid follicles have a similar

structure as Peyer’s patches, but are much smaller (a single

follicle compared to 10–100 follicles in Peyer’s patches) (63).

Unlike multi-follicular structures, isolated lymphoid follicles are

distributed along the entire length of the GIT, and their frequency

increases 3 fold from the cecum to the rectum (65, 66). T cell

populations in follicular structures include naïve CD4+ T cells,

central memory CD4+ T cells, FOXP3+ regulatory T cells, and T

follicular helper cells (62, 63).

While organized lymphoid structures are specialized for the

generation of antigen-specific B cell responses, other immune cells

distributed throughout the epithelium and lamina propria are

specialized for effector responses and epithelial barrier

homeostasis (62, 67–69). Intraepithelial lymphocytes (primarily

CD8+) in the intestinal epithelium serve a wide variety of

functions, including maintenance of the epithelial barrier,

immune regulation, and antigen-specific cytotoxic effector

responses (reviewed in (67)). The lamina propria contains CD4+

T cells with effector memory, transitional memory, Th17, and Th22

phenotypes, together with a variety of innate immune cells (62, 68,

69). These CD4+ T cells are of particular relevance due to their

susceptibility to HIV infection and ability to harbor latent provirus.

The differentiation of these and other immune cell types in the GIT

are strongly influenced by dietary components like vitamin A and

aryl hydrocarbon receptor ligands and by commensal microbiota

and their metabolites (e.g., short chain fatty acids) (70–72).

The epithelium overlying GALT lymphoid follicles contains

microfold cells (M cells), which are specialized for uptake and

transport of luminal antigens (most eminently studied by Dr.

Marian Neutra in the 90 and 00s) (17, 73–78). M cells contain a

large basolateral invagination that enables close association with

mononuclear phagocytes and intraepithelial B and T cells (73, 75).

Antigens are sampled via endocytosis or pinocytosis and

transported to the basolateral membrane in vesicles (17, 73, 74).

M cells express cytokines (e.g., IL-1 (79), ISG15 (16)) and

chemokines (e.g., CCL9 (80) and CXCL16 (81)) to recruit

lymphocytes and leukocytes to the basolateral pocket. Some

studies also suggest that M cells can express HLA-II molecules

(82, 83) for direct interaction with T cells.

Conservatively estimated, under healthy conditions, there are

5×109 M cells or M cell-like enterocytes in the human gut (84).

Under pro-inflammatory conditions, such as infection or

inflammatory bowel disease, their proportion can increase

dramatically, either by trans-differentiation from mature
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enterocytes or de novo differentiation from crypt stem cells (though

the exact mechanisms of M cell formation remain unknown) (73,

85–87). For example, Salmonella typhimurium infection causes

increased density of M cells. The mechanism is thought to be via

a bacterial effector protein activating RANKL expression in

intestinal epithelial cells and inducing epithelial to mesenchymal

transition (86).

Furthermore, M cell signaling is influenced by extracellular

factors. In a study investigating the effects of two nucleoside/

nucleotide reverse transcriptase inhibitors (NRTI)-class drugs in

three clinical trials, we found that oral tenofovir disoproxil fumarate

(TDF) and emtricitabine (FTC) taken as pre-exposure prophylaxis

(PrEP) activated interferon pathways in the intestinal mucosa

[Figure 1 and (16)]. The most significantly upregulated genes

were IFI6 (IFN a-inducible protein 6), ISG15 (Interferon-

Stimulated Protein 15kDa), and MX1 (MX dynamin-like GTPase

1). By co-staining with glycoprotein 2 (GP2) (17) we identified a

portion of these cells as mature M cells (16). Similar ISG-expressing

enterocytes have been described by others (88–90), with ISG

expression modulated by inflammatory conditions like Crohn’s

disease, ulcerative colitis, and environmental enteropathy (88, 89).
4 Dichotomous functions of IFN in
HIV and the GIT

As indicated in the previous section, our study in people living

without HIV demonstrated an immunostimulatory effect of the

NRTIs TDF and FTC, which are commonly used as part of ART.

Differential gene expression analysis revealed that 13 genes were

significantly induced when comparing pretreatment baseline to 60

days of daily oral TDF/FTC PrEP by microarrays (16). Seven of

these 13 genes (IFI27, IFI6, IFIT1, ISG15, RSAD2, MX1, and OAS1)

are members of the Gene Ontology biological process “type I IFN

signaling pathway”; four of the other 6 are known to be induced by

type I IFN (DDX60, SAMD9, IFI27L1 and HERC6). Thus, drugs

from the NRTI class, which are mainstay ART components, may

play a role in the persistent and largely unexplained immune

activation seen in PLH whose HIV infection is otherwise well-

controlled. In the paragraphs below, we discuss how IFNs,

particularly type I (IFN-a and b) and type III (l), can have

contrasting functions, being protective during early events of viral

infection and detrimental if their expression is dysregulated in

chronic infection.

The antiviral activity of type I IFN is beneficial in acute HIV/

SIV infection (91, 92). IFN-a2a administration during early SIV

infection in rhesus macaques led to upregulation of ISGs (MX1,

MX2, OAS2, IRF7) and a delay in systemic infection (93). Another

study in rhesus macaques demonstrated that IL-21 therapy (known

to induce NK cell proliferation and maturation (94)) followed by

IFNa therapy resulted in a smaller SIV reservoir and delayed viral

rebound during ART interruption (95). Meanwhile, in humans,

delivery of pegylated IFN-a2b in combination with ART resulted in

decreased GALTHIV RNA+ cells and blood HIV DNA+ cells. These

changes correlated with increased GALT NK and T cell activation
Frontiers in Immunology 04
and upregulation of genes related to NK cell mediated immunity

and IFN signaling (96, 97). In individuals coinfected with hepatitis

C virus and HIV, immunotherapy with pegylated IFN-a2a further
reduced proviral HIV DNA levels, which correlated with NK

antiviral function (98–100). At the molecular level, type I IFN

inhibits HIV-1 virus release through ISG15-mediated inhibition of

ubiquitylation of the HIV-1 Gag protein (101), and it induces a

number of directly-acting HIV restriction factors, e.g., MX1,

TRIM5a, tetherin, and APOBEC3G (102–104).

In the context of chronic HIV infection, stimulation of type I/III

IFN pathways can exacerbate the infection rather than clear it (105–

107). Two recent studies in a humanized mouse model of chronic

HIV infection showed that disrupting IFN-I/III pathways by

blocking the IFN-a/b receptor 1 led to less immune activation, a

lower HIV reservoir in lymphoid tissues, and delayed HIV rebound

following ART interruption (21, 22). These studies were highlighted

in a commentary by Deeks et al. titled “The interferon paradox: can

inhibiting an antiviral mechanism advance an HIV cure?” (23).

Likewise, in an NHP model of chronic ART-treated SIV infection,

blockade of IFNa resulted in SIV reservoir reduction and better

clinical outcomes during ART interruption (108). In PLH, chronic

activation of IFN pathways has been associated with worse disease

outcomes (20), partly driven by immune suppression and CD8+ T

cell exhaustion and senescence (19, 107, 109). This dichotomous

role of IFN in HIV pathogenesis is especially illustrated by studies

comparing nonpathogenic to pathogenic SIV. Natural hosts like

African Green Monkeys generate robust interferon responses, but

the responses rapidly diminish following acute infection and these

animals have minimal pathogenic sequelae (110). In contrast,

chronic IFN activation occurs in animals like rhesus macaques,

which have pathogenic SIV infection (111).

Several molecular mechanisms may underlie the deleterious

effect of type I/III pathway activation on HIV persistence and

reactivation. Type I IFN drives bystander T cell proliferation

(112), which likely includes latently infected cells and thus may

contribute to reservoir maintenance. It also facilitates the

establishment of viral latency in monocyte-derived macrophages

in vitro through the formation of inaccessible chromatin in the HIV

provirus (113). In addition, IFN-a can reactivate HIV-1 from

latently infected CD4+ T cells, potentially via STAT5

phosphorylation (39).

Most studies of IFN’s antiviral or deleterious effects have been

performed with blood immune cells. However, the GIT is where

preferential acute HIV-1/SIV replication, massive CD4+ T cell

depletion, and microbial translocation occurs (53, 55), and where

the largest HIV reservoir in the body resides (40, 41). In a study

comparing long term non-progressors to people with high HIV

viral loads, HIV-specific IFNg secretion from GIT CD8+ and CD4+

lymphocytes was higher in the non-progressor group (114). This

suggests a protective antiviral function of IFNg in the GIT. During

HIV/SIV infection, plasmacytoid dendritic cells (pDCs) upregulate

b7-integrin expression, resulting in accumulation in the GIT (115,

116). pDCs produce large amounts of type I IFN during HIV/SIV

infection, but this activity is reduced in natural SIV hosts (117).

Blockade of a4b7 reduced the pDC population and immune
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activation in the colorectum of SIV-infected rhesus macaques (116).

Together, these studies suggest that type I IFN produced by pDCs

contributes to chronic immune activation in the GIT.

Dendritic cells and intra-epithelial CD45+ leukocytes also

participate in type I/III IFN signaling in the GIT. In the absence

of infection, commensal bacteria stimulate IFN secretion from these

cells, which then leads to an ISG-mediated antiviral state in

intestinal epithelial cells (118, 119). In acute HIV infection, CD4+

T cell depletion in the GIT leads to epithelial barrier dysfunction

and microbial dysbiosis that persists even after stable ART (120–

122). It is unknown how this persistent disruption of the gut

epithelium affects IFN signaling, but in PLH on ART, gut ISG

levels positively correlated with gut HIV-1 RNA and markers of

immune activation, microbial translocation, and inflammation

(124). In the next sections, we will speculate on the potential

importance of the interaction between ISGhigh enterocytes such as

M cells and the HIV reservoir.
5 Potential role of ISG-expressing
enterocytes in GALT HIV reservoir
maintenance and rebound

The effect of HIV infection on IFN-signaling in GIT enterocytes

is unknown, however GIT enterocyte ISG expression has been

shown to be increased by small molecule drugs or autoimmune

disease. As mentioned in Section 4, we observed an increase in the

number of rectal and duodenal enterocytes expressing ISGs after 2

months of TDF/FTC PrEP (16). In vitro experiments have also

demonstrated that nucleotide analogues can stimulate dose-

dependent secretion of type III IFN (IFN-l3) in GIT epithelial

cells (123). To further validate the potential for ISG upregulation in

GIT enterocytes, we explored scRNA-Seq datasets from

Kummerlowe et al (89) and Smillie et al (90), in the Broad

Institute Single Cell Portal. These datasets were identified based

on species (Homo sapiens), organ (gastrointestinal tract), cells

(microfold cells), and genes (ISGs from (16)) of interest. In both

datasets, we identified a subset of enterocytes in the duodenum that

co-express high amounts of ISGs (ISG15, IFI27, IFI6, MX1, IFIT1,

etc.) (Figure 2a, denoted with a red arrow) but, notably, not

interferons or interferon receptors (IFNL1, IFNL2, IFNL3, IFNG,

IFNE, IFN-alpha receptor 1 or 2, or IFN-lambda receptor IFNLR1)

(Figure 2b). Results from these studies align well with our tenofovir

study (16), in which type I IFNs (IFN-a and -b) and type III IFNs

(IFN-l1–4) were not detectable. In Kummerlowe et al (89) and

Smillie et al (90), the ISGhigh subset of cells did not express GP2,

suggesting they are not mature M cells but another type of

enterocyte (17). Although both studies included samples from

participants with gastrointestinal disease, expression of the same

ISGs in enterocytes from our TDF/FTC PrEP study suggests that

this pattern of ISG expression is not specific to gastrointestinal

disease and that further study of enterocyte ISG expression in HIV

is warranted.
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The Kummerlowe study also showed an overall increase in ISG

expression (Figure 2c) and specifically an increased fractional

abundance of the ISGhigh enterocyte subset in ART-treated HIV

infection (Supplementary Figure S7 in Kummerlowe et al (89)). The

increase in this ISGhigh enterocyte population during chronic HIV

infection suggests a role for these cells in HIV persistence and

reactivation. It is unknown how HIV-infected cells respond to M cell-

derived ISGs and if this interaction can drive HIV reservoir persistence

and/or reactivation. Briefly, we will discuss potential effects of ISGs on

the HIV reservoir in the GIT using ISG15 as an example.
FIGURE 2

ISG expression is elevated in an enterocyte subset of the small
intestine and in HIV infection. Kummerlowe et al (89) performed
single cell RNA sequencing of small intestine biopsies from people
with environmental enteropathy (EE) (including 3 adults living with
HIV, EE_HIV) and people without environmental enteropathy
(Resection). (a) Exploration of ISG expression in the data set revealed
an enterocyte subset (Ent_ISG15_IFI6) with high ISG expression
(denoted with a vertical red arrow), but (b) little or no IFN or IFN
receptor expression. (c) A similar pattern of high ISG expression was
identified in study participants living with HIV. The data was
accessed and the figure was generated using the Single Cell Portal
from the Broad Institute (170). In all plots, the dot size represents the
percent of the cell population expressing the gene, and the color
represents the scaled mean expression from 0 (blue) to 1 (red)
across all cell subsets (a, b) or all study participants (c). These plots
were generated automatically after searching for the ISGs of
interest. Experimental and data analysis details are available in the
original paper (89).
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5.1 ISG15: an M cell-derived ISG with the
potential to enhance latent HIV-infected
cell proliferation and HIV reactivation

ISG15 is one of the most strongly (125) and rapidly induced

(126) ISGs. It has both intracellular innate immune and secreted

cytokine-like functions (127, 128). ISG15 is a member of the

ubiquitin family and is induced by viral and bacterial infections

(129–131), and also directly by IFNs (132, 133). Intracellularly, it

binds covalently to target proteins through a process called

ISGylation, which serves a key role in innate immunity,

specifically inhibiting viral infection and viral release (128). As a

cytokine, ISG15 induces lymphocyte proliferation, IFN-g
production, and neutrophil chemotaxis (134, 135). Soluble ISG15

can also stimulate a strong release of pro-inflammatory cytokines

such as IL-6, TNF-a, and IL1b (88). These effects are triggered by

ISG15 binding the integrin receptor lymphocyte function-

associated antigen 1 (LFA1) on NK cells and T cells (136). The

specific functions of ISG15 in the GALT and in M cells

are unknown.

Regarding HIV-1 pathogenesis, several effects of ISG15 have

been reported. ISG15 is upregulated in dendritic cells and

macrophages in response to HIV-1 provirus (137), and in PLH,

ISG15 mRNA levels in PBMCs correlated with HIV-1 viral load and

markers of worse disease outcome (138). ISG15 inhibits HIV-1

virus release by inhibiting ubiquitination of the HIV-1 Gag protein

(101). Conversely, intracellular ISG15 was also shown to increase

HIV-1 replication in primary CD4+ T cells (139). This could occur

via ISG15-mediated stabilization of USP18, a negative regulator of

JAK-STAT signaling (140, 141). Overall, despite ISG15 now being

intently studied, there is still relatively little known regarding its role

in the GIT, HIV infection, and HIV latency.

Taken together, ISG15 expression by enterocytes may affect

HIV persistence and reactivation in two ways. First, enterocyte-

secreted ISG15 may promote proliferation of neighboring T cells,

some of which could be latently infected, thus maintaining or

growing the size of the reservoir. It may also recruit and activate

CD4+ T cells, which are targets for infection. Second, ISG15 may

play a role in viral reactivation of latently infected T cells by

stimulating the release of pro-inflammatory cytokines, which then

reactivate HIV. Thus, despite its direct intracellular inhibitory

effects on HIV, ISG15 expression by enterocytes may drive

persistence of the latent HIV reservoir as well as viral reactivation

from T cells. Similar effects are likely to result from other ISGs

produced by enterocytes.
5.2 IFN-independent induction of ISGs

As mentioned above, ISGhigh enterocytes appear to express few

IFN receptors, which suggests that their ISG expression may be

independent of IFN stimulation. Transcriptional regulation of ISGs

can be activated by IFNs via the classical JAK-STAT pathway or

through non-canonical IFN-independent pathways (reviewed in

(142)). These non-canonical signaling pathways, including the
Frontiers in Immunology 06
activation of mitogen-activated protein kinases (MAPKs),

mammalian target of rapamycin (mTOR), protein kinase C

(PKC), IRF3, or NF-kB, can be activated by cellular stress (e.g.,

heat shock, DNA damage, oxidative stress) or viral infections

(18, 143).

A recent study suggested that ISG induction occurs via NF-kB
signaling in an enteroid model of M cells. Ding et al. developed a

culture system to generate glycoprotein 2 (GP2) positive M cells in

human ileal enteroids using a variety of differentiation factors

(RANKL, retinoic acid, and lymphotoxin a2b1) (144).

Transcriptomic analysis showed that this lymphotoxin-mediated,

IFN protein-independent signaling induced upregulation of several

ISGs (IFI6, IFI44, IFITM1, IFIT1, RSAD2) in enteroids with induced

M cells (144). This ISG expression prevented rotavirus infection

specifically in GP2-positive M cells in the enteroid model (144).

A second IFN-independent mechanism of ISG induction occurs

via pattern recognition receptors (PRRs). M cells express PRRs such

as Toll-like receptors (TLRs) (145) and nucleotide-binding

oligomerization domain-containing proteins (NODs) (146). These

receptors recognize microbial molecular motifs, and can trigger the

activation of signaling pathways that converge in ISG induction

without the need for IFNs. The TLR3 ligand poly(I:C) induced

expression of pSTAT1, IRF9, and free ISG15 independently of

autocrine or paracrine IFN signaling in an organoid model (88).

ISG15 is induced directly by HIV-1 provirus in CD4+ T cells,

macrophages, and dendritic cells via MDA5 (147), a RIG-I like

receptor that can be expressed by enterocytes (89).

These pathways could be involved in the apparent constitutive

ISG expression we observed in enterocytes (16), given their constant

exposure to and sampling of the intestinal lumen.

As a caveat, while the ISG-expressing subset of enterocytes did

not strongly express IFN or IFN receptors in the studies described at

the beginning of Section 5, there were other enterocyte subsets

expressing IFN-a receptor 1 and IFN-g receptors 1 and 2 (89, 90).

Additionally, the absence of type I/III IFNs in our tenofovir study

(16) could be due to the low sensitivity of the microarray used.

Therefore, these previous studies do not exclude the possibility that

IFN is involved upstream of the ISG expressing enterocytes.
6 Clinical implications for HIV cure
strategies

Understanding how M cells affect the HIV reservoir may enable

us to improve experimental HIV cure interventions. Two

prominent approaches to curing HIV are “shock and kill”

(“sterilizing cure” (148)) and “block and lock” (“functional cure”)

(149, 150). “Shock and kill” (also named “kill and kill” or

“activation-elimination”) induces HIV reactivation with cytokines

and latency reversing agents (LRAs). These LRAs include protein

kinase C (PKC) modulators, mitochondrial-derived activators of

caspases (SMAC) mimetics, BET-bromodomain inhibitors, histone

deacetylase (HDAC) inhibitors, and others (reviewed in (151)). In

theory, reactivated cells should be eliminated by viral cytopathic

effects or the immune system, but in vitro data and clinical trials
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have shown that latency reversal alone does not effectively decrease

the size of the HIV reservoir (152–155). A combination of LRAs

may be more effective (156–158), but such approaches can be toxic.

It is possible that studying the immune modulatory effects of

ISGhigh enterocytes and M cells could reveal novel and less toxic

approaches for latency reversal.

The “block and lock” functional cure strategy (149) is based on

inducing deep latency in the HIV reservoir by using latency-

promoting agents (LPAs) such as cortistatin A (159, 160), Janus

kinase (Jak)-STAT inhibitors (161), and bromodomain-containing

protein 4 (BRD4) modulators (162). This approach aims to

permanently silence all latent proviruses, preventing the

transcription of replication-competent proviruses and blocking

actively replicating viruses. Thus, LPAs could maintain functional

cure following ART interruption (159, 163). It remains unknown

whether immune activation, e.g., by other infections, antagonizes

this strategy. Further studies of ISGhigh enterocytes like M cells

could be critical to define whether LPAs can overcome endogenous

signals that trigger HIV reactivation.
7 Conclusions and next steps

In summary, in this review we argue that HIV reservoir

persistence and reactivation in the gut, especially the small intestine,

is mediated by ISG expression in M cells or M cell-like cells. Our

argument is based on three key facts (1): the GIT contains the majority

of the cells in the HIV reservoir (40, 41); (2) microfold (M) cells are

uniquely enriched in the mucosa of the small intestine, interact closely

with T cells and other mucosal leukocytes (73–75), and express

extremely high levels of ISGs (16, 88–90); and (3) IFN signaling can

enhance T cell proliferation and HIV reactivation (21, 22, 39, 112).

Thus, M cells, or broadly ISGhigh enterocytes, may foster a

microenvironment that is especially conducive to maintaining the

latent HIV reservoir and/or allowing HIV reactivation in adjacent

HIV-infected T cells or macrophages.

M cells are key to the immune environment of the gut.

However, their isolation and ex vivo culture is challenging, and

there are no available immortalized M-cell lines. Animal models are

also of limited utility because M cells are highly variable across

species (164, 165). Single-cell transcriptomic data fromM cells have

been collected from dissociated tissues (89, 90, 166, 167),

confirming their high ISG expression, but not yet within their

spatial context in situ. Similarly, the effects of M cells on

neighboring immune cells in the GALT have not yet been studied

because until recently the respective methods had not been

available. Today, with the advent of single-cell spatial multiomics

in situ (168, 169), this limitation has been overcome. Jointly

mapping genomic, epigenomic, transcriptomic, proteomic and

metabolic profiles from single cells in their spatial context will

shed light on these specialized enterocytes in health and disease.

Spatial analyses will be able to address very specific functional

questions, namely how T cells and macrophages respond to the

influence of neighboring M cells. This may lead to a deeper

understanding of HIV latency in the gut, as well as, more
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broadly, the pathogenesis of enteric infections and autoimmune

disorders, and the design of oral vaccines.
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