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Lung microbiome alterations
correlate with immune
imbalance in non-small
cell lung cancer
Jiuling Cheng and Huaqi Wang*

Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University,
Zhengzhou, Henan, China
Background: Current understanding of the link between microbiota imbalance

and immune function in non-small cell lung cancer (NSCLC) has not been fully

elucidated. This study aims to explore the link between dysbiotic lung microbiota

and immunity in NSCLC, which may provide valuable information for disease

progression monitoring and prognosis prediction.

Methods: Lung microbial communities from both the tumor-affected (n = 43)

and contralateral healthy sides (n = 38) of lung cancer patients were analyzed by

16S rRNA sequencing. The association between microbial abundance and tumor

stages, metastasis or not, nodule size, PD-L1 expression, as well as Ki-67 levels

was conducted. Mann-Whitney tests were used to evaluate differences in the

systemic immune-inflammation index (SII), T cell subsets (CD3+, CD4+, CD8+), as

well as the CD4+/CD8+ ratio between different microbial expression patterns of

Prevotella and Veillonella.

Results: Significant b-diversity differences were observed between the tumor-

bearing and contralateral normal lungs in individuals diagnosed with lung

carcinoma. A notable increase in Prevotella (P = 0.044) and Veillonella (P =

0.02) was detected within NSCLC-affected lungs, whereas Pseudomonas (P =

0.008) as well as Staphylococcus (P = 0.033) were significantly reduced.

Increased levels of Veillonella were detected in NSCLC patients at stage IIIB-IV

and were positively correlated with Ki-67 expression. Furthermore, patients with

higher abundance of Prevotella and Veillonella exhibited a significantly elevated

systemic immune-inflammation index (SII) compared to the lower-abundance

group (P = 0.0329), while their CD8+ T cell levels were significantly decreased in

the higher abundance group (P = 0.0027).
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Conclusion: Microbial composition differed significantly between the tumor-

affected and healthy sides in lung cancer patients. Veillonella was more

abundant NSCLC patients at stage IIIB-IV, while increased Prevotella and

Veillonella abundance correlated positively with SII but negatively with CD8+ T

cell levels. These findings provide valuable insights into tumor-associated

microbiota for monitoring disease advancement, treatment stratification and

prognostic assessment.
KEYWORDS

non-small cell lung cancer, lung microbiota, Prevotella, Veillonella, systemic immune-
inflammation index, CD8 + T cell
1 Introduction

As the deadliest malignancy worldwide, lung cancer has a poor

prognosis, with a 5-year survival probability of just 27% (1–3).

Given its high mortality, lung cancer warrants the refinement of

monitoring and therapeutic strategies. Beyond genetic and

environmental factors, the lung microbiome has gained attention

for its influence on lung cancer progression and immune

modulation. It has been shown that dysbiotic commensal

microbial communities may exist in the respiratory tract of lung

cancer (4–7). For example, several studies have reported that lung

cancer cases are associated with an increased presence of

Capnocytophaga, Selenomonas, and Veillonella in both saliva and

sputum (8–10). The dysbiotic microbial landscape associated with

lung cancer remains inadequately explored.

Numerous studies established immune cell dysregulation is

closely linked to the prognosis of lung cancer (11, 12). Peripheral

blood immune cells have been utilized for biomarkers in disease

monitoring and prognosis evaluation, offering a feasible, prompt,

and non-invasive method (13, 14). The Systemic Immune-

Inflammation Index (SII) is recognized as a potential parameter

in disease prognosis, determined by the formula: SII = platelet count

× neutrophil count/lymphocyte count (15). SII can reflect systemic

inflammation and immune status, which is associated with worse

overall survival (OS) and progression-free survival (PFS) of lung

cancer patients (16, 17). CD8+ T cells serve as the primary cytotoxic

effectors in antitumor immunity, and their depletion or functional

exhaustion is closely linked to tumor progression and immune

evasion (18–20).

Using 16S rRNA sequencing, this study investigated lung

microb io ta dysb ios i s in lung cancer by compar ing

bronchoalveolar lavage fluid (BALF) from tumor-affected and

contralateral healthy lungs. Additionally, we analyzed the

association between dysbiotic lung microbiota and key immune

and disease progression markers, including SII, CD8+ T cell levels,

Ki-67, and tumor stage. This research sought to investigate the

connection of lung microbiota imbalance with immune
02
dysregulation in lung cancer, providing insights for cancer

progress ion monitor ing , treatment strat ificat ion and

prognosis prediction.
2 Materials and methods

2.1 Study participant recruitment

Between November 2021 and June 2022, we collected 102 BALF

samples at Zhengzhou University’s First Affiliated Hospital. After

quality control, bronchoalveolar lavage fluid samples of both the

tumor-affected (n = 43) and contralateral healthy sides (n = 38)

from lung cancer patients were selected for 16S rRNA sequencing

analysis. Eight samples were excluded due to 16S rRNA

amplification failure. All enrolled participants were newly

diagnosed with lung cancer, had no history of cancer treatment,

and had not used antibiotics in the last four weeks. Additionally,

individuals with a prior diagnosis of cancer were removed from

this study (21). We collected clinical data, such as pathological

diagnosis and tumor stage. Additionally, we assessed nodule

features (size and location) and laboratory parameters, such as

blood routine tests, inflammatory markers, tumor markers, and

absolute counts of T-cell subsets. Immunohistochemical markers

and gene mutation profiles were analyzed in paraffin-embedded

lung tissue specimens. The research received ethical approval from

the Ethics Committee of Scientific Research and Clinical Trials of

the First Affiliated Hospital of Zhengzhou University (No. 2024-

KY-0348-003), and all enrolled patients signed an informed

consent form.
2.2 Sample collection

BALF samples were collected by an experienced clinician

following standard fiberoptic bronchoscopy protocols (22, 23),

with strict precautions to minimize oral contamination. Samples
frontiersin.org
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were obtained from both the tumor-affected and corresponding

healthy lung lobes, with 10–15 mL collected from each side per

patient (24). The tumor-affected side was designated as the lung

cancer group, while the contralateral healthy side was defined as the

control group.
2.3 Microbial 16S rRNA analysis

DNA was isolated from BALF and subsequently subjected to

16S rRNA sequencing. For 16S rRNA sequencing, the hypervariable

V3-V4 regions were subjected to PCR using primers 341F and 806R

(CCTAYGGGRBGCASCAG, GGACTACNNGGGTATCTAAT).

Following PCR product purification, the library quality was

evaluated prior to sequencing (25).

Paired-end reads were processed into raw tags with FLASH

(Version 1.2.11) (26) to generate raw tags. Quality filtering was

performed under specific conditions using the fastp (v0.23.1)

quality control procedure to acquire high-quality filtered tags

(27). Using the UCHIME algorithm, clean tags were aligned to

the Silva database to filter out chimeric sequences, yielding the final

effective tags.
2.4 Sequencing analysis

Taxonomic annotation was performed using QIIME2 with the

Silva 138.1 reference database. Community richness, diversity, and

evenness were measured by QIIME2. b-diversity was quantified by

calculating both weighted and unweighted UniFrac distances.

Significant differences in species composition across taxonomic

levels were identified utilizing MetaStat and t-tests in R (v4.0.3).
Frontiers in Immunology 03
LEfSe analysis was employed to identify biomarkers, with an LDA

score threshold set to 4 in the LEfSe software.
2.5 Data analysis and statistical methods

Statistical tests were performed using SPSS (IBM SPSS 26.0,

SPSS Inc.), applying the Mann-Whitney U test or t-test for two-

group comparisons of continuous variables, while categorical

variables were assessed using the c² test. Results were expressed

as mean ± SD. Abundance, a-diversity, and b-diversity analyses

between groups were assessed via the Mann-Whitney test. Heat

maps and relationship heat maps were generated using R Version

4.3.2 software. Correlation analysis was conducted using Spearman

correlation methods. A threshold of P-value less than 0.05 was

defined as statistically significant.
3 Results

3.1 Patient features

81 BALF samples were included in the final analysis, with the

study flowchart depicted in Figure 1. The median age of the lung

cancer group was 62 (38–79) years, while it was 64 (44–79) years in

the control group. The enrolled patients included 17 with LUAD, 17

with LUSC, and 9 with SCLC. Among the enrolled patients, 7 were

at stage I, 3 at stage II, 10 at stage III, and 14 at stage IV. Three

patients were diagnosed with limited-stage and six with extensive-

stage SCLC. Distant metastases were detected in 31 patients,

whereas 12 had non-metastatic disease. Genomic mutation data

were retrieved from 23 patients (Table 1).
FIGURE 1

Graphical representation of study design.
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3.2 Microbial composition of BALF in lung
cancer

A total of 23,994 ASVs were identified, comprising 16,445 ASVs

from the affected lung segment and 13,146 ASVs from the

contralateral healthy lung segment (Figure 2A). Microbial

communities in the lower airway differ between the tumor-affected

and contralateral healthy sides in lung cancer patients. The top 10

genera, Prevotella, Streptococcus, Ralstonia, Alloprevotella, Veillonella,

Pseudomonas, Neisseria, and Fusobacterium, were prevalent on both

affected and contralateral healthy sides. Prevotella, Veillonella,

Corynebacterium, and Muribaculaceae were notably abundant in

cancer-affected individuals, while Pseudomonas, Porphyromonas,

and Actinobacillus were predominant in the contralateral healthy

group (Figures 2B, C, Supplementary Figure S1).

The microbial composition differs significantly across various

pathological subtypes of lung cancer. In individuals diagnosed with

LUAD and LUSC, the ten taxa with the highest prevalence are

Prevotella, Ralstonia, Streptococcus, Pseudomonas, Veillonella,

Alloprevotella, Muribaculaceae, Fusobacterium, Escherichia-

Shigella, and Neisseria. In contrast, the top 10 genera in small cell

lung cancer (SCLC) are Prevotella, Ralstonia, Alloprevotella,

Haemophilus, Streptococcus, Pseudomonas, Fusobacterium,

Veillonella, Actinomyces, and Leptotrichia (Figures 2D, E).
3.3 Biodiversity analysis demonstrates
divergent microbial community
compositions between the tumor-affected
and contralateral healthy sides

The tumor-affected and contralateral healthy sides exhibited no

significant differences in a-diversity, as evaluated by Chao1, Observed
OTUs, Shannon, and Simpson indices (Figure 3A). However, distinct
TABLE 1 Clinical characteristics of study participants.

Characteristic Lung cancer
(n = 43)

Control
(n = 38)

P
value

Sex, n (%)

Female 10 (23.2) 11 (29.0) 1.00

Male 33 (76.8) 27 (71.0) 1.00

Median age (range), years 62 (38 - 79) 64 (44 - 79) 1.00

BMI (kg/m2) (mean
± SD)

23.5 ± 2.5 23.3 ± 2.8 1.00

Smoking history, n (%)

Non-smokers 15 (35) 15 (39) 1.00

Smokers 28 (65) 23 (61) 1.00

Smoking pack-years
(mean ± SD)

24.7 ± 26.1 23.3 ± 25.7 1.00

Histology type, n (%)

LUAD 17 (39.5) 15 (39.5) 1.00

LUSC 17 (39.5) 14 (36.8) 1.00

SCLC 9 (21.0) 9 (23.7) 1.00

Tumor stage, n (%)

I 7 (16.3) 7 (18.4) 1.00

II 3 (6.9) 4 (10.5) 1.00

III 10 (23.3) 8 (21) 1.00

IV 14 (32.6) 10 (26.3) 1.00

Limited stage 3 (6.9) 3 (8.0) 1.00

Extensive stage 6 (14.0) 6 (15.8) 1.00

Tumor metastasis, n (%)

Metastasis 31 (72) 25 (65.8) 1.00

Non-metastasis 12 (28) 13 (34.2) 1.00

Lesion location, n (%)

Upper left 11 (25.5) 10 (26.3) 1.00

Lower left 15 (34.9) 12 (31.5) 1.00

Upper right 6 (14.0) 6 (15.8) 1.00

Middle right 3 (7.0) 2 (5.3) 1.00

Lower right 8 (18.6) 8 (21.1) 1.00

Blood cell count(mean ± SD)

Total white blood cells
(×109/L)

7.40 ± 2.13 7.36 ± 2.19 1.00

Neutrophils (×109/L) 4.86 ± 1.54 4.85 ± 1.62 1.00

Eosinophils (×109/L) 0.19 ± 0.27 0.20 ± 0.28 1.00

Basophils (×109/L) 0.03 ± 0.02 0.03 ± 0.01 1.00

Monocytes (×109/L) 0.57 ± 0.30 0.56 ± 0.31 1.00

Lymphocytes (×109/L) 1.62 ± 0.90 1.67 ± 0.93 1.00

(Continued)
TABLE 1 Continued

Characteristic Lung cancer
(n = 43)

Control
(n = 38)

P
value

Gene mutation, n (%)

EGFR 7 (46.7) 6 (50.0) 1.00

ALK 1 (6.7) 0 (0) 1.00

KRAS 3 (20.0) 2 (16.7) 1.00

PTEN 1 (6.7) 1 (8.3) 1.00

TP53 4 (26.7) 2 (16.7) 1.00

MAP2K1 2 (13.3) 2 (16.7) 1.00

CDKN2A 1 (6.7) 0 (0) 1.00

PIK3CA 1 (6.7) 0 (0) 1.00

ERBB2 1 (6.7) 0 (0) 1.00

AKT1 1 (6.7) 0 (0) 1.00

HER 1 (6.7) 1 (8.3) 1.00
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b-diversity patterns were observed between tumor-affected and

contralateral healthy sides in NSCLC, supported by weighted

UniFrac and Bray-Curtis indices (Figure 3B). These observations

highlight the microbial composition and community structure of

the tumor-affected lung that differ significantly from those of the

contralateral healthy lung segment.
3.4 Differentially abundant microbes in
lung cancer dysbiosis

We investigated microbial differences between the tumor-

affected and contralateral healthy sides in NSCLC to characterize

lung cancer-associated dysbiosis. Compared to the contralateral

healthy side, the NSCLC-affected side displayed an enrichment of

Prevotella (P = 0.044) and Veillonella (P = 0.02), whereas

Pseudomonas (P = 0.008) as well as Staphylococcus (P = 0.033)

displayed a notable decrease (Figure 4A).
Frontiers in Immunology 05
To assess subtype-specific dysbiosis, we further analyzed

microbial differences between the tumor-affected and contralateral

healthy sides across distinct pathological subtypes. In LUAD,

Pseudomonas (P = 0.042), Photobacterium (P = 0.049),

Methylobacterium-Methylorubrum (P = 0.02), and Staphylococcus

(P = 0.003) were markedly more abundant on the healthy side

(Figure 4B). Similarly, in SCLC, Tropheryma (P = 0.035) and

Bacteroides (P = 0.048) exhibited higher abundances on the

healthy side (Figure 4C).

Furthermore, to explore inter-subtype differences in dysbiosis,

we compared microbial profiles among tumor-affected lung

segments of different pathological subtypes. Haemophilus was

significantly enriched in SCLC compared to LUAD (P = 0.008)

and LUSC (P = 0.003). Alloprevotella abundance was higher in

SCLC compared to LUAD (P = 0.041). Actinomyces was markedly

enriched in SCLC relative to LUAD (P = 0.017) and LUSC (P =

0.014). Additionally, Streptococcus was significantly enriched in

LUSC relative to LUAD (P = 0.022) (Figure 4D).
FIGURE 2

Microbial composition of BALF in lung cancer. (A) Venn diagrams illustrate the shared and unique ASVs (Amplicon Sequence Variants) between the
tumor-affected and healthy sides across different pathological subtypes of lung cancer. (B, C) Genus-Level Taxonomic Profile of the BALF
Microbiome, comparing the affected and healthy sides of lung cancer. (D, E) Taxonomic profiles of BALF microbiomes across different pathological
subtypes of lung cancer. The affected side includes NSCLC, LUAD, LUSC, and SCLC. The corresponding healthy sides are denoted as H-NSCLC,
H-LUAD, H-LUSC, and H-SCLC, respectively.
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3.5 Association between Veillonella
abundance and tumor stage, proliferation,
and PD-L1

To explore the clinical relevance of microbial alterations, we

analyzed their associations with key tumor-related indices and

Veillonella abundance. The relative abundance of Veillonella was

markedly elevated in NSCLC patients (stage IIIB-IV) relative to

patients (stage I-IIIA) (P = 0.0266). Notably, the Veillonella-low

group had a higher fraction of early-stage patients, whereas the

Veillonella-high group was predominantly composed of late-stage

patients (Figure 5A). Furthermore, when the relative abundance of

Veillonella was categorized into high and low groups, the high

group demonstrated a significantly greater Ki-67 expression level

compared to the low group (Figure 5C). Additionally, a trend of

higher PD-L1 expression was detected in Veillonella-rich subjects

(Figure 5D), and Veillonella abundance appeared greater in NSCLC

patients with distant metastases compared to the M0 group.

However, neither difference reached statistical significance

(Figure 5B). Lung nodule size and Veillonella abundance were not

notably related (Figure 5E).
3.6 Altered commensal microbiota is linked
to immune system disturbances and
systemic inflammation in NSCLC

To investigate the relationship between microbial abundance and

immune-inflammatory responses, we analyzed the immune profiles
Frontiers in Immunology 06
of patients stratified by Prevotella and Veillonella abundance.

Spearman correlation analysis of the top 30 microbial taxa revealed

that Prevotella exhibited a substantial positive association with

Veillonella (Figure 6A). According to the median abundance of

Prevotella and Veillonella, patients were grouped into high and low

abundance categories; SII was markedly elevated in the high-

abundance group relative to the low-abundance group (Figure 6B).

Furthermore, CD8+ T cell levels were significantly lower in the high-

abundance Prevotella and Veillonella group compared to the low-

abundance group (Figure 6E). Analysis revealed no significant

differences between the two groups in terms of CD3+ T cells, CD4+

T cells, or the CD4+/CD8+ T cell ratio (Figure 6F).
4 Discussion

Lung microbial dysbiosis has been implicated in lung cancer

(28), yet its relationship with tumor progression and immunity

remains incompletely understood. Investigating this interplay is

essential for elucidating the potential role of microbial alterations in

cancer development. In this study, we collected BALF from both the

tumor-affected and contralateral healthy lungs of newly diagnosed

lung cancer patients and performed 16S rRNA sequencing to profile

microbial communities. We further analyzed microbial diversity,

identified dysbiotic microbial taxa, and explored their associations

with tumor stage, metastasis, and systemic immune status. Our

findings contribute to a more profound understanding of lung

cancer-associated microbial dysbiosis and its potential relevance to

disease progression and immune modulation.
FIGURE 3

Biodiversity analysis demonstrates divergent microbial community compositions between the tumor-affected and contralateral healthy sides.
(A) Observed OTUs, Chao1, Shannon, and Simpson indices were used to analyze microbial a-diversity. (B) b-diversity comparison of BALF microbiota
between the tumor-affected and healthy sides in NSCLC and SCLC, as measured by weighted UniFrac distances and Bray-Curtis dissimilarity indices.
*P-value < 0.05; ***P-value < 0.001.
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In this study, instead of using healthy individuals as controls, we

selected the contralateral healthy lung of the same patient as an

internal control, thereby minimizing inter-individual heterogeneity

(29–31). Consistent with the findings from other studies (29, 32),

our results confirm that no notable variable in a-diversity was

found between the tumor-affected and contralateral healthy sides

from lung cancer patients. However, distinct microbial b-diversity
patterns between the tumor-affected and contralateral healthy sides

underscore the importance of analyzing both sites to understand

disease-associated microbial alterations.

Previous studies have demonstrated that bacterial composition

and abundance differ among different pathological types (33–35). In

our study, we observed that the top 10 most abundant bacterial

genera were largely similar between LUAD and LUSC, whereas
Frontiers in Immunology 07
SCLC exhibited distinct microbial characteristics. The results

emphasize the clinical significance of microbiome-based

stratification in lung cancer subtypes.

Accumulating evidence highlights microbial dysbiosis is closely

linked to cancer onset, progression, and patient outcomes (36–38).

In our study, we observed an enrichment of Prevotella and

Veillonella from the tumor-affected BALF of lung cancer patients.

Similarly, Wen Zeng et al. reported a marked rise in Prevotella and

Veillonella from lung cancer patients, further supporting our

findings (39). Previous studies have demonstrated that Prevotella

facilitates tumorigenesis in diverse malignancies, including lung

cancer through upregulation of pro-inflammatory cytokines (e.g.,

IL-1b) and oral squamous cell carcinoma via suppression of tumor

suppressor gene expression and tumor microenvironment
frontiersin.or
FIGURE 4

Lung cancer microbiome dysbiosis profiles. (A) Comparison between the tumor-affected and healthy sides in NSCLC, (B) LUAD, (C) SCLC, and
(D) across different pathological subtypes of lung cancer. *P-value < 0.05; **P-value < 0.01.
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remodeling (21, 40). Additionally, it accelerates breast cancer

progression through the depletion of the host’s intrinsic indole-3-

pyruvic acid (41). Notably, experimental evidence also supports

these mechanisms, as Prevotella copri-colonized mice develop

marked inflammation and immune dysregulation (42),

reinforcing the link between Prevotella, immunity and cancer

progression. While Veillonella has been recognized as a promising

marker for disease assessment and classification (8, 43).

Furthermore, Veillonella has been associated with activation of

tumor-promoting pathways, including PI3K (21, 44–47) and the

Nod2/CCN4/NF-kB axis, which may contribute to inflammatory

responses and proliferation in non-small cell lung adenocarcinoma.

V. parvulamediates activation of the Nod2/CCN4/NF-kB signaling

pathway to promote non-small cell lung adenocarcinoma

progression (48). Additionally, V. parvula has been linked to

induce B cells in the tumor microenvironment, potentially

promoting colorectal tumor development (49). While our study

cannot fully resolve the causal direction between microbial
Frontiers in Immunology 08
dysbiosis and immune dysregulation, experimental models (e.g.,

Prevotella-colonized mice developing inflammation) and their

tumor-promoting mechanisms (e.g., NF-kB-mediated cytokine

upregulation) suggest that dysbiosis may contribute to immune

dysregulation in lung cancer. Further longitudinal studies are

warranted to validate this hypothesis.

In contrast, we noted a substantial decline in Pseudomonas and

Staphylococcus abundance in the tumor-affected lung compared to

the contralateral healthy side. Interestingly, recent studies have

highlighted the potential anticancer properties of Pseudomonas

aeruginosa, particularly through azurin, a protein known to

inhibit tumor growth (50). Genetically modified P. aeruginosa

strains have been shown to induce cancer cell death, inhibit

proliferative signaling pathways, and activate anti-tumor immune

responses (51–58). This study raises the intriguing possibility that

the depletion of Pseudomonas in lung cancer patients may alter the

tumor microenvironment in a way that facilitates cancer

progression. However, more research is essential to illuminate the
FIGURE 5

Association between Veillonella abundance and tumor stage, proliferation, and PD-L1. Association of Veillonella relative abundance with (A)
pathological stage and (B) metastasis. Comparative analysis of (C) Ki-67 expression, (D) PD-L1 expression, and (E) Lung nodule size across Veillonella
expression groups was evaluated. *P-value < 0.05, ns P-value > 0.05.
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underlying biological pathways. While the reduced Staphylococcus

abundance challenges its previously reported pro-tumorigenic role

(59, 60), it highlights the complexity of host-microbiome

interactions in lung cancer progression.
Frontiers in Immunology 09
Microbiota significantly contribute to tumor progression.

Our study report that Veillonella abundance is significantly higher

in lung cancer patients at stage IIIB-IV (typically not surgery-

eligible), compared with those at stage I-IIIA (usually surgery-
FIGURE 6

Altered commensal microbiota is linked to immune system disturbances and systemic inflammation in NSCLC. (A) Spearman correlation analysis of
the top 30 microbial taxa, (B) Based on Prevotella and Veillonella median levels, individuals were classified into high- and low-abundance groups.
The systemic immune-inflammation index (SII) was compared between the high-abundance Prevotella and Veillonella group and the low-
abundance group. (C) CD3+ T cells, (D) CD4+ T cells, (E) CD8+ T cells, and (F) CD4+/CD8+ T cell ratio levels were compared between the high-
abundance Prevotella and Veillonella group and the low-abundance group. *P-value < 0.05; **P-value < 0.01, ***P-value < 0.001, ns P-value > 0.05.
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eligible). This discovery offers a new potential biological marker for

helping assess surgical eligibility in NSCLC patients, enabling

more precise guidance for clinical treatment strategies. Similarly,

previous research has demonstrated significant differences in

fecal microbiota between early- and late-stage melanoma patients

(61). In our study, NSCLC patients with distant metastases (M1)

exhibited higher Veillonella abundance than the M0 group,

though the difference wasn’t statistically significant, probably

owing to the limited sample size. This warrants verification

through large-cohort studies. Furthermore, our study identified

that patients with higher Veillonella abundance exhibited a

significant increase in Ki-67 expression, a well-established marker

of cellular proliferation (62, 63). Veillonella is known to be involved

in lactate metabolism (64), and excessive lactate accumulation has

been shown to trigger the activation of the HIF-1a, leading to

enhanced tumor proliferation (65, 66). These findings suggest that

Veillonella may potentially contribute to a tumor-promoting

microenvironment by modulating lactate metabolism and

hypoxia-related signaling pathways. From a translational

medicine viewpoint, detecting specific microbial taxa in BALF,

like Prevotella and Veillonella , could allow for helping

develop treatment plans. Moreover, these microbial biomarkers

have prognostic potential. For example, the correlation between

Veillonella abundance and tumor stage/Ki-67 expression indicates it

could monitor disease progression and predict prognoses.

Systemic inflammation is a hallmark of cancer progression (67),

and an elevated systemic immune-inflammation index (SII) is

associated with poor prognosis in NSCLC (68–72). In our study,

Prevotella and Veillonella abundance was positively correlated with

SII, suggesting a link to a pro-inflammatory state. CD8+ T cells are

key to anti-tumor immunity (73). The observed negative correlation

between Prevotella and Veillonella abundance and CD8+ T cell

levels suggests potential immune suppression. Further research is

needed to determine whether Prevotella and Veillonella actively

promote tumor progression or serve as biomarkers of disease

severity. The link between Prevotella, Veillonella, systemic

inflammation, and immune suppression suggests that these

microbial features might predict immune therapy responses,

helping clinicians guide patient stratification and develop

personalized treatment regimens.

This study has several limitations. First, while 16S rRNA

sequencing provided taxonomic profiling of BALF microbiota, its

resolution is insufficient to identify microbial species or strains,

which may obscure functionally distinct subgroups. Future studies

should employ shotgun metagenomic sequencing (mNGS) or

culture-based strain isolation to resolve microbial genomic

heterogeneity and validate their immunomodulatory roles.

Second, the small cohort of SCLC patients limits the statistical

power to detect clinically meaningful associations. Multi-center

studies with expanded sample sizes are warranted to confirm the

generalizability of our findings. Third, although significant
Frontiers in Immunology 10
correlations were observed between dysbiosis (e.g., Prevotella/

Veillonella enrichment) and immune dysregulation, these

associations do not establish causality. Mechanistic validation

using germ-free murine models colonized with patient-derived

microbiota or in vitro co-culture systems is critical to delineate

microbial-immune crosstalk in the future. Lastly, while microbiota-

targeted interventions (e.g., probiotics, phage therapy, or precision

antibiotics) represent promising adjuvant strategies for NSCLC,

their clinical efficacy and safety require rigorous evaluation.

In conclusion, our study demonstrates that tumor-affected

lower airways experience a significant disruption in microbial

homeostasis, relative to the contralateral healthy lower airway

in lung cancer patients. By utilizing the contralateral lung

as an internal control, we provide a refined analysis of

microbial alterations, revealing bacterial taxa that may be

associated with tumor progression through inflammation

and immune modulation. Specifically, Prevotella and Veillonella

were enriched in tumor-affected lungs and correlated with

systemic inflammation and immune suppression. These results

provide a framework for upcoming studies on microbiome-based

biomarkers for disease monitoring and prognostic assessment in

lung cancer.
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