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Background: Spatial metabolomics has revolutionized cancer research by

offering unprecedented insights into the metabolic heterogeneity of the tumor

microenvironment (TME). Unlike conventional metabolomics, which lacks spatial

resolution, spatial metabolomics enables the visualization of metabolic

interactions among cancer cells, stromal components, and immune cells

within their native tissue context. Despite its growing significance, a systematic

and visualized analysis of spatial metabolomics in cancer research remains

lacking, particularly in the integration of multi-omics data and the

standardization of methodologies for comprehensive tumor metabolic mapping.

Objectives: This study aims to conduct a bibliometric analysis to systematically

evaluate the development trends, key contributors, research hotspots, and future

directions of spatial metabolomics in cancer research.

Methods: A bibliometric approach was employed using data retrieved from the

Web of Science Core Collection. Analytical tools such as VOSviewer and

CiteSpace were utilized to visualize and assess co-citation networks, keyword

co-occurrence, and institutional collaborations. Key metrics, including

publication trends, authorship influence, country contributions, and journal

impact, were analyzed to map the research landscape in this domain.

Results: A total of 182 publications on spatial metabolomics in cancer research

were identified over the past two decades, with a notable surge in research

output beginning in 2018. The field has experienced accelerated growth, with an

annual average of 40 publications since 2021, reflecting its increasing relevance

in cancer studies. Among 28 contributing countries, China (n=53), the United

States (n=35), Germany (n=18), and the United Kingdom (n=13) have been the

most active contributors. China leads in publication volume, while the United

States exhibits the highest citation impact, indicating significant research

influence. International collaboration networks are particularly strong among

the United States, Germany, and China, underscoring the global interest in this

emerging field. Analysis of key authors and institutions identifies He Jiuming as

the most prolific author and Song Xiaowei as the researcher with the highest

average citations. Other influential authors include Abliz Zeper and Sun

Chenglong. Leading research institutions driving advancements in this field
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include the Chinese Academy of Medical Sciences, Peking Union Medical

College, Harvard Medical School, and Stanford University. Regarding journal

impact, Nature Communications (n=11), Journal of Pharmaceutical Analysis

(n=9), and Nature Methods (n=8) are the most active publishing platforms in

this domain. Citation analysis reveals that Cell, BioEssays, and Genome Medicine

are among themost highly cited journals, reflecting the interdisciplinary nature of

spatial metabolomics research.
KEYWORDS
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1 Introduction

Cancer remains one of the most severe global public health

challenges, with its incidence and mortality rates continuously

rising. According to statistics, approximately 20 million new

cancer cases were reported worldwide in 2022, with related deaths

reaching 9.7 million (1). Despite significant advancements in early

cancer screening, precision diagnosis, and targeted therapy, the

efficacy of existing treatment strategies remains limited due to the

high heterogeneity of cancer and its adaptability to therapeutic

interventions (2, 3). Tumor cells can reprogram their metabolic

pathways to adapt to changes in the microenvironment, thereby

promoting tumorigenesis, progression, and drug resistance (4).

Therefore, an in-depth understanding of the spatial distribution

characteristics of tumor metabolic reprogramming is crucial for

precision medicine and personalized treatment.

In recent years, spatial metabolomics (SM), an emerging omics

technology, has enabled in situ detection of metabolite spatial

distributions in tissue sections and their biological functions

through high-resolution imaging mass spectrometry (MSI) (5).

Compared to traditional metabolomics methods such as liquid

chromatography-mass spectrometry (LC-MS) and gas

chromatography-mass spectrometry (GC-MS), spat ia l

metabolomics provides information on metabolic heterogeneity

across different tissue structures, overcoming the limitations of

metabolic studies at the cellular and tissue levels (6). With

technological advancements, various MSI techniques, including

matrix-assisted laser desorption/ionization mass spectrometry

imaging (MALDI-MSI), desorption electrospray ionization mass

spectrometry imaging (DESI-MSI), and secondary ion mass

spectrometry imaging (SIMS-MSI), have been widely applied in

cancer research. These techniques have uncovered key processes in

tumor microenvironment adaptation, immune evasion, and

drug resistance.
02
Notably, spatial metabolomics offers unique opportunities to

elucidate the mechanisms of immune evasion and metabolic

reprogramming at the tumor–immune interface. By mapping

metabolite distributions in situ, it enables the characterization of

localized nutrient competition—such as glucose and tryptophan

depletion—which directly contributes to T cell exhaustion and the

activation of immune checkpoints like PD-1/PD-L1 (7, 8). Spatial

metabolomics also facilitates the profiling of metabolites secreted by

tumor-associated macrophages (TAMs) and myeloid-derived

suppressor cells (MDSCs), both of which play central roles in

orchestrating immunosuppression. Recent studies have

demonstrated that MALDI-based spatial metabolomic imaging

can visualize the distribution of metabolites such as glycogen at

high resolution, revealing spatial heterogeneity closely linked to

tumor type, tissue architecture, and microenvironmental dynamics

(9). These insights provide new perspectives on how metabolic

reprogramming underpins impaired immune surveillance and

resistance to immunotherapy. Therefore, integrating spatial

metabolomics into immuno-oncology research holds great

potential for identifying novel predictive biomarkers, optimizing

immune checkpoint blockade strategies, and improving clinical

outcomes in cancer immunotherapy.

Bibliometrics is a discipline that employs mathematical and

statistical methods to analyze scientific literature. Its primary

objective is to evaluate and quantify the distribution, structure,

and growth of scientific publications, as well as their

interrelationships, to reveal research trends, hotspots, and

interdisciplinary collaborations (10). This approach allows

researchers to assess scientific activities and impact within a

specific domain, identify key journals and publications, and track

research collaboration networks. Moreover, visualization

techniques facilitate the graphical representation of complex

datasets, making patterns and trends in data more intuitive and

comprehensible. Therefore, this study aims to systematically review
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the research progress in the field of cancer spatial metabolomics

through bibliometric analysis and visualization techniques. By

deeply exploring and analyzing potential insights in this domain,

this work seeks to provide valuable references and guidance for

future research endeavors.
2 Materials and methods

2.1 Data source and literature search

The literature data was obtained from the Web of Science Core

Collection (WoSCC) database, and the search time was from 1

January 2000 to December 31, 2023. The search formula used was

(TS = (tumor OR tumors OR tumor OR cancers OR cancer OR

oncology OR neoplasm OR carcinoma OR arcinoma OR

carcinomas OR carcinosis OR “hematologic malignancies” OR

“blood cancer” OR “leukemia” OR “lymphoma” OR “multiple

myeloma”) AND TS = (“Spatial Metabolomics” OR “spatial-

resolved metabolomics” OR “spatially resolved metabolomics” OR

“Spatial omics”)).
2.2 Data screening

2.2.1 Inclusion criteria
(1) Literature related to phenomics and cancer;(2) Literature

published in English; (3) Literature types include clinical trial

studies, in vitro experimental studies, in vivo experimental studies,

public database analysis studies, reviews, etc.; (4) Literature with

complete bibliographic information(including title, country, author,

keywords, source).
2.2.2 Exclusion criteria
(1) Conference papers, newspapers, patents, achievements,

health and popular science literature, etc.; (2) Duplicate

publications;(3) The literature cannot be fully obtained.

The inclusion and exclusion process is independently

conducted by two reviewers. If the inclusion and exclusion results

are inconsistent, the third reviewer will participate in the work.

2.2.3 Data standardization
After screening, the literature was exported in Refworks and plain

text formats. Special characters and redundant spaces were removed.

To ensure consistency and reproducibility in the bibliometric analysis,

a structured keyword standardization protocol was implemented. First,

all extracted keywords were cleaned to remove typographical

inconsistencies, redundant punctuation, and spacing anomalies. Next,

synonymous terms were merged based on a combined approach of

ontology referencing (including MeSH and UMLS concepts), co-

occurrence clustering, and manual curation by domain experts. For

example, “spatial metabolomics” and “metabolic imaging” were unified

under the term “spatial metabolomics”, while “mass spectrometry
Frontiers in Immunology 03
imaging” and its abbreviation “MSI” were standardized as “MSI-

based metabolomics”. Similarly, disease-related terms such as “lung

carcinoma” and “lung adenocarcinoma” were consolidated under

“lung cancer metabolomics” to improve thematic coherence. All

original terms, standardized forms, and associated merging rationales

are provided in Supplementary Table S1. The categorization process

was independently validated by two reviewers, with disagreements

resolved by a third expert to ensure methodological rigor. Country/

Region names were standardized for consistency in bibliometric

analysis. For example, “Hong Kong”, “Macau”, and “Taiwan” were

categorized under “China”, while “Scotland”, “Wales”, and “England”

were grouped under “United Kingdom”. Subsequently, the Data

Import/Export function in CiteSpace software was used to convert

and process the retrieved literature, ensuring the uniformity of

metadata for further analysis.

2.2.4 Data analysis
2.2.4.1 Data extraction

The normalized text data were incorporated into structured

spreadsheets using Microsoft Excel, following a predefined extraction

template developed by two researchers. These researchers

independently extracted publication attributes (e.g., year, country,

institution, authors, keywords, citations), and discrepancies were

identified through cross-check comparison. In cases of disagreement,

a third senior researcher adjudicated and finalized the extracted values

to ensure consistency and reliability. The extracted data includes the

following parts: publication information, encompassing the year of

publication, country/region, issuing organization, issuing journal,

authors, cited literature, and keywords.

2.2.4.2 Analysis methods

This study utilizes bibliometric visualization analysis to

systematically review and uncover latent patterns in the domain

of cancer spatial metabolomics. Publication volume trends were

extracted from CiteSpace outputs and fitted using polynomial

regression models in Excel to forecast future trajectories. For

country and region-based analysis, co-authorship and publication

frequency data were derived from VOSviewer and visualized using

Tableau Public.

Institutional collaboration networks were constructed using

VOSviewer’s association strength algorithm and refined via Pajek

for network structure optimization. Journal and author impact

metrics were analyzed through CSV exports from VOSviewer,

applying bibliographic coupling and co-citation analysis techniques.

Keyword co-occurrence and clustering were performed using

CiteSpace, where the log-likelihood ratio (LLR) was employed for

cluster labeling, and modularity Q and silhouette S values were

calculated to assess clustering validity. For thematic visualization,

keywords were converted to XML and imported into Carrot² for

topic modeling and bubble chart generation. These multi-tool,

algorithm-integrated approaches ensured analytical depth and

reproducibility across multiple bibliometric dimensions. The data

acquisition and analysis workflow is illustrated in Figure 1.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1589943
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2025.1589943
3 Results

3.1 Publication volume

Figure 2A illustrates the trend in publication volume over the

past 20 years. The first research on spatial omics in the field of

oncology emerged in 2018, marking the beginning of a continuous

increase in the number of publications. During the period from

2018 to 2021, the number of publications grew steadily, while from

2021 to 2024, the publication rate accelerated significantly, with an

average annual publication volume of 40 papers. To further predict

future development trends accurately, a polynomial fitting curve

was generated, as shown by the red dashed line in Figure 2B. The

results indicate that the number of publications in this field will

continue to rise. The coefficient of determination (R² = 0.8918)

suggests that the model explains 89.18% of the data variability,

demonstrating a high reference value for predicting future trends.

The analysis of publication volume highlights that spatial

metabolomics in oncology is currently a research hotspot and is

expected to exhibit promising future growth in this domain.
3.2 Countries/regions

Over the past 20 years, authors from 28 countries/regions have

published research in this field. Figure 3A presents a geographical

visualization of the global literature on spatial metabolomics in

oncology. Among these, China has the highest number of

publications (n = 53), followed by the United States (n = 35),

Germany (n = 18), and the United Kingdom (n = 13). Figure 3B
Frontiers in Immunology 04
illustrates the chord diagram of international collaborations. The

United States exhibits the highest cooperation intensity (n = 30),

followed by Germany (n = 19). Table 1 provides a detailed overview

of the top 10 publishing countries, including key metrics such as

Publication volume, Cooperation intensity, Total citations, and

Average citation per paper. Among them, China has the highest

total citations (1011), while the United States leads in average

citations per paper (47.42), followed by China (39.96), the United

Kingdom (25.90), and Germany (21.89). The geographical

distribution of publications indicates that research on spatial

metabolomics in oncology has garnered worldwide attention and

holds significant influence in the scientific community.
3.3 Institutions and authors

Over the past 20 years, 947 authors from 142 institutions

worldwide have published research on spatial metabolomics in

oncology. Figure 4A presents the publication data for authors with

more than three publications. Song Xiaowei has the highest average

citation per paper, while He Jiuming is the most prolific author. He

Jiuming, Abliz Zeper, and Sun Chenglong are among the most cited

authors. Most of these authors are affiliated with institutions such as

the Chinese Academy of Medical Sciences & Peking Union Medical

College, Minzu University of China & State Ethnic Affairs

Commission, Southwest Institute of Electronic Technology (China),

and the Research Unit Analytical Pathology (Germany), as illustrated

in Figure 4B. Figure 4C depicts the author collaboration network,

highlighting seven core research teams that are driving advancements

in this field, led by Sun Na, Wang Qian, Shen Jian, Beuschlein Felix,
FIGURE 1

Process of bibliometric analysis of cancer spatial metabolomics.
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Kunzke Thomas, Janssen Klaus-Peter, and Autenrieth Michael.

Figure 4D illustrates the institutional collaboration network,

showing that institutions such as Harvard Medical School, the

University of Melbourne, and Stanford University maintain close

collaborations with other research institutions, significantly

contributing to the development of this discipline.
3.4 Journals

A total of 96 journals have published research on spatial

metabolomics in oncology. Figure 5A presents journals with at

least two publications in this field. Among them, Nature

Communications (n = 11) has the highest number of

publications, followed by the Journal of Pharmaceutical Analysis

(n = 9) and Nature Methods (n = 8). The Proceedings of the

National Academy of Sciences of the United States of America

(PNAS) has the highest average citations per paper (C = 127).

Figure 5B illustrates the citation network of journals. Cell (C = 433)

is the most cited journal, followed by BioEssays (C = 325), Genome

Medicine (C = 298), Proceedings of the National Academy of

Sciences of the United States of America (C = 254), Journal of
Frontiers in Immunology 05
Pharmaceutical Analysis (C = 254), and Trends in Immunology (C

= 238). The dual-map overlay of journals reveals the citation

relationships between citing and cited journals. On the left, the

clusters of citing journals represent the knowledge frontiers in this

field, while on the right, the clusters of cited journals represent the

fundamental knowledge base of the field. As shown in Figure 5C,

the orange path indicates that journals in Molecular Biology and

Genetics are most likely to be cited by journals in Molecular Biology

and Immunology, suggesting that recent research includes a

significant amount of interdisciplinary work. Meanwhile, the

green path shows that research from Molecular Biology, Genetics,

Health, Nursing, Medicine, Psychology, Education, and Social

Sciences is most likely to be cited by journals related to Medicine,

Medical, and Clinical research, implying that this field exhibits

strong multidisciplinary integration and convergence.
3.5 Keywords

By conducting a visualized analysis of keywords from the

collected literature, we obtained key insights into the current

research landscape. Figure 6A shows the bubble plot of keywords,
FIGURE 2

Trend of publications on cancer spatial metabolomics research. (A)Trends in the number of publications on cancer spatial metabolomics research
from 2014 to 2024; (B) Polynomial fitting analysis of the number of publications on cancer spatial metabolomics research from 2014 to 2024.
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including Spatial Transcriptomics Data Spatial Organization,

Metabolic Reprogramming, Molecular and Immune, Disease

Development, Single-cell Resolution, Machine Learning,

Immunotherapy Response The waiting module is the focus of

cancer spatial metabolism research, Figure 6B displays a timeline

of key developments. Between 2018 and 2025, nine major research

clusters have emerged in the field of spatial metabolomics in

oncology. Through keyword clustering analysis, we identified

three significant research themes that encapsulate both the core

content of this field and its transition from fundamental research to

applied studies.

These themes are as follows:(1) Spatial Heterogeneity of the Tumor

Microenvironment (Core keywords: #4 Tumor Microenvironment, #2

MALDI Mass Spectrometry Imaging, #3 Mass Spectrometry Imaging)

The tumor microenvironment (TME) is a complex ecosystem

composed of cancer cells, immune cells, stromal cells, and the

extracellular matrix. Spatial metabolomics techniques, such as

MALDI mass spectrometry imaging (MALDI-MSI) and imaging

mass spectrometry, enable precise mapping of metabolite and lipid
Frontiers in Immunology 06
distributions within tumors. These studies provide insights into

intratumoral heterogeneity, offering critical information on tumor

invasiveness, drug resistance, and immune evasion mechanisms. (2)

Spatial Distribution of Metabolites and Lipids and Their Biological

Significance (Core keywords: #6Metabolites and Lipids, #7 Expression)

Understanding the spatial distribution of metabolites and lipids is

essential for deciphering tumor metabolic regulation. Imaging mass

spectrometry can identify specific metabolite and lipid distribution

patterns in tumor tissues, which are closely linked to tumor

invasiveness, drug sensitivity, and immune responses. For example,

the accumulation of certain metabolites may correlate with hypoxic

regions or the formation of immunosuppressive microenvironments,

thereby influencing tumor biology and therapeutic response. (3)

Integration of Spatial Multi-Omics Technologies (Core keywords: #1

Spatial Omics, #5 Spatial Multi-Omics, #8 Mass-Spectrometry) Spatial

multi-omics technologies integrate spatial transcriptomics, proteomics,

and metabolomics, offering a comprehensive molecular

characterization of tumors. This multi-dimensional integration

enables a more systematic understanding of cellular interactions,
FIGURE 3

Visualization of Tumor Spatial Metabolomics by Country/Region. (A) Global geographic visualization; (B) Global cooperation string chart, with nodes
representing the number of publications and lines representing the strength of cooperation.
TABLE 1 The top 10 countries according to the total publications.

Rank Country Publication Cooperation intensity Total citations Average citation

1 China 53 7 1011 39.9608

2 United States 35 30 961 47.4216

3 Germany 18 19 290 21.8864

4 United Kingdom 13 16 643 25.9047

5 Australia 10 8 324 7.9177

6 Switzerland 9 8 111 18.8489

7 Sweden 6 4 495 4.4553

8 Canada 5 9 36 8.5926

9 Singapore 5 1 32 2.6755

10 France 4 7 8 1.9095
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1589943
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2025.1589943
metabolic regulation, and signaling pathways within the tumor

microenvironment. For instance, spatial multi-omics can reveal the

spatial organization and function of cancer-associated fibroblasts

(CAF) and tumor-associated macrophages (TAM), providing critical

insights for identifying new therapeutic targets and developing

personalized treatment strategies.
3.6 References

By analyzing highly cited literature, we can further explore

research trends and key turning points in the field of spatial

metabolomics in cancer. Figure 7 presents a density map of cited

literature, illustrating that the development of cancer spatial

metabolomics has progressed from initial exploration to multi-

dimensional integration. In 2019, Sun et al. (11) proposed a spatial

metabolomics method based on environmental mass spectrometry

imaging, which enabled the in situ identification of tumor-

associated metabolites and metabolic enzymes in tissues. Their

study analyzed 256 esophageal cancer tissue samples, constructing
Frontiers in Immunology 07
spatial distribution maps of metabolites, thereby offering a new

perspective on tumor metabolism.

In 2020, Asp (12) systematically categorized spatial

transcriptomics technologies, defining five major methodological

approaches, which provided technical guidance for subsequent

research. In the same year, Liu et al. (13) developed Deterministic

Barcoding in Tissue Sequencing (DBiT-seq), a microfluidics-based

method that achieved 10 mm resolution in spatial transcriptomics

and proteomics sequencing, significantly enhancing the precision of

spatial omics research.

In 2022, Black et al. (14) summarized various spatial

transcriptomics approaches, including mRNA molecule

localization, cell positioning imaging, and mRNA probe spatial

arrays, offering important references for experimental design.

Moffitt further reviewed the development of spatial genomics,

transcriptomics, and proteomics, emphasizing their crucial role in

resolving cellular heterogeneity, mapping complex tissue structures,

and studying dynamic changes in development and disease processes.

In the same year, Ma et al. (14) reviewed recent advances in

mass spectrometry imaging (MSI) applications in oncology over the
FIGURE 4

Visualization analysis of authors/institutions in cancer spatial metabolomics research. (A) Core authors with over 3 published articles; (B) Core Author
Institution and Country; (C) Author Collaboration Network; (D) Agency Cooperation Network.
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past five years, covering spatial lipidomics, glycomics, multimodal

imaging, and AI/machine learning applications in MSI data

analysis. Their work highlighted the extensive potential of spatial

metabolomics in cancer research.

To further extract valuable insights, we compiled a list of the top

20 most cited publications, as shown in Table 2. Overall, the research

trajectory of spatial metabolomics in oncology has evolved from

initial applications in 2019, through technological classification and

novel methodologies in 2020, to multi-layered spatial omics analyses

in 2022. This progression demonstrates a deepening and

diversification of the field, providing new tools and perspectives for

unraveling tumor metabolism and its microenvironment.
4 Discussion

4.1 Research hotspots

4.1.1 Spatial heterogeneity of the tumor
microenvironment

The tumor microenvironment (TME) is a highly dynamic and

complex ecosystem composed of cancer cells, immune cells, stromal

components, and the extracellular matrix (ECM). Its spatial

heterogeneity plays a critical role in tumor initiation, progression,

and therapeutic resistance.
Frontiers in Immunology 08
Wang et al. (32) employed high-resolution MALDI-FT-ICR

mass spectrometry imaging to characterize metabolic heterogeneity

in adrenocortical carcinoma (ACC). They identified 12 distinct

metabolic subregions within tumors using unsupervised clustering

and diversity index analysis. Greater intratumoral metabolic

heterogeneity was significantly associated with advanced ENSAT

stages and poor prognosis. Notably, pathways such as the pentose

phosphate and purine metabolism were enriched in highly

heterogeneous regions, implicating localized metabolic activity in

tumor aggressiveness and treatment resistance.

Chen et al. (33) investigated spatial and genomic heterogeneity

in advanced prostate cancer using dual-tracer PET/CT imaging

(^18F-DCFPyL and ^18F-FDG) combined with next-generation

sequencing. Lesions with low PSMA uptake but high FDG avidity

(DCFPyL–FDG+) were predominantly observed in patients with

castration-resistant prostate cancer (CRPC) and were associated

with visceral metastases, poor PSA response, and unfavorable

outcomes. These lesions frequently harbored TP53 and/or RB1

mutations, which were identified as independent risk factors. This

study highlights the value of integrated spatial imaging and genomic

profiling in delineating tumor heterogeneity and guiding

personalized therapy.

Bian et al. (3) developed SplitFusion, a clinically validated fusion

detection algorithm optimized for FFPE tumor samples.

Demonstrating superior sensitivity and specificity, SplitFusion
FIGURE 5

Visualization Analysis of Journals in Cancer Spatial Metabolomics Research. (A) Journals with more than 2 articles; (B) Journal co citation network
graph; (C) Journal Double Image Overlay.
frontiersin.org

https://doi.org/10.3389/fimmu.2025.1589943
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Chen et al. 10.3389/fimmu.2025.1589943
successfully identified both known and novel gene fusions across

RNA sequencing platforms. It also revealed coexisting subclonal

fusion variants—such as EML4::ALK v3—in single tumors,

unveiling a new dimension of fusion-driven intratumoral

heterogeneity. These findings underscore the utility of combining

transcriptomics and bioinformatics to advance molecular

diagnostics in cancer.

In parallel, advancements in spatial metabolomics—particularly

high-resolution ultra-high-performance liquid chromatography-

tandem mass spectrometry (HR-UHPLC-MS/MS)—have greatly

enhanced our ability to resolve tumor metabolic heterogeneity.

These technologies enable precise spatial localization of key

metabolites and deepen our understanding of tumor metabolic

adaptability (5).

Collectively, these studies highlight the emerging roles of spatial

metabolomics, transcriptomics, and multi-modal imaging in

unraveling tumor heterogeneity. They not only broaden our

mechanistic insights into the TME but also open new avenues for
Frontiers in Immunology 09
precision diagnostics and personalized therapeutic strategies

in oncology.

4.1.2 Spatial distribution of metabolites and lipids
and their biological significance

The spatial distribution of metabolites and lipids plays a pivotal

role in cancer metabolic adaptation, immune evasion, and

therapeutic resistance.

Zhu et al. (34) applied matrix-assisted laser desorption/

ionization mass spectrometry imaging (MALDI-MSI) to

investigate curcumin-induced metabolic reprogramming in three-

dimensional breast cancer tumor spheroids. Their spatial

metabolomic profiling revealed that curcumin modulates the

abundance and localization of key lipid species—including

phosphatidylcholine, phosphatidylethanolamine, and fatty acids—

as well as polyamine-related metabolites such as glutamine and

spermidine. Notably, curcumin treatment suppressed the

expression of lipid and polyamine biosynthetic enzymes (e.g.,
FIGURE 6

Visualization analysis of keywords in cancer spatial metabolomics research. (A) Keyword Bubble Chart, (B) Keyword Timeline Clustering Analysis.
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FASN, SCD, GLS), indicating a broad reconfiguration of tumor

metabolic networks. These findings underscore the utility of spatial

metabolomics in revealing localized drug responses and highlight

curcumin’s potential in modulating cancer metabolism.

Sun et al. (35) conducted a comprehensive spatial metabolomic

analysis across multiple organs—including liver, skeletal muscle,

visceral and subcutaneous adipose tissue, and serum—in patients

with cancer cachexia (CCx). They observed increased metabolic

activity in adipose tissues and liver, accompanied by metabolic

suppression in skeletal muscle and serum. Energy charge analysis

revealed a decline in muscle bioenergetic capacity, in contrast to

elevated energy status in liver and adipose compartments. Pathway

enrichment and correlation network analyses further demonstrated

extensive inter-organ metabolic cross-talk, with the liver serving as

a central hub through lipid, amino acid, carbohydrate, and vitamin

metabolism. These results highlight the systemic nature of CCx and

the critical regulatory role of the liver–adipose–muscle axis in

metabolic reprogramming.

In the context of drug resistance and immune modulation, recent

studies have uncovered direct links between metabolic remodeling

and immune checkpoint regulation. Zou et al. (36) reported that the

accumulation of lactic acid in the tumor microenvironment caused

by metabolic stress can activate HIF-1a, thereby upregulating PD-L1
expression and promoting immunosuppression. Lactic acid can also

promote M2 polarization and regulate the tumor microenvironment

by secreting cytokines such as TGF-b and IL-10. Meanwhile, IL-10

can induce the upregulation of PD-L1 expression on monocytes,

thereby weakening CD8+ T cell-mediated immune surveillance.

Under hypoxic conditions, the activation of HIF-1a can inhibit the

activity of a-KGDH, reduce the oxidation of a-ketoglutarate,
and lead to the accumulation of succinate. In the tumor

microenvironment, succinate can promote the polarization of
Frontiers in Immunology 10
TAMs to a pro-tumor phenotype through the SUCNR1/PI3K/HIF-

1a signaling pathway, induce the secretion of related cytokines byM1

and M2 macrophages, and thereby affect the expression of PD-L1

(37). Similarly, Ma et al. (38) demonstrated that cholesterol-rich

membrane domains can stabilize PD-L1 on tumor cells, activate the

PI3K/AKT/mTOR signaling pathway, and promote the expression

and stability of downstream target protein HIF-1a through this

pathway, thereby inhibiting CD8+ T cell activity and promoting

immune escape.

Overall, these findings provide mechanistic insights into how

metabolic remodeling supports treatment resistance and immune

evasion in a spatially restricted manner. A conceptual overview is

shown in Figure 8, depicting the interactions between lactic acid,

cholesterol, a-ketoglutarate, succinate, and key immune effectors

including PD1, PD-L1, tumor-associated macrophages (TAMs), and

CD8+ T cells.

Ongoing advancements in spatial metabolomic technologies—

such as MALDI-MSI, SIMS-MSI, and high-resolution mass

spectrometry (HR-MS)—are enabling more precise visualization

of metabolic-immune interactions at subcellular resolution. Future

integration of spatial metabolomics with transcriptomics,

proteomics, and immunomics is expected to deepen our

understanding of tumor microenvironmental dynamics and

inform the development of personalized therapeutic strategies.

This figure illustrates the regulatory mechanism of cholesterol

on tumor immune metabolism. On one hand, it activates hypoxia-

inducible factor-1a (HIF-1a), thereby transcriptionally up-

regulating the expression of programmed death ligand 1 (PD-L1)

on tumor cells, promoting immune escape of tumor cells. On the

other hand, the increase of cholesterol can activate the PI3K/AKT/

mTOR signaling pathway, thereby promoting the expression and

stability of downstream target protein HIF-1a, leading to enhanced
FIGURE 7

Density map of highly cited literature in cancer spatial metabolomics.
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membrane stability of PD-L1. The continuous expression of PD-L1

further inhibits the activity of CD8+ T cells and promotes immune

escape. HIF-1a in tumor cells further inhibits the activity of a-
KGDH, reduces the oxidation of a-ketoglutarate, and leads to the

accumulation of succinate. Succinate promotes the polarization of

TAMs to the M2 phenotype through the SUCNR1/PI3K/HIF-1a
signaling pathway. M1-type macrophages in the tumor

microenvironment can activate immune cells by secreting pro-
Frontiers in Immunology 11
inflammatory factors (TNF-a, IL-1, IL-6), enhancing anti-tumor

immunity. IL-4 can activate M2-type macrophages, secrete IL-10,

TGF-b, and CCL17, thereby inhibiting T cell-mediated anti-tumor

immune responses. IL-10, on the one hand, can enhance the

maintenance of the PD-L1/PD-1 axis, thereby promoting immune

escape of tumor cells, and on the other hand, IL-10 induces up-

regulation of PD-L1 expression in monocytes, thereby weakening

CD8+ T cell-mediated immune surveillance.
TABLE 2 Highly Cited Literature on Cancer Spatial Metabolomics Research (Top 20).

No. Author(s) Journal Year Citations Key Findings

1 Yang Liu et al (13) Cell 2020 433
Developed DBiT-seq for spatial omics sequencing, achieving 10
mm resolution for transcriptomics and proteomics.

2 Michaela Asp et al (12) BioEssays 2020 325
Classified spatial transcriptomics into five techniques, including
in situ sequencing, spatial capture, and imaging.

3 Cameron G. Williams et al (15) Genome Medicine 2022 298
Reviewed different spatial transcriptomics methods and their
applications in RNA spatial mapping.

4 Chenglong Sun et al (11) PNAS 2019 253
Introduced spatially resolved metabolomics using ambient MSI to
map tumor-associated metabolites in esophageal cancer.

5 Joshua R. Moffitt et al (16) Nature Reviews Genetics 2022 160
Discussed the role of spatial omics in cellular heterogeneity,
tissue structure, and disease dynamics.

6 Chang Xu et al (17) Nucleic Acids Research 2022 84
Developed DeepST, a deep learning framework for detecting
spatial domains in spatial transcriptomics.

7 Delphine Parrot et al (18) Planta Medica 2018 78
Reviewed DESI-IMS as a tool for spatial metabolomics, providing
molecular insights into biological systems.

8 Jovan Tanevski et al (19) Genome Biology 2022 72
Proposed MISTy, a machine learning framework for analyzing
highly multiplexed spatial omics data.

9 Yingcheng Wu et al (20)
Clinical and

Translational Medicine 2022 68
Summarized advances in spatial omics for tumor
microenvironment profiling using high-throughput techniques.

10 Xin Ma et al (21)
Mass

Spectrometry Reviews 2024 65
Reviewed MSI applications in cancer, covering spatial lipidomics,
glycomics, and multimodal imaging.

11 Wan-Chen Hsieh et al (22)
Journal of

Biomedical Science 2022 56
Investigated spatial multi-omics in analyzing the tumor immune
microenvironment (TIME).

12 Zhuxian Zhu et al (23) Gut Microbes 2023 47
Showed Akkermansia muciniphila migrates to lung cancer
tissues, altering metabolism and the microenvironment.

13 Qingce Zang et al (24) Analytica Chimica Acta 2021 39
Developed high-resolution spatial metabolomics (MALDI-MSI)
for esophageal cancer with 12 mm resolution.

14 Matthew J. Mosquera et al (25) Advanced Materials 2022 36
Integrated proteomics, RNA-seq, and spatial omics to study ECM
dynamics in prostate cancer.

15 Thomas Hu et al (26) Nature Communications 2023 35
Proposed single-cell spatial metabolomics (scSpaMet) to analyze
protein-metabolite interactions in human tissues.

16 Judith M. Neumann et al (27)

Journal of Cancer
Research and

Clinical Oncology 2022 32
Used MALDI-MSI to differentiate adenocarcinoma and
squamous cell carcinoma in NSCLC with 95% accuracy.

17 Mélanie Planque et al (28)
Current Opinion in
Chemical Biology 2023 27

Highlighted MSI (MALDI/DESI) in cancer metabolomics,
enabling single-cell resolution mapping of metabolites.

18 Moumita Kundu et al (29) Molecular Cancer 2024 23
Discussed high-throughput spatial omics for identifying tumor-
immune regulatory genes affecting immunotherapy response.

19 Luca Marconato et al (30) Nature Methods 2025 23
Introduced SpatialData, a computational framework for spatial
omics data integration.

20 Renumathy Dhanasekaran et al (31) Hepatology 2023 22

Reviewed multimodal, single-cell, and spatial omics for
characterizing tumor heterogeneity and
immune microenvironment.
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4.1.3 Integration of spatial multi-omics analysis
The rapid evolution of multi-omics technologies has positioned

spatially resolved integration of metabolomics, transcriptomics,

proteomics, and other omics layers as a powerful strategy for

elucidating tumor metabolic heterogeneity and the dynamic

remodeling of the tumor microenvironment (TME). Compared

with single-omics approaches, spatial multi-omics enables

concurrent mapping of metabolite distribution, gene expression,

and protein activity at both cellular and tissue levels, providing a

comprehensive view of metabolic reprogramming, immune–

metabolic crosstalk, and mechanisms of drug resistance.

Sun et al. (39) conducted a spatial multi-omics analysis in

gastric cancer by integrating AFADESI-MSI–based metabolomics,

MALDI-MSI–based lipidomics, and 10× Genomics Visium–based

spatial transcriptomics. Their study identified distinct metabolic

and transcriptional programs across tumor, epithelial, intestinal

metaplasia, and lymphoid regions. Of particular interest was the

discovery of an immunologically active tumor–normal interface

enriched in plasma B cells and Th2-like CD4+ T cells, characterized
Frontiers in Immunology 12
by specific immunometabolic signatures. Spatial co-localization of

polyamines, fatty acids, and key metabolic genes such as FASN and

GLS suggested coordinated metabolic reprogramming that may

drive tumor progression and immune modulation.

Liang et al. (40) systematically reviewed recent applications of

spatial multi-omics in gastrointestinal malignancies, including

esophageal, gastric, and colorectal cancers. They emphasized that

integrating spatial transcriptomic, proteomic, and metabolomic

data allows for high-resolution profiling of tumor heterogeneity,

cellular interactions, and microenvironmental remodeling. The

review highlighted the translational relevance of spatial multi-

omics in identifying therapeutic targets, stratifying patients, and

informing precision oncology strategies.

Lu et al. (41) employed a spatial multi-omics approach to

investigate the metabolic effects of Anlotinib in hepatocellular

carcinoma. By integrating metabolomics, transcriptomics, and

proteomics, they identified four key metabolic pathways

modulated by Anlotinib—steroid biosynthesis, the pentose

phosphate pathway, taurine and hypotaurine metabolism, and
FIGURE 8

Schematic diagram of the mechanism of lipid metabolism immune interaction promoting immune escape in tumor microenvironment.
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lipid biosynthesis. Spatial analysis revealed increased abundance

and altered localization of metabolites such as 7-ketocholesterol,

phosphoenolpyruvate, taurine derivatives, and trans-crotonyl-CoA,

which correlated with enhanced CD8+ T cell infiltration and

reprogramming of the tumor immunometabolic landscape. These

metabolites were proposed as potential biomarkers, supporting the

clinical promise of Anlotinib as a modulator of both tumor

metabolism and immune response.

Despite these advancements, cross-platform integration

remains technically challenging due to inconsistencies in spatial

resolution, signal dynamics, and detection principles among

different technologies. For example, aligning MALDI-MSI or

SIMS-MSI metabolomic data with spatial transcriptomics from

platforms such as 10x Genomics Visium may introduce batch

effects that confound biological interpretation.

To address these challenges, several data harmonization strategies

have been developed. ComBat, an empirical Bayes-based method, has

proven effective inmitigating batch effects across omics datasets and can

be adapted to spatial data. Additionally, Seurat’s integration pipelines—

based on canonical correlation analysis (CCA) and mutual nearest

neighbor (MNN) algorithms—facilitate robust alignment of

transcriptomic and proteomic layers with metabolic features.

Furthermore, frameworks such as SpatialData offer standardized

spatial metadata management and coordinate referencing, improving

reproducibility and enabling cross-study comparability.

In summary, the integration of spatial metabolomics with other

omics modalities offers a powerful approach for characterizing cancer

metabolic adaptation and microenvironmental complexity. The

implementation of robust normalization algorithms and standardized

spatial frameworks will be critical for improving reproducibility,

validating spatial biomarkers, and advancing therapeutic innovations

in metabolic targeting, immunotherapy, and personalized medicine.
4.2 Research trends

4.2.1 Deep integration of computational tools
and artificial intelligence

Advancements in computational tools and artificial intelligence (AI)

are revolutionizing cancer spatial metabolomics by enabling precise

analysis of metabolic heterogeneity within the tumormicroenvironment

(TME) and among diverse interacting cell populations.

Hu et al. (26) introduced scSpaMet, a multi-modal framework that

integrates untargeted spatial metabolomics via time-of-flight secondary

ion mass spectrometry (TOF-SIMS) with multiplexed protein imaging

through imaging mass cytometry (IMC). This approach enables joint

spatial profiling of over 200 metabolites and 25 proteins at single-cell

resolution across a variety of human tissues. By applying cross-

modality image registration and segmentation, scSpaMet identifies

metabolically distinct cellular phenotypes and their associated

proteomic signatures. Furthermore, the use of deep learning to

embed metabolic features into latent spaces allows the inference of

metabolic trajectories and the mapping of metabolite–protein

interactions and competitive dynamics within the TME, offering

valuable insights into tumor evolution and functional heterogeneity.
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Ma and Fernández (21) provided a comprehensive review

of recent innovations in mass spectrometry imaging (MSI)

technologies such as MALDI, DESI, and SIMS highlighting their

growing application in spatial cancer metabolomics. The authors

emphasized the increasing role of AI and machine learning in

enhancing MSI workflows, including feature extraction,

dimensionality reduction, unsupervised tissue segmentation, and

biomarker discovery. These computational approaches are essential

for managing high-dimensional spatial datasets and improving

molecular annotation and spatial resolution in oncologic studies.

More broadly, recent advances in spatial metabolomics have

underscored the transformative potential of AI for integrating and

analyzing large-scale spatial data. By leveraging machine learning

algorithms, researchers have significantly improved metabolite

identification, enhanced spatial resolution, and enabled cross-

omics integration—advancing the interpretation of spatial

metabolic networks within both cancer systems biology and

metabolic engineering contexts (42).

Despite these achievements, limitations in spatial resolution

persist. For instance, MALDI-MSI typically achieves resolutions in

the range of 10–20 mm, which may obscure subcellular features and

local metabolic gradients around immune cells, thereby limiting the

granularity of microenvironmental insights.

To overcome these challenges, emerging platforms such as

nano-DESI and AFM-IR now offer submicron spatial resolution.

When coupled with AI-powered image analysis and multimodal

data integration, these technologies promise to unlock detailed

subcellular maps of metabolic activity and improve the precision

of spatial interpretation.

In summary, the convergence of spatial metabolomics and

artificial intelligence has expanded the analytical toolkit for

dissecting metabolic reprogramming and immune regulation with

high spatial fidelity. This synergy is accelerating progress in

precision oncology and the development of spatially informed

therapeutic strategies.

4.2.2 Integration of spatial metabolomics with
clinical translation

The rapid advancement of spatial metabolomics has

significantly enhanced its translational potential in precision

oncology, particularly in cancer diagnosis, treatment monitoring,

and the investigation of drug resistance mechanisms.

Shen et al. (43) utilized matrix-assisted laser desorption/

ionization mass spectrometry imaging (MALDI-MSI) to analyze

neoadjuvant chemotherapy (NAC) responses in non-small cell lung

cancer (NSCLC). By profiling spatially resolved tumor metabolites,

they constructed a predictive classifier that achieved 81.6% accuracy

in identifying NAC responders, outperforming conventional

pathological evaluation (62.5%) and TNM staging (54.1%).

While these results underscore the value of spatial metabolic

signatures as predictive biomarkers, it is important to note that the

model was validated only within a single-institution cohort. Lack of

external and prospective validation may limit its generalizability,

and multi-center studies are needed to confirm its robustness and

clinical applicability.
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Zhi et al. (44) integrated spatial transcriptomics and spatial

metabolomics to study the malignant transformation from oral

submucous fibrosis (OSF) to oral squamous cell carcinoma (OSCC).

Their work revealed partial epithelial-mesenchymal transition (pEMT)

accompanied by polyamine metabolic reprogramming, showing that

OSF-derived OSCC cells could adopt a fibroblast-like phenotype. This

transformation contributes to extracellular matrix remodeling and

immune evasion, providing mechanistic insights relevant to early

detection and preventive strategies in oral cancer.

Furthermore, Xu et al. (45) reviewed the application of spatial

metabolomics in addressing cancer drug resistance, highlighting how

tumor cells undergo metabolic reprogramming—including enhanced

glycolysis, altered amino acid and lipid metabolism, and

immunosuppressive metabolic shifts—to adapt under therapeutic

pressure. Spatial metabolomics enables the characterization of such

resistance-associated metabolic heterogeneity at both the tissue and

single-cell levels. The authors emphasize that spatially resolved

metabolic profiling holds great promise in uncovering mechanisms

of resistance, identifying actionable metabolic targets, and guiding

personalized therapeutic strategies.

In conclusion, the integration of spatial metabolomics into

translational cancer research is accelerating its application in clinical

contexts, offering novel avenues for biomarker discovery, therapeutic

monitoring, and individualized treatment of drug-resistant tumors.
4.3 Limitations

Despite systematically revealing the development trends and

research hotspots of spatial metabolomics in oncology through

bibliometric analysis, this study has certain limitations that should be

considered. These limitations primarily stem from database coverage

constraints and methodological limitations in bibliometric analysis.

First, the data for this study were primarily obtained from the

Web of Science Core Collection (WOSCC). While WOSCC covers a

large number of high-impact journals and is widely used in

bibliometric research, its coverage and data acquisition methods

may impact the comprehensiveness of the analysis. WOSCC is

biased toward fundamental research and high-impact journals,

potentially excluding relevant literature from other databases,

such as PubMed, Scopus, Embase, Google Scholar, and IEEE

Xplore. This may be particularly relevant for clinical studies,

applied research, interdisciplinary research, and emerging fields

that might not be fully represented in WOSCC.

Additionally, some non-English publications may not be included

in the dataset. Given that spatial metabolomics research has been rapidly

advancing in non-English-speaking countries such as China, Japan, and

Germany, this limitation may introduce geographical bias, potentially

affecting the accuracy of global research hotspot assessments.
5 Conclusion

This study presents a comprehensive bibliometric review of

spatial metabolomics in oncology, outlining its developmental
Frontiers in Immunology 14
trajectory, major contributing countries and institutions, and core

research themes. Since 2018, the field has experienced rapid growth,

with increasing global engagement led by China, the United States,

Germany, and the United Kingdom. Prominent institutions such as

the Chinese Academy of Medical Sciences, Harvard University, and

Stanford University have played pivotal roles, while leading journals

like Nature Communications and Nature Methods have served as

primary platforms for scholarly dissemination.

The primary research focuses in this domain include: (1) spatial

heterogeneity of the tumor microenvironment, (2) spatial

distribution of metabolites and lipids, and (3) integration of

spatial multi-omics. Continued advancement will depend on

incorporating high-resolution imaging, single-cell metabolomics,

and AI-driven analytics to improve tumor metabolic profiling and

support precision oncology.

To propel the field forward, we offer several actionable

recommendations. First, funding agencies should prioritize

investment in next-generation spatial imaging platforms—such as

nano-DESI, AFM-IR, and 3D multimodal systems—to resolve

subcellular metabolic detail. Second, stronger academia–industry

partnerships are needed to accelerate the development and

implementation of scalable, AI-powered analysis pipelines. Third,

establishing international spatial metabolomics consortia and open-

access data repositories will foster reproducibility, enable cross-

cohort validation, and drive translational biomarker discovery.

In summary, spatial metabolomics is poised to transform cancer

research and clinical practice. Realizing this potential will require

coordinated efforts in technology development, interdisciplinary

collaboration, and infrastructure expansion to bridge discovery and

application in precision oncology.
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